volume-based methods for the Helmholtz equations

J.M. Melenk
Vienna University of Technology

outline:

1. classical FEM for Helmholtz problems on bounded domains
2. methods based on plane waves for solving Helmholtz problems (on bounded domains)
3. Helmholtz equations on unbounded domains: (local and non-local) absorbing boundary conditions
4. Helmholtz equations on unbounded domains: absorbing layers (PML)

abstract Galerkin(-Petrov) methods

X, Y Hilbert spaces, $B: X \times Y \rightarrow \mathbb{C}$ sesquilinear form, $l \in Y^{\prime}$.
continuous form:

$$
\begin{equation*}
\text { find } u \in X \text { s.t. } \quad B(u, v)=l(v) \quad \forall v \in Y \tag{1}
\end{equation*}
$$

discretized form:
Let $X_{N} \subset X, Y_{N} \subset Y$ be both of dimension $N \in \mathbb{N}$.

$$
\begin{equation*}
\text { find } u_{N} \in X_{N} \text { s.t. } \quad B\left(u_{N}, v\right)=l(v) \quad \forall v \in Y_{N} \tag{2}
\end{equation*}
$$

By linearity/anti-linearity, (2) represent a linear system of equations:

- Choose basis $\left(\varphi_{j}\right)_{j=1}^{N}$ of X_{N} and basis $\left(\psi_{i}\right)_{i=1}^{N}$ of Y_{N},
- expand $u_{N}=\sum_{j=1}^{N} \mathbf{u}_{j} \varphi_{i} \Longrightarrow(2)$ is equivalent to Find $\mathbf{u} \in \mathbb{C}^{N}$ s.t. $\quad \mathbf{B u}=\mathbf{l}$
- $\mathbf{B} \in \mathbb{C}^{N \times N}$ given by $\mathbf{B}_{i j}=B\left(\varphi_{j}, \psi_{i}\right)$ is called the stiffness matrix;
- $\mathbf{l} \in \mathbb{C}^{N}$ given by $\mathbf{l}_{i}=l\left(\psi_{i}\right)$ is called the load vector

abstract Galerkin methods: X-elliptic case

Thm. 1. [Lax-Milgram] Let X be a Hilbert space, $B: X \times X \rightarrow \mathbb{C}$ an X-elliptic, continuous sesquilinear form:

$$
\underline{\alpha}\|u\|^{2} \leq|B(u, u)| \quad \text { and } \quad|B(u, v)| \leq M\|u\|\|v\| \quad \forall u, v \in X .
$$

Let $l \in X^{\prime}$. Then the problem:

$$
\text { find } u \in X \text { s.t. } B(u, v)=l(v) \quad \forall v \in X
$$

has a unique solution and $\|u\| \leq \frac{\|l\|_{X^{\prime}}}{\underline{\alpha}}$.
Thm. 2. [Céa's Lemma/Galerkin orthogonality] Assume the hypotheses of Thm. 1. Let $X_{N} \subset X$. Then the problem

$$
\text { find } u_{N} \in X_{N} \text { s.t. } B\left(u_{N}, v\right)=l(v) \quad \forall v \in X_{N}
$$

has a unique solution and

$$
\text { Galerkin orthogonality: } \quad B\left(u-u_{N}, v\right)=0 \quad \forall v \in X_{N}
$$

$$
\text { best approximation property: } \quad\left\|u-u_{N}\right\| \leq \frac{M}{\underline{\alpha}} \inf _{v \in X_{N}}\|u-v\|
$$

abstract Galerkin methods: inf-sup conditions

Thm. 3. [Babuška-Brezzi] Let X, Y be a Hilbert spaces, $B: X \times Y \rightarrow \mathbb{C}$ be a continuous sesquilinear form.

Let $\mathbf{B}: X \rightarrow Y^{\prime}$ be the linear operator given by

$$
\langle\mathbf{B} u, v\rangle_{Y^{\prime} \times Y}=B(u, v) \quad \forall u \in X, v \in Y
$$

Then the following are equivalent:
(i) $\quad \inf _{0 \neq u \in X} \sup _{0 \neq v \in Y} \frac{|B(u, v)|}{\|u\|_{X}\|v\|_{Y}} \geq \gamma>0, \quad$ (inf-sup)

$$
\begin{equation*}
\forall 0 \neq v \in Y: \quad \sup _{u \in X}|B(u, v)|>0 \quad \text { (non-degeneracy, } N\left(\mathbf{B}^{\prime}\right)=\{0\} \text {) (4) } \tag{3}
\end{equation*}
$$

(ii) $\mathbf{B}: X \rightarrow Y^{\prime}$ is invertible and $\left\|\mathbf{B}^{-1}\right\|_{X \leftarrow Y^{\prime}} \leq \frac{1}{\gamma}$
(iii) the adjoint $\mathbf{B}^{\prime}: Y \rightarrow X^{\prime}$ is invertible and $\left\|\mathbf{B}^{\prime-1}\right\|_{Y \leftarrow X^{\prime}} \leq \frac{1}{\gamma}$.

Let $X_{N} \subset X, Y_{N} \subset Y, \quad l \in Y^{\prime}$.
continuous case: Find $u \in X$ s.t. $B(u, v)=l(v) \quad \forall v \in Y$
Galerkin discretization: Find $u_{N} \in X_{N}$ s.t. $B\left(u_{N}, v\right)=l(v) \quad \forall v \in Y_{N}$
Thm. 4. [quasi-optimality] Assume $\operatorname{dim} X_{N}=\operatorname{dim} Y_{N}$ and

$$
\begin{equation*}
\inf _{0 \neq u \in X_{N}} \sup _{0 \neq v \in Y_{N}} \frac{|B(u, v)|}{\|u\|_{X}\|v\|_{Y}} \geq \gamma_{N}>0 \tag{7}
\end{equation*}
$$

Then a unique solution $u_{N} \in X_{N}$ of (6) exists and
Galerkin orthogonality: $\quad B\left(u-u_{N}, v\right)=0 \quad \forall v \in Y_{N}$
quasi-optimality $\quad\left\|u-u_{N}\right\|_{X} \leq\left(1+\frac{\|\mathbf{B}\|}{\gamma_{N}}\right) \inf _{v \in X_{N}}\|u-v\|_{X}$.
compact perturbations of X-elliptic operators-Gårding inequality
Thm. 5. Let X, \widetilde{X} be Hilbert spaces and the embedding $X \subset \widetilde{X}$ be compact. Let the continuous sesquilinear form $B: X \times X \rightarrow \mathbb{C}$ satisfy

$$
\begin{equation*}
\operatorname{Re} B(u, u) \geq \gamma\|u\|_{X}^{2}-\gamma^{\prime}\|u\|_{\tilde{X}}^{2} \quad \forall u \in X . \tag{10}
\end{equation*}
$$

Then the Fredholm alternative holds:
Either the operator $\mathbf{B}: X \rightarrow X^{\prime}$ is invertible or the homogeneous equation

$$
B(u, v)=0 \quad \forall v \in X
$$

has non-trivial solutions and the kernel $N(\mathbf{B})$ has finite dimension.
compact perturbations of X-elliptic operators-discrete case
Thm. 6. Let X, \widetilde{X} be Hilbert spaces and the embedding $X \subset \widetilde{X}$ be compact. Assume:

- $\quad \operatorname{Re} B(u, u) \geq \gamma\|u\|_{X}^{2}-\gamma^{\prime}\|u\|_{\tilde{X}}^{2} \quad \forall u \in X$.
- $\quad \mathbf{B}$ is injective (i.e., $B(u, v)=0 \quad \forall v \in X$ implies $u=0$)
- $\left(X_{N}\right)_{N \in \mathbb{N}} \subset X$ satisfies $\lim _{N \rightarrow \infty} \inf _{v \in X_{N}}\|u-v\|_{X}=0$ for all $u \in X$

Then there exist $\widetilde{\gamma}>0$ and N_{0} s.t. for all $N \geq N_{0}$:

$$
\inf _{0 \neq u \in X_{N}} \sup _{0 \neq v \in X_{N}} \frac{|B(u, v)|}{\|u\|_{X}\|v\|_{X}} \geq \tilde{\gamma}>0
$$

Cor. 7. [asymptotic quasi-optimality] For $N \geq N_{0}$ there holds

$$
\left\|u-u_{N}\right\|_{X} \leq\left(1+\frac{\|\mathbf{B}\|}{\tilde{\gamma}}\right) \inf _{v \in X_{N}}\|u-v\|_{X}
$$

bounded domain model problem

$$
\begin{array}{lc}
-\Delta u-k^{2} u=f & \text { on } \Omega, \\
\partial_{n} u \pm \mathbf{i} k u=g & \text { on } \partial \Omega \tag{11b}
\end{array}
$$

$$
\begin{align*}
& B(u, v)=\int_{\Omega} \nabla u \cdot \nabla \bar{v}-k^{2} \int_{\Omega} u \bar{v} \pm \mathbf{i} k \int_{\partial \Omega} u \bar{v} \tag{12}\\
& l(v)=\int_{\Omega} f \bar{v}+\int_{\partial \Omega} g \bar{v}
\end{align*}
$$

notation
Let $\mathbf{B}: H^{1}(\Omega) \rightarrow\left(H^{1}(\Omega)\right)^{\prime}$ be defined by $\langle\mathbf{B} u, v\rangle=B(u, v)$.
weighted H^{1}-norm:

$$
\|u\|_{1, k}^{2}:=\|\nabla u\|_{L^{2}(\Omega)}^{2}+k^{2}\|u\|_{L^{2}(\Omega)}^{2}
$$

note:
$|B(u, v)| \leq C\|u\|_{1, k}\|v\|_{1, k}$,
C indep. of k

invertibility of \mathbf{B}

Thm. 8. The operator \mathbf{B} is invertible and \exists a constant $C(\Omega, k)>0$ s.t.

$$
\inf _{u \in H^{1}(\Omega)} \sup _{v \in H^{1}(\Omega)} \frac{|B(u, v)|}{\|u\|_{1, k}\|v\|_{1, k}} \geq C(\Omega, k)
$$

Proof:

- Gårding inequality: $\operatorname{Re} B(u, u)=\|\nabla u\|_{L^{2}(\Omega)}^{2}-k^{2}\|u\|_{L^{2}(\Omega)}^{2}$
- injectivity of B

k-explicit inf-sup condition

$$
\begin{array}{lr}
-\Delta u-k^{2} u=f & \text { on } \Omega, \\
\partial_{n} u \pm \mathbf{i} k u=g & \text { on } \partial \Omega \tag{13b}
\end{array}
$$

Ass. 1. $1 . \Omega$ is a bounded Lipschitz domain,
2. $x \cdot n(x) \geq \gamma>0$ for all $x \in \partial \Omega$
3. Ω allows H^{2}-regularity for $-\Delta \quad$ (e.g., $\partial \Omega$ smooth)

Thm. 9. Under Ass. 1 the operator \mathbf{B} is invertible and $\exists C(\Omega)>0$ s.t.

$$
\inf _{u \in H^{1}(\Omega)} \sup _{v \in H^{1}(\Omega)} \frac{|B(u, v)|}{\|u\|_{1, k}\|v\|_{1, k}} \geq \frac{C(\Omega)}{k}
$$

k-explicit bounds

$$
\begin{array}{lc}
-\Delta u-k^{2} u=f & \text { on } \Omega, \\
\partial_{n} u \pm \mathbf{i} k u=g & \text { on } \partial \Omega \tag{14b}
\end{array}
$$

Thm. 10. Under Ass. $1 \exists$ a constant $C(\Omega)>0$ s.t.

$$
\begin{aligned}
\|u\|_{1, k} & \leq C(\Omega)\left[\|f\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\partial \Omega)}\right] \\
|u|_{H^{2}(\Omega)} & \leq C(\Omega) k\left[\|f\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\partial \Omega)}\right]+C(\Omega)\|g\|_{H^{1 / 2}(\partial \Omega)}
\end{aligned}
$$

key ingredient of the proof: choose $v:=x \cdot \nabla u$ as a test function in variational formulation $B(u, v)=\int_{\Omega} f \bar{v}+\int_{\partial \Omega} g \bar{v}$

asymptotic quasi-optimality of the FEM

Thm. 11. Let Ω satisfy Ass. 1. Let the FE-space X_{N} satisfy:
$\inf _{v \in X_{N}}\|z-v\|_{L^{2}(\Omega)}+\frac{h}{p}\|\nabla(z-v)\|_{L^{2}(\Omega)} \leq C\left(\frac{h}{p}\right)^{2}|z|_{H^{2}(\Omega)} \quad \forall z \in H^{2}(\Omega)$.
Then $\exists C_{1}, C_{2}>0$ depending solely on Ω s.t. for $k^{2} \frac{h}{p} \leq C_{1}$ there holds

$$
\begin{aligned}
& \inf _{u \in X_{N}} \sup _{v \in X_{N}} \frac{|B(u, v)|}{\|u\|_{1, k}\|v\|_{1, k}} \geq \frac{C_{2}}{k} \\
& \left\|u-u_{N}\right\|_{1, k} \leq C_{2} \inf _{v \in X_{N}}\|u-v\|_{1, k}
\end{aligned}
$$

Cor. 12. If $u \in H^{2}(\Omega)$ and $\|u\|_{H^{m}(\Omega)} \sim k^{m}$ for $m \in\{0,1,2\}$, then for $k^{2} h / p$ sufficiently small:

$$
\frac{\left\|u-u_{N}\right\|_{1, k}}{\|u\|_{1, k}} \leq C\left(\frac{h k}{p}\right)
$$

$$
-u^{\prime \prime}-k^{2} u=1, \quad u(0)=0, \quad u^{\prime}(1)-\mathbf{i} k u(1)=0
$$

uniform mesh of size h

$$
p=1
$$

top left: best approximation error
top right: FEM error bottom left: FEM error together with best approximation error
1D-FEM: phase error

$$
-u^{\prime \prime}-k^{2} u=1 \quad \text { on }(0,1), \quad u(0)=0, \quad u^{\prime}(1)-\mathbf{i} k u(1)=0
$$

phase error for piecewise linear approximation on uniform mesh

problem: $-u^{\prime \prime}-k^{2} u=f, \quad u(0)=0, \quad u^{\prime}(1)-\mathbf{i} k u(1)=0$
cont. Green's fct: $\quad G(x, y)=k^{-1} \begin{cases}\sin k x e^{\mathrm{i} k y} & 0<x<y \\ \sin k s e^{\mathrm{i} k x} & y<x<1\end{cases}$
disc. Green's fct: $\quad G_{h}(x, y)=\frac{1}{h \sin k^{\prime} h} \begin{cases}\sin k^{\prime} x\left(A \sin k^{\prime} y+\cos k^{\prime} y\right) & 0<x<y \\ \sin k^{\prime} y\left(A \sin k^{\prime} x+\cos k^{\prime} x\right) & y<x<1\end{cases}$
where $A=A\left(k, k^{\prime}, h\right) \in \mathbb{C}$ is a constant and k^{\prime} is the discrete wave number satisfying the dispersion relation

$$
\begin{equation*}
\cos k^{\prime} h=\cos \frac{6-2 k^{2} h^{2}}{6+k^{2} h^{2}} \tag{15}
\end{equation*}
$$

For $k h$ small, we get $k^{\prime} h=k h-\frac{1}{24}(k h)^{3}+\cdots$ and therefore

$$
k^{\prime}=k-\frac{1}{24} k^{3} h^{2}+\cdots
$$

higher order elements to combat phase error

Thm. 13. [Babuška \& Ihlenburg, Ainsworth]

- if $k h$ is small, then for fixed p

$$
k^{\prime} h-k h=-\frac{1}{2}\left[\frac{p!}{(2 p)!}\right]^{2} \frac{(k h)^{2 p+1}}{2 p+1}+O\left((k h)^{2 p+3}\right)
$$

- if $k h$ is large and $2 p+1>k h+o\left((k h)^{1 / 3}\right)$ then

$$
\cos k^{\prime} h-\cos k h \approx \frac{\sin k h}{2}\left[\frac{k h e}{2(2 p+1)}\right]^{2 p+1}
$$

Thm. 14. [Babuska \& Ihlenburg] For the 1D model problem and piecewise polynomial approximation of degree p, there holds for $k h<\pi$ and solution $u \in H^{l+1}(0,1)$:

$$
\left\|u-u_{N}\right\|_{H^{1}(0,1)} \leq C_{p}\left[1+k\left(\frac{k h}{2 p}\right)^{p}\right]\left(\frac{h}{2 p}\right)^{l}|u|_{H^{l+1}(0,1)}
$$

conclusion: the phase error is not as pronounced for higher order elements as for lower order elements.

performance of higher order methods in 1D $(k=100)$

p	1	2	3	4	5	6
rel. error	0.49	0.51	0.54	0.55	0.58	0.72
$n_{\text {ele }}$	211	48	25	16	12	10
DOF	211	96	75	64	60	60
rel. error	0.1	0.1	0.1	0.09	0.08	0.1
$n_{\text {ele }}$	499	76	35	22	16	12
DOF	499	152	105	88	80	72
rel. error	0.01	0.01	0.01	0.01	0.01	0.01
$n_{\text {ele }}$	2813	180	64	35	23	17
DOF	2813	360	192	140	115	102

two effects:

1. for smooth solutions, the use of higher order elements improves the rate of convergence
2. use of higher order elements mitigates the phase error, i.e., the onset of convergence is at smaller problem sizes

robust quasi-optimal methods in 1D

Let \mathcal{T} be a mesh with nodes $x_{i}, i=0, \ldots, N$. For each node x_{i} of the mesh define the shape function ψ_{i} by

$$
\psi_{i}\left(x_{j}\right)=\delta_{i j},\left.\quad\left(-\psi_{i}^{\prime \prime}-k^{2} \psi_{i}\right)\right|_{K}=0 \quad \text { for each element } K \in \mathcal{T}
$$

Set $\widetilde{X}_{N}:=\operatorname{span}\left\{\psi_{i} \mid i=1, \ldots, N\right\}$
Prop. 15. There exist $C_{1}, C_{2}>0$ with the following property: Let $u_{\widetilde{\sim}} \in$ $H_{(0}^{1}(0,1)$ satisfy $-u^{\prime \prime}-k^{2} u=f$ on $(0,1)$ and $u^{\prime}(1)-\mathbf{i} k u(1)=0$. Let $\widetilde{u}_{N} \in \widetilde{X}_{N}$ be its Galerkin approximation. If $k h<C_{1}$ then \widetilde{u}_{N} exists and satisfies

$$
\left\|u-\widetilde{u}_{N}\right\|_{1, k} \leq C_{2} h\|f\|_{L^{2}(0,1)} .
$$

Furthermore, the Galerkin method is nodally exact, i.e., $u\left(x_{i}\right)=\widetilde{u}_{N}\left(x_{i}\right)$ for all nodes $x_{i}, i=0, \ldots, N$.

Comments on 1D case

1. key feature of 1D: the fundamental system for differential operator $L:=-\partial_{x}^{2}-$ k^{2} is finite dimensional (it is: $\left\{e^{\mathrm{i} k x}, e^{-\mathrm{i} k x}\right\}$)
2. there exist different ways to "derive" the stiffness matrix $\widetilde{\mathbf{B}}$ of of the Galerkin method based on \widetilde{V}_{N}. For example, it is also the stiffness matrix for a stabilized method with bilinear form $B^{s t a b}(u, v):=\int_{0}^{1} u^{\prime} \bar{v}^{\prime}-k^{2} u \bar{v}+\sum_{K \in \mathcal{T}} \tau_{K} \int_{K} L u L \bar{v}$ for suitably chosen τ_{K}.
3. improved performance of higher order elements can be understood through the limiting process $p \rightarrow \infty$: static condensation of the (elementwise) "bubble" modes leads to a condensed (tridiagonal) stiffness matrix $\mathbf{B}^{c, p}$ and condensed load vector $\mathbf{l}^{c, p}$ with

$$
\lim _{p \rightarrow \infty} \mathbf{B}^{c, p}=\widetilde{\mathbf{B}}, \quad \quad \lim _{p \rightarrow \infty} \mathbf{1}^{c, p}=\widetilde{\mathbf{l}}
$$

Hence: as $p \rightarrow \infty$, the nodal values of the p-FEM approximation converge to the nodal values of \widetilde{u}_{N}.
4. Babuška \& Sauter on 2D problems: there does not exist a 9-point stencil that is robust with respect to k (error measure: L^{2}).

special shape functions for multi-d problems

idea: approximate solutions of $-\Delta u-k^{2} u=0$ with functions that solve the equation as well.
examples (2D):

$$
\begin{aligned}
W(p) & :=\operatorname{span}\left\{e^{\mathrm{i} k \omega_{n} \cdot(x, y)} \mid n=0, \ldots, p\right\}, \quad \omega_{n}=\left(\cos \frac{2 \pi n}{p}, \sin \frac{2 \pi n}{p}\right) \\
V(p) & :=\operatorname{span}\left\{J_{n}(k r) \sin (n \varphi), J_{n}(k r) \cos (n \varphi) \mid n=0, \ldots, p\right\}
\end{aligned}
$$

reasons:

- improved approximation properties (error vs. DOF)
- hope of improved stability properties in the preasymptotic range

Approximation properties of systems of plane waves for the approximation of u satisfying $-\Delta u-k^{2} u=0$ on $\Omega \subset \mathbb{R}^{2}$

$$
W(p):=\operatorname{span}\left\{e^{\mathrm{i} k \omega_{n} \cdot(x, y)} \mid n=0, \ldots, p\right\}, \quad \omega_{n}=\left(\cos \frac{2 \pi n}{p}, \sin \frac{2 \pi n}{p}\right)
$$

Thm. 16. [Cessenat \& Després] Let Ω be a shape regular element with diameter h. Then:

$$
\inf _{v \in W(2 n)}\|u-v\|_{L^{\infty}(\Omega)}+h\|\nabla(u-v)\|_{L^{\infty}(\Omega)} \leq C_{n} h^{n+1}\|u\|_{C^{n+1}(\bar{\Omega})}
$$

Thm. 17. [p-version, exponential convergence] Let $\Omega \subset \mathbb{R}^{2}, \Omega^{\prime} \subset \subset \Omega$. Then:

$$
\inf _{v \in W(p)}\|u-v\|_{H^{1}\left(\Omega^{\prime}\right)} \leq C e^{-b p / \log p}
$$

Thm. 18. [p-version, alg. conv.] Let Ω be star shaped with respect to a ball and satisfy an exterior cone condition with angle $\lambda \pi$. Let $u \in H^{k}(\Omega), k \geq 1$. Then:

$$
\inf _{v \in W(p)}\|u-v\|_{H^{1}(\Omega)} \leq C\left(\frac{\log ^{2}(p+2)}{p+2}\right)^{\lambda(k-1)}
$$

approximation methods using special ansatz functions (plane waves)

1. partition-of-unity methods (Babuška \& Melenk, Bettes \& Laghrouche, Astley, etc.) employ "standard" variational formulation and construct H^{1}-conforming ansatz spaces based on the chosen ansatz function
2. Least squares method: approximate with plane wave elmentwise and penalize jumps across interelement boundaries (Trefftz, Monk \& Wang, Desmet)
3. Discontinuous enrichement method (Farhat et al.): approximate with plane waves elementwise and enforce interelement continuity by a Lagrange multiplier
4. ultra weak formulation: (Cessenat \& Deprés, Monk \& Huttunen) use a new variational formulation that is only posed on the "skeleton" and defined by L harmonic extension into the domain. Ansatz functions on the skeleton are the traces of plane waves

Remark: the idea to employ adapted shape functions in integral equations has also been pursued: Darrigrand, Perrey-Debain et al., Chandler-Wilde \& Langdon, Graham et al.,...

Partition of Unity Method/Generalized FEM

Thm. 19. Let $\Omega \subset \mathbb{R}^{d}$ be a domain, and let $\left(\varphi_{i}\right)_{i=1}^{N}$ be a collection of Lipschitz continuous functions. Set $\Omega_{i}:=\left(\operatorname{supp} \varphi_{i}\right)^{\circ}$ and assume

$$
\begin{aligned}
& \left\|\varphi_{i}\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq C_{\infty}, \quad\left\|\nabla \varphi_{i}\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq \frac{C_{G}}{\operatorname{diam}\left(\Omega_{i}\right)} \\
& \sum_{i=1}^{N} \varphi_{i} \equiv 1 \quad \text { on } \Omega, \quad \sup _{x \in \Omega} \operatorname{card}\left\{i \mid x \in \Omega_{i}\right\} \leq M
\end{aligned}
$$

For each $i=1, \ldots, N$, let $V_{i} \subset H^{1}\left(\Omega_{i} \cap \Omega\right)$ be given and set

$$
V:=\sum_{i=1}^{N} \varphi_{i} V_{i}=\left\{\sum_{i=1}^{N} \varphi_{i} v_{i} \mid v_{i} \in V_{i}\right\}
$$

local approximation property: given $u \in H^{1}(\Omega)$, assume that for $i=1, \ldots, N$

$$
\exists v_{i} \in V_{i} \quad \text { s.t. }\left\|u-v_{i}\right\|_{L^{2}\left(\Omega_{i} \cap \Omega\right)}=\varepsilon_{1}(i), \quad\left\|\nabla\left(u-v_{i}\right)\right\|_{L^{2}\left(\Omega_{i} \cap \Omega\right)}=\varepsilon_{2}(i)
$$

Then the function $v:=\sum_{i=1}^{N} \varphi_{i} v_{i} \in V$ satisfies

$$
\begin{aligned}
& \|u-v\|_{L^{2}(\Omega)}^{2} \leq M C_{\infty}^{2} \sum_{i=1}^{N}\left|\varepsilon_{1}(i)\right|^{2} \\
& \|\nabla(u-v)\|_{L^{2}(\Omega)}^{2} \leq 2 M \sum_{i=1}^{N}\left[\left(\frac{C_{G}}{\operatorname{diam} \Omega_{i}}\right)^{2}\left|\varepsilon_{1}(i)\right|^{2}+C_{\infty}^{2}\left|\varepsilon_{2}(i)\right|^{2}\right]
\end{aligned}
$$

- PUM provides a framework for constructing conforming ansatz spaces with user specified local approximation properties
- the global space V inherits the approximation properties of the local spaces V_{i}

Example: reproducing the approximation properties of the classical FEM

Cor. 20. Let $V_{i}:=\mathcal{P}_{p}$ for each $i=1, \ldots, N$. Let B_{i} be a ball of diameter $h_{i}:=\operatorname{diam} \Omega_{i}$ s.t. $\Omega_{i} \subset B_{i}$. Then $v \in V$ can be chosen such that

$$
\begin{array}{r}
\|u-v\|_{L^{2}(\Omega)}^{2} \leq C \sum_{i=1}^{N} h_{i}^{2 \min \{p+1, k\}}\|u\|_{H^{k}\left(B_{i}\right)}^{2}, \\
\|\nabla(u-v)\|_{L^{2}(\Omega)}^{2} \leq C \sum_{i=1}^{N} h_{i}^{2(\min \{p+1, k\}-1)}\|u\|_{H^{k}\left(B_{i}\right)}^{2} .
\end{array}
$$

In particular, if the balls B_{i} satisfy the overlap property

$$
\sup _{x \in \mathbb{R}^{d}}\left\{i \mid x \in B_{i}\right\} \leq M<\infty
$$

then $\quad\|u-v\|_{H^{s}(\Omega)} \leq C h^{\min \{p+1, k\}-s}\|u\|_{H^{k}(\Omega)}, \quad s=0,1 \quad\left(h=\max _{i} h_{i}\right)$

Comments on the PUM

1. classical linear/bilinear FE functions on a mesh \mathcal{T} are a $\operatorname{POU}\left(\varphi_{i}\right)_{i=1}^{N}$ of the above form
2. Choosing the POU $\left(\varphi_{i}\right)_{i}$ smooth \rightarrow constructing $V \subset H^{k}(\Omega)$ for arbitrary k is easily possible.
3. Analogous approximation results can be obtained in other norms.
4. PUM can be viewed as a meshfree method
how to choose the spaces V_{i} ?
5. choose V_{i} based on analytic knowledge about the problem \rightarrow operator adapted spaces
6. compute V_{i} numerically in a preprocessing step

Approximation of the Helmholtz equation

$$
\begin{aligned}
W(p) & :=\operatorname{span}\left\{e^{\mathrm{i} k \omega_{n} \cdot(x, y)} \mid n=0, \ldots, p\right\}, \quad \omega_{n}=\left(\cos \frac{2 \pi n}{p}, \sin \frac{2 \pi n}{p}\right) \\
V(p) & :=\operatorname{span}\left\{J_{n}(k r) \sin (n \varphi), J_{n}(k r) \cos (n \varphi) \mid n=0, \ldots, p\right\}
\end{aligned}
$$

Thm. 21. Let $\Omega \subset \mathbb{R}^{2}, \Omega^{\prime} \subset \subset \Omega$. Let u solve $-\Delta u-k^{2} u=0$ on Ω^{\prime}. Then there exist $C, b>0$ s.t.

$$
\inf _{v \in V(p)}\|u-v\|_{H^{1}\left(\Omega^{\prime}\right)} \leq C e^{-b p}, \quad \inf _{v \in W(p)}\|u-v\|_{H^{1}\left(\Omega^{\prime}\right)} \leq C e^{-b p / \log p}
$$

Thm. 22. Let $\Omega \subset \mathbb{R}^{2}$ be star shaped with respect to a ball. Let Ω satisfy an exterior cone condition with angle $\lambda \pi$. Let $u \in H^{k}(\Omega), k \geq 1$, solve $-\Delta u-k^{2} u=$ 0 on Ω. Then

$$
\begin{aligned}
& \inf _{v \in V(p)}\|u-v\|_{H^{1}(\Omega)} \leq C\left(\frac{\log (p+2)}{p+2}\right)^{\lambda(k-1)} \\
& \inf _{v \in W(p)}\|u-v\|_{H^{1}(\Omega)} \leq C\left(\frac{\log ^{2}(p+2)}{p+2}\right)^{\lambda(k-1)}
\end{aligned}
$$

Approximation of the Helmholtz equation

$-\Delta u-k^{2} u=0 \quad$ on $\Omega=(0,1)^{2}, \quad \partial_{n} u+\mathbf{i} k u=g, \quad$ on $\partial \Omega$
exact solution: $\quad u(x, y)=e^{\mathrm{i} k(\cos \theta, \sin \theta) \cdot(x, y)}, \quad \theta=\frac{\pi}{16}$.
POU: bilinears φ_{i} on uniform $n \times n$ grid
Note: $\operatorname{dim} V(p)=2 p+1, \quad \operatorname{dim} W(p)=p+1$

performance of PUM: scattering by a sphere

- scattering by a sphere B_{1} (radius 1) of an incident plane wave
- sound hard b.c. on $\Gamma=\partial B_{1}$ (i.e., Neumann b.c.)
- computational domain: ball of diameter $1+4 \lambda(\lambda=2 \pi / k=$ wave length $)$
- b.c. $\partial_{n} u^{s}+\left(\frac{1}{r}-\mathbf{i} \kappa\right) u^{s}=0$ on outer boundary
- mesh: 4 layers in rad. dir., 8×5 elem./layers; $\rightarrow 160$ elements; 170 nodes

Figure 4. Scattered potential around the sphere, $\kappa=5 \pi$: (a) real part, (b) imaginary part.

Lagrange multiplier technique to enforce interelement continuity original problem: find $u \in H^{1}(\Omega)$ s.t. $B(u, v)=l(v) \quad \forall v \in H^{1}(\Omega)$
notation: $\quad \mathcal{T}=$ mesh,$\quad \mathcal{E}=$ set of internal edges/faces
spaces: $\quad X=\left\{u \in L^{2}(\Omega)|u|_{K} \in H^{1}(K) \quad \forall K \in \mathcal{T}\right\}, \quad M=\prod_{E \in \mathcal{E}}\left(H^{1 / 2}(E)\right)^{\prime}$,
define $\quad b(u, \mu)=\sum_{E \in \mathcal{E}}\langle[u], \mu\rangle$
define $\quad B_{\mathcal{T}}(u, \mu)=\sum_{K \in \mathcal{T}} B_{K}(u, v), \quad B_{K}(u, v)=\int_{K} \nabla u \cdot \nabla \bar{v}-k^{2} u \bar{v} \pm \mathrm{i} k \int_{\partial K \cap \cap \Omega}{ }^{u \bar{v}}$
continuous version
find $(u, \lambda) \in X \times M$ s.t.
$B_{\mathcal{T}}(u, v)+b(v, \lambda)=l(v) \quad \forall v \in X$
$b(u, \mu)=0 \quad \forall \mu \in M$
discrete version
Let $X_{N} \subset X, M_{N} \subset M$:
Find $\left(u_{N}, \lambda_{N}\right) \in X_{N} \times M_{N}$ s.t.

$$
\begin{aligned}
B_{\mathcal{T}}\left(u_{N}, v\right)+b\left(v, \lambda_{N}\right) & =l(v) \quad \forall v \in X_{N} \\
b\left(u_{N}, \mu\right) & =0 \quad \forall \mu \in M_{N}
\end{aligned}
$$

"Discontinuous enrichement method" of Farhat et al. (IJNME '06)

Ansatz space for solution u :

$$
X_{N}:=\prod_{K \in \mathcal{T}} W_{K},
$$

$W_{K}:=\operatorname{span}\left\{e^{\mathrm{ik} \mathbf{d}_{n} \cdot \mathbf{x}} \mid n=1, \ldots, N_{u}\right\}$
Ansatz space for Lagrange multiplier

$$
M_{N}:=\prod_{E \in \mathcal{E}} \widetilde{W}_{E},
$$

$\widetilde{W}_{E}:=\operatorname{span}\left\{e^{\mathrm{i} k c_{n} \omega_{n} \cdot \mathrm{t}} \mid n=1, \ldots, N_{\lambda}\right\}$
where the parameters c_{n} are between 0.4 and 0.8 and are obtained from a numerical study of a test problem

Figure 1. 3D DGMH elements: directions of the Lagrange multipliers (left), directions of the element basis functions (right): (a) DGMH-26-4; (b) DGMH-56-8; and (c) DGMH-98-12.

performance of DEM: scattering by a sphere

- scattering by a sphere B_{1} (radius 1) of an incident plane wave
- sound hard b.c. on $\Gamma=\partial B_{1}$ (i.e., Neumann b.c.)
- computational domain: ball of diameter 2
- b.c. $\partial_{n} u^{s}-\mathbf{i} \kappa u^{s}=0$ on outer boundary

Figure 6. Convergence of the Galerkin and DGM elements for the problem of sound-hard scattering by a sphere: $R_{1}=1, R_{2}=2, k R_{1}=12$ (left) and $k R_{1}=24$ (right).

ultra weak variational formulation (Cessenat \& Després)

model problem:

$$
\begin{gather*}
-\Delta u-k^{2} u=f \in L^{2}(\Omega) \quad \text { in } \Omega \tag{16a}\\
\partial_{n} u+\mathbf{i} k u=t\left(-\partial_{n}+\mathbf{i} u\right)+g \quad \text { on } \partial \Omega, \quad t \in \mathbb{C}, \quad|t|<1 . \tag{16b}
\end{gather*}
$$

goal: given a mesh \mathcal{T} construct a variational formulation for the functions

$$
\left.x_{K}:=-\partial_{n} u_{K}+\mathbf{i} k u_{K} \quad \text { (here: } u_{K}=\left.u\right|_{K} \text { for } K \in \mathcal{T}\right) .
$$

reconstruction of u_{K} :
for each $K \in \mathcal{T}$, the fct u_{K} is the well-defined solution of

$$
-\Delta u_{K}-k^{2} u_{K}=\left.f\right|_{K}, \quad \text { on } K, \quad-\partial_{n} u_{K}+\mathbf{i} k u_{K}=x_{K} \quad \text { on } \partial K .
$$

regularity assumption: $\partial_{n} u_{K} \in L^{2}(\partial K)$ for every $K \in \mathcal{T}$

ultra weak variational formulation II

extension operator $E_{K}: L^{2}(\partial K) \rightarrow H^{1}(K)$
$-\Delta\left(E_{K} y\right)-k^{2}\left(E_{K} y\right)=0 \quad$ on $K, \quad-\partial_{n}\left(E_{K} y\right)+\mathbf{i} k\left(E_{K} y\right)=y \quad$ on ∂K
twisting operator $T_{K}: L^{2}(\partial K) \rightarrow L^{2}(\partial K)$

$$
T_{K} y:=\partial_{n}\left(E_{K} y\right)+\mathbf{i} k\left(E_{K} y\right) .
$$

Define: $\quad X:=\prod_{K \in \mathcal{T}} L^{2}(\partial K)$,

$$
\Gamma_{K, K^{\prime}}:=\bar{K} \cap \overline{K^{\prime}},
$$

$\Gamma_{K}:=\partial K \cap \partial \Omega$

On X define the sesquilinear form C and $l \in X^{\prime}$ by:

$$
\begin{aligned}
C(x, y) & :=\sum_{K \in \mathcal{T}} \int_{\partial K} x_{K} \bar{y}_{K}-\sum_{K, K^{\prime} \in \mathcal{T}} \int_{\Gamma_{K, K^{\prime}}} x_{K} \overline{T_{K^{\prime}} y}-\sum_{K \in \mathcal{T}} t \int_{\Gamma_{K}} x_{K} \overline{T_{K} y} \\
l(y) & :=-2 \mathbf{i} k \sum_{K \in \mathcal{T}} \int_{K} f \overline{E_{K} y}+\sum_{K \in \mathcal{T}} \int_{\Gamma_{K}} g \overline{T_{K} y}
\end{aligned}
$$

ultra weak variational formulation III

$$
\begin{aligned}
C(x, y) & :=\sum_{K \in \mathcal{T}} \int_{\partial K} x_{K} \bar{y}_{K}-\sum_{K, K^{\prime} \in \mathcal{T}} \int_{\Gamma_{K, K^{\prime}}} x_{K} \overline{T_{K^{\prime}} y}-\sum_{K \in \mathcal{T}} t \int_{\Gamma_{K}} x_{K} \overline{T_{K} y} \\
l(y) & :=-2 \mathbf{i} k \sum_{K \in \mathcal{T}} \int_{K} f \overline{E_{K} y}+\sum_{K \in \mathcal{T}} \int_{\Gamma_{K}} g \overline{T_{K} y}
\end{aligned}
$$

Thm. 23. [Cessenat \& Després] Assume that $\partial_{n} u \in L^{2}(\partial K)$ for all $K \in \mathcal{T}$. Define $x \in X$ by $x_{K}:=-\partial_{n} u_{K}+\mathbf{i} k u_{K}$ with $u_{K}:=\left.u\right|_{K}$. Then x satisfies

$$
\begin{equation*}
C(x, y)=l(y) \quad \forall y \in X \tag{17}
\end{equation*}
$$

Conversely, let $x \in X$ solve (17). Then the function u defined elementwise by $u_{K}:=E_{K} x$ is in $H^{1}(\Omega)$ and solves (16).

Remark: key observation for interelement continuity is that it is equivalent to

$$
\partial_{n_{K}} u_{K}+\mathbf{i} k u_{K}=-\partial_{n_{K^{\prime}}} u_{K^{\prime}}+\mathbf{i} k u_{K^{\prime}} \quad \text { on } \Gamma_{K, K^{\prime}}
$$

ultra weak variational formulation IV

Thm. 24. [Cessenat \& Després] Let $X_{N} \subset X$ be arbitrary. Then the problem:

$$
\text { Find } x_{N} \in X_{N} \text { s.t. } \quad C\left(x_{N}, v\right)=l(v) \quad \forall v \in X_{N}
$$

has a unique solution.
Choice of the discrete space X_{N} :

1. $\forall K \in \mathcal{T}$ let $W_{K}=\operatorname{span}\left\{w_{n, K} \mid n=1, \ldots, p\right\}$ be a space of plane waves
2. set $X_{N}:=\prod_{K \in \mathcal{T}} \widetilde{X}_{K}$, where

$$
\widetilde{X}_{K}:=\operatorname{span}\left\{-\partial_{n} w_{n, K}+\mathbf{i} k w_{n, K} \mid n=1, \ldots, p\right\}
$$

note: sesq. form C is easily evalulated by observing for the twisting operator T_{K} :

$$
T_{K}\left(-\partial_{n} w_{n, K}+\mathbf{i} k w_{n, K}\right)=+\partial_{n} w_{n, K}+\mathbf{i} k w_{n, K}
$$

ultra weak variational formulation V

Thm. 25. [Cessenat \& Després] Let $\Omega \subset \mathbb{R}^{2}, f=0$ and the solution u of (16) be in $C^{\mu+1}(\bar{\Omega})$. Assume that $|t|<1$. Assume that $p=2 \mu+1$ plane waves are employed for each element. Then the approximation x_{N} to $x=-\partial_{n} u+\mathbf{i} k u$ satisfies

$$
\left\|x-x_{N}\right\|_{L^{2}(\partial \Omega)} \leq C h^{\mu-1 / 2}\|u\|_{C^{\mu-1 / 2}(\bar{\Omega})}
$$

Remark: If $f=0$, the reconstruction of u_{K} on the elements is particularly simple.

robust method as limit $p \rightarrow \infty p$-FEM

For a fixed mesh \mathcal{T}, define the L-harmonic shape functions ψ_{i} and the discrete harmonic shape functions $\psi_{i}^{p} \in S^{p}(\mathcal{T})$ by

$$
\begin{array}{rll}
\psi_{i}\left(x_{j}\right)=\delta_{i j} & B\left(\psi_{i}, v\right)=0 & \forall v \in H_{0}^{1}(K) \quad \forall K \in \mathcal{T} \\
\psi_{i}^{p}\left(x_{j}\right)=\delta_{i j} & B\left(\psi_{i}, v\right)=0 & \forall v \in H_{0}^{1}(K) \cap S^{p}(\mathcal{T}) \quad \forall K \in \mathcal{T}
\end{array}
$$

Then:

$$
\lim _{p \rightarrow \infty} \psi_{i}^{p}=\psi_{i} \quad\left(\text { convergence in } H^{1}\right)
$$

Let $\widetilde{X}_{N}:=\operatorname{span}\left\{\psi_{i} \mid i=1, \ldots, N\right\}$ and $\widetilde{X}_{N}^{p}:=\operatorname{span}\left\{\psi_{i}^{p} \mid i=1, \ldots, N\right\}$.
Let $\widetilde{\mathbf{B}}, \widetilde{\mathbf{l}}, \widetilde{\mathbf{B}}^{p}, \widetilde{\mathbf{l}}^{p}$ be the corresponding stiffness matrices and load vectors. Then:

$$
\lim _{p \rightarrow \infty} \widetilde{\mathbf{B}}^{p}=\widetilde{\mathbf{B}}, \quad \lim _{p \rightarrow \infty} \widetilde{\mathbf{1}}^{p}=\widetilde{\mathbf{1}} .
$$

It remains to see that $\widetilde{\mathbf{B}}^{p}$ and $\widetilde{\mathbf{l}}^{p}$ are obtained by condensing out the "bubble modes" from the full problem posed on $S^{p}(\mathcal{T})$.
back

high order FEM in 1D

- mesh \mathcal{T} : consists of elements $K_{i}, i=1, \ldots, n$
- for each $K \in \mathcal{T}$ choose a polynomial degree $p_{K} \in \mathbb{N}$

classical basis of $S^{\mathbf{p}}(\mathcal{T})$:
- piecewise linears associated with the nodes
- for each $K \in \mathcal{T} p_{K}-1$ "bubble" shape fct $\left\{b_{K, i} \mid i=1, \ldots, p_{K}-1\right\}$ with:
$-\operatorname{supp} b_{K, i} \subset \bar{K}$ for $i=1, \ldots, p_{K}-1$ and $K \in \mathcal{T}$
- for each $K \in \mathcal{T}: \operatorname{span}\left\{b_{K, i} \mid i=1, \ldots, p_{K}-1\right\}=\left\{u \in \mathcal{P}_{p_{K}} \mid u\left(a_{K}\right)=\right.$ $\left.u\left(b_{K}\right)=0\right\}$, where $a_{K},, b_{K}$ denote the endpoints of K
remarks on quadrature
methods based on plane waves require the evaluation of oscillatory integrals of the form

$$
\int_{a}^{b} e^{\mathrm{i} k \alpha x} f(x) d x \quad(d=1), \quad \int_{a}^{b} \int_{a^{\prime}}^{b^{\prime}} e^{\mathrm{i} k(\alpha x+\beta y)} f(x, y) d x \quad(d=2)
$$

for some parameters $\alpha, \beta \in \mathbb{R}$.
Possible techniques are (for the case of large $|\alpha|,|\beta|$):

1. asymptotic methods
2. specialized quadrature: require that quadrature formula be exact for polynomials f up to a given order
infinite elements for exterior domain problems I: variational formulation
$-\Delta u-k^{2} u=f \quad$ on $\Omega^{+}=\mathbb{R}^{d} \backslash \bar{\Omega},(18 \mathrm{a})$
Neumann b.c. on $\partial \Omega$
Sommerfeld radiation cond.
$\operatorname{supp} f \subset B_{R}(0)$

- solution u satisfies

$$
B(u, v):=\int_{\Omega^{+}} \nabla u \cdot \nabla \bar{v}-k^{2} u \bar{v}=l(v):=\int_{\Omega^{+}} f \bar{v}+\int_{\partial \Omega} g \bar{v} \quad \forall v \in C^{\infty}\left(\mathbb{R}^{d}\right) .
$$

- $\left(d=3\right.$:) outside $B_{R}(0)$, solution u has the form

$$
u(r, \varphi, \theta)=\sum_{n \in \mathbb{N}_{0}} A_{n}(\varphi, \theta) h_{n}^{(1)}(k r)
$$

- from $h_{n}^{(1)}(k r) \sim e^{\mathrm{i} k r} / r$ as $r \rightarrow \infty$ we conclude $u \notin L^{2}\left(\Omega^{+}\right)$and $\nabla u \notin$ $L^{2}\left(\omega^{+}\right)$. However, one can show that u and $\nabla u \in L_{w}^{2}\left(\Omega^{+}\right)$, where the weight function $w(r)=(1+r)^{-1}$.
infinite elements for exterior domain problems II: variational formulation cont'd
- for $w(r):=(1+r)^{-1}$ def. the weighted spaces $H_{w}^{1}\left(\Omega^{+}\right), H_{1 / w}^{1}\left(\Omega^{+}\right)$by

$$
\begin{aligned}
\|u\|_{H_{w}^{1}\left(\Omega^{+}\right)}^{2} & :=\int_{\Omega^{+}}|\nabla u|^{2} w(r) d x+\int_{\Omega^{+}}|u|^{2} w(r) d x \\
\|u\|_{H_{1 / w}^{1}\left(\Omega^{+}\right)}^{2} & :=\int_{\Omega^{+}}|\nabla u|^{2} \frac{1}{w(r)} d x+\int_{\Omega^{+}}|u|^{2} \frac{1}{w(r)} d x
\end{aligned}
$$

- we have: the solution u is a solution of the variational problem:

$$
\begin{equation*}
\text { find } u \in H_{w}^{1}\left(\Omega^{+}\right) \text {s.t. } \quad B(u, v)=l(v) \quad \forall v \in H_{1 / w}^{1}\left(\Omega^{+}\right) \tag{19}
\end{equation*}
$$

- (19) does not enforce Sommerfeld radiation condition. This has to be built explicitly into the spaces:

$$
\begin{aligned}
\|u\|_{w,+}^{2} & :=\|u\|_{H_{w}^{1}\left(\Omega^{+}\right)}^{2}+\int_{\Omega^{+}}\left|\partial_{r}-\mathbf{i} k u\right|^{2} d x \\
\|u\|_{1 / w,+}^{2} & :=\|u\|_{H_{w}^{1}\left(\Omega^{+}\right)}^{2}+\int_{\Omega^{+}}\left|\partial_{r}-\mathbf{i} k u\right|^{2} d x
\end{aligned}
$$

infinite elements for exterior domain problems III

Thm. 26. [Leis] The solution u of (25) is the unique solution of the problem:

$$
\begin{equation*}
\text { find } u \in H_{w,+}^{1}\left(\Omega^{+}\right) \text {s.t. } \quad B(u, v)=l(v) \quad \forall v \in H_{1 / w,+}^{1}\left(\Omega^{+}\right) . \tag{20}
\end{equation*}
$$

(20) leads to numerical methods by choosing $X_{N} \subset H_{w,+}^{1}\left(\Omega^{+}\right)$and $Y_{N} \subset$ $H_{1 / w,+}^{1}\left(\Omega^{+}\right)$.

Lemma 27. \exists unique functions $u_{n} \in H^{1}\left(\Omega_{R}\right)$ s.t. the solution u has the form

$$
u(x)=\sum_{n=0}^{N}\left(E_{n} u_{n}\right)(x)
$$

where

$$
\left(E_{n} v\right)(x):= \begin{cases}v(x) & |x|<R \\ v(x / r) \frac{h_{n}^{(1)}(k r)}{h_{n}^{(1)}(k R)} & |x| \geq R\end{cases}
$$

Proof: follows from the representation formula $u=\sum_{n} A_{n}(\varphi, \theta) h_{n}^{(1)}(k r)$ valid for $r \geq R$

infinite elements for exterior domain problems IV

semi-discrete method: Let $X_{N}:=\left\{\sum_{n=0}^{N} E_{n} u_{n} \mid u_{n} \in H^{1}\left(\Omega_{R}\right)\right\}, Y_{N}:=$ $\left\{\left.\frac{1}{r^{2}} \sum_{n=0}^{N} E_{n} v_{n} \right\rvert\, v_{n} \in H^{1}\left(\Omega_{R}\right)\right\}$.

$$
\begin{equation*}
\text { Find } u \in X_{N} \text { s.t. } B(u, v)=l(v) \quad \forall v \in Y_{N} . \tag{21}
\end{equation*}
$$

1. (21) is a coupled system of $N+1$ elliptic equations. A fully discrete problem is obtained by approximating the functions u_{n} by the classical FEM.
2. the factor $1 / r^{2}$ in the definition of Y_{N} ensures that $Y_{N} \subset H_{1 / w,+}^{1}\left(\Omega^{+}\right)$.
3. semi-analytic evaluation of the integrals. Example:

$$
\int_{\Omega^{+}} E_{n} u \overline{E_{m} v} r^{-2}=\int_{\Omega_{R}} u \bar{v} r^{-2}+\int_{\omega \in \partial B_{R}(0)} u(\omega) \bar{v}(\omega) \underbrace{\int_{r=R}^{\infty} r^{-2} h_{n}^{(1)}(k r) \overline{h^{(1)}} m(k r) r^{2} d r}_{=: a_{n m}}
$$

and the coefficients $a_{n m}$ can be computed analytically.
4. observation in practice: $N \geq k$ needed for good results.
5. infinite elements can also be defined for the exterior of ellipsoids etc.
truncating infinite domains and local b.c.
$-\Delta u-k^{2} u=f \quad$ on $\Omega^{+}=\mathbb{R}^{d} \backslash \bar{\Omega}$, (22a)
$u=0$ on $\partial \Omega$
Sommerfeld radiation cond.
$\operatorname{supp} f \subset B$.

approximate solution u_{R} :

$$
\begin{align*}
& -\Delta u_{R}-k^{2} u_{R}=f \quad \text { on } \Omega_{R} \tag{23a}\\
& u_{R}=0 \quad \text { on } \partial \Omega \tag{23b}\\
& B_{1} u_{R}:=\left(\partial_{r}-\mathbf{i} k+R^{-1}\right) u_{R}=0 . \tag{23c}
\end{align*}
$$

Thm. 28. [Goldstein] Let B be fixed. Then $\exists C>0$ s.t. the error $u-u_{R}$ satisfies

$$
\left\|u-u_{R}\right\|_{L^{2}(B)} \leq C R^{-2}\|f\|_{L^{2}(B)}
$$

Lemma 29. [Atkinson-Wilcox expansion] Let $B \subset B_{r_{0}}(0)$. Then the solution u can be expanded as a convergent series

$$
\begin{equation*}
u=\frac{e^{\mathrm{i} k r}}{r} \sum_{n=0}^{\infty} \frac{A_{n}(\varphi, \theta)}{r^{n}}, \quad r>r_{0} \tag{24}
\end{equation*}
$$

The function $U:=u e^{-\mathrm{i} k r}$ satisfies

1. $\left|D^{\alpha} U(x)\right| \leq C_{\alpha} r^{-(|\alpha|+1)}\|f\|_{L^{2}(B)}$
2. $\left|\partial_{r} U(x)+r^{-1} U(x)\right| \leq C r^{-3}\|f\|_{L^{2}(B)}$

Therefore, u satisfies on $\Gamma_{R}:\left|B_{1} u\right| \leq C R^{-3}\|f\|_{L^{2}(B)}$.

key ingredient of proof:

- Green's theorem: $u(x)=\frac{1}{4 \pi} \int_{\partial \Omega} \frac{e^{\mathrm{i} k \rho\left(x^{\prime}\right)}}{\rho\left(x^{\prime}\right)} \partial_{n} u\left(x^{\prime}\right) d s_{x^{\prime}}-\int_{B} \frac{e^{\mathrm{i} k \rho\left(x^{\prime}\right)}}{\rho\left(x^{\prime}\right)} f\left(x^{\prime}\right) d x^{\prime}$
- a priori estimate $\left\|\partial_{n} u\right\|_{L^{2}(\partial \Omega)} \leq C\|f\|_{L^{2}(B)}$.

truncating infinite domains and local b.c. III

A theorem analogous to Lemma 29 holds for incoming b.c. as well:
Lemma 30. Let $B \subset B_{r_{0}}(0)$. Then the solution Φ of

$$
\begin{aligned}
& -\Delta \Phi-k^{2} \Phi=\varphi \in L^{2}(B) \quad \text { on } \Omega^{+}, \\
& \Phi=0 \quad \text { on } \partial \Omega, \\
& \left(\partial_{r}+\mathbf{i} k\right) \Phi=o\left(r^{-1}\right) \quad \text { as } r \rightarrow \infty
\end{aligned}
$$

has an expansion $\Phi=\frac{e^{-\mathrm{i} k r}}{r} \sum_{n=0}^{\infty} \frac{\widetilde{A}_{n}(\varphi, \theta)}{r^{n}}$ (for $r>r_{0}$)
The function $\widetilde{\Phi}:=e^{\mathrm{i} k r} \Phi$ satisfies

1. $\left|D^{\alpha} \widetilde{\Phi}(x)\right| \leq C_{\alpha} r^{-(|\alpha|+1)}\|\varphi\|_{L^{2}(B)}$
2. $\left|\partial_{r} \widetilde{\Phi}(x)+r^{-1} \widetilde{\Phi}(x)\right| \leq C r^{-3}\|f\|_{L^{2}(B)}$

Therefore, Φ satisfies on $\Gamma_{R}:\left|B_{1}^{\prime} \Phi\right| \leq C R^{-3}\|\varphi\|_{L^{2}(B)}$ where $B_{1}^{\prime} \Phi:=\partial_{r} \Phi+\left(\frac{1}{R}+\mathbf{i} k\right) \Phi$

local b.c. of higher order (BGT)

The boundary condition $B_{1} u=0$ on Γ_{R} can be motivated as follows: From the Atkinson-Wilcox expansion we have

$$
u=\frac{e^{\mathrm{i} k r}}{r} \sum_{n=0}^{\infty} \frac{A_{n}(\varphi, \theta)}{r^{n}}
$$

It can be checked that $B_{1}:=\partial_{r}-\mathbf{i} k+r^{-1}$ satisfies

$$
B_{1} u=\sum_{n=1+1}^{\infty} A_{n}^{(1)} r^{-(n+1)}, \quad \text { suitable } A_{n}^{(1)}
$$

More generally, for $L:=\partial_{r}-\mathbf{i} k$, we can define recursively
$B_{1}:=L+\frac{1}{r}, \quad B_{2}:=\left(L+\frac{3}{r}\right)\left(L+\frac{1}{r}\right), \cdots, B_{N}:=\left(L+\frac{2 N-1}{r}\right) B_{N-1}$
and get

$$
B_{N} u=\sum_{n=N+1}^{\infty} A_{n}^{(N)} r^{-n-N}, \quad \text { suitable } A_{n}^{(N)}
$$

Hence, $B_{N} u=O\left(R^{-(2 N+1)}\right)$ on Γ_{R}.

local b.c. of higher order (BGT)

- Choosing the artificial boundary condition on Γ_{R} to be $B_{N} u_{R}=0$, we expect faster convergence (as $R \rightarrow \infty$) than for the case $N=1$ analyzed above.
- for $N \geq 2, B_{N}$ contains higher order derivatives in ∂_{r}. Since the exact solution solves $-\Delta u-k^{2} u=0$ near Γ_{R}, the derivatives ∂_{r}^{j} for $j \geq 2$ can be expressed in terms of $\partial_{\varphi}^{\alpha} \partial_{\theta}^{\beta}$ and $\partial_{\varphi}^{\alpha} \partial_{\theta}^{\beta} \partial_{r}$.
For example, in $2 D$ the operator $B_{2}=\left(\partial_{r}-\mathbf{i} k+\frac{3}{r}\right)\left(\partial_{r}-\mathbf{i} k+\frac{1}{r}\right)$ is expanded as $B_{2}=\partial_{r}^{2}+\left(\frac{4}{r}-2 \mathbf{i} k\right)+\left(\frac{2}{r}-4 \mathbf{i} k\right) \frac{1}{r}-k^{2}$; using the differential equation $0=\Delta u+k^{2} u=\frac{1}{r} \partial_{r}\left(r \partial_{r} u\right)+\frac{1}{r^{2}} \partial_{\varphi}^{2} u+k^{2} u=0$, the term $\partial_{r}^{2} u$ can expressed in terms of $u, \partial_{\varphi} u, \partial_{\varphi}^{2} u, \partial_{\varphi} \partial_{r} u$.
- higher order differential operators are not easily implemented in FEM. One possible option: introduce auxiliary variables for the boundary derivatives.

Further methods for deriving local boundary conditions of higher order exist, notably those of Engquist \& Majda and Higdon.

DtN operators

$-\Delta u-k^{2} u=f \quad$ on $\Omega^{+}=\mathbb{R}^{d} \backslash \bar{\Omega}$, (25a)
$u=0$ on $\partial \Omega$
Sommerfeld radiation cond.
$\operatorname{supp} f \subset B$.

- fix R
- define the $\mathbf{D t N}$ operator $T: H^{1 / 2}\left(\Gamma_{R}\right) \rightarrow H^{-1 / 2}\left(\Gamma_{R}\right)$ by $T u:=\left.\partial_{r} U\right|_{\Gamma_{R}}$, where U solves the exterior problem

$$
\begin{array}{lr}
-\Delta U-k^{2} U=0 & \text { on } \Omega_{R}^{+} \\
U=u \quad \text { on } \Gamma_{R}, & U \text { satisfies Sommerfeld radiation cond. }
\end{array}
$$

- weak formulational for $\left.u\right|_{\Gamma_{R}}$:
$\begin{aligned} & \text { find } u \in H_{D}^{1} \text { s.t. } \int_{\Omega_{R}} \nabla u \cdot \nabla \bar{v}-k^{2} \int_{\Omega_{R}} u \bar{v}-\int_{\Gamma_{R}} T u \bar{v}=\int_{\Omega_{R}} f \bar{v} \quad \forall v \in H_{D}^{1} \\ & \text { where } H_{D}^{1}:=\left\{v \in H^{1}\left(\Omega_{R}\right)|v|_{\partial \Omega}=0\right\}\end{aligned}$

numerical realization of DtN operator T

- T can be realized numerically by the boundary element method. "Fast BEM" (multipole, panel clustering, \mathcal{H}-matrix techniques,...) can be brought to bear.
- simple geometries (circles/spheres, ellipsoids): DtN-operator can be written down explicitly. For example, in 2 D the DtN operator on $\Gamma_{R}=\partial B_{R}(0)$ takes the form

$$
(T u)(R, \varphi)=\sum_{n \in \mathbb{Z}} \frac{1}{2 \pi} k \frac{H_{n}^{\prime}(k R)}{H_{n}(k R)} e^{\mathrm{i} n \varphi} \int_{0}^{2 \pi} u\left(R, \varphi^{\prime}\right) e^{-\mathrm{i} n \varphi^{\prime}} d \varphi^{\prime}, \quad H_{n}=H_{n}^{(1)}
$$

One possibility to approximate T is by truncation:

$$
\left(T_{N} u\right):=\sum_{|n| \leq N} \frac{1}{2 \pi} k \frac{H_{n}^{\prime}(k R)}{H_{n}(k R)} e^{\mathrm{i} n \varphi} \int_{0}^{2 \pi} u\left(R, \varphi^{\prime}\right) e^{-\mathrm{i} n \varphi^{\prime}} d \varphi^{\prime}
$$

- the approximate problem is:

$$
\text { find } u \in H_{D}^{1} \text { s.t. } \int_{\Omega_{R}} \nabla u \cdot \nabla \bar{v}-k^{2} \int_{\Omega_{R}} u \bar{v}-\int_{\Gamma_{R}} T_{N} u \bar{v}=\int_{\Omega_{R}} f \bar{v}
$$

- approximate problem is only well-posed if $k R<N(\rightarrow$ many terms!)
- "stabilization" possible (Grote \& Keller)

