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Focus of Today’s Lecture

For

∆u+ k2u = 0,

and boundary or finite element methods for its solution:

1. How does conditioning depend on k (and the geometry)?

2. How can we remove or reduce this dependence?
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Focus of Today’s Lecture

For

∆u+ k2u = 0,

and boundary or finite element methods for its solution:

1. How does conditioning depend on k (and the geometry)?

2. How can we remove or reduce this dependence?

What is conditioning? For a linear system

Ax = b
the condition number is

condA := ‖A‖ ‖A−1‖ where ‖A‖ := sup
x6=0

‖Ax‖
‖x‖

.

Large condition numbers associated with:

• slow convergence of iterative solution methods;

• magnification of effects of errors, e.g. in entries of A.
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For

∆u+ k2u = 0,

and boundary or finite element methods for its solution:

1. How does conditioning depend on k (and the geometry)?

2. How can we remove or reduce this dependence?

What is conditioning? For an operator equation

Ax = b

(A : X → Y a continuous linear operator, x ∈ X, b ∈ Y ) the condition

number is

condA := ‖A‖X→Y ‖A−1‖Y→X where ‖A‖X→Y := sup
0 6=x∈X

‖Ax‖Y

‖x‖X
.
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For

∆u+ k2u = 0,

and boundary or finite element methods for its solution:

1. How does conditioning depend on k (and the geometry)?

2. How can we remove or reduce this dependence?

What is conditioning? For the variational equation: find u ∈ X such

that

a(u, v) = f(v), v ∈ Y,

(X and Y Hilbert spaces, a : X × Y → C a continuous sesquilinear

form) a relevant condition number is that of the associated operator

A : X → Y ′, defined by

Au(v) = a(u, v), u ∈ X, v ∈ Y.
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Since (see Melenk notes, Theorem 3 (Babuška-Brezzi), Hiptmair,

’Fundamental Concepts’, §2),

‖A‖X→Y ′ = M, M := sup
0 6=u∈X, v∈Y

|a(u, v)|
‖u‖X ‖v‖Y

,

‖A−1‖Y ′→X = γ−1, γ := inf
0 6=u∈X

sup
0, 6=v∈Y

|a(u, v)|
‖u‖X ‖v‖Y

,

M often called the norm of a and γ its inf-sup constant, it holds that

condA =
M

γ
.
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Precise Focus of Today’s Lecture

For

∆u+ k2u = 0,

and integral equation or domain methods for its solution:

1. How does conditioning depend on k (and the geometry)?

2. How can we remove or reduce this dependence?

Estimating ‖A‖ and ‖A−1‖ when A is an integral operator, and norm

and inf-sup constants of sesquilinear forms.
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The Scattering Problem in Rd (d = 2 or 3)
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∆u + k2u = 0
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obstacle

-

6

x1

x2

We seek u ∈ H1,loc
0 (Ω+) ∩ C2(Ω+) which satisfies the Sommerfeld

radiation condition
∂u

∂r
− iku = o

(
r−(d−1)/2

)
as r = |x| → ∞.
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Recall from Yesterday ...

a standard weak formulation in Ω+
R, that part of Ω+ inside a ball of

radius R, with the exact Dirichlet to Neumann map on the sphere ΓR

truncating the domain.
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Let VR denote the closure of {v|Ω+
R

: v ∈ C∞0 (Ω+)} ⊂ H1(Ω+
R) in the

norm of H1(Ω+
R).

u satisfies the scattering problem if and only if the restriction of u to Ω+
R

satisfies a variational problem of the form: find u ∈ VR such that

a(u, v) = f(v), v ∈ VR.

The functional f depends on the incident field. a(·, ·) is the sesquilinear

form on VR × VR defined by

a(u, v) :=
∫

Ω+
R

(∇u · ∇v̄ − k2uv̄) dx−
∫

ΓR

γv̄TRγu ds,

where γ : VR → H1/2(ΓR) is the usual trace operator.
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Summary of Known Results

With Markus’s norm, i.e. ‖u‖2VR
=
∫
Ω+

R
(|∇u|2 + k2|u|2) dx, . . .

1. An upper bound on the inf-sup constant

γ := inf
‖u‖VR

=1
sup

‖v‖VR
=1

|a(u, v)|, that a

γ ≤ C1

kR
+

C2

k2R2
.

2. That, if the scatterer Υ is starlike (i.e. x ∈ Υ ⇒ θx ∈ Υ, for

0 ≤ θ ≤ 1), then the lower bound holds that

1
5 + 4

√
2 kR

≤ γ.

aThis upper bound also holds for Markus Melenk’s example on his page 11, yester-

day.
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3. An example where Υ is not starlike (two parallel plates) for which

γ ≤ C

k2R2
.

for an unbounded sequence of (nearly resonant) wavenumbers k.

Details: see the blackboard and

www.rdg.ac.uk/~sms03snc/monk_bounded_submitted.pdf and the

references therein.
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Lemma 2.1 Suppose w ∈ VR ∩H2(Ω+
R) is such that γw = γ∇w = 0

and w is non-zero. Then the inf-sup constant γ is bounded above by

γ ≤ C1

kR
+

C2

k2R2
,

where C1 := 2R
∥∥∥ ∂w

∂x1

∥∥∥
2
/‖w‖2, C2 := R2‖∆w‖2/‖w‖2 and

C1 ≥ 2
√

2 ≈ 2.83.
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Lemma 2.1 Suppose w ∈ VR ∩H2(Ω+
R) is such that γw = γ∇w = 0

and w is non-zero. Then the inf-sup constant γ is bounded above by

γ ≤ C1

kR
+

C2

k2R2
,

where C1 := 2R
∥∥∥ ∂w

∂x1

∥∥∥
2
/‖w‖2, C2 := R2‖∆w‖2/‖w‖2 and

C1 ≥ 2
√

2 ≈ 2.83.

For Markus’s interior impedance/Robin problem (p.11 of his notes), the

same bound holds if his bounded domain Ω contains a ball of radius R,

with

C1 = 2
√

24 + 3d/3 ≈ 3.7
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Where do the lower bounds on the inf-sup constant come from?

I.e. the lower bound I just showed or the lower bound Markus showed

yesterday.
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Where do the lower bounds on the inf-sup constant come from?

I.e. the lower bound I just showed or the lower bound Markus showed

yesterday.

The main ingredients are:
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1. A rephrasing of Markus’s Theorem 3 gives us the following general

result:

If there exists C > 0 such that, for every u ∈ VR and f ∈ V ′R satisfying

a(u, v) = f(v), v ∈ VR,

it holds that

‖u‖VR
≤ C‖f‖V ′

R
, (∗)

then

γ ≥ C−1.

18



1. A rephrasing of Markus’s Theorem 3 gives us the following general

result:

If there exists C > 0 such that, for every u ∈ VR and f ∈ V ′R satisfying

a(u, v) = f(v), v ∈ VR,
it holds that

‖u‖VR
≤ C‖f‖V ′

R
, (∗)

then γ ≥ C−1.

2. If there exists C̃ > 0 such that, for every u ∈ VR and g ∈ L2(Ω+
R)

satisfying

a(u, v) = −(g, v)2 := −
∫

Ω+
R

gv̄ dx, v ∈ VR,

it holds that

‖u‖VR
≤ k−1C̃‖g‖L2(Ω+

R),

then (∗) holds with C = 1 + 2C̃.
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3. To establish this last bound, Green’s theorem and a

Rellich(-Payne-Weinberger-Nec̆as) type identity.

Such identities, useful for obtaining explicit a prioiri bounds and

regularity estimates for strongly elliptic systems, follow from the

divergence theorem, and date back to Rellich (1943).

See Chapter 5 of Nec̆as (1967) or McLean (2000). Our particular version

of the identity is essentially that from the PhD of Melenk (1995).
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Lemma 2.2. Suppose that Ω ⊂ Rd is a bounded Lipschitz domain and

that v ∈ H2(G). Then, for every k ≥ 0, where g := ∆v + k2v and the

unit normal vector n is directed into Ω, it holds that∫
Ω

(
|∇v|2 − k2|v|2 + gv̄

)
dx = −

∫
∂Ω

v̄
∂v

∂n
ds

and ∫
Ω

(
(2− d)|∇v|2 + dk2|v|2 + 2< (gx · ∇v̄)

)
dx =

−
∫

∂Ω

(
x · n

(
k2|v|2 +

∣∣∣∣ ∂v∂n
∣∣∣∣2 − |∇T v|2

)
+ 2<

(
x · ∇T v̄

∂v

∂n

))
ds.
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4. To complete the proof for the scattering problem, a subtle property of

radiating solutions of the Helmholtz equation, that, if v is radiating and

ΓR is the boundary of the sphere of radius R, then

<
∫

ΓR

v̄
∂v

∂r
ds+R

∫
ΓR

(
k2|v|2 +

∣∣∣∣∂v∂r
∣∣∣∣2 − |∇T v|2

)
ds ≤ 2kR=

∫
ΓR

v̄
∂v

∂r
ds.

Proof. Expand everything in Bessel functions and use the monotonicity

property that |H(1)
ν (z)|2 is decreasing for ν ≥ 0, |H(1)

ν (z)|2z for

ν ≥ 1/2. (Cf. proof of Lemma 1.13 yesterday.)
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The Standard 2nd Kind Integral Equations When the Domain is

Lipschitz

(Brakhage-Werner and its adjoint)
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∆u + k2u = 0

u = 0
Γ

Ω+

Lipschitz
obstacle
Ω−

By Green’s representation theorem

(Hiptmair notes, Theorem 2.1.5,

as in Ralf notes, γ+
D and γ+

N are Dirchlet, Neumann trace operators),

u(x) = ui(x)−
∫

Γ

G(x, y)γ+
Nu(y)ds(y), x ∈ Ω+,

where γ+
Nu ∈ H−1/2(Γ) and

G(x, y) := i
4H

(1)
0 (k|x− y|) (2D), :=

1
4π

eik|x−y|

|x− y|
(3D).
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∆u + k2u = 0

u = 0
Γ

Ω+

Lipschitz
obstacle
Ω−

By Green’s representation theorem,

u(x) = ui(x)−
∫

Γ

G(x, y)γ+
Nu(y)ds(y), x ∈ Ω+,

where γ+
Nu ∈ H−1/2(Γ), in operator form

u = ui −ΨSLγ
+
Nu

where ΨSL : H−1/2(Γ) → H1,loc(RN ) and is continuous (Ralf, (2.1.5)).
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∆u + k2u = 0

u = 0
Γ

Ω+

Lipschitz
obstacle
Ω−

By Green’s representation theorem,

u(x) = ui(x)−
∫

Γ

G(x, y)γ+
Nu(y)ds(y), x ∈ Ω+,

where γ+
Nu ∈ H−1/2(Γ), in operator form

u = ui −ΨSLγ
+
Nu

⇒ 0 = γ+
Du

i − γ+
DΨSLγ

+
Nu, γ+

Nu = γ+
Nu

i − γ+
NΨSLγ

+
Nu.

26



�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

@
@

@
@@R ui, incident wave

∆u + k2u = 0

u = 0
Γ

Ω+

Lipschitz
obstacle
Ω−

By Green’s representation theorem,

u(x) = ui(x)−
∫

Γ

G(x, y)γ+
Nu(y)ds(y), x ∈ Ω+,

where γ+
Nu ∈ H−1/2(Γ), in operator form

u = ui −ΨSLγ
+
Nu

⇒ V γ+
Nu = 2γ+

Du
i, γ+

Nu+K ′γ+
Nu = 2γ+

Nu
i,

where V := 2γ+
DΨSL, K ′ := (γ+

N + γ−N )ΨSL.

(Ralf Defn 2.1.7, but N.B. my V = 2× Ralf V , etc. )
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∆u + k2u = 0

u = 0
Γ

Ω+

Lipschitz
obstacle
Ω−

V γ+
Nu = 2γ+

Du
i, γ+

Nu+K ′γ+
Nu = 2γ+

Nu
i,

with V : H−1/2(Γ) → H1/2(Γ), K ′ : H−1/2(Γ) → H−1/2(Γ) given by

V := 2γ+
DΨSL, K ′ := (γ+

N + γ−N )ΨSL,

explicitly, for ϕ ∈ L2(Γ) and (almost all) x ∈ Γ,

V ϕ(x) = 2
∫

Γ

G(x, y)ϕ(y) ds(y), K ′ϕ(x) = 2
∫

Γ

∂G(x, y)
∂n(x)

ϕ(y)ds(y).
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V γ+
Nu = 2γ+

Du
i, γ+

Nu+K ′γ+
Nu = 2γ+

Nu
i,

⇒ A′γ+
Nu = f,

where

A′ := I +K ′ − iηV,

I is the identity operator, η ∈ R the coupling parameter,

f := 2γ+
Nu

i − 2iηγ+
Du

i, and, for ϕ ∈ L2(Γ) and (almost all) x ∈ Γ,

V ϕ(x) = 2
∫

Γ

G(x, y)ϕ(y) ds(y), K ′ϕ(x) = 2
∫

Γ

∂G(x, y)
∂n(x)

ϕ(y)ds(y).
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Alternatively ..., following Brakhage & Werner (1965) we find that an

ansatz for us as a combined single and double-layer potential, with

density ϕ and coupling parameter η ∈ R satisfies the scattering

problem iff

Aϕ = −2γ+
Du

i,

where

A := I +K − iηV,

and, for ϕ ∈ L2(Γ) and (almost all) x ∈ Γ,

V ϕ(x) = 2
∫

Γ

G(x, y)ϕ(y) ds(y), Kϕ(x) = 2
∫

Γ

∂G(x, y)
∂n(y)

ϕ(y)ds(y).

N.B., where (φ, ψ) :=
∫

Γ

φψds,

(Aφ,ψ) = (φ,A′ψ), φ, ψ ∈ C∞(Γ).
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A′ := I +K ′ − iηV, A := I +K − iηV

where I is the identity operator, η ∈ R the coupling parameter, and, for

ϕ ∈ L2(Γ) and (almost all) x ∈ Γ,

V ϕ(x) = 2
∫

Γ

G(x, y)ϕ(y) ds(y), K ′ϕ(x) = 2
∫

Γ

∂G(x, y)
∂n(x)

ϕ(y)ds(y),

Kϕ(x) = 2
∫

Γ

∂G(x, y)
∂n(y)

ϕ(y)ds(y).

Mapping Properties. (Follows from Ralf, Thm 2.1.9)

A′ : Hs−1/2(Γ) → Hs−1/2(Γ), A : Hs+1/2(Γ) → Hs+1/2(Γ)

and these mappings are bounded, for |s| ≤ 1/2.

(See Costabel (1988), McLean (2000), Meyer & Coifmann (2000).)
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A′ := I +K ′ − iηV, A := I +K − iηV

where I is the identity operator, η ∈ R the coupling parameter, and, for

ϕ ∈ L2(Γ) and (almost all) x ∈ Γ,

V ϕ(x) = 2
∫

Γ

G(x, y)ϕ(y) ds(y), K ′ϕ(x) = 2
∫

Γ

∂G(x, y)
∂n(x)

ϕ(y)ds(y),

Kϕ(x) = 2
∫

Γ

∂G(x, y)
∂n(y)

ϕ(y)ds(y).

Injectivity. (Ralf, Thm 2.1.16)

If η 6= 0, A′ : H−1/2(Γ) → H−1/2(Γ) is injective.

(See C-W & Langdon, preprint, but same standard argument as for

smooth boundaries, see e.g. Colton & Kress (1983).)
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A′ := I +K ′ − iηV, A := I +K − iηV

where I is the identity operator, η ∈ R the coupling parameter, and, for

ϕ ∈ L2(Γ) and (almost all) x ∈ Γ,

V ϕ(x) = 2
∫

Γ

G(x, y)ϕ(y) ds(y), K ′ϕ(x) = 2
∫

Γ

∂G(x, y)
∂n(x)

ϕ(y)ds(y),

Kϕ(x) = 2
∫

Γ

∂G(x, y)
∂n(y)

ϕ(y)ds(y).

Invertibility. If η 6= 0, then

A′ : Hs−1/2(Γ) → Hs−1/2(Γ), A : Hs+1/2(Γ) → Hs+1/2(Γ)

are bijections, for |s| ≤ 1/2.

(See C-W & Langdon, preprint: follows since A is Fredholm of index

zero on H1(Γ) and L2(Γ); Verchota (1985), Elschner (1992).)
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A′ := I +K ′ − iηV, A := I +K − iηV

where I is the identity operator, η ∈ R the coupling parameter, and, for

ϕ ∈ L2(Γ) and (almost all) x ∈ Γ,

V ϕ(x) = 2
∫

Γ

G(x, y)ϕ(y) ds(y), K ′ϕ(x) = 2
∫

Γ

∂G(x, y)
∂n(x)

ϕ(y)ds(y),

Kϕ(x) = 2
∫

Γ

∂G(x, y)
∂n(y)

ϕ(y)ds(y).

Coercivity. (Ralf, Lemmma 2.1.17) A is coercive (elliptic + compact)

as an operator on H1/2(Γ) (and A′ as an operator on H−1/2(Γ)), in

fact in the 3D case (with the right choice of norm) 1
2A = I − ( 1

2I −K)
and 1

2I −K is a contraction when k = 0.

(Corollary of results in Steinbach & Wendland (2001).)

(Ralf, p. 33, not great for discretization as inner products non-local.)
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A′ := I +K ′ − iηV, A := I +K − iηV

where I is the identity operator, η ∈ R the coupling parameter, and, for

ϕ ∈ L2(Γ) and (almost all) x ∈ Γ,

V ϕ(x) = 2
∫

Γ

G(x, y)ϕ(y) ds(y), K ′ϕ(x) = 2
∫

Γ

∂G(x, y)
∂n(x)

ϕ(y)ds(y),

Kϕ(x) = 2
∫

Γ

∂G(x, y)
∂n(y)

ϕ(y)ds(y).

Wave Number Dependence. But how do ‖A‖ and ‖A−1‖ depend on

k, especially as k →∞, and how should we choose η?
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Theorem. (See Dominguez, Graham, and Smyshlyaev, preprint, and cf.

Buffa & Sauter, to appear SISC.)

If Γ is a circle, and η = k, then, for all sufficiently large k, A is elliptic

on L2(Γ), precisely

<(Aφ, φ̄) ≥ 1
2
‖φ‖22,

so that ‖A−1‖2 ≤ 2. Further ‖A‖2 = O(k1/3) as k →∞.

Proof. Explicit calculation of spectrum of A (this dates back to Kress

and Spassov 1983), and clever estimates of Bessel functions uniform in

argument and order.

N.B. In the circle case A = A′.

N.B. Suggests variational formulation in L2(Γ) attractive and natural!?

(cf. Ralf, p.33)
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Let n(x) denote the outward unit normal at x ∈ Γ, and

R0 := max
x∈Γ

|x|, δ− := ess. inf
x∈Γ

x · n(x).

Theorem. (C-W & Monk, preprint.) If Ω− is a polyhedron which is

starlike with respect to the origin (i.e. δ− > 0), or a more general

piecewise smooth, Lipschitz, starlike domain, η = k and kR0 ≥ 1, then

‖A−1‖2 = ‖A′−1‖2 ≤ 1
2
(
1 + 13θ + 4θ2

)
,

where θ := R0/δ−.

Examples.

Circle/sphere: θ = 1, ‖A−1‖2 = ‖A′−1‖2 ≤ 9.

Cube: θ =
√

3, ‖A−1‖2 = ‖A′−1‖2 ≤ 18.
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The Main Ingredients in the Proof

1. Green’s theorem and a Rellich(-Payne-Weinberger-Nec̆as) type

identity.

Such identities, useful for obtaining explicit a priori bounds and

regularity estimates for strongly elliptic systems, follow from the

divergence theorem, and date back to Rellich (1943).

See Chapter 5 of Nec̆as (1967) or McLean (2000). Our particular

version of the identity is essentially that from the PhD of Melenk

(1995).
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Lemma 2.2. Suppose that Ω ⊂ Rd is a bounded Lipschitz domain and

that v ∈ H2(G). Then, for every k ≥ 0, where g := ∆v + k2v and the

unit normal vector n is directed into Ω, it holds that∫
Ω

(
|∇v|2 − k2|v|2 + gv̄

)
dx = −

∫
∂Ω

v̄
∂v

∂n
ds

and ∫
Ω

(
(2− d)|∇v|2 + dk2|v|2 + 2< (gx · ∇v̄)

)
dx =

−
∫

∂Ω

(
x · n

(
k2|v|2 +

∣∣∣∣ ∂v∂n
∣∣∣∣2 − |∇T v|2

)
+ 2<

(
x · ∇T v̄

∂v

∂n

))
ds.
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Corollary 2.3. Suppose that Ω ⊂ Rd is a bounded Lipschitz domain and

that v ∈ C2(Ω) ∩ C1(Ω̄) and ∆v + k2v = 0 in Ω. Then, where the unit

normal vector n is directed into Ω, it holds that∫
Ω

(
|∇v|2 − k2|v|2

)
dx = −

∫
∂Ω

v̄
∂v

∂n
ds (1)

and ∫
Ω

(
(2− d)|∇v|2 + dk2|v|2

)
dx =

−
∫

∂Ω

(
x · n

(
k2|v|2 +

∣∣∣∣ ∂v∂n
∣∣∣∣2 − |∇T v|2

)
+ 2<

(
x · ∇T v̄

∂v

∂n

))
ds.

N.B. This is applied in Ω− and in Ω+
R to v := ΨSLϕ, where ϕ = A′

−1
ψ,

in order to bound (γ+
N − γ−N )v = ϕ in terms of ψ, starting from

ϕ = A′
−1
ψ ⇒ γ−Nv − iηγ−Dv =

1
2
ψ.
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2. Once again, the property of radiating solutions of the Helmholtz

equation, that, if v is radiating and ΓR is the boundary of the

sphere of radius R, then

<
∫

ΓR

v̄
∂v

∂r
ds+R

∫
ΓR

(
k2|v|2 +

∣∣∣∣∂v∂r
∣∣∣∣2 − |∇T v|2

)
ds ≤ 2kR=

∫
ΓR

v̄
∂v

∂r
ds.
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Summary

1. Discussed wave number explicit lower and upper bounds on the

inf-sup constant for the weak formulation in Ω+
R

a of the Dirchlet

scattering problem.

2. Presented results on invertibility of the standard combined single-

and double-layer boundary integral equation formulations for this

problem, in the case of a Lipschitz domain, including the

Brakhage-Werner (1965) formulation Aϕ = −2γDu
i where

A := I +K − iηV .

3. Showed that, if Ω− is piecewise smooth, Lipschitz and starlike, then

‖A−1‖2 ≤ C, with an explicit formula for C as a function of the

geometry and η/k.

aThat part of Ω+ inside a ball of radius R.
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Further Reading on Wave-Number-Explicit Estimates

A hybrid numerical-asymptotic boundary integral method for

high-frequency acoustic scattering.

Dominguez, Graham, Smyshlyaev, University of Bath preprint, which

builds on . . .

Schnelle Summationsverfahren zur numerischen Lösung von

Integralgleichungen für Streuprobleme im R3.

Giebermann, PhD, Karlsruhe, 1997.

On Generalized Finite Element Methods.

Melenk, PhD, Maryland, 1995.

An elliptic regularity coefficient estimate for a problem arising from a

frequncy domain treatment of waves.

Feng & Sheen, Trans. Amer. Math. Soc., 1994.

Sharp regularity coefficient estimates for complex-valued acoustic and
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elastic Helmholtz equations.

Cummings and Feng, Math. Models Methods Appl. Sci., 2006.

Wave-number-explicit bounds in time-harmonic scattering.

C-W & Monk 2006, preprint.

A well-posed integral equation formulation for 3D rough surface

scattering.

C-W, Heinemeyer & Potthast, Proc. R. Soc. Lond. A, 2006.

Existence, uniqueness and variational methods for scattering by

unbounded rough surfaces.

C-W & Monk, SIAM J. Math. Anal., 2005.

The mathematics of scattering by unbounded, rough, inhomogeneous

layers.

C-W, Monk & Thomas J. Comp. Appl. Math. 2006

For copies of my stuff: www.reading.ac.uk/~sms03snc
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Four Open Problems

1. Sharp estimates on ‖A‖2 as k →∞. This is much harder, see the

harmonic analysis literature on oscillatory integral operators (Stein,

Phong). (A crude bound that

‖A‖2 ≤ max(‖A‖∞, ‖A′‖∞) = O(k(d−1)/2) is straightforward, but

it seems, from the circle/sphere, that ‖A‖2 = O(k1/3).)

2. Bounds on ‖A−1‖2 and lower bounds on the inf-sup constant for the

weak problem in Ω+
R when the scatterer is not starlike.

3. Any wave-number-explicit bounds in the discrete case.

4. Preconditioners/new formulations which remove this k-dependence

– and proofs!
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