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Abstract

In these lecture notes, which interact with the notes/presentations of the
other lecturers (Ralf Hiptmair, Markus Melenk, Eric Michielssen), we: intro-
duce the Helmholtz equation and the precise formulation of various bound-
ary value problems in Sobolev spaces; discuss the high frequency behaviour
of solutions of the Helmholtz equation and say something about what is
known from high frequency asymptotics; discuss the high frequency be-
haviour of standard boundary value problem and integral equation formu-
lations. Finally, we discuss work in the last ten years on boundary ele-
ment methods utilising basis functions which incorporate solutions of the
Helmholtz equation in order to represent the highly oscillatory solution more
effectively, leading to a reduced number of degrees of freedom.
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Chapter 1

Boundary Value Problems
for the Helmholtz Equation

1.1 The Physical Problem and its Mathematical
Modelling

Many physicists and engineers are interested in the reliable simulation of
processes in which acoustic waves are scattered by obstacles, with applica-
tions arising in areas as diverse as sonar (see figure 1.1), road, rail or aircraft
noise, or building acoustics. Unless the geometry of the scattering object is

Figure 1.1: Typical acoustic scattering problem
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particularly simple, the analytical solution of scattering problems is usually
impossible, and hence numerical schemes are required.

Throughout these notes P (x, t) will denote the pressure at time t at the
point whose position vector is x. We will use Cartesian coordinates (Ox1x2

for 2D problems, Ox1x2x3 for 3D problems). Thus, in 3D problems, x will
be the vector x = (x1, x2, x3), with x1, x2, x3 the three components of x. In
2D problems x = (x1, x2) will have just two components.

In a homogeneous medium at rest the function P satisfies the wave equa-
tion

∆P − 1
c2

∂2P

∂t2
= 0, (1.1)

where c is the speed of sound and

∆ = ∇2

is a shorthand for the Laplacian (e.g. ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

in 2D).
There are two approaches to solving the wave equation (1.1) numeri-

cally. The obvious approach is some form of direct numerical simulation,
discretising the (hyperbolic) wave equation directly, e.g. by a finite difference
em time domain method or by time domain integral equation methods (see
the lectures of Michielssen). In these notes we will consider the alternative
approach of working in the frequency domain, restricting attention to the
(important) case of time harmonic (we assume throughout e−iωt time de-
pendence for some ω > 01) acoustic propagation and scattering. Of course,
having solved for harmonic time dependence for sufficiently many distinct
frequencies ω, more general variations as a function of time can be obtained
by Fourier synthesis, by combining harmonic time dependencies for different
frequencies.

Assuming time harmonic time dependence the pressure is given by

P (x, t) = <
(

u(x)e−iωt
)
, (1.2)

where ω = 2πf is the angular frequency, f the frequency (measured in Hz),
i =

√
−1, and < denotes the real part. The function u, which is complex-

valued in general, we will call the complex acoustic pressure (but often just
the pressure for short). Note that we can write (1.2) more explicitly as

P (x, t) = A(x) cos(ϕ(x)− ωt), (1.3)

where A(x) = |u(x)|, ϕ(x) = arg u(x), making clear the physical interpre-
tation of u, that the modulus of u(x), |u(x)|, is the amplitude of the time

1One has to be a little careful with the literature on time harmonic wave problems.
Assuming time dependence eiωt with ω > 0 is equally common and valid. For eiωt time
dependence, used in some publications, all the formulas in these notes remain valid as long
as one replaces all complex numbers by their complex conjugate, in particular replaces
each i by −i.
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harmonic pressure fluctuation at x, while arg u(x) determines the phase of
the oscillation at x.

Frequently we are interested in Sound Pressure Level predictions. Since
the root mean square of a time harmonic field is its amplitude divided by√

2, the SPL at x is given by

SPL = 20 log10

(
|u(x)|√
2 uref

)
dB,

where uref is the usual reference pressure. An important point for numerical
calculation in general is that accurate prediction of SPL requires small
relative errors in the computation of |u|. Of course, this then implies very
small absolute errors at points x where |u(x)| is small. For many applications
such regions may be very important, for example if one is calculating the
shielding performance of a noise barrier, when one is interested in accurate
predictions (with small dB error and so small relative error) in the shadow
zone. Thus very accurate numerical methods are of interest for a number of
acoustic applications.

Substituting (1.2) into (1.1), we see that u satisfies the Helmholtz equa-
tion

∆u + k2u = 0, in Ω ⊂ Rd, (1.4)

where d = 1, 2 or 3 is the dimension of the problem we are considering, Ω
denotes the domain of propagation, the region in which the wave propagates,
which is either a subset of the plane (R2) if we are solving a 2D problem,
or is a subset of R3 if we are solving a fully 3D problem. (Occasionally,
especially for instructional purposes, we wish to consider also 1D problems,
in which case the domain Ω is a subset of R, the real line, i.e. Ω is an interval
of the form (a, b) with a < b.) The positive constant k is the wave number,
given by

k :=
ω

c
=

2πf

c
=

2π

λ
.

Here we have introduced λ = c/f , the wavelength of plane waves of frequency
f . Clearly, k is proportional to the frequency and inversely proportional to
λ, with SI units m−1.

A large part of the rest of these notes will discuss how to compute, by the
boundary element method, solutions to (1.4) that also satisfy appropriate
boundary conditions on the boundary of the domain of propagation. We
denote the boundary of Ω by ∂Ω and will focus in these notes mainly on the
Dirchlet boundary condition, that

u = g on ∂Ω. (1.5)

This focus is made for the purpose of simplicity and because some of the
developments that we will mention are not yet tested or the theory devel-
oped except in this boundary condition case. Sadly, the Dirichlet boundary
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condition is not very often physically relevant, at least in my experience of
applied acoustics, except that the assumption that u = 0 is a reasonable
approximation to reality at the sea-air interface in underwater acoustics.

While our emphasis will be more often on the Dirichlet boundary con-
dition case, we will also consider the most commonly physically relevant
boundary condition, namely the impedance boundary condition

∂u

∂n
+ ikβu = g, on ∂Ω. (1.6)

Let us spend a few moments explaining this boundary condition. First of
all, in this equation, and throughout, ∂/∂n denotes the normal derivative on
the boundary, i.e. the rate of increase in the direction n, where n(x) denotes
the unit normal at x ∈ ∂Ω, directed into2 Ω. Explicitly, in terms of the
gradient of u,

∂u

∂n
(x) = n(x) · ∇u(x), (1.7)

i.e. the normal derivative is the scalar product of the gradient and the unit
normal.

The function g on the right hand side of the equation is identically zero in
acoustic scattering problems (problems where we are given an incident wave
and a stationary scatterer and have to compute the resulting acoustic field),
but is non-zero for radiation problems (where the motion of a radiating
structure is given and we have to calculate the acoustic field radiated).

In (1.6) β is the relative surface admittance which, in general, is a func-
tion of position on the boundary (and also a function of frequency). The
simplest case is when the boundary is acoustically rigid or sound hard. This
is the case when no flow is possible across ∂Ω and β = 0 so that (1.6)
simplifies to the so-called sound hard or Neumann boundary condition

∂u

∂n
= g on ∂Ω. (1.8)

More generally, β may be non-zero, its value at position x on ∂Ω given by

β(x) :=
Z0

Zs(x)

where Z0 = ρc is the impedance of the medium of propagation (air, water,
etc.), ρ its density, and Zs(x) is the surface impedance at x. The surface
impedance is defined by the equation

Zs(x) =
u(x)

−v(x) · n(x)
, for x ∈ ∂Ω,

2In writing about and coding the boundary element method one has to take great
care about directions of normals. Many authors will take the unit normal in the opposite
direction, which changes the sign of the normal derivative.
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where v(x) is the velocity at x due to the acoustic field. Thus Zs is the
ratio on the surface of the pressure to the normal velocity into the surface.
The impedance boundary condition is appropriate whenever, to a good ap-
proximation, this ratio is independent of the acoustic field. This is the case
for sound hard surfaces (where the ratio is always ∞), for many naturally
occurring surfaces in outdoor noise propagation, and for many man-made
acoustically absorbing surfaces at lower frequencies.

In the case when the domain Ω is unbounded, the complete mathematical
formulation of the problem has to include some condition which encapsu-
lates, in a mathematical way, the idea that the acoustic field, or at least
some part of it (e.g. the part which is reflected from the scattering obsta-
cle), is travelling outwards, towards infinity. The usual conditions imposed
are the so-called Sommerfeld radiation conditions, that

u(x) = O
(
r−(d−1)/2

)
, (1.9)

∂u

∂r
(x)− iku(x) = o

(
r−(d−1)/2

)
, (1.10)

as r →∞, uniformly in x̂ := x/r. In this equation d is the dimension (2 or
3) and r is the radial direction, precisely r = |x|, the distance of x from the
origin, so that, in terms of the gradient of u,

∂u

∂r
(x) = x̂ · ∇u(x),

where x̂ = x/|x| is the unit vector in the direction of x. Of course, the ‘big
O’ and ‘little o’ notations in (1.9) and (1.10) have the following meanings:
equation (1.9) says that the pressure, u(x), must decrease, as we go to
infinity, at least as fast as r−(d−1)/2; equation (1.10) says that the left hand
side of this equation, namely ∂u/∂r−iku must decrease faster than r−(d−1)/2.
Requiring that (1.9) and (1.10) hold uniformly in x̂ means, of course, that

max
x̂∈S

|u(x)| = O
(
r−(d−1)/2

)
,

max
x̂∈S

∣∣∣∣∂u

∂r
(x)− iku(x)

∣∣∣∣ = o
(
r−(d−1)/2

)
,

where S := {x ∈ Rd : |x| = 1}.
The physical basis of the Sommerfeld radiation conditions is as follows.

The first condition implies that |u|2 decreases like r−1 in 2D, like r−2 in 3D.
But this is exactly what one expects from energy considerations: the energy
is spread over an ever larger and larger cylinder of circumference 2πr in
2D, is spread over the surface of a sphere of radius 4πr2 in 3D. The second
condition says that ∂u/∂r− iku should be much smaller than r−(d−1)/2, and
so much smaller than u, when r is large. This makes sense as far away the
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wave travelling outwards appears locally like a plane wave travelling in the
direction x̂, i.e. it has the form

u(x) = Aeikr

where A is the local amplitude. But, for such an acoustics field it holds that
∂u/∂r − iku = 0 exactly.

1.2 Precise Mathematical Formulations as Bound-
ary Value Problems

In this section we will state precisely the mathematical formulations as a
boundary value problem of the main scattering problems that we are going to
consider. At this point in the notes I start to assume a greater mathematical
sophistication and knowledge of basic mathematics of the numerical solution
by finite element methods of PDEs, including some relevant knowledge of
function spaces, relevant linear functional analysis, as contained in the notes
of Ralf Hiptmair which have been circulated [6]. However, mindful of my
own forgetfulness, I will include many reminders of the relevant definitions!

We start by making precise the types of domain that we wish to con-
sider and introducing notations for sets of functions associated with these
domains. Perhaps we should first note that, throughout, we understand the
word domain in its technical, mathematical sense: a domain Ω ⊂ Rd is a
connected, open subset of Rd. Given a set Γ ⊂ Rd we denote by C(Γ) the
set of continuous functions f : Γ → C. Given a domain Ω ⊂ Rd and n ∈ N
we denote by Cn(Ω) the set of all u ∈ C(Ω) that have well-defined partial
derivatives of all orders less than or equal to n that are continuous in Ω.

For a scattering problem one needs an incident wave. Throughout ui will
denote the incident field; we always assume that ui satisfies the Helmholtz
equation, at least in a neighbourhood of the scattering obstacle. Most often
we consider the simplest case of plane wave incidence, i.e. the case where,
for some unit vector d̂ (the direction of the plane wave),

ui(x) = eikx·d̂, x ∈ Rd. (1.11)

The total field in the presence of the obstacle (i.e. what one would measure
in an experiment) we denote by u. Then us := u−ui is our notation for the
scattered field.

The following is the simplest scattering problem that will serve as a
model problem for much of these notes, namely acoustic scattering by a
bounded sound soft obstacle. We start with the formulation in classical
function spaces (i.e. where we look for a solution in spaces of continuous
functions). When we are dealing with scattering problems we shall denote
the domain exterior to the bounded scatterer by Ω+, so that in all the
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scattering problems we consider the domain Ω+ ⊂ Rd (d = 2 or 3) is assumed
to be unbounded, and to include the set {x : |x| > R}, for some R > 0. The
complement of Ω+, i.e. the set Υ := Rd \Ω+, we call the scattering object or
scatterer for short. We shall abbreviate ∂Ω+, the boundary of Ω+ (which is
also the boundary of Υ) by Γ (see Figure 1.2). Finally, Ω− := Υ \Γ denotes
the interior of the scatterer Υ. For much of these notes it will be the case
that Ω− = Υ, i.e. Γ is also the boundary of Ω−, but we do not assume this
yet, in particular Ω− may be the empty set.
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@

@
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∆us + k2us = 0
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Γ

Ω+

obstacle, Υ

Figure 1.2: Schematic diagram of the Dirichlet scattering problem.

Problem 1.1 (The Dirichlet Scattering Problem - Version 1) Given
k > 0 and the incident field ui, find us ∈ C2(Ω+) ∩ C(Ω+) which satisfies
the Helmholtz equation (1.4) in Ω+ and the Sommerfeld radiation conditions
(1.9)-(1.10), and is such that u = ui + us = 0 on Γ.

The above is the Dirichlet scattering problem formulated in a classical
space setting (as in e.g. Colton and Kress [3, 4]). A very popular alternative
is to formulate the scattering problem in a Sobolev space setting. For the
moment the following Sobolev space is sufficient for our purpose (for more
details of Sobolev spaces see [6] or [8]). Given a domain Ω ⊂ Rd (d ∈ N), let
C∞

0 (Ω) denote the set of u ∈ C∞(Ω) whose support is a compact subset of
Ω (which implies that u is identically zero in a neighbourhood of ∂Ω). For
every u, v ∈ C∞

0 (Ω), the integral

(u, v)H1(Ω) :=
∫

Ω
(uv̄ +∇u · ∇v̄) dx (1.12)

is well-defined, in fact (·, ·) defines an inner product on the vector space
C∞

0 (Ω) so that, equipped with (·, ·), C∞
0 (Ω) is an inner product space or

pre-Hilbert space (see [6] for definitions). Of course, as an inner product
space, C∞

0 (Ω) is automatically also a normed space, with norm ‖ · ‖H1(Ω)

defined by

‖u‖H1(Ω) := (u, u)1/2
H1(Ω)

=
{∫

Ω

(
|∇u|2 + |u|2

)
dx

}1/2

, (1.13)
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and so also a metric space, with metric d(·, ·) defined by d(u, v) := ‖u −
v‖H1(Ω). Referring to the basic theory of metric spaces, we make the follow-
ing definition.

Defintion 1.2 We define the Sobolev space H1
0 (Ω) to be the completion of

the metric space C∞
0 (Ω). Extending the definition of the inner product (1.12)

to H1
0 (Ω) in the natural way, H1

0 (Ω) is a Hilbert space.

The attraction of this definition is that it is defined in terms of very basic
concepts – the basic theory of metric spaces and the set C∞

0 (Ω). The less
attractive feature is that the elements of H1

0 (Ω) are elements of the com-
pletion of a metric space, i.e. are equivalence classes of Cauchy sequences,
which are not as concrete as we would like for communicating with the
widest audience!

The alternative definition of H1
0 (D) avoids the notion of the completion

of a metric space, but does not really win in terms of easy communication
since it instead requires Lebesgue integration and measure and the idea of
a weak derivative or the (closely related) idea of a distributional derivative.
This alternative definition goes as follows. First, let L2(Ω) denote the set of
functions u : Ω → C which are Lebesgue measurable and for which

‖u‖2 :=
{∫

Ω
|u|2 dx

}1/2

< ∞. (1.14)

It follows from simple properties of Lebesgue measure and fairly elementary
arguments that L2(Ω) is a normed space (with norm ‖ · ‖2), in fact an inner
product space with inner product (·, ·)2 defined by

(u, v)2 :=
∫

Ω
uv̄ dx. (1.15)

(To be precise, to make ‖ · ‖2 a norm rather than a semi-norm we have to
modify the definition of L2(Ω) slightly, replacing L2(Ω) by a new version
L̃2(Ω), the elements of L̃2(Ω) being subsets of L2(Ω), precisely the equiv-
alence classes of L2(Ω) under the equivalence relation of equality almost
everywhere, so that two function in L2(Ω) are regarded as equivalent if they
are equal except on a set of Lebesgue measure zero. However, noting this
important detail, for the sake of simplicity we do not hereafter distinguish
notationally between L2(Ω) and L̃2(Ω).) Slightly deeper arguments (see e.g.
[2]) show that L2(Ω) is a Hilbert space, i.e. that L2(Ω) is a complete metric
space with respect to the metric generated by the norm ‖ · ‖2.

Next, note that if u ∈ C1(Ω) and v ∈ C∞
0 (Ω), it holds (e.g. by the

divergence theorem or a simple integration by parts) that∫
Ω

u
∂v

∂xj
dx = −

∫
Ω

∂u

∂xj
v dx.
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Inspired by this equation, let us say that u ∈ L2(Ω) has a partial derivative
∂ju = ∂u

∂xj
in a weak sense if there exists a locally Lebesgue integrable

function w3 such that∫
Ω

u
∂v

∂xj
dx = −

∫
Ω

wv dx, ∀v ∈ C∞
0 (Ω), (1.16)

and, if this is the case, let us denote this weak derivative w by ∂ju. It is
not difficult (if you know about Lebesgue integration) to show that if w1

and w2 are both weak derivatives in this sense then they are equal almost
everywhere. It follows that if u ∈ C1(Ω) then a weak derivative ∂ju of u is
equal, almost everywhere, to the classical partial derivative ∂u

∂xj
. Finally, let

us say that u has a weak gradient ∇u if u has a weak partial derivative ∂ju,
for j = 1, . . . , d.

With these preliminaries we can define both the Sobolev space H1(Ω)
and H1

0 (Ω) as a subspace of H1(Ω).

Defintion 1.3 Let the Sobolev space H1(Ω) ⊂ L2(Ω) denote the set of those
u ∈ L2(Ω) that have a weak gradient ∇u which is also in L2(Ω). Then H1(Ω)
is a Hilbert space with the inner product and norms (1.12) and (1.13). Let
H1

0 (D) denote the closure of C∞
0 (Ω) ⊂ H1(D).

Of course the above definition implies that, if u ∈ H1
0 (Ω) then ‖u‖H1(Ω) <

∞ and there exists a sequence (un) ⊂ C∞
0 (Ω) such that ‖u− un‖H1(Ω) → 0

as n →∞. If Ω is sufficiently regular (e.g. Lipschitz will do) then a similar
density result holds for H1(Ω) (see [8]), that, if u ∈ H1(Ω), then there exists
a sequence (un) ⊂ C∞(Rd) such that ‖u− un‖H1(Ω) → 0 as n →∞.

The two definitions that we have given above of H1
0 (Ω) coincide in an

appropriate sense.
Finally, to formulate the scattering problem, we need to introduce the

vector space H1,loc
0 (Ω+). Let H1,loc

0 (Ω+) denote the set of functions u : Ω →
C such that the product uv is in H1

0 (Ω+) for every v ∈ C∞
0 (Rd).

Here is our second, Sobolev space version, of the scattering problem. For
convenience, in this second formulation, we restrict our attention to the case
when ui is the incident plane wave given by (1.11).

Problem 1.4 (The Dirichlet Scattering Problem - Version 2) Given
k > 0 and the unit vector d̂ (the direction of the incident plane wave ui),
find u ∈ C2(Ω+) ∩H1,loc

0 (Ω+) such that us satisfies the Helmholtz equation
(1.4) in Ω+ and the Sommerfeld radiation conditions (1.9)-(1.10).

3I.e. a function w : Ω → C which is Lebesgue measurable and for which
∫

S
|w| dx < ∞

for every compact set S ⊂ Ω, this requirement ensuring that the integral on the right
hand side of (1.16) exists for all v ∈ C∞0 (Ω).
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Note that in this version of the scattering problem the requirement that
u = 0 on Γ is imposed in a weak sense, through the requirement that u ∈
H1,loc

0 (Ω+). Regarding the choice of the two formulations and which is
correct from a physical point of view we note that:

1. Version 1 requires that us ∈ C(Ω+), so that the acoustic pressure is
continuous up to the boundary.

2. Let Ω+
R := {x ∈ Ω+ : |x| < R}, for R ≥ R0 := maxx∈Υ |x|. Then

Version 2 requires that
∫
Ω+

R
(|∇u|2 + |u|2) dx < ∞ for every R > R0,

which is a requirement that the acoustic field have locally finite energy.

3. The choice of which version to use turns out, in the end, to be to
a large extent irrelevant, in the sense that the problems are almost
equivalent in the sense of having the same solutions. Precisely, it can
be shown that every solution of Version 1 is also a solution of Version
2 (the arguments to do this are contained in the proof that Version 1
has at most one solution, for which see e.g. [4]). To the best of my
knowledge the converse statement may not be true (though I do not
know a counter-example). However, it is true that if Ω+ is a regular
domain in the sense of e.g. [7], in particular if Ω+ is a Lipschitz domain
in the sense of e.g. [6] or [8], then, if u is a solution of Version 2 then
u is equal almost everywhere to a solution ũ ∈ C(Ω+) of Version 1.

Proving the last statement is quite tricky (the so-called regularity argu-
ments needed are discussed in Chapter 1 of [7] or see [5]). But in fact, while
uniqueness and existence of solution for Version 1 can be established fairly
easily by integral equation methods in the case when Ω+ is a fairly smooth
(C2) domain (see [3]), establishing existence of solution for Version 1 for
non-smooth, Lipschitz domains requires this indirect route of first establis-
ing existence of solution for Version 2 and then arguing that the solution
to Version 2 also satisfies Version 1. In the next few sections we will sketch
uniqueness and existence of solution, in fact give the solution explicitly in
the case when Υ is a ball, focusing on Version 2 of the scattering problem.

To achieve this goal we will need to know a little more about Sobolev
spaces, and a little about trace operators.

Defintion 1.5 For u ∈ C∞(Ω̄) (defined as the set of restrictions to Ω̄ of
functions in C∞(Rd)) define the trace of u on ∂Ω (denoted γu) to be the
restriction of u to ∂Ω. The mapping γ : C∞(Ω̄) → C∞(∂Ω), which takes u
to γu, is called the trace operator.

It is well known that, if the domain Ω is Lipschitz, then there exists a
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constant C > 0 such that4

‖γu‖L2(∂Ω) ≤ C‖u‖H1(Ω), ∀u ∈ C∞(Ω̄). (1.17)

Here

‖γu‖L2(∂Ω) =
{∫

∂Ω
|u|2 ds

}1/2

.

The inequality (1.17) implies that exists a unique extension of γ to H1(Ω)
in such a way that the resulting operator is a bounded linear operator from
H1(Ω) to L2(∂Ω), satisfying (1.17) for u ∈ H1(Ω).

Remark 1.6 We remark that requiring that (1.9) hold in the above scatter-
ing problems is not strictly necessary. Precisely, we have the following result
(e.g. [3] or [4]): if u ∈ C2(Ω+) satisfies the Helmholtz equation in Ω+ and
the Sommerfeld radiation condition (1.10), then

u(x) = O
(
r−(d−1)/2

)
, (1.18)

∂u

∂r
(x) = O

(
r−(d−1)/2

)
, (1.19)

as r →∞, uniformly in x̂ := x/r.

1.3 Uniqueness of Solution

In this section we sketch a proof of uniqueness of solution for the Dirichlet
scattering problem (Version 2). Uniqueness of solution for problems of time
harmonic scattering by bounded obstacles depends on the following lemma
due to Rellich. (For a proof see e.g. [3].) For R > 0 let

ΓR := {x ∈ Rd : |x| = R}.

Lemma 1.7 (Rellich’s lemma) If u ∈ C2(Ω+) satisfies the Helmholtz
equation in Ω+ and ∫

ΓR

|u|2 ds → 0

as R →∞ then u = 0 in Ω+.

It is an appropriate point to remind the reader of the divergence theorem
and Green’s first theorem. In the statement of these theorems and later, by
Cm(Ω̄) we denote the set of restrictions to Ω̄ of functions in Cm(Rd).

4In fact a stronger result holds, with the left hand side replaced by ‖γu‖H1/2(∂Ω), a
boundary fractional Sobolev space norm.
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Theorem 1.8 (Divergence Theorem) If Ω is a bounded Lipschitz do-
main and F : Rd → Cd is a C1 vector field, then∫

Ω
∇ · F dx = −

∫
∂Ω

F · n ds,

where n(x) is the unit normal at x ∈ ∂Ω directed into Ω (which is well-
defined almost everywhere on ∂Ω if Ω is Lipschitz).

Proof. For a proof in the case of a Lipschitz domain, see e.g. [8].

Theorem 1.9 (Green’s first theorem) If Ω is a bounded Lipschitz do-
main and u ∈ C2(Ω̄), v ∈ C1(Ω̄), then∫

Ω
(v∆u +∇u · ∇v) dx +

∫
∂Ω

v
∂u

∂n
ds = 0.

Proof. Apply the divergence theorem to u∇v.
To make use of Rellich’s lemma we prove the following result.

Lemma 1.10 If u ∈ C2(Ω+) satisfies the Helmholtz equation in Ω+ and
the Sommerfeld radiation condition (1.10) and if, for some R > R0,

=
∫

ΓR

u
∂ū

∂r
ds ≥ 0,

then u = 0 in Ω+.

Proof. Applying Green’s first theorem to u and ū in {x : R < |x| < R1},
with R1 > R, we find that∫

Ω
(|∇u|2 − k2|u|2) dx +

∫
ΓR

u
∂ū

∂r
ds−

∫
ΓR1

u
∂ū

∂r
ds = 0,

so that
=
∫

ΓR1

u
∂ū

∂r
ds = =

∫
ΓR

u
∂ū

∂r
ds ≥ 0.

Thus, and by the Sommerfeld radiation condition,∫
ΓR1

{∣∣∣∣∂u

∂r

∣∣∣∣2 + k2|u|2
}

ds ≤
∫

ΓR1

{∣∣∣∣∂u

∂r

∣∣∣∣2 + k2|u|2 + 2k=
(

u
∂ū

∂r

)}
ds

=
∫

ΓR1

∣∣∣∣∂ū

∂r
− iku

∣∣∣∣2 ds → 0

as R1 →∞. Applying Rellich’s lemma we see that u = 0 in Ω+.
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To make use of this result we show the following lemma which is key to
establishing both uniqueness and existence. Let

R0 := max
x∈Υ

|x|

and
Ω+

R := {x ∈ Ω+ : |x| < R}, for R ≥ R0.

Lemma 1.11 If u satisfies Version 2 of the Dirichlet scattering problem,
and v ∈ H1,loc

0 (D), then, for every R ≥ R0,∫
Ω+

R

(
∇u · ∇v̄ − k2uv̄

)
ds−

∫
ΓR

γv̄
∂u

∂r
ds = 0. (1.20)

(Here γ is the (bounded) trace operator from H1(ΩR) to L2(ΓR), where
ΩR := {x : |x| > R}.)

Proof. In the case when v ∈ C∞
0 (Ω+), equation (1.20) follows immediately

from Green’s theorem (cf. proof of Lemma 1.10). The general case follows
by first replacing v by a function in w ∈ H1

0 (Ω+) which coincides with v in
Ω+

R. Next one approximates w by wn ∈ C∞
0 (Ω+), with ‖w−wn‖H1(Ω+) → 0

as n → ∞ (which implies that ‖γw − γwn‖L2(ΓR) → 0 as n → ∞), notes
that (1.20) holds with v replaced by wn, and takes the limit as n →∞.

Corollary 1.12 Version 2 of the Dirichlet scattering problem has at most
one solution.

Proof. Suppose there are two solutions, u1 and u2, and let u := u1 − u2.
Then, by Lemma 1.11, (1.20) holds with v = u. Taking imaginary parts, we
see that

=
∫

ΓR

u
∂ū

∂r
ds = 0,

for all R > 0. The result follows from Lemma 1.10.

1.4 Scattering by a Circle or Sphere

In this section we give explicitly the solution to the Dirichlet scattering
problem (Versions 1 or 2) in the case when

Ω+ = ΩR := {x : |x| > R},

for some R > 0. These solutions are given explicitly in terms of cylindrical
and spherical Bessel functions.
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For ν ≥ 0 let Jν and Yν denote the usual Bessel functions of the first
and second kind of order ν (see e.g. [1] for definitions) and let

H(1)
ν := Jν + iYν

denote the corresponding Hankel function of the first kind of order ν. Of
course, where Cν denotes any linear combination of Jν and Yν , it holds that
Cν is a solution of Bessel’s equation of order ν, i.e.

z2C ′′
ν (z) + zC ′

ν(z) + (z2 − ν2)Cν(z) = 0. (1.21)

In the 3D case it is convenient to work also with the spherical Bessel
functions jm, ym, and

h(1)
m := jm + iym,

for m = 0, 1, . . . . These can be defined directly (see e.g. Nédélec [9]) by
recurrence relations which imply that

h(1)
m (z) = eizpm(z−1)z−1,

where pm is a polynomial of degree m with pm(0) = 1. Alternatively, the
spherical Bessel functions can be defined in terms of the usual Bessel func-
tions via the relations

jm(z) =
√

π

2z
Jm+1/2(z), ym(z) =

√
π

2z
Ym+1/2(z). (1.22)

It is convenient also to introduce the notations

Mν(z) := |H(1)
ν (z)|, Nν(z) := |H(1)

ν

′
(z)|.

The arguments we will make in the next section depend on the fact that
Mν(z) is decreasing on the positive real axis for ν ≥ 0.

Suppose first that d = 2 (the scatterer is a circle). Introducing standard
cylindrical polar coordinates, we expand ui on ΓR as the Fourier series

ui(x) =
∑
m∈Z

ameimθ,

where (R, θ) are the polar coordinates of x. Explicitly, in the case when
ui is the plane wave ui(x) = eikx1 , it is holds that am = im ([4, equation
(3.66)]), and explicit expressions can be given for am also in the case when ui

is the incident field due to a point source ([4, equation (3.65)]), indeed this
expression will be key to Ralf’s first implementation of the high frequency
fast multipole method.

Since ui ∈ C∞(ΓR) it holds that the series is rapidly converging, i.e. that
am = o(|m|−p) as |m| → ∞, for every p > 0. It follows from separation of
variables arguments (e.g. see Colton and Kress [4] or Nédélec [9]), and since
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us = −ui on ΓR, that the corresponding Fourier series representation of us

in GR1 is

us(x) = −
∑
m∈Z

ameimθ
H

(1)
|m|(kr)

H
(1)
|m|(kR)

, (1.23)

where (r, θ) are now the polar coordinates of x. Further, properties of the
Bessel functions imply that this series, and all its partial derivatives with
respect to r and θ, converge absolutely and uniformly in compact subsets
of ΩR. It is easy then to check that us satisfies the Helmholtz eqution, and
that us satisfies the Sommerfeld radiation condition can be shown as in [4,
Theorem 2.14]. Differentiating with respect to r, we note that

∂us

∂r
(x) = −

∑
m∈Z

k ameimθ
H(1)′

|m|(kr)

H
(1)
|m|(kR)

. (1.24)

We turn now to the 3D case d = 3. Introducing standard spherical
polar coordinates (r, θ, φ), we expand ui on ΓR as the spherical harmonic
expansion

ui(x) =
∞∑

`=0

∑̀
m=−`

am
` Y m

` (θ, φ), (1.25)

where (R, θ, φ) are the spherical polar coordinates of x and the functions
Y m

` , m = −`, . . . , `, are the standard spherical harmonics of order ` (see,
for example, [9, Theorem 2.4.4], [4]). We recall (e.g. [9]) that {Y m

` : ` =
0, 1, . . . , m = −`, . . . , `} is a complete orthonormal sequence in L2(S), where
S := {x : |x| = 1} is the unit sphere, and an orthogonal sequence in H1(S).
Since v ∈ C∞(ΓR), it holds that the series is rapidly converging, i.e. that
am

` = o(|`|−p) as |`| → ∞, for every p > 0 [9].
The solution of the Dirichlet problem for the Helmholtz equation in the

exterior of a sphere is discussed in detail in [9]. It follows from (1.25) and
[9, (2.6.55)] that, for x ∈ ΩR,

us(x) = −
∞∑

`=0

∑̀
m=−`

am
` Y m

` (θ, φ)
h

(1)
` (kr)

h
(1)
` (kR)

, (1.26)

where (r, θ, φ) are now the polar coordinates of x, and hence that [9, (2.6.70)-
(2.6.74)]

∂us

∂r
(x) = −k

∞∑
`=0

∑̀
m=−`

am
` Y m

` (θ, φ)
h

(1)
`

′
(kr)

h
(1)
` (kR)

. (1.27)
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1.5 The Dirichlet to Neumann Map for a Circle/Sphere

The above formulae solve the Dirichlet scattering problem for a ball in
2D and 3D by separation of variables, expanding us, which satisfies the
Helmholtz equation and Sommerfeld radiation condition, as a linear com-
bination of separable solutions of the Helmholtz equation, each of which
satisfies the radiation condition, and choosing the coefficients in the series
so as to satisfy the boundary condition us = −ui on Γ.

More generally, given any boundary data φ ∈ C∞(ΓR), the above for-
mulae give a prescription for solving the Dirichlet boundary value problem:
find u ∈ C∞(ΩR) such that u satisfies the Helmholtz equation in ΩR and the
Sommerfeld radiation conditions, and u = φ on ΓR. Further, the formulae
above tell us how to compute ∂u/∂r, in particular the normal derivative
∂u/∂r on ΓR.

We will call the operator TR : C∞(ΓR) → C∞(ΓR) which maps the
Dirichlet data φ on ΓR to the corresponding Neumann data, the trace of ∂u

∂r
on ΓR, where u is the solution to the Dirichlet problem with data φ, the
Dirichlet to Neumann map. Explicitly, in the 2D case d = 2, if φ has the
Fourier series expansion

φ(x) =
∑
m∈Z

ameimθ,

where (R, θ) are the polar coordinates of x, then (see (1.23) and 1.24)) the
solution to the Dirichlet problem is

u(x) =
∑
m∈Z

ameimθ
H

(1)
|m|(kr)

H
(1)
|m|(kR)

, (1.28)

and

TRφ(x) = k
∑
m∈Z

ameimθ
H

(1)
|m|

′
(kR)

H
(1)
|m|(kR)

, x ∈ ΓR. (1.29)

Similarly, in the 3D case, if φ has the spherical harmonics expansion

φ(x) =
∞∑

`=0

∑̀
m=−`

am
` Y m

` (θ, φ),

where (R, θ, φ) are the spherical polar coordinates of x, then (see (1.26) and
(1.27) or [9])

u(x) =
∞∑

`=0

∑̀
m=−`

am
` Y m

` (θ, φ)
h

(1)
` (kr)

h
(1)
` (kR)

, (1.30)
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and

TRφ(x) = k
∞∑

`=0

∑̀
m=−`

am
` Y m

` (θ, φ)
h

(1)
`

′
(kR)

h
(1)
` (kR)

, x ∈ ΓR. (1.31)

Where Hs(ΓR) is the surface Sobolev space of order s, it will be signif-
icant shortly that (see e.g. [9]) there exists a unique extension of TR to the
Sobolev space Hs(ΓR), for any s ∈ R, and that it holds that

TR : Hs(ΓR) → Hs−1(ΓR) (1.32)

and is bounded [9]. The following properties of the Dirchlet to Neumann
map will also be important.

Lemma 1.13 For all R > 0 and all φ ∈ H1/2(ΓR) it holds that

<
∫

ΓR

φ̄TRφ ds ≤ 0 and =
∫

ΓR

φ̄TRφ ds ≥ 0.

Proof. In view of the mapping property (1.32) with s = 1/2, it is enough
to show the lemma for the case φ ∈ C∞(ΓR) to deduce the result for the
general case. So assume that φ ∈ C∞(ΓR).

In the 2D case, where TRφ is given by (1.29), defining c0 := |a0|2/|H(1)
0 (kR)|2

and, for m ∈ N, cm := (|am|2 + |a−m|2)/|H(1)
m (kR)|2, and ρ := kR, and using

the orthogonality of {eimθ : m ∈ Z}, we see that∫
ΓR

φ̄TRφ ds = 2πρ
∑
m∈Z

|am|2
H

(1)
|m|(ρ)H(1)

|m|
′
(ρ)

|H(1)
|m|(kR)|2

= 2πρ
∞∑

m=0

cm

(
<
(

H
(1)
m (ρ) H(1)

m

′
(ρ)
)

+ i
(
Jm(ρ)Y ′

m(ρ)− J ′
m(ρ)Ym(ρ)

))

=
∞∑

m=0

cm

(
πρ

d

dρ

(
M2

m(ρ)
)

+ 4i
)

, (1.33)

where in the last step we have used the Wronskian formula [1, (9.1.16)] that

πρ(Jν(ρ)Y ′
ν(ρ)− J ′

ν(ρ)Yν(ρ)) = 2. (1.34)

Since Mm(ρ) is decreasing on (0,∞) we see that the lemma holds in the 2D
case.

In the 3D case with TRφ given by (1.31), using the orthonormality in
L2(S) of the spherical harmonics Y m

` , we see that, where c` := |h(1)
` (kR1)|−2

∑`
m=−` |am

` |2
and ρ := kR,∫

ΓR

φ̄TRφ ds = R2

∫
S

v̄(Rx̂)
∂v

∂r
(Rx̂) ds(x̂) = Rρ

∞∑
`=0

c` h
(1)
` (ρ)h(1)

`

′
(ρ)

= R

∞∑
`=0

c`

(
ρ

2
d

dρ

(
|h(1)

` (ρ)|2
)

+
i
ρ

)
, (1.35)
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where in the last step we have used (1.22) and (1.34). Recalling that
|h(1)

` (ρ)| =
√

π/(2ρ)M`+1/2(ρ) is decreasing on (0,∞), we see that the lemma
holds in the 3D case.

1.6 The Weak or Variational Formulation

We now have the ingredients to make a weak or variational formulation of
Version 2 of the Dirichlet scattering problem.

First, from Lemma 1.11, we have that, if u satisfies Version 2 of the
Dirichlet scattering problem, and v ∈ H1,loc

0 (D), then, for every R > R0 =
maxx∈Υ |x|, ∫

Ω+
R

(
∇u · ∇v̄ − k2uv̄

)
ds−

∫
ΓR

γv̄
∂u

∂r
ds = 0. (1.36)

Next we have that on ΓR, ∂us

∂r = TRγus. Combining these equations, and
defining, for R > R0,

VR := {v|Ω+
R

: v ∈ H1
0 (Ω+)} ⊂ H1(Ω+

R)

and the sesquilinear form a(·, ·) and anti-linear functional f on VR by

a(u, v) :=
∫

Ω+
R

(∇u · ∇v̄ − k2uv̄) dx−
∫

ΓR

γv̄TRγu ds, (1.37)

and

f(v) :=
∫

ΓR

v̄

(
∂ui

∂r
− TRui

)
ds, (1.38)

we see that we have shown that u|Ω+
R

satisfies the variational problem: find
u ∈ VR such that

a(u, v) = f(v), v ∈ VR. (1.39)

The arguments leading to the variational problem can also be reversed.
Thus, altogether, we have the following theorem.

Theorem 1.14 If u is a solution to Version 2 of the Dirchlet scattering
problem then u|Ω+

R
∈ VR satisfies (1.39). Conversely, suppose u ∈ VR sat-

isfies (1.39), let FR := γus be the trace of us = u − ui on ΓR, and extend
the definition of u = ui + us to Ω+ by setting us|ΩR

to be the solution of the
Dirichlet problem in ΩR, with data FR on ΓR (this solution given explicitly
by (1.28) and (1.30), in the cases d = 2 and d = 3, respectively). Then this
extended function satisfies Version 2 of the Dirichlet scattering problem.
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1.7 Existence of Solution to the Dirichlet Scatter-
ing Problem

Our approach to showing existence of solution to Version 2 of the Dirichlet
scattering problem is to use Theorem 1.14 and show existence of solution
to the equivalent variational problem (1.39). To do this we use the general
theory of linear variational problems (e.g. [6]).

First we split a into a VR-elliptic part and a compact part, a0 and k,
respectively, defined by

a0(u, v) :=
∫

Ω+
R

(∇u · ∇v̄ + k2uv̄) dx−
∫

ΓR

γv̄TRγu ds, (1.40)

k(u, v) := −2k2

∫
Ω+

R

uv̄ dx. (1.41)

Both a0 and k are bounded sesquilinear forms (the boundedness of a0 de-
pends on the boundedness of TR : H1/2(ΓR) → H−1/2(ΓR) and of the trace
operator γ : VR → H1/2(ΓR)). Indeed k is compact (i.e. the associated lin-
ear operator [6] K : VR → V ′

R (V ′
R the dual space of VR) is compact), which

follows from the compactness of the imbedding operator VR → L2(Ω+
R).

Finally, for some γ > 0,

<a0(u, u) ≥ γ‖u‖2
H1(Ω+

R)
,

which follows from Lemma 1.13. Thus a = a0 + k is coercive. Since the
weak problem is equivalent to Version 2 of the Direct scattering problem
(Theorem 1.14) and the Direct scattering problem has at most one solution
(Corollary 1.12), it follows that the weak problem (1.39) and Version 2 of
the Dirichlet scattering problem have exactly one solution.
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