Numerical Methods for CSE

Autumn 2023	
$Q+A$	22.09 .2023

No Bonus
A HOCK EXAM "BYOD" "DAY" NOVEMBER "code Expert"

Def kronecker produkt of two matrices

$$
\frac{I}{m}(x)=\left[\begin{array}{lll}
1 A & & 0 \\
& 1 \underline{A} & \\
0 & \ddots & \\
& & 1 \underline{A}
\end{array}\right]
$$

$$
\underline{\underline{A} \times I_{n}=\left[\begin{array}{ccc}
a_{11} T & a_{1 I} I \cdots & a_{1 k} \\
\underline{\underline{A}} n \times k & a_{12} I & \\
\vdots & & \\
a_{21} & a_{22} & a_{n k I}
\end{array}\right]}
$$

$$
\left[\begin{array}{l}
a \\
a \\
\\
\end{array}\right.
$$

$$
\begin{aligned}
& \underline{A} \in \mathbb{R}^{m \times n} \quad B \in \mathbb{R}^{l \times k} \\
& m, \pi, l, k \in \lambda \\
& A \otimes B \in \mathbb{R}^{(m l) \times(n k)} \text { Block of sizc lxk } \\
& {\left[\begin{array}{ccc}
A_{11} \frac{B}{2} & A_{12} \frac{B}{2} & \cdots \\
\vdots & & A_{12} \underline{B} \\
A_{m 1} \frac{B}{1} & A_{m 2} \frac{B}{2} & \cdots \\
A_{3 n} \underline{B}
\end{array}\right]}
\end{aligned}
$$

Partiol Differontiol Equotiong

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial y} \quad D_{x} \otimes x \xrightarrow{D}
$$

$$
\begin{aligned}
& \frac{1}{n}(\underline{h}(\underline{1} \\
& x_{i-1} x_{i} x_{i+1} \\
& \underline{u}=\left[\begin{array}{c}
u\left(x_{0}\right) \\
\vdots \\
u\left(x_{N-1}\right)
\end{array}\right] \stackrel{A}{=} \underset{x}{D} \\
& \frac{\partial}{\partial x} u\left(x_{i}\right) \approx \frac{u_{i+1}-u_{i-1}}{2 h}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{3} \text { 0.1.11.C. } \\
& 29.09 .2023 \quad\left(\alpha\left(x_{1}\right)+\beta \underline{x_{2}}\right)=b_{1} \\
& \text { Q30.1.11.C. } \left.\rightarrow \beta x_{1}+\alpha\left(x_{2}\right)+\beta x_{3}\right)=b_{2} \\
& \text { (Q3.0.1.11.C) }\left[\mathrm{A} \int_{0}^{1} e^{x} \text { de-type problem] We know the solution } \mathrm{x} \in \mathbb{R}^{n}\right. \text { and the right-hand-side vector } \\
& \mathbf{b} \in \mathbb{R}^{n} \text { of the } n \times n \text { (Toeplitz) tridiagonal linear system of equations } \\
& \text { Which overdetermined linear system of equations of maximal size has the vector }[\alpha, \beta]^{\top} \in \mathbb{R}^{2} \text { as its } \\
& \text { solution? } \\
& \begin{array}{l}
\beta x_{1}+\alpha\left(x_{2}\right)+\beta x_{3}=b_{2} \\
\beta x_{2}+\alpha\left(x_{3}\right)+\beta\left[x_{4}=b_{3}\right.
\end{array} \\
& \left.\beta x_{3}+\alpha x_{4}\right)+1^{3 x_{5}}=b_{4} \\
& \beta x_{4}+\alpha x_{5}+\beta x_{6}=b_{5} \\
& \beta\left[\begin{array}{l}
\vdots \\
x_{n-2}
\end{array}+\alpha x_{n-1}+\beta x_{n}=b_{n-1}\right. \\
& \beta\left(x_{n-1}+\alpha x_{n}=s_{2}\right. \\
& {\left[\begin{array}{cc}
x_{1} & x_{2} \\
x_{2} & x_{1}+x_{3} \\
x_{3} & x_{2}+x_{4} \\
x_{4} & x_{3}+x_{5} \\
\vdots & \vdots \\
\vdots & x_{n-1} \\
x_{n}+x_{n} \\
x_{n} & x_{n-1}
\end{array}\right]=\left[\begin{array}{c}
\alpha \\
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]}
\end{aligned}
$$

(Q3.1.1.14.C) Given a matrix $\mathbf{B} \in \mathbb{R}^{m, n}$, a vector $\mathbf{c} \in \mathbb{R}^{m}$, and $\lambda>0$, define

$$
\left\{\mathbf{x}^{*}\right\}:=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{argmin}}\|\mathbf{B} \mathbf{x}-\mathbf{b}\|_{2}^{2}+(\boldsymbol{X})\|\mathbf{x}\|_{2}^{2} \subset \mathbb{R}^{n} . \quad \text { looks like a penalisation: }
$$

$$
x \neq 0 \Rightarrow \lambda\|x\|_{2}^{2} \text { cloor increase! }
$$

State an overdetermined linear system of equations $\mathbf{A x}=\mathbf{b}$, of which \mathbf{x}^{*} is a least-squares solution.
but actually no deeper meaning
\rightarrow method ta address linear least than for trick squares problem for B with B not fall rank
(i.e. (Some of) the colomins of B are linear dependent)

Pick a small $\lambda>0$

$$
\underline{\underline{A}}=\left[\begin{array}{c}
\underline{\underline{B}} \\
\sqrt{\lambda} \underline{I}_{n}
\end{array}\right] \quad \underline{b}=\left[\begin{array}{c}
\underline{c} \\
0
\end{array}\right] \in \mathbb{R}^{m+n}
$$

$$
\lambda\|\underline{x}\|_{c}^{2}=\left\langle\sqrt{\lambda} \underline{\underline{x}} \underline{x}, \sqrt{\lambda} I_{\underline{x}}\right\rangle
$$

\rightarrow linear indepart colones of A
aryan $\|\underline{A} \underline{x}-\underline{b}\|_{2}^{2}(m+n) \times n$ has pule n. $\underline{x} \in \mathbb{R}^{n}$

Possible advantage: if $\underline{\underline{B}}$ is sparse, so is \underline{A}, so $Q R$-dice via Givers-Rototion, might be much less expensive than sui($\underline{\underline{B}) \text {. }}$

Question: difference in advantcyes CSC/CRS (O2.7.1.5.E) For a given matrix $A \in \mathbb{R}^{n n, n}, n, n \in N$, we define the square matrix

$$
\mathbf{W}_{\mathbf{A}}:=\left[\begin{array}{cc}
\mathbf{O}_{m, m} & \mathbf{A} \\
\mathbf{A}^{\top} & \mathbf{O}_{n, n}
\end{array}\right] \in \mathbb{R}^{m+n, m+n}
$$

Outline the implementation of an efficient C_{++}function

$$
\begin{aligned}
& \text { void crsAtoW(std:: vector <double> \&val, } \\
& \text { std::vector<unsigned int> \&col_ind, } \\
& \text { std:: vector<unsigned int> \&row_ptr); }
\end{aligned}
$$

whose arguments supply the three vectors defining the matrix A in CRS format and which overwrites them with the corresponding vectors of the CRS-format description of $\mathbf{W}_{\mathbf{A}}$.

Remember that the CRS format of a matrix $\mathbf{A} \in \mathbb{R}^{m, n}$ is defined by

$$
\operatorname{val}[k]=(\mathbf{A})_{i, j} \Leftrightarrow\left\{\begin{array}{l}
\text { col_ind }[k]=j, \\
\text { row_ptr }[i] \leq \mathrm{k}<\text { row_ptr }[i+1], \quad 1 \leq k \leq \operatorname{nnz}(\mathbf{A}) .
\end{array}\right.
$$

It may be convenient to use std: : vector: :resize (n) that resizes a vector so that it contains n elements. If n is smaller than the current container size, the content is reduced to its first n elements, removing those beyond (and destroying them). If n is greater than the current container size, the content is expanded by inserting at the end as many elements as needed to reach a size of n using their default value.

Most important: how to implement

CRSMatrix sparse_transpose(const CRSMatrix\& input) \{
CRSMatrix res\{
input.m,
input.n,
input.nz,
std::vector<double>(input.nz, 0.0),
std::vector<int>(input.nz, 0)
std::vector<int>(input.m $+2,0) / /$ one extra
\};
// count per column
for (int $i=0 ; i<i n p u t . n z ;++i)$ \{
++res.rowPtr[input.colIndex[i] + 2];
$\}$
// from count per column generate new rowPtr (but shifted)
for (int $i=2 ; i<r e s . r o w P t r . s i z e() ;++i)\{$
// create incremental sum
res.rowPtr[i] += res.rowPtr[i - 1];
\}
// perform the main part
for (int $i=0 ; i<i n p u t . n ;++i)$ \{
for (int j = input.rowPtr[i]; j < input.rowPtr[i + 1]; ++j)
// calculate index to transposed matrix at which we should p
\longrightarrow const int new_index = res.rowPtr[input.colIndex[j] + 1]++;
res.val[new_index] = input.val[j];
res.colIndex[new_index] = i;

\}

\}
res.rowPtr.pop_back(); // pop that one extra
return res;
(Q2.6.0.25.F) [Loss of stability] By direct block-wise Gaussian elimination we found the following solution formulas for a block-partitioned linear system of equations with $\mathbf{D} \in \mathbb{R}^{n, n}, \mathbf{c}, \mathbf{b} \in \mathbb{R}^{n}, \alpha \in \mathbb{R}$, $\mathbf{y} \in \mathbb{R}^{n+1}$:

$$
\begin{gathered}
\mathbf{A x}=\left[\begin{array}{cc}
\mathbf{D} & \mathbf{c} \\
\mathbf{b}^{\top} & \alpha
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{1} \\
\xi
\end{array}\right]=\mathbf{y}:=\left[\begin{array}{c}
\mathbf{y}_{1} \\
\eta
\end{array}\right], \\
\\
\qquad \begin{array}{c}
\xi=\frac{\eta-\mathbf{b}^{T} \mathbf{D}^{-1} \mathbf{y}_{1}}{\alpha-\mathbf{b}^{\top} \mathbf{D}^{-1} \mathbf{c}}, \\
\mathbf{x}_{1}=\mathbf{D}^{-1}\left(\mathbf{y}_{1}-\xi \mathbf{c}\right)
\end{array}
\end{gathered}
$$

Use these formulas to compute the solution of the 2×2 linear system of equations

$$
\left[\begin{array}{ll}
\delta & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\xi
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

assuming $|\delta|<\frac{1}{2} \mathrm{EPS}$ and using floating point arithmetic.
Hint. Remember that, if $|\delta|<\frac{1}{2} \mathrm{EPS}$, in floating point arithmetic

$$
1 \tilde{+} \delta=\text { and } 2 \tilde{f} \delta^{-1}=\delta^{-1} \text {. }
$$

This is compatible with the "Axiom" of roundoff ana' 戶 Ass. 1.5.3.11

$$
\begin{aligned}
J= & \frac{2-\frac{1}{\delta}}{1-\frac{1}{\delta}}=\frac{1}{1-\delta^{-1}}+1 \\
& 1+\delta=1 \\
& -2-\frac{1}{\delta}=-\frac{1}{\delta-1} \Rightarrow 1-2-\frac{1}{\delta}=1-\frac{1}{\delta}
\end{aligned}
$$

If we compute "correctly", we get the
Wrong conswer!

$$
\text { affine space } \neq \begin{aligned}
& \text { linear space } \\
& \text { vector }
\end{aligned}
$$

Hence $O(n)$ instord of $O\left(n^{3}\right)$.
13.10 .7023

Write the condition: $\underline{x}^{\top} \underline{M} \underline{x}=1$

$$
\begin{aligned}
& \underline{x}^{\top} \cup \underline{\underline{U}} \underline{U}^{\top} \underline{x}=1 \\
& \underbrace{\underline{x}^{\top} \underline{U} D_{\underline{D}}^{D^{\top}} \sum_{\underline{U^{\top}} \underline{x}}^{\underline{x}}}_{\underline{y^{\top}}}=\text { ? } \\
& \underline{y}^{\top} \underline{y}=1 \text { with } \underline{y}=D_{\underline{V^{\top}}}{ }^{\top} \underline{x} \Leftrightarrow \underline{\underline{v}} \underline{D}^{-1} \underline{y}=\underline{x} \\
& D^{-1} \mid \\
& \because 1 \\
& \text { orthonormal. } \\
& \downarrow
\end{aligned}
$$

which \underline{x} makers $\|\underline{A} \underline{x}\|=$ min
See (3.4.4.3)
for the solution of this problem.
Sol. is. the first right singular vector of B

$$
\text { Sol } \underline{x}=\underline{U} \underline{D}^{-1} \underline{y}
$$

(Q) Why det $H=-1$ for any Householder Matrix? Q How do we solve Linear Systems of Eq-?

$$
\begin{aligned}
& \underline{n} \in \mathbb{R}^{d} \\
& \text { \|2い = } 1 \\
& \rightarrow \text { phone } \perp \text { K }
\end{aligned}
$$

$\operatorname{din} V=d-1$
Take basis (orthonormal) $v_{1}, \cdots, v_{1,1} \in V$

$$
\begin{gathered}
\underline{\underline{H}} \underline{v}_{1}=\underline{v}_{1}, \ldots, \underline{\underline{H}} \underline{v}_{d-1}=v_{1-1} \\
\underline{H}_{2}=-n \\
1 \text { is } E W \text { of } \underline{\underline{H}} \text { of Multiplicity. d-1 } \\
-1 \text { is } \in W \text { of } \underline{\underline{H}} \text { of Rultiplicig } 1 \\
\operatorname{det} \underline{\underline{H}}=\lambda_{1} \lambda_{2} \lambda_{2} \ldots \lambda_{n}=(1)^{d-1}(-1)=-1
\end{gathered}
$$

1) Want good precision? Moderate precision.
2) how expensive?

Good precision, not too big Matrix \Rightarrow LU-decup.
Asymanetic posed \Rightarrow cholesty-den,
big Matrix, sparse (banded)
\rightarrow there might be some direct methods that keep sparsity, so might be feasible $Q R ; \angle U$
in general LU would be not fryable.
less precision or Large sparse Matrix $\underset{=}{A}$
\Rightarrow iterative methods \langle somatic $\overline{\bar{C}} G$ Krylov-type Mutual Snor-syut others

Krylou-type methods use on's
(Q) Polar decompositio.

Aㅈㅡㅡㅡㄹ
\Rightarrow if $\underset{A}{A}$ is sporse $\Rightarrow O\left(2, n^{2}\right)$
Note: $C G$ slow if $\operatorname{con}(\underline{A})$ is bing. \Rightarrow use pre-conditionis

$$
\underline{A}_{\underline{A}}^{x}=\underline{b}=1 \quad \underline{B}^{-1} \underline{A}_{x}=\underline{\beta}^{-1} \underline{b}
$$

$$
\text { if } \underline{B}^{-1}=\underline{A}^{-1} \Rightarrow \quad \underline{x}=\underline{\underline{B}}^{-1} \underline{b}
$$

use $\underline{B}^{-1} \approx \underline{A}^{-1}$
ex $\quad \underline{B}=\operatorname{dig}(\underline{A}) \rightarrow \underline{B}^{-1}$ cheap
\Rightarrow Solve (CG) for $B^{-1} A=\underline{=}=\underline{B}^{-1} \underline{b}$

$$
\begin{aligned}
& =\underbrace{U I U^{\top} V V^{\top}}= \\
& \tilde{F}_{\text {spd }} \stackrel{\widetilde{Q}}{\underline{\mathbb{Q}}}
\end{aligned}
$$

$m \geqslant n$ economical SVD

$$
\begin{aligned}
& \underline{U} \in \mathbb{R}^{m \times n}, \Sigma=\left[\begin{array}{lll}
c_{1} & 0 \\
0 & V_{n}
\end{array}\right] \\
& \underline{\underline{V}} \in \mathbb{R}^{n \times n}
\end{aligned}
$$

$$
\begin{aligned}
& V \sum V^{\top} \sim n^{2} \text { Operations (Storage) } \\
& ====\sim m \cdot n \text { Uperations (Storage) } \\
& \underline{U} \sim \sim 2
\end{aligned}
$$

\Rightarrow not cheopen O(m n $)+2^{2}$)
$t_{n} \rightarrow$ dominates!
312.d. Main messeges
(1) avoid using economical $Q R$-decomposition,
(2) if using it, then be aware of dimensions!

$$
\begin{aligned}
& \text { 3.6. } x_{1}=A_{1} B_{1}^{T \in \mathbb{R}^{m \times n}} x_{2}=A_{2} B_{2}^{\top} \\
& \underline{A}_{1}, A_{2} \in \mathbb{R}^{P_{n} \times k} \\
& \underline{x}=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right] \in \mathbb{R}^{2,2 n} \\
& B_{1}, B_{2} \in \mathbb{R}^{n \times k} \\
& R(\underline{x})=R\left(\underline{x}_{1}\right)+R\left(\underline{x}_{2}\right) \\
& \Rightarrow \operatorname{din} R(x) \leqslant \operatorname{dim} R\left(x_{1}\right)+\operatorname{dn} R\left(x_{2}\right)=r_{k} \Rightarrow \\
& \operatorname{dn} R(x) \leq m
\end{aligned}
$$

$\operatorname{din} R(\|)=1 \quad \operatorname{dan} R=\operatorname{Ron}(A)$
da $R(x) \leqslant \min 4 x, 2 k\}$

SUD of X without assembling X ? ie. by using only the factors
$\underline{A}_{1}, B_{1}, \underline{A}_{2}, \theta_{2}$

$$
=\sqrt[n]{n^{2}}
$$

$$
\begin{aligned}
& \text { economical! } \\
& \underline{B}_{1}=\underline{Q}_{1} R_{1} \\
& \underline{\underline{B}}_{2}=\underline{\underline{Q}}_{i}{\underset{E}{R}}^{R_{2}} \\
& \underline{\underline{X}}=\left[\begin{array}{ll}
A_{1} R_{1}^{\top} Q_{1}^{\top} & \underline{A}_{2} \underline{E}_{2}^{\top} \underline{\underline{Q}}_{2}^{\top}
\end{array}\right]= \\
& =\underbrace{\left[\begin{array}{cc}
\underline{A}_{1} R_{1}^{\top} & \underline{A}_{2} \underline{R}_{i}^{\top}
\end{array}\right]}_{\underline{2}^{m \times 2 n}} \underbrace{\left[\begin{array}{ll}
Q_{1}^{\top} & 0 \\
0 & \alpha_{2}^{\top}
\end{array}\right]} \\
& \underline{2}=\tilde{U} \tilde{\sum}_{i n} \tilde{V}^{\top} \quad \tilde{U} \quad \underline{\underline{U}} \in \mathbb{R}^{m, 2 k}, \tilde{Q} \in \mathbb{R}^{2 k \times 2 n}
\end{aligned}
$$

(Q) Meaning of interpolotion operator?

$$
\begin{gathered}
x=\begin{array}{c}
\tilde{U} \sum^{\prime \prime} \tilde{V}^{\prime} \tilde{V}^{\top} \underbrace{\top} \underbrace{\top} \\
=
\end{array}, \underline{Q}
\end{gathered}
$$

Inplerantation

$$
\text { 15-b: } \quad I_{n k}=\left[\begin{array}{lll}
1 & \\
& & \\
& -1
\end{array}\right]
$$

Wont a fanction $f:\left[t_{1}, t_{m}\right] \rightarrow \mathbb{R}^{n}$ such thox
one call of fall $Q R$-decozposition (Houselolder) gives wohke $n \times 2$ matrix \underline{Q}_{1}

$$
f\left(t_{j}\right)=\underline{y}_{j} \text { for all } j=1, \ldots, m \text {. }
$$

f should hove some desired propertieg applications mathenatical froseste

$$
\begin{aligned}
& \left.V=\operatorname{spm}\} b_{1}, b_{2}, \ldots, b_{n}\right\} \rightarrow f \\
& \left.\left.\quad f(t)=\sum_{k=1}^{n} c_{k} b_{k} \mid t\right) \quad n \text { cordition }\right\} \rightarrow \text { Linoar syst2 } \\
& n \times n \text { for } c_{l \ldots, c_{n} .} .
\end{aligned}
$$

Which $b_{1} \ldots b_{n}$ to chooso?

$$
V=P_{n} \Rightarrow b_{k}(t)=t^{6-1} \quad \ddot{\sim}
$$

(1)
linear systom bod conditiused!

+ better basis.!
+ suitable spoce.

$$
b_{k}(t)=e^{i k t}=\cos (k t)+i \sin (k t)
$$

\rightarrow trigoronetric polgnomiols
\Rightarrow very fast ond accurate alyorithes, via FFT.
\rightarrow conplete basis in L^{2}
(Q) Lagrarge interpolation.

Let us toke 3 masuremort.

t_{0}	t_{1}	t_{2}
y_{0}	∂_{1}	y_{2}

$$
L_{0}(t)=\frac{t-t_{1}}{t_{0}-t_{1}} \frac{t-t_{2}}{t_{0}-t_{2}} \Rightarrow L_{0}\left(t_{0}\right)=\left|\frac{t_{0}-t_{1}}{t_{0}-t_{1}} \frac{t_{0}-t_{2}}{1} \frac{t_{0}-t_{2}}{1}\right|=1
$$

$$
L_{0}\left(t_{1}\right)=\frac{0}{t_{0}-t_{1}} \frac{t_{1} t_{2}}{t_{0}-t_{2}} \rightarrow L_{0}\left(t_{1}\right)=L_{0}\left(t_{2}\right)=0
$$

$$
\begin{aligned}
& f(t)=y_{0} L_{0}(t)+y_{1} L_{1}(t)+y_{2} L_{2}(t) \\
& f\left(t_{0}\right)=y_{0} \cdot 1+y_{1} \cdot 0+y_{2} \cdot 0=y_{0} \\
& f\left(t_{1}\right)=y_{0} \cdot 0+y_{1} \cdot 1+y_{2} \cdot 0=y_{1} \\
& f\left(t_{2}\right)=y_{0} \cdot 0+y_{1} \cdot 0+y_{2} 1=y_{2}
\end{aligned}
$$

\uparrow

$$
\text { " } \delta^{\prime \prime} \text {-Propers. } \quad L_{j}\left(t_{k}\right)= \begin{cases}1 & \text { if } j=k \\ 0 & \text { if } j \neq 4 .\end{cases}
$$

