Lecture 2. High Frequency Behaviour of Formulations of Time-Harmonic Scattering

Simon Chandler-Wilde

University of Reading, UK

www.reading.ac.uk/~sms03snc

Zurich Summer School, August 2006

### Focus of Today's Lecture

For

$$\Delta u + k^2 u = 0,$$

and boundary or finite element methods for its solution:

- **1.** How does conditioning depend on k (and the geometry)?
- 2. How can we remove or reduce this dependence?

### Focus of Today's Lecture

For

$$\Delta u + k^2 u = 0,$$

and boundary or finite element methods for its solution:

**1.** How does conditioning depend on k (and the geometry)?

2. How can we remove or reduce this dependence?

What is conditioning? For a linear system

$$Ax = b$$

the condition number is

 $\operatorname{cond} A := \|A\| \|A^{-1}\|$  where  $\|A\| := \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}$ . Large condition numbers associated with:

- slow convergence of iterative solution methods;
- magnification of effects of errors, e.g. in entries of A.

For

$$\Delta u + k^2 u = 0,$$

and boundary or finite element methods for its solution:

**1**. How does conditioning depend on k (and the geometry)?

2. How can we remove or reduce this dependence?

What is conditioning? For an operator equation

$$Ax = b$$

 $(A: X \to Y \text{ a continuous linear operator, } x \in X, b \in Y)$  the condition number is

cond  $A := ||A||_{X \to Y} ||A^{-1}||_{Y \to X}$  where  $||A||_{X \to Y} := \sup_{0 \neq x \in X} \frac{||Ax||_Y}{||x||_X}$ .

For

$$\Delta u + k^2 u = 0,$$

and boundary or finite element methods for its solution:

- **1.** How does conditioning depend on k (and the geometry)?
- 2. How can we remove or reduce this dependence?

What is conditioning? For the variational equation: find  $u \in X$  such that

$$a(u,v) = f(v), \quad v \in Y,$$

(X and Y Hilbert spaces,  $a: X \times Y \to \mathbb{C}$  a continuous sesquilinear form) a relevant **condition number** is that of the associated operator  $A: X \to Y'$ , defined by

$$Au(v) = a(u, v), \quad u \in X, v \in Y.$$

Since (see Melenk notes, Theorem 3 (Babuška-Brezzi), Hiptmair, 'Fundamental Concepts', §2),

$$\|A\|_{X \to Y'} = M, \quad M := \sup_{0 \neq u \in X, v \in Y} \frac{|a(u, v)|}{\|u\|_X \|v\|_Y},$$
$$\|A^{-1}\|_{Y' \to X} = \gamma^{-1}, \quad \gamma := \inf_{0 \neq u \in X} \sup_{0, \neq v \in Y} \frac{|a(u, v)|}{\|u\|_X \|v\|_Y},$$

M often called the  $\operatorname{norm}$  of a and  $\gamma$  its  $\operatorname{inf-sup}$  constant, it holds that

$$\operatorname{cond} A = \frac{M}{\gamma}.$$

### **Precise Focus of Today's Lecture**

For

$$\Delta u + k^2 u = 0,$$

and integral equation or domain methods for its solution:

- **1.** How does conditioning depend on k (and the geometry)?
- 2. How can we remove or reduce this dependence?

Estimating ||A|| and  $||A^{-1}||$  when A is an integral operator, and **norm** and **inf-sup** constants of sesquilinear forms.



### Recall from Yesterday ...

a standard weak formulation in  $\Omega_R^+$ , that part of  $\Omega^+$  inside a ball of radius R, with the exact Dirichlet to Neumann map on the sphere  $\Gamma_R$ truncating the domain.



Let  $V_R$  denote the closure of  $\{v|_{\Omega_R^+} : v \in C_0^\infty(\Omega^+)\} \subset H^1(\Omega_R^+)$  in the norm of  $H^1(\Omega_R^+)$ .

u satisfies the scattering problem if and only if the restriction of u to  $\Omega_R^+$ satisfies a variational problem of the form: find  $u \in V_R$  such that

$$a(u,v) = f(v), \quad v \in V_R.$$

The functional f depends on the incident field.  $a(\cdot, \cdot)$  is the sesquilinear form on  $V_R \times V_R$  defined by

$$a(u,v) := \int_{\Omega_R^+} (\nabla u \cdot \nabla \bar{v} - k^2 u \bar{v}) \, dx - \int_{\Gamma_R} \gamma \bar{v} T_R \gamma u \, ds$$

where  $\gamma: V_R \to H^{1/2}(\Gamma_R)$  is the usual trace operator.

### Summary of Known Results

With Markus's norm, i.e.  $||u||_{V_R}^2 = \int_{\Omega_R^+} (|\nabla u|^2 + k^2 |u|^2) dx$ , ...

1. An **upper bound** on the **inf-sup constant** 

$$\gamma := \inf_{\|u\|_{V_R} = 1} \sup_{\|v\|_{V_R} = 1} |a(u, v)|, \text{ that "a}$$

$$\gamma \le \frac{C_1}{kR} + \frac{C_2}{k^2 R^2}.$$

2. That, if the scatterer  $\Upsilon$  is starlike (i.e.  $x \in \Upsilon \Rightarrow \theta x \in \Upsilon$ , for  $0 \le \theta \le 1$ ), then the **lower bound** holds that

$$\frac{1}{5 + 4\sqrt{2}\,kR} \le \gamma.$$

<sup>a</sup>This upper bound also holds for Markus Melenk's example on his page 11, yesterday. 3. An example where  $\Upsilon$  is not starlike (two parallel plates) for which

$$\gamma \le \frac{C}{k^2 R^2}.$$

for an unbounded sequence of (nearly resonant) wavenumbers k.

**Details:** see the blackboard and www.rdg.ac.uk/~sms03snc/monk\_bounded\_submitted.pdf and the references therein.

**Lemma 2.1** Suppose  $w \in V_R \cap H^2(\Omega_R^+)$  is such that  $\gamma w = \gamma \nabla w = 0$ and w is non-zero. Then the inf-sup constant  $\gamma$  is bounded above by

$$\gamma \le \frac{C_1}{kR} + \frac{C_2}{k^2 R^2},$$

where  $C_1 := 2R \left\| \frac{\partial w}{\partial x_1} \right\|_2 / \|w\|_2$ ,  $C_2 := R^2 \|\Delta w\|_2 / \|w\|_2$  and  $C_1 \ge 2\sqrt{2} \approx 2.83$ .

**Lemma 2.1** Suppose  $w \in V_R \cap H^2(\Omega_R^+)$  is such that  $\gamma w = \gamma \nabla w = 0$ and w is non-zero. Then the inf-sup constant  $\gamma$  is bounded above by

$$\gamma \le \frac{C_1}{kR} + \frac{C_2}{k^2 R^2},$$

where  $C_1 := 2R \left\| \frac{\partial w}{\partial x_1} \right\|_2 / \|w\|_2$ ,  $C_2 := R^2 \|\Delta w\|_2 / \|w\|_2$  and  $C_1 \ge 2\sqrt{2} \approx 2.83$ .

For Markus's interior impedance/Robin problem (p.11 of his notes), the same bound holds if his bounded domain  $\Omega$  contains a ball of radius R, with

$$C_1 = 2\sqrt{24 + 3d}/3 \approx 3.7$$

### Where do the lower bounds on the inf-sup constant come from?

I.e. the lower bound I just showed or the lower bound Markus showed yesterday.

### Where do the lower bounds on the inf-sup constant come from?

I.e. the lower bound I just showed or the lower bound Markus showed yesterday.

The main ingredients are:

**1.** A rephrasing of Markus's Theorem 3 gives us the following general result:

If there exists C > 0 such that, for every  $u \in V_R$  and  $f \in V'_R$  satisfying

$$a(u,v) = f(v), \quad v \in V_R,$$

it holds that

$$||u||_{V_R} \le C ||f||_{V'_R}, \quad (*)$$

then

 $\gamma \ge C^{-1}.$ 

**1.** A rephrasing of Markus's Theorem 3 gives us the following general result:

If there exists C > 0 such that, for every  $u \in V_R$  and  $f \in V'_R$  satisfying

$$a(u,v) = f(v), \quad v \in V_R,$$

it holds that

then  $\gamma \ge C^{-1}$ .  $\|u\|_{V_R} \le C \|f\|_{V_R'}, \quad (*)$ 

**2.** If there exists  $\tilde{C} > 0$  such that, for every  $u \in V_R$  and  $g \in L^2(\Omega_R^+)$  satisfying

$$a(u,v) = -(g,v)_2 := -\int_{\Omega_R^+} g\bar{v} \, dx, \quad v \in V_R,$$

it holds that

 $||u||_{V_R} \le k^{-1} \tilde{C} ||g||_{L^2(\Omega_R^+)},$ 

then (\*) holds with  $C = 1 + 2\tilde{C}$ .

**3.** To establish this last bound, Green's theorem and a Rellich(-Payne-Weinberger-Nečas) type identity.

Such identities, useful for obtaining explicit a prioiri bounds and regularity estimates for strongly elliptic systems, follow from the divergence theorem, and date back to Rellich (1943).

See Chapter 5 of Nečas (1967) or McLean (2000). Our particular version of the identity is essentially that from the PhD of Melenk (1995).

**Lemma 2.2.** Suppose that  $\Omega \subset \mathbb{R}^d$  is a bounded Lipschitz domain and that  $v \in H^2(G)$ . Then, for every  $k \ge 0$ , where  $g := \Delta v + k^2 v$  and the unit normal vector n is directed into  $\Omega$ , it holds that

$$\int_{\Omega} \left( |\nabla v|^2 - k^2 |v|^2 + g\bar{v} \right) \, dx = -\int_{\partial\Omega} \bar{v} \, \frac{\partial v}{\partial n} \, ds$$

and

$$\int_{\Omega} \left( (2-d) |\nabla v|^2 + dk^2 |v|^2 + 2\Re \left( gx \cdot \nabla \bar{v} \right) \right) \, dx = \\ - \int_{\partial \Omega} \left( x \cdot n \left( k^2 |v|^2 + \left| \frac{\partial v}{\partial n} \right|^2 - |\nabla_T v|^2 \right) + 2\Re \left( x \cdot \nabla_T \bar{v} \, \frac{\partial v}{\partial n} \right) \right) \, ds.$$

**4.** To complete the proof for the scattering problem, a subtle property of radiating solutions of the Helmholtz equation, that, if v is radiating and  $\Gamma_R$  is the boundary of the sphere of radius R, then

$$\Re \int_{\Gamma_R} \bar{v} \frac{\partial v}{\partial r} \, ds + R \int_{\Gamma_R} \left( k^2 |v|^2 + \left| \frac{\partial v}{\partial r} \right|^2 - |\nabla_T v|^2 \right) \, ds \le 2kR \, \Im \int_{\Gamma_R} \bar{v} \frac{\partial v}{\partial r} \, ds.$$

**Proof.** Expand everything in Bessel functions and use the monotonicity property that  $|H_{\nu}^{(1)}(z)|^2$  is decreasing for  $\nu \ge 0$ ,  $|H_{\nu}^{(1)}(z)|^2 z$  for  $\nu \ge 1/2$ . (Cf. proof of Lemma 1.13 yesterday.)

# The Standard 2nd Kind Integral Equations When the Domain is Lipschitz (Brakhage-Werner and its adjoint)

$$\Delta u + k^2 u = 0$$

$$\Omega^+$$

$$u = 0$$

$$\Gamma$$

$$U = 0$$

$$\Omega^+$$

$$\Omega^+$$

$$\Omega^-$$

$$\Omega^-$$

$$\Omega^+$$

$$\Omega^-$$

$$\Omega^+$$

$$\Omega^+$$

$$\Omega^+$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$U(x) = u^i(x) - \int_{\Gamma} G(x, y) \gamma_N^+ u(y) ds(y), \quad x \in \Omega^+,$$

$$\begin{array}{c} \Delta u + k^2 u = 0 \\ & & & \\ & u^i, \text{ incident wave} & & u = 0 \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

$$\begin{array}{c} \Delta u+k^2u=0\\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

$$V\gamma_N^+ u = 2\gamma_D^+ u^i, \quad \gamma_N^+ u + K'\gamma_N^+ u = 2\gamma_N^+ u^i,$$
$$\Rightarrow A'\gamma_N^+ u = f,$$

where

$$A' := I + K' - i\eta V,$$

*I* is the identity operator,  $\eta \in \mathbb{R}$  the **coupling parameter**,  $f := 2\gamma_N^+ u^i - 2i\eta\gamma_D^+ u^i$ , and, for  $\varphi \in L^2(\Gamma)$  and (almost all)  $x \in \Gamma$ ,  $V\varphi(x) = 2\int_{\Gamma} G(x, y)\varphi(y) ds(y), \quad K'\varphi(x) = 2\int_{\Gamma} \frac{\partial G(x, y)}{\partial n(x)}\varphi(y) ds(y).$  Alternatively ..., following Brakhage & Werner (1965) we find that an ansatz for  $u^s$  as a combined single and double-layer potential, with density  $\varphi$  and coupling parameter  $\eta \in \mathbb{R}$  satisfies the scattering problem iff

$$A\varphi = -2\gamma_D^+ u^i,$$

where

$$A := I + K - i\eta V,$$

and, for  $\varphi \in L^2(\Gamma)$  and (almost all)  $x \in \Gamma$ ,

$$V\varphi(x) = 2\int_{\Gamma} G(x,y)\varphi(y)\,ds(y), \quad K\varphi(x) = 2\int_{\Gamma} \frac{\partial G(x,y)}{\partial n(y)}\varphi(y)ds(y).$$

N.B., where  $(\phi, \psi) := \int_{\Gamma} \phi \psi ds$ ,  $(A\phi, \psi) = (\phi, A'\psi), \quad \phi, \psi \in C^{\infty}(\Gamma).$ 

$$A' := I + K' - i\eta V, \quad A := I + K - i\eta V$$

$$V\varphi(x) = 2\int_{\Gamma} G(x,y)\varphi(y)\,ds(y), \quad K'\varphi(x) = 2\int_{\Gamma} \frac{\partial G(x,y)}{\partial n(x)}\varphi(y)ds(y),$$
$$\int_{\Gamma} \frac{\partial G(x,y)}{\partial n(x)}\varphi(y)ds(y),$$

$$K\varphi(x) = 2 \int_{\Gamma} \frac{\partial G(x,y)}{\partial n(y)} \varphi(y) ds(y).$$

Mapping Properties. (Follows from Ralf, Thm 2.1.9)

$$A': H^{s-1/2}(\Gamma) \to H^{s-1/2}(\Gamma), \quad A: H^{s+1/2}(\Gamma) \to H^{s+1/2}(\Gamma)$$

and these mappings are bounded, for  $|s| \le 1/2$ . (See Costabel (1988), McLean (2000), Meyer & Coifmann (2000).)

$$A' := I + K' - i\eta V, \quad A := I + K - i\eta V$$

$$V\varphi(x) = 2\int_{\Gamma} G(x,y)\varphi(y)\,ds(y), \quad K'\varphi(x) = 2\int_{\Gamma} \frac{\partial G(x,y)}{\partial n(x)}\varphi(y)ds(y),$$

$$K\varphi(x) = 2 \int_{\Gamma} \frac{\partial G(x,y)}{\partial n(y)} \varphi(y) ds(y).$$

Injectivity. (Ralf, Thm 2.1.16) If  $\eta \neq 0$ ,  $A' : H^{-1/2}(\Gamma) \rightarrow H^{-1/2}(\Gamma)$  is injective. (See C-W & Langdon, preprint, but same standard argument as for smooth boundaries, see e.g. Colton & Kress (1983).)

$$A' := I + K' - i\eta V, \quad A := I + K - i\eta V$$

$$\begin{split} V\varphi(x) &= 2\int_{\Gamma} G(x,y)\varphi(y)\,ds(y), \ \ K'\varphi(x) = 2\int_{\Gamma} \frac{\partial G(x,y)}{\partial n(x)}\varphi(y)ds(y), \\ K\varphi(x) &= 2\int_{\Gamma} \frac{\partial G(x,y)}{\partial n(y)}\varphi(y)ds(y). \end{split}$$

**Invertibility.** If  $\eta \neq 0$ , then

$$A': H^{s-1/2}(\Gamma) \to H^{s-1/2}(\Gamma), \quad A: H^{s+1/2}(\Gamma) \to H^{s+1/2}(\Gamma)$$

are bijections, for  $|s| \leq 1/2$ . (See C-W & Langdon, preprint: follows since A is Fredholm of index zero on  $H^1(\Gamma)$  and  $L^2(\Gamma)$ ; Verchota (1985), Elschner (1992).)

$$A' := I + K' - i\eta V, \quad A := I + K - i\eta V$$

$$\begin{split} V\varphi(x) &= 2\int_{\Gamma}G(x,y)\varphi(y)\,ds(y), \ \ K'\varphi(x) = 2\int_{\Gamma}\frac{\partial G(x,y)}{\partial n(x)}\varphi(y)ds(y), \\ K\varphi(x) &= 2\int_{\Gamma}\frac{\partial G(x,y)}{\partial n(y)}\varphi(y)ds(y). \end{split}$$

**Coercivity.** (Ralf, Lemmma 2.1.17) A is coercive (elliptic + compact) as an operator on  $H^{1/2}(\Gamma)$  (and A' as an operator on  $H^{-1/2}(\Gamma)$ ), in fact in the 3D case (with the right choice of norm)  $\frac{1}{2}A = I - (\frac{1}{2}I - K)$ and  $\frac{1}{2}I - K$  is a contraction when k = 0. (Corollary of results in Steinbach & Wendland (2001).) (Ralf, p. 33, not great for discretization as inner products non-local.)

$$A' := I + K' - i\eta V, \quad A := I + K - i\eta V$$

$$\begin{split} V\varphi(x) &= 2\int_{\Gamma}G(x,y)\varphi(y)\,ds(y), \ \ K'\varphi(x) = 2\int_{\Gamma}\frac{\partial G(x,y)}{\partial n(x)}\varphi(y)ds(y), \\ K\varphi(x) &= 2\int_{\Gamma}\frac{\partial G(x,y)}{\partial n(y)}\varphi(y)ds(y). \end{split}$$

Wave Number Dependence. But how do ||A|| and  $||A^{-1}||$  depend on k, especially as  $k \to \infty$ , and how should we choose  $\eta$ ?

**Theorem.** (See Dominguez, Graham, and Smyshlyaev, preprint, and cf. Buffa & Sauter, to appear SISC.)

If  $\Gamma$  is a circle, and  $\eta = k$ , then, for all sufficiently large k, A is elliptic on  $L^2(\Gamma)$ , precisely

$$\Re(A\phi, \bar{\phi}) \ge \frac{1}{2} \|\phi\|_2^2,$$

so that  $||A^{-1}||_2 \le 2$ . Further  $||A||_2 = O(k^{1/3})$  as  $k \to \infty$ .

**Proof.** Explicit calculation of spectrum of A (this dates back to Kress and Spassov 1983), and clever estimates of Bessel functions uniform in argument and order.

**N.B.** In the circle case A = A'.

**N.B.** Suggests variational formulation in  $L^2(\Gamma)$  attractive and natural!? (cf. Ralf, p.33)

Let n(x) denote the outward unit normal at  $x \in \Gamma$ , and

$$R_0 := \max_{x \in \Gamma} |x|, \quad \delta_- := \text{ess. inf} \ x \cdot n(x).$$

**Theorem.** (C-W & Monk, preprint.) If  $\Omega^-$  is a polyhedron which is starlike with respect to the origin (i.e.  $\delta_- > 0$ ), or a more general piecewise smooth, Lipschitz, starlike domain,  $\eta = k$  and  $kR_0 \ge 1$ , then

$$||A^{-1}||_2 = ||A'^{-1}||_2 \le \frac{1}{2} \left(1 + 13\theta + 4\theta^2\right),$$

where  $\theta := R_0 / \delta_-$ .

#### **Examples.**

Circle/sphere:  $\theta = 1$ ,  $||A^{-1}||_2 = ||A'^{-1}||_2 \le 9$ . Cube:  $\theta = \sqrt{3}$ ,  $||A^{-1}||_2 = ||A'^{-1}||_2 \le 18$ .

# The Main Ingredients in the Proof

1. Green's theorem and a Rellich(-Payne-Weinberger-Nečas) type identity.

Such identities, useful for obtaining explicit a priori bounds and regularity estimates for strongly elliptic systems, follow from the divergence theorem, and date back to Rellich (1943).

See Chapter 5 of Nečas (1967) or McLean (2000). Our particular version of the identity is essentially that from the PhD of Melenk (1995).

**Lemma 2.2.** Suppose that  $\Omega \subset \mathbb{R}^d$  is a bounded Lipschitz domain and that  $v \in H^2(G)$ . Then, for every  $k \ge 0$ , where  $g := \Delta v + k^2 v$  and the unit normal vector n is directed into  $\Omega$ , it holds that

$$\int_{\Omega} \left( |\nabla v|^2 - k^2 |v|^2 + g\bar{v} \right) \, dx = -\int_{\partial\Omega} \bar{v} \, \frac{\partial v}{\partial n} \, ds$$

and

$$\int_{\Omega} \left( (2-d) |\nabla v|^2 + dk^2 |v|^2 + 2\Re \left( gx \cdot \nabla \bar{v} \right) \right) \, dx = -\int_{\partial\Omega} \left( x \cdot n \left( k^2 |v|^2 + \left| \frac{\partial v}{\partial n} \right|^2 - |\nabla_T v|^2 \right) + 2\Re \left( x \cdot \nabla_T \bar{v} \frac{\partial v}{\partial n} \right) \right) \, ds.$$

**Corollary 2.3.** Suppose that  $\Omega \subset \mathbb{R}^d$  is a bounded Lipschitz domain and that  $v \in C^2(\Omega) \cap C^1(\overline{\Omega})$  and  $\Delta v + k^2 v = 0$  in  $\Omega$ . Then, where the unit normal vector n is directed into  $\Omega$ , it holds that

$$\int_{\Omega} \left( |\nabla v|^2 - k^2 |v|^2 \right) \, dx = -\int_{\partial\Omega} \bar{v} \, \frac{\partial v}{\partial n} \, ds \tag{1}$$

and

$$\int_{\Omega} \left( (2-d) |\nabla v|^2 + dk^2 |v|^2 \right) dx = -\int_{\partial\Omega} \left( x \cdot n \left( k^2 |v|^2 + \left| \frac{\partial v}{\partial n} \right|^2 - |\nabla_T v|^2 \right) + 2\Re \left( x \cdot \nabla_T \bar{v} \frac{\partial v}{\partial n} \right) \right) ds.$$

**N.B.** This is applied in  $\Omega^-$  and in  $\Omega^+_R$  to  $v := \Psi_{SL}\varphi$ , where  $\varphi = A'^{-1}\psi$ , in order to bound  $(\gamma_N^+ - \gamma_N^-)v = \varphi$  in terms of  $\psi$ , starting from

$$\varphi = {A'}^{-1}\psi \Rightarrow \gamma_N^- v - i\eta\gamma_D^- v = \frac{1}{2}\psi.$$

2. Once again, the property of radiating solutions of the Helmholtz equation, that, if v is radiating and  $\Gamma_R$  is the boundary of the sphere of radius R, then

$$\Re \int_{\Gamma_R} \bar{v} \frac{\partial v}{\partial r} \, ds + R \int_{\Gamma_R} \left( k^2 |v|^2 + \left| \frac{\partial v}{\partial r} \right|^2 - |\nabla_T v|^2 \right) \, ds \le 2kR \, \Im \int_{\Gamma_R} \bar{v} \frac{\partial v}{\partial r} \, ds.$$

# Summary

- 1. Discussed wave number explicit lower and upper bounds on the inf-sup constant for the weak formulation in  $\Omega_R^{+a}$  of the Dirchlet scattering problem.
- 2. Presented results on invertibility of the standard combined singleand double-layer boundary integral equation formulations for this problem, in the case of a Lipschitz domain, including the Brakhage-Werner (1965) formulation  $A\varphi = -2\gamma_D u^i$  where  $A := I + K - i\eta V$ .
- 3. Showed that, if  $\Omega^-$  is piecewise smooth, Lipschitz and starlike, then  $||A^{-1}||_2 \leq C$ , with an explicit formula for C as a function of the geometry and  $\eta/k$ .

<sup>a</sup>That part of  $\Omega^+$  inside a ball of radius R.

# Further Reading on Wave-Number-Explicit Estimates

A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering.

Dominguez, Graham, Smyshlyaev, University of Bath preprint, which builds on ...

Schnelle Summationsverfahren zur numerischen Lösung von Integralgleichungen für Streuprobleme im  $\mathbb{R}^3$ . Giebermann, PhD, Karlsruhe, 1997.

On Generalized Finite Element Methods.

Melenk, PhD, Maryland, 1995.

An elliptic regularity coefficient estimate for a problem arising from a frequncy domain treatment of waves.

Feng & Sheen, Trans. Amer. Math. Soc., 1994.

Sharp regularity coefficient estimates for complex-valued acoustic and

elastic Helmholtz equations.

Cummings and Feng, Math. Models Methods Appl. Sci., 2006.

Wave-number-explicit bounds in time-harmonic scattering. C-W & Monk 2006, preprint.

A well-posed integral equation formulation for 3D rough surface scattering.

C-W, Heinemeyer & Potthast, Proc. R. Soc. Lond. A, 2006.

Existence, uniqueness and variational methods for scattering by unbounded rough surfaces.

C-W & Monk, SIAM J. Math. Anal., 2005.

The mathematics of scattering by unbounded, rough, inhomogeneous layers.

C-W, Monk & Thomas J. Comp. Appl. Math. 2006

For copies of my stuff: www.reading.ac.uk/~sms03snc

### Four Open Problems

- 1. Sharp estimates on  $||A||_2$  as  $k \to \infty$ . This is much harder, see the harmonic analysis literature on oscillatory integral operators (Stein, Phong). (A crude bound that  $||A||_2 \le \max(||A||_{\infty}, ||A'||_{\infty}) = O(k^{(d-1)/2})$  is straightforward, but it seems, from the circle/sphere, that  $||A||_2 = O(k^{1/3})$ .)
- 2. Bounds on  $||A^{-1}||_2$  and lower bounds on the inf-sup constant for the weak problem in  $\Omega_R^+$  when the scatterer is not starlike.
- 3. Any wave-number-explicit bounds in the discrete case.
- 4. Preconditioners/new formulations which remove this k-dependence – and proofs!