Lecture 2. High Frequency Behaviour of Formulations of Time-Harmonic Scattering

Simon Chandler-Wilde

University of Reading, UK
www.reading.ac.uk/~sms03snc

Zurich Summer School, August 2006

Focus of Today's Lecture

For

$$
\Delta u+k^{2} u=0
$$

and boundary or finite element methods for its solution:

1. How does conditioning depend on k (and the geometry)?
2. How can we remove or reduce this dependence?

Focus of Today's Lecture

For

$$
\Delta u+k^{2} u=0
$$

and boundary or finite element methods for its solution:

1. How does conditioning depend on k (and the geometry)?
2. How can we remove or reduce this dependence?

What is conditioning? For a linear system

$$
A x=b
$$

the condition number is

$$
\operatorname{cond} A:=\|A\|\left\|A^{-1}\right\| \text { where }\|A\|:=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|} .
$$

Large condition numbers associated with:

- slow convergence of iterative solution methods;
- magnification of effects of errors, e.g. in entries of A.

For

$$
\Delta u+k^{2} u=0
$$

and boundary or finite element methods for its solution:

1. How does conditioning depend on k (and the geometry)?
2. How can we remove or reduce this dependence?

What is conditioning? For an operator equation

$$
A x=b
$$

($A: X \rightarrow Y$ a continuous linear operator, $x \in X, b \in Y$) the condition number is

$$
\operatorname{cond} A:=\|A\|_{X \rightarrow Y}\left\|A^{-1}\right\|_{Y \rightarrow X} \text { where }\|A\|_{X \rightarrow Y}:=\sup _{0 \neq x \in X} \frac{\|A x\|_{Y}}{\|x\|_{X}}
$$

For

$$
\Delta u+k^{2} u=0
$$

and boundary or finite element methods for its solution:

1. How does conditioning depend on k (and the geometry)?
2. How can we remove or reduce this dependence?

What is conditioning? For the variational equation: find $u \in X$ such that

$$
a(u, v)=f(v), \quad v \in Y
$$

(X and Y Hilbert spaces, $a: X \times Y \rightarrow \mathbb{C}$ a continuous sesquilinear form) a relevant condition number is that of the associated operator $A: X \rightarrow Y^{\prime}$, defined by

$$
A u(v)=a(u, v), \quad u \in X, v \in Y
$$

Since (see Melenk notes, Theorem 3 (Babuška-Brezzi), Hiptmair, 'Fundamental Concepts', §2),

$$
\begin{aligned}
\|A\|_{X \rightarrow Y^{\prime}} & =M, \quad M:=\sup _{0 \neq u \in X, v \in Y} \frac{|a(u, v)|}{\|u\|_{X}\|v\|_{Y}} \\
\left\|A^{-1}\right\|_{Y^{\prime} \rightarrow X} & =\gamma^{-1}, \quad \gamma:=\inf _{0 \neq u \in X} \sup _{0, \neq v \in Y} \frac{|a(u, v)|}{\|u\|_{X}\|v\|_{Y}},
\end{aligned}
$$

M often called the norm of a and γ its inf-sup constant, it holds that

$$
\text { cond } A=\frac{M}{\gamma}
$$

Precise Focus of Today's Lecture

For

$$
\Delta u+k^{2} u=0
$$

and integral equation or domain methods for its solution:

1. How does conditioning depend on k (and the geometry)?
2. How can we remove or reduce this dependence?

Estimating $\|A\|$ and $\left\|A^{-1}\right\|$ when A is an integral operator, and norm and inf-sup constants of sesquilinear forms.

The Scattering Problem in \mathbb{R}^{d} ($d=2$ or 3)

$$
\Delta u+k^{2} u=0
$$

We seek $u \in H_{0}^{1, \text { loc }}\left(\Omega^{+}\right) \cap C^{2}\left(\Omega^{+}\right)$which satisfies the Sommerfeld radiation condition $\frac{\partial u}{\partial r}-\mathrm{i} k u=o\left(r^{-(d-1) / 2}\right)$ as $r=|x| \rightarrow \infty$.

Recall from Yesterday.

a standard weak formulation in Ω_{R}^{+}, that part of Ω^{+}inside a ball of radius R, with the exact Dirichlet to Neumann map on the sphere Γ_{R} truncating the domain.

Let V_{R} denote the closure of $\left\{\left.v\right|_{\Omega_{R}^{+}}: v \in C_{0}^{\infty}\left(\Omega^{+}\right)\right\} \subset H^{1}\left(\Omega_{R}^{+}\right)$in the norm of $H^{1}\left(\Omega_{R}^{+}\right)$.
u satisfies the scattering problem if and only if the restriction of u to Ω_{R}^{+} satisfies a variational problem of the form: find $u \in V_{R}$ such that

$$
a(u, v)=f(v), \quad v \in V_{R} .
$$

The functional f depends on the incident field. $a(\cdot, \cdot)$ is the sesquilinear form on $V_{R} \times V_{R}$ defined by

$$
a(u, v):=\int_{\Omega_{R}^{+}}\left(\nabla u \cdot \nabla \bar{v}-k^{2} u \bar{v}\right) d x-\int_{\Gamma_{R}} \gamma \bar{v} T_{R} \gamma u d s
$$

where $\gamma: V_{R} \rightarrow H^{1 / 2}\left(\Gamma_{R}\right)$ is the usual trace operator.

Summary of Known Results

With Markus's norm, i.e. $\|u\|_{V_{R}}^{2}=\int_{\Omega_{R}^{+}}\left(|\nabla u|^{2}+k^{2}|u|^{2}\right) d x, \ldots$

1. An upper bound on the inf-sup constant

$$
\begin{aligned}
& \gamma:=\inf _{\|u\|_{V_{R}}=1} \sup _{\|v\|_{V_{R}}=1}|a(u, v)|, \text { that }{ }^{a} \\
& \\
& \gamma \leq \frac{C_{1}}{k R}+\frac{C_{2}}{k^{2} R^{2}} .
\end{aligned}
$$

2. That, if the scatterer Υ is starlike (i.e. $x \in \Upsilon \Rightarrow \theta x \in \Upsilon$, for $0 \leq \theta \leq 1$), then the lower bound holds that

$$
\frac{1}{5+4 \sqrt{2} k R} \leq \gamma
$$

[^0] day.
3. An example where Υ is not starlike (two parallel plates) for which
$$
\gamma \leq \frac{C}{k^{2} R^{2}}
$$
for an unbounded sequence of (nearly resonant) wavenumbers k.
Details: see the blackboard and www.rdg.ac.uk/~sms03snc/monk_bounded_submitted.pdf and the references therein.

Lemma 2.1 Suppose $w \in V_{R} \cap H^{2}\left(\Omega_{R}^{+}\right)$is such that $\gamma w=\gamma \nabla w=0$ and w is non-zero. Then the inf-sup constant γ is bounded above by

$$
\gamma \leq \frac{C_{1}}{k R}+\frac{C_{2}}{k^{2} R^{2}},
$$

where $C_{1}:=2 R\left\|\frac{\partial w}{\partial x_{1}}\right\|_{2} /\|w\|_{2}, C_{2}:=R^{2}\|\Delta w\|_{2} /\|w\|_{2}$ and $C_{1} \geq 2 \sqrt{2} \approx 2.83$.

Lemma 2.1 Suppose $w \in V_{R} \cap H^{2}\left(\Omega_{R}^{+}\right)$is such that $\gamma w=\gamma \nabla w=0$ and w is non-zero. Then the inf-sup constant γ is bounded above by

$$
\gamma \leq \frac{C_{1}}{k R}+\frac{C_{2}}{k^{2} R^{2}}
$$

where $C_{1}:=2 R\left\|\frac{\partial w}{\partial x_{1}}\right\|_{2} /\|w\|_{2}, C_{2}:=R^{2}\|\Delta w\|_{2} /\|w\|_{2}$ and $C_{1} \geq 2 \sqrt{2} \approx 2.83$.

For Markus's interior impedance/Robin problem (p. 11 of his notes), the same bound holds if his bounded domain Ω contains a ball of radius R, with

$$
C_{1}=2 \sqrt{24+3 d} / 3 \approx 3.7
$$

Where do the lower bounds on the inf-sup constant come from?
I.e. the lower bound I just showed or the lower bound Markus showed yesterday.

Where do the lower bounds on the inf-sup constant come from?
I.e. the lower bound I just showed or the lower bound Markus showed yesterday.

The main ingredients are:

1. A rephrasing of Markus's Theorem 3 gives us the following general result:

If there exists $C>0$ such that, for every $u \in V_{R}$ and $f \in V_{R}^{\prime}$ satisfying

$$
a(u, v)=f(v), \quad v \in V_{R}
$$

it holds that

$$
\|u\|_{V_{R}} \leq C\|f\|_{V_{R}^{\prime}}, \quad(*)
$$

then

$$
\gamma \geq C^{-1}
$$

1. A rephrasing of Markus's Theorem 3 gives us the following general result:

If there exists $C>0$ such that, for every $u \in V_{R}$ and $f \in V_{R}^{\prime}$ satisfying
it holds that

$$
a(u, v)=f(v), \quad v \in V_{R}
$$

then $\gamma \geq C^{-1}$.

$$
\|u\|_{V_{R}} \leq C\|f\|_{V_{R}^{\prime}}, \quad(*)
$$

2. If there exists $\tilde{C}>0$ such that, for every $u \in V_{R}$ and $g \in L^{2}\left(\Omega_{R}^{+}\right)$ satisfying

$$
a(u, v)=-(g, v)_{2}:=-\int_{\Omega_{R}^{+}} g \bar{v} d x, \quad v \in V_{R}
$$

it holds that

$$
\|u\|_{V_{R}} \leq k^{-1} \tilde{C}\|g\|_{L^{2}\left(\Omega_{R}^{+}\right)}
$$

then $(*)$ holds with $C=1+2 \tilde{C}$.
3. To establish this last bound, Green's theorem and a Rellich(-Payne-Weinberger-Nečas) type identity.

Such identities, useful for obtaining explicit a prioiri bounds and regularity estimates for strongly elliptic systems, follow from the divergence theorem, and date back to Rellich (1943).

See Chapter 5 of Nečas (1967) or McLean (2000). Our particular version of the identity is essentially that from the PhD of Melenk (1995).

Lemma 2.2. Suppose that $\Omega \subset \mathbb{R}^{d}$ is a bounded Lipschitz domain and that $v \in H^{2}(G)$. Then, for every $k \geq 0$, where $g:=\Delta v+k^{2} v$ and the unit normal vector n is directed into Ω, it holds that

$$
\int_{\Omega}\left(|\nabla v|^{2}-k^{2}|v|^{2}+g \bar{v}\right) d x=-\int_{\partial \Omega} \bar{v} \frac{\partial v}{\partial n} d s
$$

and

$$
\begin{gathered}
\int_{\Omega}\left((2-d)|\nabla v|^{2}+d k^{2}|v|^{2}+2 \Re(g x \cdot \nabla \bar{v})\right) d x= \\
-\int_{\partial \Omega}\left(x \cdot n\left(k^{2}|v|^{2}+\left|\frac{\partial v}{\partial n}\right|^{2}-\left|\nabla_{T} v\right|^{2}\right)+2 \Re\left(x \cdot \nabla_{T} \bar{v} \frac{\partial v}{\partial n}\right)\right) d s
\end{gathered}
$$

4. To complete the proof for the scattering problem, a subtle property of radiating solutions of the Helmholtz equation, that, if v is radiating and Γ_{R} is the boundary of the sphere of radius R, then

$$
\Re \int_{\Gamma_{R}} \bar{v} \frac{\partial v}{\partial r} d s+R \int_{\Gamma_{R}}\left(k^{2}|v|^{2}+\left|\frac{\partial v}{\partial r}\right|^{2}-\left|\nabla_{T} v\right|^{2}\right) d s \leq 2 k R \Im \int_{\Gamma_{R}} \bar{v} \frac{\partial v}{\partial r} d s
$$

Proof. Expand everything in Bessel functions and use the monotonicity property that $\left|H_{\nu}^{(1)}(z)\right|^{2}$ is decreasing for $\nu \geq 0,\left|H_{\nu}^{(1)}(z)\right|^{2} z$ for $\nu \geq 1 / 2$. (Cf. proof of Lemma 1.13 yesterday.)

The Standard 2nd Kind Integral Equations When the Domain is Lipschitz
(Brakhage-Werner and its adjoint)

$$
\Delta u+k^{2} u=0
$$

u^{i}, incident wave

$$
u=0
$$

Lipschitz obstacle
Ω^{-}
By Green's representation theorem (Hiptmair notes, Theorem 2.1.5, as in Ralf notes, γ_{D}^{+}and γ_{N}^{+}are Dirchlet, Neumann trace operators),

$$
u(x)=u^{i}(x)-\int_{\Gamma} G(x, y) \gamma_{N}^{+} u(y) d s(y), \quad x \in \Omega^{+}
$$

where $\gamma_{N}^{+} u \in H^{-1 / 2}(\Gamma)$ and

$$
G(x, y):=\frac{\mathrm{i}}{4} H_{0}^{(1)}(k|x-y|)(2 \mathrm{D}), \quad:=\frac{1}{4 \pi} \frac{\mathrm{e}^{\mathrm{i} k|x-y|}}{|x-y|} \text { (3D). }
$$

$\Delta u+k^{2} u=0$
u^{i}, incident wave

$$
u=0
$$

Lipschitz obstacle
Ω^{-}
By Green's representation theorem,

$$
u(x)=u^{i}(x)-\int_{\Gamma} G(x, y) \gamma_{N}^{+} u(y) d s(y), \quad x \in \Omega^{+}
$$

where $\gamma_{N}^{+} u \in H^{-1 / 2}(\Gamma)$, in operator form

$$
u=u^{i}-\Psi_{\mathrm{SL}} \gamma_{N}^{+} u
$$

where $\Psi_{\text {SL }}: H^{-1 / 2}(\Gamma) \rightarrow H^{1, \operatorname{loc}}\left(\mathbb{R}^{N}\right)$ and is continuous (Ralf, (2.1.5)).

$$
\Delta u+k^{2} u=0
$$

u^{i}, incident wave

$$
u=0
$$

Lipschitz
obstacle
Ω^{-}

By Green's representation theorem,

$$
u(x)=u^{i}(x)-\int_{\Gamma} G(x, y) \gamma_{N}^{+} u(y) d s(y), \quad x \in \Omega^{+}
$$

where $\gamma_{N}^{+} u \in H^{-1 / 2}(\Gamma)$, in operator form

$$
\begin{gathered}
u=u^{i}-\Psi_{\mathrm{SL}} \gamma_{N}^{+} u \\
\Rightarrow 0=\gamma_{D}^{+} u^{i}-\gamma_{D}^{+} \Psi_{\mathrm{SL}} \gamma_{N}^{+} u, \quad \gamma_{N}^{+} u=\gamma_{N}^{+} u^{i}-\gamma_{N}^{+} \Psi_{\mathrm{SL}} \gamma_{N}^{+} u
\end{gathered}
$$

$$
\Delta u+k^{2} u=0
$$

$$
u=0 \quad \Omega^{+}
$$

By Green's representation theorem,

$$
u(x)=u^{i}(x)-\int_{\Gamma} G(x, y) \gamma_{N}^{+} u(y) d s(y), \quad x \in \Omega^{+}
$$

where $\gamma_{N}^{+} u \in H^{-1 / 2}(\Gamma)$, in operator form

$$
\begin{gathered}
u=u^{i}-\Psi_{\mathrm{SL}} \gamma_{N}^{+} u \\
\Rightarrow V \gamma_{N}^{+} u=2 \gamma_{D}^{+} u^{i}, \quad \gamma_{N}^{+} u+K^{\prime} \gamma_{N}^{+} u=2 \gamma_{N}^{+} u^{i} \\
\text { where } V:=2 \gamma_{D}^{+} \Psi_{\mathrm{SL}}, \quad K^{\prime}:=\left(\gamma_{N}^{+}+\gamma_{N}^{-}\right) \Psi_{\mathrm{SL}} \\
\text { (Ralf Defn 2.1.7, but N.B. my } V=2 \times \text { Ralf } V, \text { etc. })
\end{gathered}
$$

$$
\Delta u+k^{2} u=0
$$

incident wave

$$
u=0
$$

Lipschitz obstacle Ω

$$
V \gamma_{N}^{+} u=2 \gamma_{D}^{+} u^{i}, \quad \gamma_{N}^{+} u+K^{\prime} \gamma_{N}^{+} u=2 \gamma_{N}^{+} u^{i}
$$

with $V: H^{-1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma), K^{\prime}: H^{-1 / 2}(\Gamma) \rightarrow H^{-1 / 2}(\Gamma)$ given by

$$
V:=2 \gamma_{D}^{+} \Psi_{\mathrm{SL}}, \quad K^{\prime}:=\left(\gamma_{N}^{+}+\gamma_{N}^{-}\right) \Psi_{\mathrm{SL}}
$$

explicitly, for $\varphi \in L^{2}(\Gamma)$ and (almost all) $x \in \Gamma$,

$$
V \varphi(x)=2 \int_{\Gamma} G(x, y) \varphi(y) d s(y), K^{\prime} \varphi(x)=2 \int_{\Gamma} \frac{\partial G(x, y)}{\partial n(x)} \varphi(y) d s(y)
$$

$$
\begin{gathered}
V \gamma_{N}^{+} u=2 \gamma_{D}^{+} u^{i}, \quad \gamma_{N}^{+} u+K^{\prime} \gamma_{N}^{+} u=2 \gamma_{N}^{+} u^{i} \\
\Rightarrow A^{\prime} \gamma_{N}^{+} u=f
\end{gathered}
$$

where

$$
A^{\prime}:=I+K^{\prime}-\mathrm{i} \eta V
$$

I is the identity operator, $\eta \in \mathbb{R}$ the coupling parameter, $f:=2 \gamma_{N}^{+} u^{i}-2 \mathrm{i} \eta \gamma_{D}^{+} u^{i}$, and, for $\varphi \in L^{2}(\Gamma)$ and (almost all) $x \in \Gamma$,

$$
V \varphi(x)=2 \int_{\Gamma} G(x, y) \varphi(y) d s(y), \quad K^{\prime} \varphi(x)=2 \int_{\Gamma} \frac{\partial G(x, y)}{\partial n(x)} \varphi(y) d s(y)
$$

Alternatively ..., following Brakhage \& Werner (1965) we find that an ansatz for u^{s} as a combined single and double-layer potential, with density φ and coupling parameter $\eta \in \mathbb{R}$ satisfies the scattering problem iff

$$
A \varphi=-2 \gamma_{D}^{+} u^{i},
$$

where

$$
A:=I+K-\mathrm{i} \eta V,
$$

and, for $\varphi \in L^{2}(\Gamma)$ and (almost all) $x \in \Gamma$,

$$
V \varphi(x)=2 \int_{\Gamma} G(x, y) \varphi(y) d s(y), \quad K \varphi(x)=2 \int_{\Gamma} \frac{\partial G(x, y)}{\partial n(y)} \varphi(y) d s(y)
$$

N.B., where $(\phi, \psi):=\int_{\Gamma} \phi \psi d s$,

$$
(A \phi, \psi)=\left(\phi, A^{\prime} \psi\right), \quad \phi, \psi \in C^{\infty}(\Gamma) .
$$

$$
A^{\prime}:=I+K^{\prime}-\mathrm{i} \eta V, \quad A:=I+K-\mathrm{i} \eta V
$$

where I is the identity operator, $\eta \in \mathbb{R}$ the coupling parameter, and, for $\varphi \in L^{2}(\Gamma)$ and (almost all) $x \in \Gamma$,

$$
\begin{gathered}
V \varphi(x)=2 \int_{\Gamma} G(x, y) \varphi(y) d s(y), K^{\prime} \varphi(x)=2 \int_{\Gamma} \frac{\partial G(x, y)}{\partial n(x)} \varphi(y) d s(y) \\
K \varphi(x)=2 \int_{\Gamma} \frac{\partial G(x, y)}{\partial n(y)} \varphi(y) d s(y)
\end{gathered}
$$

Mapping Properties. (Follows from Ralf, Thm 2.1.9)

$$
A^{\prime}: H^{s-1 / 2}(\Gamma) \rightarrow H^{s-1 / 2}(\Gamma), \quad A: H^{s+1 / 2}(\Gamma) \rightarrow H^{s+1 / 2}(\Gamma)
$$

and these mappings are bounded, for $|s| \leq 1 / 2$. (See Costabel (1988), McLean (2000), Meyer \& Coifmann (2000).)

$$
A^{\prime}:=I+K^{\prime}-\mathrm{i} \eta V, \quad A:=I+K-\mathrm{i} \eta V
$$

where I is the identity operator, $\eta \in \mathbb{R}$ the coupling parameter, and, for $\varphi \in L^{2}(\Gamma)$ and (almost all) $x \in \Gamma$,

$$
\begin{gathered}
V \varphi(x)=2 \int_{\Gamma} G(x, y) \varphi(y) d s(y), K^{\prime} \varphi(x)=2 \int_{\Gamma} \frac{\partial G(x, y)}{\partial n(x)} \varphi(y) d s(y) \\
K \varphi(x)=2 \int_{\Gamma} \frac{\partial G(x, y)}{\partial n(y)} \varphi(y) d s(y)
\end{gathered}
$$

Injectivity. (Ralf, Thm 2.1.16)
If $\eta \neq 0, A^{\prime}: H^{-1 / 2}(\Gamma) \rightarrow H^{-1 / 2}(\Gamma)$ is injective. (See C-W \& Langdon, preprint, but same standard argument as for smooth boundaries, see e.g. Colton \& Kress (1983).)

$$
A^{\prime}:=I+K^{\prime}-\mathrm{i} \eta V, \quad A:=I+K-\mathrm{i} \eta V
$$

where I is the identity operator, $\eta \in \mathbb{R}$ the coupling parameter, and, for $\varphi \in L^{2}(\Gamma)$ and (almost all) $x \in \Gamma$,

$$
\begin{gathered}
V \varphi(x)=2 \int_{\Gamma} G(x, y) \varphi(y) d s(y), K^{\prime} \varphi(x)=2 \int_{\Gamma} \frac{\partial G(x, y)}{\partial n(x)} \varphi(y) d s(y) \\
K \varphi(x)=2 \int_{\Gamma} \frac{\partial G(x, y)}{\partial n(y)} \varphi(y) d s(y)
\end{gathered}
$$

Invertibility. If $\eta \neq 0$, then

$$
A^{\prime}: H^{s-1 / 2}(\Gamma) \rightarrow H^{s-1 / 2}(\Gamma), \quad A: H^{s+1 / 2}(\Gamma) \rightarrow H^{s+1 / 2}(\Gamma)
$$

are bijections, for $|s| \leq 1 / 2$.
(See C-W \& Langdon, preprint: follows since A is Fredholm of index zero on $H^{1}(\Gamma)$ and $L^{2}(\Gamma)$; Verchota (1985), Elschner (1992).)

$$
A^{\prime}:=I+K^{\prime}-\mathrm{i} \eta V, \quad A:=I+K-\mathrm{i} \eta V
$$

where I is the identity operator, $\eta \in \mathbb{R}$ the coupling parameter, and, for $\varphi \in L^{2}(\Gamma)$ and (almost all) $x \in \Gamma$,

$$
\begin{gathered}
V \varphi(x)=2 \int_{\Gamma} G(x, y) \varphi(y) d s(y), K^{\prime} \varphi(x)=2 \int_{\Gamma} \frac{\partial G(x, y)}{\partial n(x)} \varphi(y) d s(y) \\
K \varphi(x)=2 \int_{\Gamma} \frac{\partial G(x, y)}{\partial n(y)} \varphi(y) d s(y)
\end{gathered}
$$

Coercivity. (Ralf, Lemmma 2.1.17) A is coercive (elliptic + compact) as an operator on $H^{1 / 2}(\Gamma)$ (and A^{\prime} as an operator on $H^{-1 / 2}(\Gamma)$), in fact in the 3D case (with the right choice of norm) $\frac{1}{2} A=I-\left(\frac{1}{2} I-K\right)$ and $\frac{1}{2} I-K$ is a contraction when $k=0$.
(Corollary of results in Steinbach \& Wendland (2001).) (Ralf, p. 33, not great for discretization as inner products non-local.)

$$
A^{\prime}:=I+K^{\prime}-\mathrm{i} \eta V, \quad A:=I+K-\mathrm{i} \eta V
$$

where I is the identity operator, $\eta \in \mathbb{R}$ the coupling parameter, and, for $\varphi \in L^{2}(\Gamma)$ and (almost all) $x \in \Gamma$,

$$
\begin{gathered}
V \varphi(x)=2 \int_{\Gamma} G(x, y) \varphi(y) d s(y), K^{\prime} \varphi(x)=2 \int_{\Gamma} \frac{\partial G(x, y)}{\partial n(x)} \varphi(y) d s(y) \\
K \varphi(x)=2 \int_{\Gamma} \frac{\partial G(x, y)}{\partial n(y)} \varphi(y) d s(y)
\end{gathered}
$$

Wave Number Dependence. But how do $\|A\|$ and $\left\|A^{-1}\right\|$ depend on k, especially as $k \rightarrow \infty$, and how should we choose η ?

Theorem. (See Dominguez, Graham, and Smyshlyaev, preprint, and cf. Buffa \& Sauter, to appear SISC.)

If Γ is a circle, and $\eta=k$, then, for all sufficiently large k, A is elliptic on $L^{2}(\Gamma)$, precisely

$$
\Re(A \phi, \bar{\phi}) \geq \frac{1}{2}\|\phi\|_{2}^{2}
$$

so that $\left\|A^{-1}\right\|_{2} \leq 2$. Further $\|A\|_{2}=O\left(k^{1 / 3}\right)$ as $k \rightarrow \infty$.
Proof. Explicit calculation of spectrum of A (this dates back to Kress and Spassov 1983), and clever estimates of Bessel functions uniform in argument and order.
N.B. In the circle case $A=A^{\prime}$.
N.B. Suggests variational formulation in $L^{2}(\Gamma)$ attractive and natural!? (cf. Ralf, p.33)

Let $n(x)$ denote the outward unit normal at $x \in \Gamma$, and

$$
R_{0}:=\max _{x \in \Gamma}|x|, \quad \delta_{-}:=\text {ess. } \inf _{x \in \Gamma} x \cdot n(x) .
$$

Theorem. (C-W \& Monk, preprint.) If Ω^{-}is a polyhedron which is starlike with respect to the origin (i.e. $\delta_{-}>0$), or a more general piecewise smooth, Lipschitz, starlike domain, $\eta=k$ and $k R_{0} \geq 1$, then

$$
\left\|A^{-1}\right\|_{2}=\left\|A^{\prime-1}\right\|_{2} \leq \frac{1}{2}\left(1+13 \theta+4 \theta^{2}\right)
$$

where $\theta:=R_{0} / \delta_{-}$.

Examples.

Circle/sphere: $\theta=1,\left\|A^{-1}\right\|_{2}=\left\|A^{\prime-1}\right\|_{2} \leq 9$.
Cube: $\theta=\sqrt{3},\left\|A^{-1}\right\|_{2}=\left\|A^{\prime-1}\right\|_{2} \leq 18$.

The Main Ingredients in the Proof

1. Green's theorem and a Rellich(-Payne-Weinberger-Nečas) type identity.

Such identities, useful for obtaining explicit a priori bounds and regularity estimates for strongly elliptic systems, follow from the divergence theorem, and date back to Rellich (1943).

See Chapter 5 of Nečas (1967) or McLean (2000). Our particular version of the identity is essentially that from the PhD of Melenk (1995).

Lemma 2.2. Suppose that $\Omega \subset \mathbb{R}^{d}$ is a bounded Lipschitz domain and that $v \in H^{2}(G)$. Then, for every $k \geq 0$, where $g:=\Delta v+k^{2} v$ and the unit normal vector n is directed into Ω, it holds that

$$
\int_{\Omega}\left(|\nabla v|^{2}-k^{2}|v|^{2}+g \bar{v}\right) d x=-\int_{\partial \Omega} \bar{v} \frac{\partial v}{\partial n} d s
$$

and

$$
\begin{gathered}
\int_{\Omega}\left((2-d)|\nabla v|^{2}+d k^{2}|v|^{2}+2 \Re(g x \cdot \nabla \bar{v})\right) d x= \\
-\int_{\partial \Omega}\left(x \cdot n\left(k^{2}|v|^{2}+\left|\frac{\partial v}{\partial n}\right|^{2}-\left|\nabla_{T} v\right|^{2}\right)+2 \Re\left(x \cdot \nabla_{T} \bar{v} \frac{\partial v}{\partial n}\right)\right) d s
\end{gathered}
$$

Corollary 2.3. Suppose that $\Omega \subset \mathbb{R}^{d}$ is a bounded Lipschitz domain and that $v \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ and $\Delta v+k^{2} v=0$ in Ω. Then, where the unit normal vector n is directed into Ω, it holds that

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla v|^{2}-k^{2}|v|^{2}\right) d x=-\int_{\partial \Omega} \bar{v} \frac{\partial v}{\partial n} d s \tag{1}
\end{equation*}
$$

and

$$
\begin{gathered}
\int_{\Omega}\left((2-d)|\nabla v|^{2}+d k^{2}|v|^{2}\right) d x= \\
-\int_{\partial \Omega}\left(x \cdot n\left(k^{2}|v|^{2}+\left|\frac{\partial v}{\partial n}\right|^{2}-\left|\nabla_{T} v\right|^{2}\right)+2 \Re\left(x \cdot \nabla_{T} \bar{v} \frac{\partial v}{\partial n}\right)\right) d s
\end{gathered}
$$

N.B. This is applied in Ω^{-}and in Ω_{R}^{+}to $v:=\Psi_{\text {SL }} \varphi$, where $\varphi=A^{\prime-1} \psi$, in order to bound $\left(\gamma_{N}^{+}-\gamma_{N}^{-}\right) v=\varphi$ in terms of ψ, starting from

$$
\varphi=A^{\prime-1} \psi \Rightarrow \gamma_{N}^{-} v-\mathrm{i} \eta \gamma_{D}^{-} v=\frac{1}{2} \psi
$$

2. Once again, the property of radiating solutions of the Helmholtz equation, that, if v is radiating and Γ_{R} is the boundary of the sphere of radius R, then
$\Re \int_{\Gamma_{R}} \bar{v} \frac{\partial v}{\partial r} d s+R \int_{\Gamma_{R}}\left(k^{2}|v|^{2}+\left|\frac{\partial v}{\partial r}\right|^{2}-\left|\nabla_{T} v\right|^{2}\right) d s \leq 2 k R \Im \int_{\Gamma_{R}} \bar{v} \frac{\partial v}{\partial r} d s$.

Summary

1. Discussed wave number explicit lower and upper bounds on the inf-sup constant for the weak formulation in Ω_{R}^{+a} of the Dirchlet scattering problem.
2. Presented results on invertibility of the standard combined singleand double-layer boundary integral equation formulations for this problem, in the case of a Lipschitz domain, including the Brakhage-Werner (1965) formulation $A \varphi=-2 \gamma_{D} u^{i}$ where $A:=I+K-\mathrm{i} \eta V$.
3. Showed that, if Ω^{-}is piecewise smooth, Lipschitz and starlike, then $\left\|A^{-1}\right\|_{2} \leq C$, with an explicit formula for C as a function of the geometry and η / k.
[^1]
Further Reading on Wave-Number-Explicit Estimates

A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering.
Dominguez, Graham, Smyshlyaev, University of Bath preprint, which builds on ...

Schnelle Summationsverfahren zur numerischen Lösung von
Integralgleichungen für Streuprobleme im \mathbb{R}^{3}.
Giebermann, PhD, Karlsruhe, 1997.
On Generalized Finite Element Methods.
Melenk, PhD, Maryland, 1995.
An elliptic regularity coefficient estimate for a problem arising from a frequncy domain treatment of waves.
Feng \& Sheen, Trans. Amer. Math. Soc., 1994.
Sharp regularity coefficient estimates for complex-valued acoustic and
elastic Helmholtz equations.
Cummings and Feng, Math. Models Methods Appl. Sci., 2006.
Wave-number-explicit bounds in time-harmonic scattering. C-W \& Monk 2006, preprint.
A well-posed integral equation formulation for 3D rough surface scattering.
C-W, Heinemeyer \& Potthast, Proc. R. Soc. Lond. A, 2006.
Existence, uniqueness and variational methods for scattering by unbounded rough surfaces.
C-W \& Monk, SIAM J. Math. Anal., 2005.
The mathematics of scattering by unbounded, rough, inhomogeneous layers.
C-W, Monk \& Thomas J. Comp. Appl. Math. 2006
For copies of my stuff: www.reading.ac.uk/~sms03snc

Four Open Problems

1. Sharp estimates on $\|A\|_{2}$ as $k \rightarrow \infty$. This is much harder, see the harmonic analysis literature on oscillatory integral operators (Stein, Phong). (A crude bound that $\|A\|_{2} \leq \max \left(\|A\|_{\infty},\left\|A^{\prime}\right\|_{\infty}\right)=O\left(k^{(d-1) / 2}\right)$ is straightforward, but it seems, from the circle/sphere, that $\|A\|_{2}=O\left(k^{1 / 3}\right)$.)
2. Bounds on $\left\|A^{-1}\right\|_{2}$ and lower bounds on the inf-sup constant for the weak problem in Ω_{R}^{+}when the scatterer is not starlike.
3. Any wave-number-explicit bounds in the discrete case.
4. Preconditioners/new formulations which remove this k-dependence - and proofs!

[^0]: ${ }^{\text {a }}$ This upper bound also holds for Markus Melenk's example on his page 11, yester-

[^1]: ${ }^{\text {a }}$ That part of Ω^{+}inside a ball of radius R.

