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Multiscale and hybrid methods for the

solution of oscillatory integral equations

Daan Huybrechs
Departement Computerwetenschappen, K.U.Leuven

Celestijnenlaan 200A, B-3001 Leuven, België

Abstract

Waves and oscillatory phenomena abound in many disciplines of science and
engineering. Prime examples are electromagnetic and acoustic waves that
permeate the atmosphere. In this thesis, we analyse and develop algorithms
for the efficient numerical simulation of the scattering of such waves.

Time-harmonic scattering problems are modelled by an integral equa-
tion formulation. We consider three multiscale methods for the efficient
solution of the resulting oscillatory integral equation: methods based on
wavelets, methods based on hierarchical matrices and fast multipole meth-
ods. Although the discretisation matrix for integral equations is a dense
matrix, each of these methods yields a fast matrix-vector product, where
the number of operations scales approximately linearly in the number of
unknowns. The solution can then be obtained efficiently in combination
with an iterative Krylov subspace solver.

We show that wavelet based methods are not suitable for high frequency
problems, where the number of oscillations is large with respect to the size
of the scattering obstacle. We quantify the behaviour of the method in the
oscillatory setting, and propose an improvement based on wavelet packets.
Quadrature techniques are constructed for the efficient implementation of
wavelet Galerkin discretisations. Methods based on hierarchical matrices
and fast multipole methods are discussed for low frequency and high fre-
quency scattering problems, and their applicability is compared.
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Due to their ubiquitous nature in wave phenomena, oscillatory integrals
are studied. A new method is proposed for the evaluation of univariate and
multivariate oscillatory integrals, based on an extension of the method of
steepest descent. Contrary to traditional methods, the accuracy of the new
method increases rapidly with increasing frequency of the integrand, and it
is shown that its computational cost is very low.

Finally, the insights in the behaviour of oscillatory integrals lead to the
formulation of a novel method for highly oscillatory integral equations. We
propose a hybrid method that combines asymptotic estimates of the solution
with a classical boundary element discretisation. The hybrid asymptotic
method requires a number of operations that is fixed with respect to the
frequency. Results are given for the case of smooth and convex scattering
obstacles. We show that the discretisation matrix in this case is small and
highly sparse.



Multiscale and hybrid methods for the

solution of oscillatory integral equations

Daan Huybrechs
Departement Computerwetenschappen, K.U.Leuven

Celestijnenlaan 200A, B-3001 Leuven, België

Samenvatting

Golven en golfverschijnselen komen voor in verchillende disciplines van de
wetenschap en in vele ingenieurstoepassingen. De voornaamste voorbeel-
den zijn electromagnetische en akoestische golven die ons overal omgeven.
In deze doctoraatsthesis analyzeren en ontwikkelen we algoritmes voor de
efficiënte numerieke simulatie van de weerkaatsing van dergelijke golven.

Tijdsharmonische verstrooïıngsproblemen worden gemodelleerd met een
wiskundige formulering in de vorm van een integraalvergelijking. We be-
kijken drie multischaalmethodes voor het oplossen van de resulterende os-
cillerende integraalvergelijking: methodes gebaseerd op wavelets, methodes
gebaseerd op hiërarchische matrices en snelle multipoolmethodes. Hoewel de
discretizatiematrix voor integraalvergelijkingen een volle matrix is, maakt
elk van die methodes een snel matrix-vectorproduct mogelijk waarbij het
aantal bewerkingen bij benadering linear is in het aantal onbekenden. De
oplossing kan dan snel gevonden worden in combinatie met een iteratieve
Krylov deelruimte oplossingsmethode.

We tonen aan dat waveletgebaseerde methodes niet geschikt zijn voor
problemen met hoge frequenties, waarbij het aantal oscillaties groot is ten
opzichte van de grootte van het weerkaatsende obstakel. We analyzeren het
gedrag van de methode in een sterk oscillerend regime, en stellen een verbe-
tering voor op basis van wavelet pakketten. Kwadratuurtechnieken worden
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opgesteld voor de efficiënte implementatie van wavelet-Galerkin discretiza-
ties. Methodes gebaseerd op hiërarchische matrices en snelle multipool-
methodes worden onderzocht voor lage- en hoge frequentieregimes, en de
toepasbaarheid van de methodes wordt vergeleken.

Omwille van hun verschijnen in de beschrijving van tal van golfproble-
men, worden vervolgens integralen bestudeerd met een sterk oscillerende
integrand. Er wordt een nieuwe methode voorgesteld voor de evaluatie van
dergelijke integralen in één of meerdere dimensies, gebaseerd op een uitbrei-
ding van de methode van de steilste helling. In tegenstelling tot traditionele
methodes verhoogt de nauwkeurigheid van de nieuwe methode sterk bij stij-
gende frequenties, en we tonen aan dat de berekeningstijd klein blijft.

Tenslotte worden de verworven inzichten in het gedrag van oscillerende
integralen aangewend in een originele oplossingsmethode voor sterk oscil-
lerende integraalvergelijkingen. We stellen een hybride methode voor die
een asymptotische schatting van de oplossing combineert met een klassie-
ke randelementendiscretizatie. Resultaten worden gegeven voor het geval
van convexe obstakels met een zachtverlopende rand. We tonen aan dat de
discretisatiematrix in dit geval klein is en in hoge mate ijl.
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4 Hiërarchische matrix methodes xviii

5 Oscillerende integralen xviii
5.1 Modelvorm en eigenschappen . . . . . . . . . . . . . . . . xviii
5.2 De numerieke methode van de steilste helling . . . . . . . xix

xi



xii NEDERLANDSE SAMENVATTING

5.3 Hogerdimensionale integralen . . . . . . . . . . . . . . . . xx

6 Een asymptotische hybride methode xx

6.1 Formulering . . . . . . . . . . . . . . . . . . . . . . . . . . xx

6.2 Een ijle discretisatiematrix . . . . . . . . . . . . . . . . . . xxi

7 Slotbemerkingen xxi

7.1 Eigen bijdragen . . . . . . . . . . . . . . . . . . . . . . . . xxi

7.2 Conclusies . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

7.3 Suggesties voor verder onderzoek . . . . . . . . . . . . . . xxii

1 Inleiding

1.1 Integraalvergelijkingen

Het doel van deze thesis is de analyse en ontwikkeling van snelle oplossings-
methodes voor integraalvergelijkingen met een oscillerend karakter. Deze
vergelijkingen duiken op bij de wiskundige modellering van de voortplanting
en de weerkaatsing van, bijvoorbeeld, electromagnetische of akoestische gol-
ven. We behandelen zogenaamde integraalvergelijkingen van de eerste soort

(Av)(x) =

∫

Γ

G(x, y)v(y) dsy = f(x), x ∈ Γ, (1)

en integraalvergelijkingen van de tweede soort

λv(x) +

∫

Γ

G(x, y)v(y) dsy = f(x), x ∈ Γ, λ 6= 0. (2)

Hierin is Γ de rand van een obstakel waardoor een invallende golf verstrooid
wordt. De invallende golf wordt beschreven door de randvoorwaarde f(x).
De onbekende in de vergelijkingen is de dichtheidsfunctie v(x). De functie
G(x, y) noemt men de functie van Green, of ook de kernfunctie van de
integraaloperator A. Voor twee-dimensionale verstrooïıngsproblemen met

tijdsharmonische golven is de kernfunctie gekend, G(x, y) = i
4H

(1)
0 (k|x−y|).

De integraalvergelijking (1) komt in dat geval wiskundig overeen met het
oplossen van de Helmholtzvergelijking

∆u+ k2u = 0, (3)

met de randvoorwaarde u(x) = f(x) op Γ.
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1.2 Randelementenmethode

De randelementenmethode is een eindige-elementenmethode waarvan de ba-
sisfuncties φi, i = 1, . . . , N , gedefinieerd zijn op de rand Γ van het obsta-
kel. De basisfuncties worden daarom ook randelementen genoemd. De Ga-
lerkindiscretisatie van integraalvergelijking (1) leidt tot het lineaire stelsel
Mx = b. De elementen van de discretisatiematrix M en van het rechterlid
b worden gegeven door

Mij = 〈Aφj , φi〉 en bi = 〈f, φi〉. (4)

Hierin stelt 〈·, ·〉 het L2 inwendig product voor. De matrixelementen worden
expliciet gegeven door een dubbelintegraal met de vorm (2.61).

De discretisatiematrix M is een volle matrix. Het oplossen van het stel-
sel Mx = b met directe methodes vereist daarom O(N3) bewerkingen. De
snelle methodes die we bestuderen leiden tot een snel matrix-vectorproduct
met een complexiteit van O(N) of O(N logpN) bewerkingen, p > 0. Het
snelle matrix-vectorproduct kan aangewend worden in combinatie met een
iteratieve Krylov-deelruimte oplossingsmethode, zoals GMRES, wat leidt
tot een efficiënte oplossingsmethode voor de integraalvergelijking. Het con-
ditiegetal van de discretisatiematrix hangt af van de orde r van de operator
A. Voor een integraalvergelijking met een ééndimensionale rand Γ geldt dat

κ(M) = O(N |r|). (5)

De operator die overeenkomt met het Helmholtzprobleem heeft orde r = −1;
het conditiegetal stijgt dus linear met het aantal basisfuncties.

1.3 Zwak en sterk oscillerende regimes

De frequentie van het golfprobleem wordt uitgedrukt door het golfgetal k,
dat zowel in de Helmholtzvergelijking (3) als in de kernfunctie verschijnt.
De grootte van het golfgetal is slechts relatief. Van belang om te spreken
van een hoogfrequent problem is dat het getal groot is in vergelijking met
de omvang van de rand Γ.

We maken in de analyse van de complexiteit van snelle oplossingsmetho-
des in functie van het aantal basisfuncties N een onderscheid tussen twee
oscillerende regimes. In het zwak oscillerende regime blijft het golfgetal k
constant, terwijl N stijgt. De oplossing wordt daardoor nauwkeuriger bere-
kend. In het sterk oscillerende regime stijgt het golfgetal evenredig met N .
De nauwkeurigheid van de oplossing blijft daarbij ongeveer dezelfde, maar
de frequentie van het probleem stijgt.
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1.4 Overzicht van de thesis

We bespreken drie verschillende multischaalmethodes voor het oplossen van
integraalvergelijkingen. We starten in Hoofdstuk 2 van deze samenvatting
met methodes gebaseerd op wavelets. Eerst wordt de afhankelijkheid van
het golfgetal bestudeerd. De analyse toont aan dat waveletgebaseerde me-
thodes enkel efficiënt werken in het zwak oscillerend regime. Een verbetering
voor het sterk oscillerend regime wordt voorgesteld met behulp van wavelet-
pakketten. Er worden ook kwadratuurformules voorgesteld om integralen
met wavelets in de integrand nauwkeurig te benaderen. Vervolgens bespre-
ken we snelle multipoolmethodes en methodes gebaseerd op hiërarchische
matrices in Hoofdstuk 3 en Hoofdstuk 4. Beide multischaalmethodes ver-
tonen een asymptotische complexiteit van O(N logN) in het sterk oscil-
lerende regime. De principes waarop de methodes gebaseerd zijn worden
gëıllustreerd met numerieke experimenten.

In Hoofdstuk 5 stellen we enkele methodes voor om de waarde van sterk
oscillerende bepaalde integralen zeer nauwkeurig te benaderen. Integra-
len met een sterk oscillerende integrand duiken op in verschillende toepas-
singen, maar ook de integraalvergelijkingen (1)-(2) zelf bevatten een sterk
oscillerende integraal indien het golfgetal groot is. De methodes hebben
de eigenschap dat ze nauwkeuriger worden bij hogere frequenties. We be-
spreken ééndimensionale en hogerdimensionale integralen. In Hoofdstuk 6
worden de methodes toegepast op de integraalvergelijking zelf. Dit leidt tot
een methode die slechts een constant aantal bewerkingen vereist voor stij-
gende waarden van het golfgetal. De methode wordt een hybride methode
genoemd omdat ze een klassieke eindige-elementendiscretisatie combineert
met een asymptotische methode.

2 Waveletgebaseerde methodes

2.1 Een snel matrix-vector product

De waveletmethode is een eindige-elementenmethode waarbij waveletfunc-
ties ψjk gebruikt worden als basisfuncties. Wavelets worden gedefinieerd op
verschillende schalen j en posities k in termen van de moederwavelet ψ,

ψjk(t) = 2j/2ψ(2jt− k). (6)

De moederwavelet ψ en de zogenaamde schaalfunctie φ worden gekarakte-
riseerd door de tweeschaalvergelijkingen

φ(t) =
∑

k∈Z

hkφ(2t− k), en ψ(t) =
∑

k∈Z

gkφ(2t− k). (7)



xv

Wavelets hebben een aantal nulmomenten d̃,

∫ ∞

−∞
ψ(x)xi dx = 0, i = 0, . . . , d̃− 1, (8)

waardoor zij geschikt zijn voor het benaderen van functies. Deze eigenschap
zorgt er namelijk voor dat de matrixelementen (4) in de waveletbasis,

W(j,k),(j′,k′) = 〈Aψj′k′ , ψjk〉, (9)

veelal klein zijn. De discretisatiematrix W in de waveletbasis kan bijgevolg
sterk gecomprimeerd worden tot een ijle matrix. Men toont aan dat het
aantal significante elementen grootteorde O(N) heeft, wat rechtstreeks aan-
leiding geeft tot een matrix-vectorproduct in O(N) bewerkingen. Daarnaast
kan het conditiegetal van de matrix uniform begrensd worden in N met een
eenvoudige diagonale preconditionering.

2.2 Afhankelijkheid van het golfgetal

De asymptotische lineaire complexiteit O(N) geldt enkel in het zwak oscil-
lerende regime. We analyseerden ook het gedrag van de waveletmethode
voor het sterk oscillerende regime, waarbij het golfgetal k evenredig stijgt
met N . Het resultaat wordt samengevat in de volgende stelling.

Stelling 1 (Theorem 3.5.6). Het aantal significante elementen in de ge-
comprimeerde discretisatiematrix W stijgt asymptotisch lineair in N , met

een evenredigheidsconstante die zich gedraagt als O(k1+1/(2d̃−2)).

De evenredigheidsconstante in de uitdrukking O(N) is ongeveer linear
in het golfgetal k. In het sterk oscillerende regime verloopt het aantal signi-
ficante elementen na compressie dus kwadratisch in N . De compressie gaat
uiteindelijk verloren bij stijgende frequenties. De afhankelijkheid van het
golfgetal wordt gëıllustreerd in Figuur 3.6.

2.3 Verbeterde compressie met waveletpakketten

Naast een controleerbare subdivisie van schaal en positie, veroorzaken wa-
velets ook een oncontroleerbare subdivisie van het frequentiespectrum. Bij
de overgang van een fijne naar een ruwere schaal, wordt bij benadering
telkens enkel het lage deel van het frequentiespectrum verder opgedeeld.
Er treedt geen compressie meer op indien het frequentiespectrum van een
functie voornamelijk in het hogere deel gelegen is.

Dit fenomeen treedt op in het sterk oscillerende regime, omdat het grote
golfgetal aanleiding geeft tot hoge frequenties. Om dit te vermijden onder-
zochten we het gebruik van waveletpakketten. Waveletpakketten wn worden
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gedefinieerd in analogie met (7) door

w2n(t) =
√

2
∑

k∈Z

hkwn(2t− k), (10)

w2n+1(t) =
√

2
∑

k∈Z

gkwn(2t− k). (11)

Ze worden verder gedefinieerd op alle schalen en posities door wnjk =
2j/2wn(2

jt − k). De index n is een aanduiding van de frequentie van de
bijhorende waveletpakketfunctie.

Er is een groot aantal mogelijkheden om uit de waveletpakketten een
volledig stel basisfuncties te kiezen. We vergeleken verschillende methodes
om een geschikte basis op te stellen in functie van de waarde van het golf-
getal. De beste resultaten werden bekomen door toepassing van het twee-
dimensionale beste-basisalgoritme op de discretisatiematrix. Op basis van
numerieke experimenten en een heuristische schatting, concluderen we dat
het aantal significante elementen na compressie zich gedraagt als O(N1.4).
De totale complexiteit van de methode blijft echter hoog, omdat de volle
discretisatiematrix aanvankelijk moet berekend worden. De methode wordt
wel interessant indien hetzelfde stelsel opgelost wordt voor verschillende
randvoorwaarden. Andere basiskeuzes met een lagere complexiteit leidden
eveneens tot sterkere compressie in vergelijking met de klassieke wavelet-
methode. De resultaten worden vergeleken in Figuur 3.9 en Figuur 3.10.

2.4 Nauwkeurige kwadratuurformules

De wavelettransformatie van een functie vereist de evaluatie van een groot
aantal integralen van de vorm

cjk =

∫ ∞

−∞
f(x)φjk(x) dx, of djk =

∫ ∞

−∞
f(x)ψjk(x) dx. (12)

De convergentie van kwadatuurformules voor deze integralen hangt af van
de regulariteit van de schaalfunctie φ. De integratie kan verder bemoei-
lijkt worden door singulariteiten of discontinüıteiten van de functie f . We
onderzoeken kwadratuurformules van de vorm

∫ b

a

f(x)φ(x) dx ≈ Q[f ] =

r∑

i=1

wif(xi), (13)

waarvan de convergentie onafhankelijk is van de regulariteit van φ. De ge-
wichten kunnen automatisch berekend worden op basis van de coëfficiënten
hk in (7). Door een geschikte keuze van het integratie-interval [a, b] kun-
nen discontinüıteiten van f steeds op de rand gelegd worden, zodat ze de
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convergentie niet negatief bëınvloeden. De kwadratuurregel (13) kan ook
uitgebreid worden naar singuliere functies f . Ook in dat geval kunnen de
gewichten automatisch en efficiënt berekend worden.

Tenslotte worden de kwadratuurpunten xi zodanig gekozen dat zij op een
regelmatig rooster liggen. De functie-evaluaties f(xi) kunnen dan herbruikt
worden voor de evaluatie van integralen met naburige basisfuncties. In
vele gevallen is de evaluatie van de kernfunctie tijdrovend in vergelijking
met eenvoudige bewerkingen zoals optellen en het vermenigvuldigen met
gewichten. De tijdsbesparing door het herbruiken van de functie-evaluaties
is dan bijzonder groot.

3 Snelle multipoolmethodes

Snelle multipoolmethodes leiden tot een snel matrix-vectorproduct op een
andere manier. Er worden separabele expansies van de kernfunctie G(x, y)
opgesteld, met de algemene vorm

G(x, y) ≈
L∑

l=1

ul(x)vl(y). (14)

Deze multipoolexpansie is slechts geldig in bepaalde gebieden x ∈ Ωx en
y ∈ Ωy. De integraal van de integraaloperator A over het gebied Ωy kan
geschreven worden als

∫

Ωy

G(x, y)q(y) dsy ≈
L∑

l=1

ul(x)

∫

Ωy

vlq(y) dsy. (15)

Aangezien de integralen in het rechterlid van (15) nu onafhankelijk zijn van
x, kunnen zij berekend worden als tussenresultaat, en herbruikt worden
voor verschillende waarden van x. Het efficiënt opstellen van expansies van
de vorm (14) in gebieden die heel de rand Γ bestrijken, en het delen van
de tussenresultaten, maken een matrix-vector product mogelijk in O(N)
bewerkingen voor een vaste discretisatiefout ε.

In tegenstelling tot de waveletmethode, kan dezelfde techniek gebruikt
worden in het sterk oscillerende regime. Het nodige aantal termen in de
expansie stijgt echter ongeveer lineair met het golfgetal. Een matrix-vec-
torproduct met complexiteit O(N logN) blijft mogelijk indien de expansies
hiërarchisch opgesteld worden. De multipoolcoëfficiënten voor een bepaald
gebied worden dan berekend uit de coëfficiënten van de deelgebieden. De
convergentie van de expansie die gebruikt wordt voor de kernfunctie van het
Helmholtzprobleem wordt gëıllustreerd in Figuur 4.4.
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4 Hiërarchische matrix methodes

Hiërarchische matrices zijn matrices met een blokstructuur, waarvan de
deelblokken bestaan uit matrices van lage rang. De vermenigvuldiging met
een matrix van lage rang kan efficiënt uitgevoerd worden. Een volle matrix
van rang L kan geschreven worden als M = ABT , met M ∈ CN×N , en
A,B ∈ CN×L. De vermenigvuldiging met een vector x ∈ CN ,

Mx = ABTx = A(BTx), (16)

vergt slechts O(NL) bewerkingen, in plaats van O(N2) voor een matrix
van volle rang. De vermenigvuldiging met een hiërarchische matrix wordt
versneld door het toepassen van (16) voor elke deelmatrix.

De lage-rangbenadering van een deelmatrix van de discretisatiematrix
wordt gevonden door een separabele expansie van de kernfunctie te gebrui-
ken, gelijkaardig aan (14). In dat opzicht is de hiërarchische matrix techniek
vergelijkbaar met de snelle multipoolmethode. De aanpak is echter eerder
algebräısch en algemeen, terwijl de snelle multipoolmethode typisch opge-
steld wordt voor een specifieke integraalvergelijking met bijhorende kern-
functie. Een algemene separabele expansie kan bijvoorbeeld bereikt worden
door veelterminterpolatie.

5 Oscillerende integralen

5.1 Modelvorm en eigenschappen

Een weerkerend probleem in de numerieke simulatie van golfverschijnselen
is de evaluatie van oscillerende integralen. Als modelvorm beschouwen we
de integraal

I =

∫ b

a

f(x)eiωg(x) dx. (17)

Hierin zijn f en g zachtverlopende functies, respectievelijk de amplitude en
de oscillator van (17) genoemd. De parameter ω bepaalt de frequentie van
de oscillerende integrand. De waarde van I wordt bepaald door het gedrag
van f and g in de buurt van de eindpunten a en b, en van de stationaire
punten. Deze punten worden gevonden als oplossing van de vergelijking

g′(ξ) = 0, ξ ∈ [a, b]. (18)

Men zegt dat een stationair punt ξ orde r heeft indien g(i)(ξ) = 0, i =
1, . . . , r. Hun belang volgt uit het feit dat de oscillerende factor in (17) rond
een stationar punt lokaal quasi constant is. Het deel van de integraal rond
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een stationair punt heeft daardoor een belangrijk bijdrage tot de waarde
van I. In de andere delen van het interval [a, b] heffen de oscillaties elkaar
in toenemende mate op bij stijgende waarden van ω.

De eigenschappen van de integraal blijken uit de asymptotische expansie

I ∼
∞∑

i=1

aiω
−ni , ∀i : ni > 0. (19)

De coëfficiënten ai zijn volledig bepaald door een eindig aantal functiewaar-
den en afgeleiden van f en g in de punten a, b en alle stationaire punten ξ.
Deze eigenschap kan numeriek benut worden om nauwkeurige benaderingen
voor I te vinden die sterk verbeteren met toenemende frequentie.

5.2 De numerieke methode van de steilste helling

De klassieke methode van de steilste helling leidt tot een asymptotische
reeks van de vorm (19). We stellen een efficiënte numerieke implementatie
van de methode van de steilste helling voor. De methode is gebaseerd op
de volgende observaties:

• de oscillerende factor eiωg(x) daalt exponentieel voor complexe waar-
den van g(x) met een groeiend positief imaginair deel;

• de oscillerende factor eiωg(x) oscilleert niet voor waarden van g(x) met
een constant reëel deel.

Op basis van de stelling van Cauchy mag het integratiepad [a, b] verlegd
worden in het complexe vlak zonder de waarde van de integraal te verande-
ren, indien f en g analytische functies zijn. We kiezen vanop het reële punt
x het pad met parameterisatie hx(p) dat voldoet aan de vergelijking

g(hx(p)) = g(x) + ip, p > 0. (20)

Dit is het pad van de steilste helling. Deze keuze leidt, in de afwezigheid
van stationaire punten, tot de decompositie I = F (a) − F (b), met

F (x) =

∫ ∞

0

f(hx(p))e
iωg(hx(p))h′x(p) dp

= eiωg(x)
∫ ∞

0

f(hx(p))h
′
x(p)e

−ωp dp.

De integrand van F (x) oscilleert niet en daalt exponentieel snel. De evalu-
atie van F (x) via Gauss-Laguerre kwadratuur met n punten leidt tot een
fout die zich gedraagt als O(ω−2n). De convergentie in functie van stijgende
frequentie is bijzonder hoog.



xx NEDERLANDSE SAMENVATTING

We bekijken enkele uitbreidingen. Het pad van de steilste helling kan ef-
ficiënt bepaald worden met een iteratief algoritme. Een stationair punt geeft
aanleiding tot twee bijkomende contributies, F1(ξ) en F2(ξ), die elk afzon-
derlijk met dezelfde hoge nauwkeurigheid kunnen bepaald worden. Tenslot-
te kunnen de resultaten uitgebreid worden naar functies die niet analytisch
zijn, door de afgeleiden van f en g in de kritieke punten te interpoleren.

5.3 Hogerdimensionale integralen

De numerieke methode van de steilste helling kan uitgebreid worden naar
hogerdimensionale integralen. De modelintegraal heeft de vorm

In =

∫

S

f(x)eiωg(x) dx. (21)

De waarde van In wordt opnieuw bepaald door een aantal speciale punten.
Dit zijn vooreerst de hoekpunten van het integratiedomein S, als tegenhan-
ger van de eindpunten a en b in het ééndimensionale geval. Verder zijn er
de kritieke punten van de oscillator g. Dat zijn punten waar de gradiënt
van g nul wordt,

∇g(ξ) = 0, ξ ∈ S. (22)

Tenslotte zijn er resonantiepunten. Dat zijn punten waar de gradiënt van de
oscillator orthogonaal staat op de rand van het integratiedomein, ∇g ⊥ ∂S.

De integraal wordt behandeld door herhaalde enkelvoudige integratie.
We tonen aan dat resonantiepunten overeenkomen met stationaire punten
van een lagerdimensionale integraal. De kritieke punten ξ zijn een statio-
nair punt in elk van de integratieveranderlijken. Efficiënte cubatuurformules
worden opgesteld voor enkele voorbeeldintegralen, zoals de Fouriertransfor-
matie van een functie die gedefinieerd is op de driedimensionale eenheidsbol.

6 Een asymptotische hybride methode

6.1 Formulering

De integraal Av in integraalvergelijking (1) is sterk oscillerend wanneer het
golfgetal k groot is. Aangezien de rand Γ van een gesloten obstakel periodiek
is, zijn er geen bijdragen van eindpunten. De waarde van Av wordt volledig
bepaald door het gedrag van de integrand nabij de stationaire punten van de
oscillator. Indien de oscillator gekend is, kan de integraaloperator bijgevolg
snel geëvalueerd worden met de numerieke methode van de steilste helling,
en kan de integraalvergelijking zelf ook snel opgelost worden.
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We veronderstellen een invallende golf van de vorm ui(x) = us(x)e
ikg(x),

met gekende zachtverlopende functies us en g. Het is geweten dat, voor een
convex obstakel, de dichtheidsfunctie zich gedraagt als

q(x) = qs(x)e
ikg(x). (23)

Met andere woorden, de oplossing van de integraalvergelijking heeft het-
zelfde oscillerende gedrag als de invallende golf. Met deze kennis kan de
integraalvergelijking Av = f geschreven worden in de algemene vorm

∫ 1

0

H(x, y; k)eikg̃(x,y)qs(y; k)e
ikg(y) dy = f(x). (24)

De oscillator g̃(x, y) is afkomstig van het gekende oscillerende gedrag van
de kernfunctie G(x, y). Functie qs(y; k) is een ongekende, zachtverlopende
functie die afhankelijk is van de waarde van k. Functie H(x, y; k) is een
gekende, zachtverlopende functie. Integraal (24) is een oscillerende integraal
die zeer vergelijkbaar is met de modelvorm (17).

6.2 Een ijle discretisatiematrix

De zachtverlopende onbekende functie qs(y) wordt geschreven in een basis
van kubische spline-functies,

qs(y) =

N∑

i=1

ciφi(x). (25)

Collocatie van vergelijking (24) leidt tot een oscillerende integraal voor
elk collocatiepunt xi. De waarde van de integraal wordt bepaald door
het gedrag van qs(y) rond de stationaire punten van de oscillator g(x) =
g1(x) + gi(x). De collocatie-integraal wordt dus enkel bepaald door de
coëfficiënten cj bij basisfuncties cj waarvan de drager overlapt met een sta-
tionair punt. Een rechtstreeks gevolg is dat de discretisatiematrix een ijle
matrix wordt. Deze matrix wordt gëıllustreerd in Figuur 7.4. De matrix is
klein en kan opgesteld worden met een aantal bewerkingen dat onafhanke-
lijk is van de waarde van het golfgetal. Numerieke experimenten illustreren
dat de oplossing van het stelsel nauwkeuriger wordt bij stijgende frequenties
in Figuur 7.8.

7 Slotbemerkingen

7.1 Eigen bijdragen

We vermelden eerst de belangrijkste eigen bijdragen van deze thesis tot het
onderzoeksdomein:
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• de analyse van de waveletmethode in het sterk oscillerende regime;

• verbeterde matrixcompressie in het sterk oscillerende regime met een
nieuwe methode op basis van waveletpakketten;

• de constructie van efficiënte kwadratuurformules voor integralen met
wavelets in de integrand;

• een zeer nauwkeurige numerieke methode om sterk oscillerende inte-
gralen te evalueren;

• de uitbreiding van deze methode naar algemene hogerdimensionale
integralen;

• de ontwikkeling van een hybride numeriek-asymptotische randelemen-
tenmethode voor hoogfrequente integraalvergelijkingen.

7.2 Conclusies

Elke multischaalbenadering die in deze thesis onderzocht werd, leidt tot een
robuuste en snelle oplossingsmethode in het zwak oscillerende regime. De
waveletmethode is de enige die theoretisch (asymptotisch) optimaal is. De
snelle multipoolmethode en methodes gebaseerd op hiërarchische matrices
vereisen een aparte preconditionering indien de orde van de operator niet nul
is. Daartegenover staat dat het gebruik van separabele expansies robuuster
kan zijn dan het gebruik van wavelets wanneer het obstakel een grillige vorm
heeft. De juiste methode hangt dus af van de toepassing.

Problemen in het sterk oscillerend regime zijn beduidend moeilijker te
simuleren. Van de multischaalmethodes die in deze thesis onderzocht wer-
den, geven enkel de snelle multipoolmethode en een specifieke gerelateerde
implementatie van de hiërarchische matrix methode aanleiding tot een snel
matrix-vectorproduct. Ondanks de asymptotische voordelige complexiteit
O(N logN) blijven de methodes rekenintensief.

Een andere benadering werd in deze thesis voorgesteld door de combi-
natie van de randelementemethode met een asymptotische methode. De
efficiënte methodes voor oscillerende integralen maken een efficiënte imple-
mentatie van deze aanpak mogelijk. Problemen werden opgelost met zeer
grote waarden van het golfgetal, voor obstakels met een convexe en zacht-
verlopende vorm.

7.3 Suggesties voor verder onderzoek

Het verdere onderzoek na deze thesis kan zich toespitsen op methodes voor
de evaluatie van oscillerende integralen, op verbeteringen van de randele-
mentenmethode en op uitbreidingen van de hybride methode voor hoogfre-
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quente integraalvergelijkingen. Enkele toepassingen worden verder uitge-
diept in Appendix C. Mogelijke onderzoeksrichtingen voor de evaluatie van
oscillerende integralen zijn:

• efficiënte algoritmes voor een aantal varianten van de modelvorm met
een meer algemene oscillator, zoals een cosinus of een Besselfunctie;

• een robuuste implementatie van de numerieke methode van de steilste
helling in de aanwezigheid van complexe stationaire punten, polen of
singulariteiten;

• de asymptotische analyse van de methode voor meerdimensionale inte-
gralen met een gedegenereerd stationair punt in het integratiedomein;

• de toepassing van de ontwikkelde methodes in bestaande methodes
voor wetenschappelijke berekeningen en ingenieursproblemen, zoals
de J-matrixmethode voor quantum verstrooïıng [194], en de golfgeba-
seerde methode voor akoestische berekeningen [76].

Verdere onderzoeksrichtingen in het domein van de randelementenmethode
en de hybride methode zijn:

• het onderzoeken van het gedrag van het conditiegetal van de discreti-
satiematrix in de randelemenmethode bij hoge frequenties. Het con-
ditiegetal heeft een invloed heeft op de rekentijd bij het gebruik van
iteratieve oplossingsmethodes;

• de separabele benadering van de kernfunctie in de snelle multipool-
functie is gebaseerd op de discretisatie van een oscillerende integraal.
Met de nieuwe technieken kan de benadering mogelijk verbeterd wor-
den, waardoor de snelle multipoolmethode efficiënter wordt;

• de uitbreiding van de O(1) hybride methode voor hoogfrequente inte-
graalvergelijkingen naar meer algemene verstrooïıngsproblemen. Pro-
blemen met meervoudige verstrooïıng en niet-convexe obstakels kun-
nen mogelijk met een iterative benadering gesimuleerd worden;

• de methode kan verder uitgebreid worden naar drie-dimensionale pro-
blemen, de Maxwell-vergelijkingen en obstakels met hoeken;

• het is een open vraag of hybride methodes geformuleerd kunnen wor-
den voor algemene problemen met industriele relevantie, zoals planaire
antennes bestaande uit verschillende elektronische componenten. De
asymptotische vorm van de oplossing kan in dat geval bijzonder com-
plex worden. De ontwikkeling van O(1) methodes voor realistische
problemen bij hoge frequenties blijft een fascinerende uitdaging.
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Chapter 1

Introduction

1.1 Problem statement

The main focus of this thesis is the numerical simulation of wave phenomena.
Everywhere we go, we are surrounded by waves. Acoustic waves enable
sound and music, we use microwave ovens, wireless communication devices
and computer chips every day. Our hospitals make use of x-ray computed
tomography (CT), magnetic resonance imaging (MRI) and ultrasonography.
The smallest currently known particles exhibit wave-like properties on very
small time scales. On a much larger scale, cosmic background radiation
in the universe reveals a possible Big Bang billions of years ago. Wave
problems arise in many disciplines of science.

Both from a physical and a mathematical point of view, there is an im-
portant difference between static or non-oscillatory behaviour, such as in
gravitation, and dynamic or oscillatory behaviour, such as in electromag-
netic radiation. The difference lies in the way that information is conveyed
to the far field. For static problems, information is lost with increasing dis-
tance from a source. For example, one can easily infer the existence and the
weight of the moon from its gravitational field, but one can not determine
its shape. The moon, and any other mass of any shape, behaves as a single
point mass from a sufficiently large distance. In contrast, one can easily ob-
serve different craters on the surface of the moon, even with the naked eye.
The highly oscillatory nature of light permits very detailed information to
travel the long distance to earth. Numerically, this means that static or low
frequency behaviour in the far field can be well approximated, opening up
possibilities for efficient algorithms in numerical simulations. On the other
hand, it can be expected that the simulation of high frequency problems
will be more computationally intensive.

1
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We are interested in this thesis in the scattering of time-harmonic waves
by a scattering obstacle Ω ⊂ Rd with boundary Γ := ∂Ω. This can be
modelled by the Helmholtz equation

∆u+ k2u = 0,

with ∆ = ∇2 being the Laplacian, and where the wavenumber k deter-
mines the frequency of the waves. The unknown u(x) is defined on the
infinitely large domain surrounding the obstacle Ω. A boundary condition
u(x) = f(x) is imposed on Γ. This elliptic boundary value problem can be
reformulated as an integral equation over the boundary, of the form

(Av)(x) =

∫

Γ

G(x, y)v(y) dsy = f(x), x ∈ Γ, (1.1)

or

λv(x) +

∫

Γ

G(x, y)v(y) dsy = f(x), x ∈ Γ. (1.2)

Contrary to the Helmholtz equation, the unknown function v(y) in (1.1)
and (1.2) is defined on a finite domain Γ. Moreover, the dimension of Γ is
lower than that of Rd. Numerically, these are two important advantages.

The integral equation formulation comes at a cost however. The dis-
cretisation matrix, corresponding to a finite element or boundary element
approach withN basis functions, is a dense matrix withN2 elements. Direct
solution methods for the corresponding system of equations require O(N3)
operations. Efficient iterative Krylov subspace methods still require O(N2)
operations per matrix-vector product. For large problems, or complicated
boundaries, the numerical simulation becomes computationally intractable.

Another issue is the efficient solution for increasing values of the
wavenumber. Specifically, at larger frequencies, the solution v(y) itself will
be more oscillatory. The number of basis functions N needs to grow with k,
in order to represent the solution with a fixed accuracy. Usually, one chooses
a fixed number of basis functions per wavelength per dimension. This means
that, for three-dimensional problems involving a two-dimensional boundary,
the number of unknowns increases quadratically with k.

Similar to the difference between static and dynamic problems, we make
a distinction between the low frequency regime and the high frequency
regime. In the low frequency regime, the wavenumber k is fixed, and the
number of basis functions N is increased to improve the accuracy. In the
high frequency regime, the wavenumber k and N increase proportionally to
solve the problem at a higher frequency with a fixed accuracy. The problem
considered in this thesis is the study of efficient solution methods for equa-
tions (1.1) and (1.2) in the low frequency regime and in the high frequency
regime.



1.2. MOTIVATION AND GOALS 3

1.2 Motivation and goals

The motivation for this research project lies in a collaboration of the re-
search group Scientific Computing, at the Department of Computer Science,
with research groups from other departments in the Engineering Faculty of
K.U.Leuven. The research group Telemic, at the Department of Electri-
cal Engineering, employs integral equations for the modelling of antennas.
Their research focuses on antennas at millimetre wave frequencies, elec-
tronic beam steering, and small integrated antennas. The software pack-
age MAGMAS (Model for the Analysis of General Multilayered Antenna
Structures) that was developed relies heavily on integral equation formula-
tions [73, 192, 198]. Currently, the dense nature of the discretisation matrix
and the high frequency nature of the problem are the bottlenecks that pre-
clude the numerical simulation of larger antenna structures.

The boundary element method has also been considered in the package
OLYMPOS, developed by research group Electa at the Department of Elec-
trical Engineering [71, 139]. Their research involves the analysis, design and
optimisation of the steady state and dynamic behaviour of electromagnetic
energy transducers at low frequency, such as permanent magnets, actua-
tors and motors. The large scale numerical simulation using OLYMPOS is
restricted due to the computational cost of the boundary element method.

Finally, methods similar to the boundary element method are being de-
veloped by the research group Noise and Vibration, at the Department of
Mechanical Engineering, for the modelling of noise and vibration propaga-
tion inside vehicles [76, 77, 190]. The new methods developed in that group
require the efficient evaluation of a large number of oscillatory integrals.

The purpose of this thesis is the study of the theoretical and numerical
properties of fast solution methods for integral equations and evaluation
methods for oscillatory integrals. Several fast solution methods for integral
equations have been developed in the past decades. We focus on fast mul-
tipole methods [98], hierarchical matrix methods [101] and wavelet based
methods [19]. We analyse the properties and the computational complexity
of the methods, both in the low frequency regime and in the high frequency
regime. We aim at suggesting and developing improvements, and at closing
some of the gaps in the theoretical analysis.

We already briefly summarise the main results. Of the methods consid-
ered, we found that the fast multipole method is the only viable efficient
solution method for high frequency problems (together with an intimately
related implemention of hierarchical matrices). The wavelet method is op-
timal for low frequency problems, but is less robust for scattering obstacles
with irregular shapes. A novel approach is developed in this thesis for high
frequency problems, based on a thorough analysis of the properties of oscil-
latory integrals. A hybrid method is proposed that combines the standard
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boundary element method with asymptotic methods for high frequencies.
For a restricted class of model problems with a smooth and convex scatter-
ing obstacle problems are solved with wavenumbers that are several times
larger than what is currently computationally feasible with an efficient im-
plementation of multiscale methods.

1.3 Scope of the research project

The field of integral equations, scattering problems and efficient solution
methods is rich and varied. It is therefore necessary to limit the scope of
the research project. Specifically, we restrict the scattering problems in this
thesis to two-dimensional integral equation formulations of the Helmholtz
equation, leading to linear Fredholm integral equations of the first kind or
the second kind. The issues that arise in three-dimensional problems will
be briefly discussed in each chapter.

In the study of fast solution methods, we emphasise the construction
of a fast matrix-vector product. This matrix-vector product can be used
in combination with an iterative linear solver for the efficient overall solu-
tion of the problem. With the exception of wavelet based methods, a study
of preconditioning strategies is not included in this thesis. This choice is
motivated by a similar subdivision that is observed in literature: precondi-
tioning techniques can be combined with different matrix-vector products,
independently of each other. Pointers are given to the relevant literature.

The discussion of fast multipole methods and hierarchical matrices is
mostly limited to a literature study, with numerical results that are re-
stricted to an illustration of the principles and basic properties. It was
found that the theory and properties of these methods have been sufficiently
studied and described elsewhere, both for the low frequency regime and the
high frequency regime. Still, the numerical results for hierarchical matrices
include the largest problem that is considered in this thesis. A problem is
solved with half a million unknowns, which corresponds to a dense matrix
of approximately 274 billion elements.

Several own contributions are discussed to multiscale methods based on
wavelets. A gap was observed in the theory and applications of wavelet
based methods. We show that the wavelet method requires O(N2) oper-
ations in the high frequency regime. We propose a new method, based
on wavelet packets, that leads to a matrix-vector product with a much re-
duced computational complexity. Wavelets enable a subdivision of scale
and position. Wavelet packets introduce an additional subdivision of the
frequency spectrum. We show that the use of wavelet packets allows the
choice of oscillatory basis functions, that can be adaptively matched to the
frequency of the scattered wave. Finally, we also focus on new quadrature
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techniques for the implementation, showing that, contrary to a widespread
perception, a full Galerkin method can be implemented almost as efficiently
as a collocation method.

Next, a relatively new area of research is explored, that has originated
in the advent of efficient techniques for the evaluation of highly oscillatory
integrals. Own contributions are discussed for univariate and multivariate
integrals, based on a numerical implementation of the method of steepest
descent. It is shown that oscillatory integrals can be evaluated using a
number of operations that is independent of the frequency of the integrand.
The accuracy of these methods increases with increasing frequency.

The further analysis of these methods has led to a novel hybrid method
for oscillatory integral equations that is presented in Chapter 7 of this the-
sis. The new method is formulated for the case of a smooth and convex
scattering obstacle. In contrast to classical boundary element methods, the
hybrid method leads to a discretisation matrix that is small and sparse. The
matrix can be constructed with a number of operations that is independent
of the frequency. Moreover, the accuracy of a large part of the solution
increases with increasing frequency.

1.4 Outline of the thesis

We commence in Chapter 2 with a study of integral equations and their
applications. We derive a set of boundary integral equations that are equiv-
alent to the Laplace equation or the Helmholtz equation on a two- or three-
dimensional domain, and we introduce the boundary element method.

Next, we consider fast solution methods based on a multiscale represen-
tation of the problem. Multiscale methods based on wavelets are discussed
in Chapter 3. The results in this chapter have been published in a number
of articles. The wavenumber dependence of the wavelet method is anal-
ysed in [118]. The efficient computation of integrals involving wavelets is
the subject of [120]. The method based on wavelet packets was proposed
in [121], with more numerical results for multiple scattering configurations
given in [122].

The fast multipole method and methods based on hierarchical matrices
are discussed in Chapter 4 and Chapter 5. These chapters represent a
literature study, with numerical results that illustrate the principles and
basic properties.

Chapter 6 focuses on efficient evaluation methods for oscillatory inte-
grals. The numerical steepest descent method was proposed in [124]. The
extension to multivariate integrals was described in [123]. The application
of these methods for the evaluation of the matrix entries of the discretisation
matrix is explored in [119].
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The new hybrid method for high frequency scattering problems is de-
scribed next in Chapter 7. The contents of this chapter correspond to the
article [125].

The conclusions of this research project are formulated in Chapter 8, and
directions for future research are indicated. A number of appendices follow
this chapter. An analytic solution for the scattering by a circle further
illustrates the scattering problem in Appendix A. The steepest descent
method is discussed in Appendix B. Finally, the ongoing research in some
applications is summarised in Appendix C.



Chapter 2

Integral equations

2.1 Introduction

The main focus of this thesis is the solution of scattering problems using
integral equation formulations. The purpose of this chapter is to introduce
such scattering problems and their applications, and to relate them to the
corresponding mathematical formulations. We also aim to give an overview
of the relevant mathematical theory of integral equations. The chapter is
meant to be illustrative of the general theory. As such, it is not entirely self-
contained; the reader is referred to the given references for a more complete
description.

We commence with an introduction to the Helmholtz equation and its
applications in §2.2. The Helmholtz equation and related equations appear
in many problems involving wave characteristics, including acoustics and
electromagnetics. The equation can be derived from the wave equation for
time-harmonic problems - problems involving one specific frequency ω. The
main classification of general integral equations is described in §2.3. In the
remainder of the chapter, we will focus on a particular class of integral
equations that arises from the reformulation of boundary value problems
involving partial differential equations. The resulting integral equations are
so-called Fredholm integral equations of the first kind or Fredholm integral
equations of the second kind.

A number of mathematical preliminaries are presented in §2.4. We in-
troduce Sobolev function spaces and the theory of compact operators as
necessary tools for the understanding and characterisation of the mapping
properties of an integral operator. The main result of this section is the
formulation of the Fredholm Alternative - the theorem that decides on the
solvability of an operator equation.

7
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The relevant boundary value problems are formally defined in §2.5.
The construction of boundary integral equations that are equivalent to the
Helmholtz or Laplace boundary value problems is described in §2.6. The
boundary integral equations are essentially derived from an integral repre-
sentation of the solution to the boundary value problem. We introduce the
boundary element method for the solution of boundary integral equations
in §2.7. We discuss the convergence properties of a Galerkin approach, and
the conditioning issues of the resulting discretisation matrices.

The theory in this chapter mostly follows the approach of [11, 49, 100,
116, 154, 159]. Boundary integral equations for general elliptic partial differ-
ential equations are derived in [154]. A detailed description of the numerical
properties of integral equations is given in [100], with special attention for
the n-dimensional Laplace equation. The issues associated with integral
equations of the first kind are explored in [203]. Solution methods for in-
tegral equations of the second kind are discussed in [11]. Integral equation
formulations for the three-dimensional Helmholtz problem are developed
in [159] for applications in electromagnetics, and in [49, 138] for acoustics.

2.2 The Helmholtz equation and applications

The Helmholtz equation takes its name from Hermann von Helmholtz (1821-
1894). The equation is often related to problems involving wave charac-
teristics. For example, we will show in §2.2.1 how the equation can be
derived from the wave equation. In that context, it is sometimes called
the reduced wave equation. The Helmholtz equation is encountered in many
different applications, including non-oscillatory problems, such as the eigen-
value problem for the Laplace operator ∆. We present an overview of some
of the applications of the Helmholtz equation and related equations, that
have motivated the research of this thesis. For more information, the reader
is referred to [107, 159] for applications in electromagnetics, to [49, 138] for
applications in acoustics, and to [99] for an overview of the Helmholtz equa-
tion in general. For more general information on wave problems, that is not
specific to integral equations, the reader is referred to [147, 201].

2.2.1 Time-harmonic wave scattering

The first important equation in the modelling of wave propagation is the
wave equation itself, given by

∂2U

∂t2
+ γ

∂U

∂t
− c2∆U = 0. (2.1)

The wave equation models a wave with propagation speed c. Parameter γ
is a positive damping factor - if it is nonzero, the equation is dissipative.
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Equation (2.1) is a linear second order hyperbolic differential equation.
Since it is linear, the sum of any two solutions is again a solution of the
equation. Using this fact, we can single out one specific frequency. Assume
that U(x, t) = u(x)e−iωt is a time-harmonic wave with frequency ω > 0.1

Substitution in (2.1) yields the Helmholtz equation,

∆u+ k2u = 0, (2.2)

where the wavenumber k 6= 0 is given by k2 = ω(ω+ iγ)/c2. In the absence
of damping, we have k = ω/c. The sign of k is usually chosen such that

=(k) ≥ 0.

Henceforth, we will mostly assume that k is real, unless mentioned oth-
erwise. The name wavenumber is related to the case of a propagating
plane wave, where the wavelength is given by λ = 2π/k. In that case,
the wavenumber k is the number of wavelengths per 2π units of length.

The Helmholtz equation is a linear second order elliptic partial differen-
tial equation. The description of a wave that is scattered by an obstacle Ω
leads to a boundary value problem. Say a time-harmonic incoming wave is
given by the position-dependent amplitude function ui(x). Then the total
wave is given by

u(x) = ui(x) + us(x),

where us denotes the scattered wave. The boundary condition should be
given on Γ = ∂Ω, and depends on the underlying physical problem. One
can have Dirichlet boundary conditions of the form us = f , or Neumann
boundary conditions of the form ∂us

∂n = g, or combinations of both. In
general, different boundary conditions may be required for different parts
of Γ. For exterior problems, a suitable boundary condition should also be
satisfied at infinity. We discuss these conditions in more detail in §2.5.

2.2.2 Acoustic scattering

Consider the propagation of acoustic waves in a homogeneous, inviscid
medium with propagation speed c. The velocity vector v(x, t) of each parti-
cle is a function of space and time. It can be derived from a scalar function
U(x, t), called the velocity potential function, by

v(x, t) = ρ−1∇U(x, t),

1Some authors use a time-dependence of the form U(x, t) = u(x)eiωt. The differing
sign has implications for the exact form of many relations that follow from this equation.
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where ρ is the density of the medium. Based on the conservation of mass
and momentum, it can be shown that the velocity potential satisfies the
wave equation (2.1) if the perturbations in speed and pressure are suffi-
ciently small. In time-harmonic problems, where U(x, t) = u(x)e−iωt, the
amplitude function u(x) hence satisfies the scalar Helmholtz equation (2.2).
The pressure p(x, t) can be obtained from

p− p0 = −∂U
∂t

− γU.

The amplitude of the pressure function in time-harmonic problems also
satisfies the Helmholtz equation.

The boundary conditions in the problem of scattering by an obstacle
Ω relate to a physical property of the obstacle. The Dirichlet condition
us = −ui ensures that u = 0 on Γ = ∂Ω. Physically, this corresponds to
a so-called sound-soft obstacle. The Neumann boundary condition ensures
∂u
∂n = 0 on Γ, and corresponds to a sound-hard obstacle.

For general media, the wavenumber k(ω) depends on the frequency in a
medium-dependent manner. A consequence is that, in complex media, the
speed of sound is also a function of the frequency ω. The quantity

cp =
ω

<(k)

is called the phase velocity. The imaginary part of ω/k characterises the
attenuation of waves in the medium. The effect that waves at different
frequencies may propagate with different velocities is called dispersion.

2.2.3 Electromagnetic waves and Maxwell’s equations

The Helmholtz equation also appears in the modelling of electromagnetic
waves. Electromagnetic waves are described by the Maxwell equations. For
a homogeneous medium with electric permittivity ε and magnetic perme-
ability µ, and in the absence of charges and currents, the Maxwell equations
are given by

∇× E = −µ∂H
∂t

, ∇×H = ε
∂E

∂t
, ∇ · E = 0, ∇ ·H = 0. (2.3)

The field vectors E and H are the electric and magnetic field respectively.

The vectorial identity

∆E = ∇ · ∇ × E −∇×∇× E
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can be used to show that E and H satisfy the vectorial wave equations






∆E − 1

c2
∂2E

∂t2
= 0,

∆H − 1

c2
∂2H

∂t2
= 0,

where c = 1/
√
εµ is the speed of light in the medium. Transformation to

the frequency domain yields
{

∆Ê + k2Ê = 0,

∆Ĥ + k2Ĥ = 0,
(2.4)

The notation Ê is used to denote the Fourier transform of E, and is called
the phasor of E. Thus, the phasors of the electric and magnetic field vectors
satisfy a vector Helmholtz equation. Equations (2.4) should be augmented
with the conditions ∇ · Ê = 0 and ∇ · Ĥ = 0 to be equivalent to (2.3).

2.2.4 Radar cross section

Integral equation formulations for boundary value problems will be dis-
cussed in depth in §2.6. Nevertheless, as an introduction, we already state
the form of the most common integral equation of this thesis in order to
describe the radar cross section of a scattering obstacle.

Consider a two-dimensional scattering obstacle Ω with boundary Γ =
∂Ω. The scattered wave us(x) that satisfies the Helmholtz equation in the
exterior of Ω, and the Dirichlet boundary condition us(x) = −ui(x) on Γ,
can be found by solving the integral equation

∫

Γ

i

4
H

(1)
0 (k|x− y|)u(y) dsy = −ui(x), x ∈ Γ, (2.5)

where H
(1)
0 (z) is the Hankel function of the first kind and order zero. The

unknown function in (2.5) is the density function u(y), which is defined on
Γ. The scattered wave is then given by

us(x) =

∫

Γ

i

4
H

(1)
0 (k|x− y|)u(y) dsy, x ∈ R2 \ Ω.

Based on the asymptotic behaviour of the Hankel function for large
arguments [4], one obtains the asymptotic behaviour of the scattered wave
itself as

us(x) =
eik|x|
√

|x|

(

u∞
(
x

|x|

)

+O

(
1

|x|

))

, |x| → ∞.
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Figure 2.1: Illustration of the radar cross section of a circular obstacle with
a radius of 0.5 m at a frequency of 1.3 GHz as a function of the observing
angle θ in radians.

The function u∞( x
|x| ) is called the far-field pattern; it depends only on the

direction of the vector x. The far field pattern can be expressed in terms of
the original density function,

u∞
(
x

|x|

)

=
ei

π
4

8πk

∫

Γ

u(y)e−ik
x
|x|

·y dsy.

The radar cross section is defined for x = (cos θ, sin θ) as

σc(θ) := 2π lim
|x|→∞

|x| |us(x)|
2

|ui(x)|2
. (2.6)

It is the effective surface area of an isotropic antenna that would return
the same amount of power to a receiver at the distance |x|, as the power
reflected by Ω at the backscattering angle θ. The radar cross section can
also be found in terms of the far field pattern,

σc(θ) := 2π

∣
∣
∣
∣
u∞

(
x

|x|

)∣
∣
∣
∣

2

.

The radar cross section for a circular obstacle is shown in Figure 2.1. The
figure shows 10 log10(σ

c/λ).

2.3 Types of integral equations

The main classification of integral equations into two major groups depends
on the integration domain in the equation. If the integration domain de-
pends on the variable x, the equation is called a Volterra integral equation.
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If the integration domain is fixed, it is called a Fredholm integral equation.
A second classification is used depending on whether the unknown function
appears only inside the integral, or both inside and outside the integral;
these are called integral equations of the first kind and integral equations of
the second kind respectively.

The theoretical properties of Volterra and Fredholm integral equations
are quite different, as are the numerical treatment and the applications. The
most important difference between equations of the first kind and equations
of the second kind, both from a theoretical and from a numerical point of
view, is the conditioning of the problem. Specifically, integral equations of
the first kind can be severely ill-conditioned. The meaning of ill-conditioned
in this context is that small changes in the right hand side may correspond
to large changes of the solution. We present a brief overview that illustrates
the scope of this classification for one-dimensional integral equations.

2.3.1 Volterra integral equations

Volterra integral equations of the second kind have the general form

λu(x) +

∫ x

a

G(x, y, u(y)) dy = f(x), x ≥ a, λ 6= 0. (2.7)

The function u(x) is the only unknown in the equation. Depending on the
function G, the equation may be nonlinear. This type of problem can be
seen as a generalisation of the initial value problem of a non-linear ordinary
differential equation,

u′(x) = F (x, u(x)), x ≥ a, (2.8)

u(a) = u0.

The initial value problem is equivalent to the integral equation

u(x) = u0 +

∫ x

a

F (y, u(y)) dy, x ≥ a,

and indeed, solution methods for (2.7) resemble solution methods for the
initial value problem (2.8).

Linear Volterra integral equations of the first kind have the form

∫ x

a

G(x, y)u(y) dy = f(x), x ≥ a. (2.9)

Such equations can be very ill-conditioned, depending on the continuity
properties of the kernel function G(x, y). We will investigate this ill-
conditioning later in detail for Fredholm integral equations of the first kind.
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In some cases, linear Volterra integral equations of the first kind can be
reduced to equations of the second kind. If the derivatives ∂G

∂x and f ′ exist
and are continuous, and if G(x, x) 6= 0, x ∈ [a, b], then differentiating (2.9)
with respect to x leads to

u(x) +

∫ x

a

∂G
∂x (x, y)

K(x, x)
u(y) dy =

f ′(x)

G(x, x)
, x ∈ [a, b].

One particularly simple example is the Volterra integral equation of the first
kind

∫ x

a

u(y) dy = f(x), x ≥ a.

This problem is equivalent to u(a) = 0 and u(x) = f ′(x), x ≥ a.
We will not consider Volterra integral equations in the remainder of this

thesis. The reader is referred to [148] for an overview of analytical and
numerical solution methods, and to [157] for the treatment of nonlinear
Volterra integral equations.

2.3.2 Fredholm integral equations

Linear Fredholm integral equations of the second kind have the general form

λu(x) +

∫ b

a

G(x, y)u(y) dy = f(x), x ∈ [a, b], λ 6= 0. (2.10)

The difference with Volterra integral equations is that the product of the
unknown function and the kernel function is integrated over a fixed integra-
tion domain. Although Volterra equations could be interpreted as a special
case of Fredholm equations, using the modified kernel function

GF (x, y) =

{
G(x, y), x ≤ y,

0, x > y,

they are not usually treated that way.
Linear Fredholm integral equations of the first kind have the form

∫ b

a

G(x, y)u(y) dy = f(x), x ∈ [a, b]. (2.11)

The kernel function G(x, y) in (2.10) and (2.11) may be continuous or sin-
gular. Typically, in the context of boundary value problems, the kernel
function is singular when x = y. We call the kernel weakly singular if the
integral is (improperly) integrable, and strongly singular if it is not inte-
grable. A weak singularity in the case of one-dimensional integrals may be
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a logarithmic singularity, or it may have the form |x − y|α with α > −1.
A weakly singular kernel for two-dimensional integrals can be |x − y|−1.
Strongly singular kernels result in a so-called hypersingular integral equa-
tion. The efficient numerical solution of Fredholm integral equations of the
first and second kind is the main subject of this thesis.

2.4 Mathematical preliminaries

2.4.1 Function spaces

We briefly introduce the main function spaces that will be used in the text.
Sobolev spaces will play an important role in the characterisation of integral
operators. A detailed discussion of Sobolev spaces is given in [5].

Consider a domain D ⊂ Rd, that may be open or closed. We denote
by C(D) the space of all continuous functions on D, and by C0(D) the
subspace of all continuous functions on D that have compact support. The
corresponding spaces of all functions with continuous m-th order derivative
on D are denoted by Cm(D) and Cm0 (D) respectively. In particular, we
have C(D) = C0(D). The space C∞(D) contains all infinitely differentiable
functions that are bounded on D. These spaces are useful in characterising
the smoothness of a function; the higher the index of the function space,
the smoother the functions. Yet, they are not completely adequate for our
purposes, as they are not Hilbert spaces.

The space L2(D) is the space of all square integrable functions on D,

L2(D) =

{

f :

∣
∣
∣
∣

∫

D

f2(x) dσx

∣
∣
∣
∣
<∞

}

.

It is a Hilbert space equipped with the scalar product

(f, g) =

∫

D

f(x)g(x) dσx, f, g ∈ L2(D).

The space L2(D) can be seen as the completion of C0(D) with respect to the
norm induced by its scalar product. We define the Sobolev spaces Hm(D)
with a positive integer index m for an open domain D by

Hm(D) = {f : ∂αf ∈ L2(D) with |α| ≤ m},

where we have used ∂α to denote the partial derivatives of f ,

∂αf =

(
∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xd

)αd

f, α = (α1, α2, . . .).

The Sobolev space Hm(D) with index m contains all functions with each
m-th order derivative square integrable. The index m hence corresponds to
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a certain smoothness of the functions. Sobolev spaces are Hilbert spaces
with the scalar product

(f, g)Hm =
∑

|α|≤m

∫

D

∂αf(s)∂αg(x) dσx, f, g ∈ Hm(D).

Sobolev spaces correspond closely to the Cm spaces, as they both charac-
terise smoothness. For example, we always have the imbedding

Hm(Rd) ⊂ Ck0 (Rd), 0 ≤ k < m− d

2
.

We have Hs ⊆ Hm if s ≥ m, and H0 = L2. One can also define Sobolev
spaces with a fractional or real index. For the particular case when D = Rd,
the norm of a Sobolev space with positive real index s is given by

‖f‖2
Hs =

∫

Rd

(1 + |ω|2)s|f̂(ω)|2 dω <∞,

where f̂ is the Fourier transform of f . For more general domains D, the
norms are hard to compute. We will see later that equivalent norms can be
computed from the discrete wavelet transform of a function.

We will also require function spaces on the boundary Γ of a bounded
open domain Ω. We assume that Ω is a Lipschitz domain. A function f is
Lipschitz continuous if there exists a constant M > 0 such that

|f(x) − f(y)| ≤M |x− y|, x, y ∈ Rd.

A Lipschitz domain is a domain with a boundary that can be locally repre-
sented by a Lipschitz continuous function. Lipschitz domains include most
domains of interest, including domains with corners and edges. Exceptions
are domains with cracks or cusps. Sobolev spaces Hs(Γ) on Γ can be defined
by relating them to Sobolev spaces in the parameter domain. The precise
definition is rather involved, and can be found in [149].

Sobolev spaces with index m on Γ are well defined if Ω is a Cm domain,
i.e., there exists a parameterisation for the boundary of Ω that is m times
continuously differentiable. It is useful to know the smoothness of a function
on Rd that is restricted to Γ. Define the trace operator γ by

γf = f |Γ. (2.12)

If Ω is a Cm domain, then for 1/2 < s ≤ m the trace operator is a bounded
linear operator

γ : Hs(Ω) → Hs−1/2(Γ). (2.13)
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The Sobolev index of the restriction of f to Γ is 1/2 less than the Sobolev
index of f itself on Ω.

We end our discussion of function spaces with the concept of duality of
function spaces. We denote the space of all bounded linear functionals from
a normed space X to a normed space Y by L(X ,Y).

Definition 2.4.1. The dual space X ∗ of a normed space X is the space of
all bounded linear functionals g : X → C, i.e., X ∗ = L(X ,C).

The dual space X ∗ can be equipped with the norm

‖g‖X∗ = sup
06=x∈X

|g(x)|
‖x‖X

.

For a Hilbert space H, there exists a bijection between H and H∗. This
bijection can be used to identify H with H∗, i.e., to define the meaning of
H = H∗.

Theorem 2.4.2 (Riesz’ representation theorem). If H is a Hilbert
space, then for each g ∈ H∗ there exists a unique x ∈ H such that

g(y) = (x, y)H , ∀y ∈ H. (2.14)

Furthermore, ‖g‖H∗ = ‖x‖H .

Conversely, for each x ∈ H, there exists a bounded linear functional
g ∈ H∗ defined by (2.14).

2.4.2 Linear compact operators

In this section we introduce the concept of a compact operator . Recall that
a set U ∈ X is called compact if each sequence in U has a convergent
subsequence. A set is called relatively compact if its closure is compact.

Definition 2.4.3. A linear operator A : X → Y from a normed space X
into a normed space Y is called a compact operator if it maps each bounded
set in X into a relatively compact set in Y.

A compact operator A is necessarily bounded, i.e., A ∈ L(X ,Y). Any
linear combination of two compact operators is again compact, and we de-
note the space of compact operators by K(X ,Y) ⊂ L(X ,Y). As most com-
mon integral operators are compact operators, we describe some relevant
properties of compact operators.

A common characteristic of compact operators is that they increase
smoothness. The function Ku, with u ∈ C([a, b]), is typically smoother
than u itself if K is a compact operator. A similar observation holds for
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integral operators, because the integration increases smoothness. Indeed, it
can be shown that the integral operator

(Au)(x) =

∫

Ω

G(x, y)u(y) dsy, x ∈ Ω,

is compact if G : Ω × Ω → C is a continuous kernel. The integral operator
is also compact if G is a weakly singular kernel. Note however that these
statements may no longer hold if the domain Ω has corners or edges.

Another characteristic is the typical spectrum of a compact operator.
Recall that λ is an eigenvalue of a linear operator A : X → X if Aφ = λφ,
for some non-zero φ ∈ X .

Theorem 2.4.4 ([11],Th.1.4.1). Let A ∈ K(X ,X ) be a compact operator,
and let X be a Banach space. Then the eigenvalues of A form a discrete set
in the complex plane C, with 0 as the only possible limit point.

The fact that the eigenvalues of a compact operator can accumulate near
0 has important implications for the conditioning of an integral equation of
the first kind. The discretisation of such an equation represents the discreti-
sation of a compact operator, and hence, the eigenvalues of the discretisation
matrix will also tend to zero. This causes the ill-conditioning. The rate at
which the eigenvalues tend to zero is investigated in [113]. Generally, the
speed of convergence of the eigenvalues to zero increases with increasing
differentiability of the kernel function. For analytic kernel functions, the
eigenvalues decay exponentially fast [150].

2.4.3 Riesz-Fredholm theory

We discuss the solvability of the operator equation Au = f . First, we
consider the case where the operator A : X → X is defined as

A = I −K,

with I the identity operator and with a compact operator K ∈ K(X ,X ).
We say that A is the identity up to a compact perturbation. For such an
operator, it can be shown that injectivity is a sufficient condition for the
existence of a bounded inverse.

Theorem 2.4.5 ([49],Th.1.16). Let X be a normed space, and K ∈
K(X ,X ) be a compact linear operator. If I−K is injective, then the inverse
operator (I −K)−1 exists and is bounded.

The theorem shows that if the homogeneous equation u −Ku = 0 has
only the trivial solution u = 0, then the non-homogeneous equation u −
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Ku = f has a unique solution for all f ∈ X , and the solution depends
continuously on f . In order to characterise the solvability of Au = f when
A = I −K is not injective, we require a stronger result. First, we introduce
the concept of a Fredholm operator. For the remainder of this section, we
will follow the modern theory of [154].

Definition 2.4.6. An operator A ∈ L(X ,Y) is called Fredholm if

1. the subspace Range(A) is closed in Y ;

2. the spaces Null(A) and the quotient space Y/Range(A) are finite-
dimensional.

The index of A is the integer defined by

indexA = dim Null(A) − dim(Y/Range(A)).

For example, a matrix operator A : Cn → Cm is Fredholm, with in-
dex n − m. A matrix with Fredholm index 0 therefore corresponds to a
square matrix. The theory of Fredholm operators also covers the previously
discussed case where A = I −K, because I −K is Fredholm.

Theorem 2.4.7. If A = I − K, where K ∈ K(X ,X ) is compact, then
A : X → X is Fredholm and indexA = 0. More generally, if B : X →
Y is Fredholm and if B ∈ K(X ,Y), then A = B − K is Fredholm, and
index(A) = indexB.

The invertibility of the general equation Au = f is decided by the so-
called Fredholm Alternative theorem. In order to state the theorem, we
require the concept of a sesquilinear form and of an adjoint operator.

Definition 2.4.8. Let X and Y be two normed spaces. We call (·, ·) :
X × Y → C a sesquilinear form if for any x1, x2, x ∈ X , y1, y2, y ∈ Y,
α1, α2 ∈ C we have

(α1x1 + α2x2, y) = α1(x1, y) + α2(x1, y),

(x, α1y1 + α2y2) = α1(x, y1) + α2(x, y2).

For example, a sesquilinear form corresponding to the function space
X = Y = C(Ω) may be

(f, g) =

∫

Ω

f(x)g(x) dsx, f, g ∈ C(Ω).

A useful sesquilinear form on X ∗ × X can be defined using the concept of
a dual space that was defined in Definition 2.4.1. The sesquilinear form
(·, ·) : X ∗ ×X → C for dual spaces is defined by

(g, x) = g(x), x ∈ X , g ∈ X ∗. (2.15)
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Now consider an operator A : X → Y. The adjoint operator A∗ : Y∗ → X ∗

is defined using the sesquilinear form (2.15) by

(A∗y, x) = (y,Ax), x ∈ X , y ∈ Y∗. (2.16)

The Fredholm Alternative reads as follows.

Theorem 2.4.9 (Fredholm Alternative). Assume A : X → Y is Fred-
holm with indexA = 0. Then there are two, mutually exclusive possibilities:

1. The homogeneous equation Au = 0 has only the trivial solution u = 0.
In this case,

(a) for each f ∈ Y, the inhomogeneous equation Au = f has a unique
solution u ∈ X ;

(b) for each g ∈ X ∗, the adjoint equation A∗v = g has a unique
solution v ∈ Y∗.

2. The homogeneous equation Au = 0 has exactly p linearly independent
solutions u1, . . . , up for some finite p ≥ 1. In this case,

(a) the homogeneous adjoint equation A∗v = 0 has exactly p linearly
independent solutions v1, . . . , vp;

(b) the inhomogeneous equation Au = f is solvable if and only if the
right-hand side f satisfies (vj , f) = 0, j = 1, . . . , p;

(c) the inhomogeneous adjoint equation A∗v = g is solvable if and
only if the right-hand side g satisfies (g, uj) = 0, j = 1, . . . , p.

The proof of the Fredholm Alternative relies on the fact that the range
of A annihilates the null space of the adjoint operator A∗ and vice-versa, in
the sense that

Range(A) = {y ∈ Y : (u, y) = 0, ∀u ∈ Null(A∗) ⊂ Y∗},
Range(A∗) = {v ∈ X ∗ : (v, x) = 0, ∀x ∈ Null(A) ⊂ X}.

In the context of Hilbert spaces, one can define orthogonality using the
scalar product. The conditions of the Theorem then become orthogonality
conditions. Returning to an example from linear algebra: if A ∈ Cn×n is
a matrix, then the Fredholm Alternative states the familiar condition that
the linear system of equations Ax = b is solvable if and only if b ∈ RangeA,
or b ⊥ Null(A∗).
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2.5 Boundary value problems

In this section, we define the boundary value problems that will be con-
sidered in this thesis. Integral equations can be formulated for boundary
value problems of general elliptic partial differential equations [154]. The
resulting integral equations are all highly similar. We therefore restrict our
attention to boundary value problems for the Helmholtz equation. The the-
ory for the Laplace equation mostly follows from the theory described here
by substituting k = 0, with some exceptions (see [100]).

We are interested in the solution of the Helmholtz equation on an open
and simply connected bounded domain Ω ⊂ Rd, d = 2, 3, with boundary
Γ = ∂Ω, or on the exterior domain Rd \ Ω. We denote the exterior of the
domain by Ω+, and the interior by Ω−, such that Rd = Ω+ ∪ Γ ∪ Ω−. In
the remainder of the text, we will adopt the convention that the normal
derivative on Γ points into the exterior domain Ω+. We assume that Γ is
at least C1 continuous, unless mentioned otherwise.

In order to characterise a unique solution to the exterior Helmholtz prob-
lem, the solution should satisfy the so-called Sommerfeld radiation condition
at infinity. This condition states that the solution can only be an outgoing
wave, by requiring that the solution vanishes at a certain rate near infinity.
The Sommerfeld radiation condition for a d-dimensional problem is

lim
r→∞

r(d−1)/2

∣
∣
∣
∣

∂u

∂r
− iku

∣
∣
∣
∣
= 0, r = ‖x‖. (2.17)

The limit states that the expression between the absolute value lines should
vanish faster than 1/

√
r for two-dimensional problems, i.e.,

∣
∣
∣
∣

∂u

∂r
− iku

∣
∣
∣
∣
= o(1/

√
r), r → ∞, (2.18)

and faster than 1/r for three-dimensional problems,

∣
∣
∣
∣

∂u

∂r
− iku

∣
∣
∣
∣
= o(1/r), r → ∞. (2.19)

The boundary value problems are now formally defined. We postpone
the characterisation of the function spaces to which the solution and the
boundary condition belong to a later stage in the text.

Problem 2.5.1 (Interior Dirichlet). Find the function u, such that

∆u(x) + k2u(x) = 0, x ∈ Ω−,

u(x) = f(x), x ∈ Γ.
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For the exterior Dirichlet problem, we require that the Sommerfeld ra-
diation condition is satisfied.

Problem 2.5.2 (Exterior Dirichlet). Find the function u, such that

∆u(x) + k2u(x) = 0, x ∈ Ω+,

u(x) = f(x), x ∈ Γ,

and u satisfies the Sommerfeld radiation condition (2.17).

The interior and exterior Neumann problem are defined similarly.

Problem 2.5.3 (Interior Neumann). Find the function u, such that

∆u(x) + k2u(x) = 0, x ∈ Ω−,

∂u

∂n
(x) = g(x), x ∈ Γ.

Problem 2.5.4 (Exterior Neumann). Find the function u, such that

∆u(x) + k2u(x) = 0, x ∈ Ω+,

∂u

∂n
(x) = g(x), x ∈ Γ,

and u satisfies the Sommerfeld radiation condition (2.17).

It is also possible to consider boundary value problems with mixed boun-
dary conditions. The conditions can, e.g., have the form

u(x) + α
∂u

∂n
(x) = f(x), x ∈ Γ,

or
{
u(x) = f(x), x ∈ ΓD,
∂u
∂n (x) = g(x), x ∈ ΓN ,

with Γ = ΓD ∪ ΓN . Boundary conditions of this type are treated in [154],
in the context of integral equations.

2.6 Boundary integral equations

Boundary value problems for elliptic partial differential equations can be
transformed into a boundary integral equation through the use of Green’s
identities. This approach has the advantage that the properties of the inte-
gral equations, such as uniqueness of the solution, can be established using
existing theory for the corresponding differential equation. Much insight
into the problem is gained by relating the unknown of the integral equation
to a physical interpretation in the context of the differential equation.
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2.6.1 Green’s identities

Assume that Ω is an open domain with a smooth boundary. The divergence
theorem relates the area or volume integral over Ω of a vector function to
the boundary integral of its normal component. The theorem is also referred
to as Gauss’s theorem, or as Green’s theorem in the two-dimensional case.

Theorem 2.6.1 (Divergence theorem). Let F : Ω → Rd, d = 2, 3, with
each component of F in C1(Ω), then

∫

Ω

∇ · F (x) dσx =

∫

∂Ω

n(x) · F (x) dsx.

Green’s identities follow from the divergence theorem. First, assume
u ∈ C1(Ω) and v ∈ C2(Ω). Taking F = u∇v yields Green’s first identity

∫

Ω

u∆v dσx =

∫

∂Ω

u
∂v

∂n
dsx −

∫

Ω

∇u · ∇v dσx. (2.20)

If also u ∈ C2(Ω), then interchanging the roles of u and v in (2.20) and
subtracting the two relations yields Green’s second identity

∫

Ω

(u∆v − v∆u) dσx =

∫

∂Ω

(u
∂v

∂n
− v

∂u

∂n
) dss. (2.21)

Green’s identities will be central in deriving an integral representation
of the solution of the Helmholtz equation. The identities remain valid if the
domain Ω has corners or edges.

2.6.2 An integral representation

In this section, we will motivate the definition of two relevant functions,
called the single-layer potential and the double-layer potential. To that end,
we first define the fundamental solution of an elliptic partial differential
equation. Consider a second order elliptic partial differential equation Lu =
f . We define the fundamental solution of the PDE as the solution to the
equation

LxG(x, y) = −δ(x− y), (2.22)

in the sense of distributions, where δ is Dirac’s delta function. The fun-
damental solution is also called the Green’s function or, in the context of
integral equations, the kernel function. The notation Lx indicates that the
derivatives in the operator L occur with respect to the variable x. For the
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Laplace equation, we have the fundamental solutions

G(x, y) =
1

2π
log(|x− y|), d = 2, (2.23)

G(x, y) =
1

4π

1

|x− y| , d = 3, (2.24)

where |x − y| denotes the Euclidian norm of the vector x − y ∈ Rd. The
fundamental solutions for the Helmholtz equation are given by

G(x, y) =
i

4
H

(1)
0 (k|x− y|), d = 2, (2.25)

G(x, y) =
1

4π

eik|x−y|

|x− y| , d = 3, (2.26)

with H
(1)
0 (z) the Hankel function of the first kind and order zero. The above

fundamental solutions are singular when x = y. This is not necessarily
always the case. For example, the fundamental solution for the biharmonic
differential equation ∆2u = 0 in R2 is

G(x, y) =
1

8π
|x− y|2 log(|x− y|).

This function is singular when x = y only in a higher order derivative.
Now consider the domain Ω with boundary Γ, and the non-homogeneous

differential equation

Lu = ∆u+ k2u = f, (2.27)

with possibly k = 0, i.e., we consider the non-homogeneous Laplace and
Helmholtz equation. Recall the sifting property of the δ-function,

∫

Ω

u(y)δ(y − x) dσy = u(x), x ∈ Ω. (2.28)

By the defining property of the fundamental solution (2.22), we can write

u(x) = −
∫

Ω

u(y)(∆yG(x, y) + k2G(x, y)) dσy, x ∈ Ω.

Using Green’s second identity with v(y) = G(x, y), we arrive at

u(x) = −
∫

Γ

[

u(y)
∂G

∂ny
(x, y) −G(x, y)

∂u

∂n
(y)

]

dsy

−
∫

Ω

[
∆yu(y) + k2u(y)

]
G(x, y) dσy.
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If u is a solution to the non-homogeneous differential equation (2.27), then

u(x) = −
∫

Γ

[

u(y)
∂G

∂ny
(x, y) −G(x, y)

∂u

∂n
(y)

]

dsy

−
∫

Ω

f(y)G(x, y) dσy.

In the absence of a boundary, the solution u(x) can thus be written as
a convolution-type integral of the right-hand side of the non-homogeneous
partial differential equation (2.27) with the fundamental solution,

u(x) = −
∫

Ω

f(y)G(x, y) dσy, x ∈ Ω.

In this sense, the integral involving the fundamental solution can be seen as
the inverse of the partial differential operator.

In general, an integral equation involving only integrals over Γ cannot
be derived for non-homogeneous partial differential equations. A useful
integral representation for the solution of the homogeneous equation, relat-
ing the solution to its values on the boundary of the domain, is given in
the following Theorem. The non-homogeneous problem can be solved by
adding a solution of the homogeneous problem to a particular solution of
the non-homogeneous problem.

Theorem 2.6.2 (Green’s formula). Assume Γ is C1 continuous, and
u ∈ C2(Ω) solves ∆u+ k2u = 0. Then

u(x) = −
∫

Γ

[

u(y)
∂G

∂ny
(x, y) −G(x, y)

∂u

∂n
(y)

]

dsy, x ∈ Ω. (2.29)

Note that if x /∈ Ω, then the right hand side of (2.28) is zero, and we
obtain

∫

Γ

[

u(y)
∂G

∂ny
(x, y) −G(x, y)

∂u

∂n
(y)

]

dsy = 0, x ∈ Rd \ Ω. (2.30)

The result of Theorem 2.6.2 is that the solution u of the homogeneous
equation is completely determined by its values and its normal derivative
along the boundary Γ of the domain Ω. These values are sometimes called
the Cauchy data. The form (2.29) suggests the definition of two functions;
they are the single-layer potential

u(x) =

∫

Γ

G(x, y)q1(y) dsy, (2.31)
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and the double-layer potential

u(x) =

∫

Γ

∂G

∂ny
(x, y)q2(y) dsy. (2.32)

Theorem 2.6.2 states that each solution to the homogeneous equation can be
written in terms of the single-layer potential and the double-layer potential
with certain density functions q1(y) and q2(y). The names of the layer
potentials originate in the following property.

Theorem 2.6.3. The single-layer potential (2.31) and double-layer poten-
tial (2.32) satisfy Lu = 0, x /∈ Γ.

Proof. Since the integrands of the single-layer and double-layer potential
are smooth for x /∈ Γ, we can move the derivative inside the integral,
and interchange the derivatives. The result is an immediate consequence
of (2.22).

The name ‘potential’ arises from the fact that for the Laplace equation,
the layer potentials are harmonic functions or potentials. For the Helmholtz
equation, the name ‘potential’ should be understood in a generalised sense.
The term single-layer stems from the fact that (2.31) can be seen as the field
due to a continuous distribution of field sources with density q1(y), i.e., there
is a layer of sources on Γ. The double-layer potential can equivalently be
seen as a distribution of dipoles on Γ.

The solution of Lu = 0 by the integral representation (2.29) requires the
knowledge of both u|Γ and ∂u

∂n |Γ. In general, only one of these functions,
or a linear combination of both functions, is known through the boundary
condition. In order to solve the differential equation, we need to investigate
the limiting behaviour of the integral representation as x approaches the
boundary Γ. There are two difficulties associated with this limit: first,
the fundamental solution has a singularity when x = y, and second, the
representation was derived with the assumption that x ∈ Ω. The behaviour
of the layer potentials as x approaches Γ is our next subject.

2.6.3 Jump relations

In this section, we investigate the regularity properties of the single-layer
and double-layer potential. A first and useful observation is that both layer
potentials for the Helmholtz equation satisfy the Sommerfeld radiation con-
dition at infinity. This means that a solution to the homogeneous equation,
written in terms of the layer potentials according to Theorem 2.6.2, auto-
matically satisfies the Sommerfeld radiation condition.

The behaviour of the layer potentials as x approaches Γ is not straight-
forward. The continuity properties as x crosses the boundary depend in
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general on the continuity properties of the fundamental solution or kernel
function. In general, the higher the smoothness of the kernel function, the
higher the smoothness of the potentials. In particular, for singular kernels
the potentials may be discontinuous across the boundary. In the following,
we state the continuity results for the Helmholtz equation in two and three
dimensions. The proofs are rather lengthy and technical in nature, and are
omitted. A full description with similar theorems can be found in [49] for
the three-dimensional Helmholtz and Laplace problems, in [100] for the n-
dimensional Laplace problem, and in [154] for more general strongly elliptic
second order partial differential equations.

As it turns out, the single-layer potential is continuous everywhere.

Theorem 2.6.4. The single-layer potential u given by (2.31) is continuous
in x ∈ Rd.

Now consider the normal derivative of the single-layer potential at Γ,
which can be understood as the limit

∂u±

∂n
(x) = lim

h→0,h>0
[n(x) · ∇u(x± hn(x))] , x ∈ Γ,

where n(x) represents the outward normal to Γ at the point x. It can be
shown that both limits exist, but they are not equal.

Theorem 2.6.5. For the single-layer potential u with continuous density
q1, we have

∂u±

∂n
(x) =

∫

Γ

∂G

∂nx
(x, y)q1(y) dsy ∓

1

2
q1(x), x ∈ Γ, (2.33)

where the integral exists as an improper integral.

The following corollary relates the jump in the normal derivative of
the single-layer potential to the density function q1. It is an immediate
consequence of Theorem 2.6.5.

Corollary 2.6.6. For the single-layer potential u with continuous density
q1, we have

∂u−

∂n
(x) − ∂u+

∂n
(x) = q1(x), x ∈ Γ, (2.34)

1

2

(
∂u−

∂n
(x) +

∂u+

∂n
(x)

)

=

∫

Γ

∂G

∂nx
(x, y)q1(y) dsy, x ∈ Γ. (2.35)

The double-layer potential has a similar jump as the normal derivative
of the single-layer potential, differing only in sign.
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Theorem 2.6.7. The double-layer potential u with continuous density q2
can be continuously extended from Ω+ to Ω+ and from Ω− to Ω− with
limiting values

u±(x) =

∫

Γ

∂G

∂ny
(x, y)q2(y) dsy ±

1

2
q2(x), x ∈ Γ, (2.36)

where the integral exists as an improper integral.

Corollary 2.6.8. For the double-layer potential u with continuous density
q2, we have

u−(x) − u+(x) = −q2(x), x ∈ Γ, (2.37)

1

2

(
u−(x) + u+(x)

)
=

∫

Γ

∂G

∂ny
(x, y)q2(y) dsy, x ∈ Γ. (2.38)

Finally, we consider the normal derivative of the double-layer potential.
The normal derivative of the double-layer potential is continuous, but the
kernel function is strongly singular. The corresponding integral can only be
defined as a Hadamard finite part integral, denoted by f.p. (see [89, 177]).

Theorem 2.6.9. For the double-layer potential u with density q2 ∈ C2(Γ),
we have

∂u+

∂n
(x) =

∂u−

∂n
(x), x ∈ Γ,

and

∂u

∂n
(x) = f.p.

∫

Γ

∂2G

∂nx∂ny
(x, y)q2(y) dsy.

2.6.4 Boundary integral equations

Based on the definitions and the properties of the layer-potentials, we can
define the following four integral operators:

(Sq)(x) =

∫

Γ

G(x, y)q(y) dsy, (2.39)

(Dq)(x) =

∫

Γ

∂G

∂ny
(x, y)q(y) dsy, (2.40)

(D∗q)(x) =

∫

Γ

∂G

∂nx
(x, y)q(y) dsy, x ∈ Γ, (2.41)

(Nq)(x) = f.p.

∫

Γ

∂2G

∂nx∂ny
(x, y)q(y) dsy, x ∈ Γ. (2.42)
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It can be verified that, for sufficiently smooth boundaries, all kernel
functions are only weakly singular, except the kernel function of the so-called
hypersingular operator N . The notation D and D∗ is justified because the
operators are indeed adjoint when x ∈ Γ. The single-layer and double-layer
potential operators S and D are defined for each x ∈ Rd. They can be
restricted to x ∈ Γ by the trace operators γ+ and γ−.

Using the results of the previous section, we can generalise the integral
representation of Theorem 2.6.2 as follows.

Theorem 2.6.10. Assume Γ is C1 continuous, and u solves ∆u+k2u = 0,
x /∈ Γ, and satisfies the Sommerfeld radiation condition (2.18) or (2.19) at
infinity. Denote the jumps of u and its normal derivative on Γ by

[u] = u− − u+, and

[
∂u

∂n

]

=
∂u−

∂n
− ∂u+

∂n
.

Then we can write

u = S

[
∂u

∂n

]

−D[u], x /∈ Γ. (2.43)

For x ∈ Γ we have

u−(x) + u+(x)

2
= S

[
∂u

∂n

]

−D[u]. (2.44)

Proof. From Theorem 2.6.2 and (2.30), we know that

u− = S
∂u−

∂n
−Du−, x ∈ Ω−, (2.45)

S
∂u−

∂n
−Du− = 0, x ∈ Ω+.

Using a similar reasoning, and the Sommerfeld radiation condition, one can
show that similar relations hold for the converse case, (see, e.g., [49])

u+ = −S ∂u
+

∂n
+Du+, x ∈ Ω+, (2.46)

− S
∂u+

∂n
+Du+ = 0, x ∈ Ω−.

Together, these relations establish (2.43) for x /∈ Γ.
We can take the limit x → Γ using the results of the previous section.

By Theorem 2.6.4 and Theorem 2.6.7, equation (2.45) leads to

u−(x) = (S
∂u−

∂n
)(x) − (Du−) + u−(x)/2, x ∈ Γ.

Taking a similar limit in equation (2.46) and adding both relations proves
the second result (2.44).
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2.6.4.1 Integral equations for the single-layer potential

The jump relations of the layer potentials can be used to obtain boundary
integral equations. Using the continuity of the single-layer potential, we
find that it can be used to solve the interior and exterior Dirichlet problem
simultaneously.

Theorem 2.6.11. The single-layer potential Sq with continuous density q
is a solution of the Interior Dirichlet Problem 2.5.1, provided q is a solution
to the integral equation of the first kind

Sq = f. (2.47)

In that case, the single-layer potential also solves the Exterior Dirichlet
Problem 2.5.2.

Proof. The single-layer potential satisfies the Helmholtz equation in Ω− by
Theorem 2.6.3. By Theorem 2.6.4, we see that the single-layer potential
assumes the prescribed boundary condition on Γ. This finishes the proof
for the interior Dirichlet problem. The proof for the exterior Dirichlet prob-
lem is similar; suffice to note that the Sommerfeld radiation condition is
automatically satisfied.

Integral equation (2.47) is a linear Fredholm integral equation of the first
kind with the weakly singular kernel G(x, y). A consequence of the integral
representation Theorem 2.6.10 is that we can characterise the solution of the
equation in terms of variables of the physical problem: the density function
corresponds exactly to the jump in the normal derivative of the solution.

Theorem 2.6.12. If the single-layer potential Sq with density function q
satisfies the Helmholtz equation in Ω+ ∪ Ω−, then

q =

[
∂u

∂n

]

, x ∈ Γ.

Proof. Since the single-layer potential is continuous across the boundary Γ,
we have [u] = 0. The result follows from (2.43).

An integral equation for the Neumann problem can be constructed using
the normal derivative of the single-layer potential. Due to the discontinuity
jump across Γ, the formulations for the interior and the exterior problem
are different.

Theorem 2.6.13. The single-layer potential Sq with continuous density q
is a solution of the Interior Neumann Problem 2.5.3, provided q is a solution
to the integral equation of the second kind

(
I

2
+D∗

)

q = g. (2.48)
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It is a solution for the Exterior Neumann Problem 2.5.4 if
(

−I
2

+D∗
)

q = g. (2.49)

Proof. The result follows from the limits of the normal derivative of the
single-layer potential at Γ, characterised by Theorem 2.6.5.

2.6.4.2 Integral equations for the double-layer potential

Integral equations can also be found using the double-layer potential. The
resulting equations have different properties for the same problem. For
example, the double-layer potential leads to an integral equation of the
second kind for the Dirichlet problem.

Theorem 2.6.14. The double-layer potential Dq with continuous density q
is a solution of the Interior Dirichlet Problem 2.5.1, provided q is a solution
to the integral equation of the second kind

(

−I
2

+D

)

q = f. (2.50)

It is a solution for the Exterior Dirichlet Problem 2.5.2 if
(
I

2
+D

)

q = f. (2.51)

The proof is based on the jump relations of Theorem 2.6.7. We can
again characterise the solution of the integral equation in terms of physical
variables. Since by Theorem 2.6.9 the normal derivative of the double-layer
potential is continuous across Γ, we have that

[
∂u
∂n

]
= 0. The following

theorem follows from the integral representation Theorem 2.6.10.

Theorem 2.6.15. If the double-layer potential Dq with density function q
solves the Helmholtz problem in Ω+ ∪ Ω−, then

q = [u] , x ∈ Γ.

Finally, the double-layer potential can also be used to solve the interior
and exterior Neumann problems. This leads to the hypersingular integral
equation.

Theorem 2.6.16. The double-layer potential Dq with density q ∈ C2(Γ) is
a solution of the Interior Neumann Problem 2.5.3, provided q is a solution
to the integral equation of the first kind

Nq = g. (2.52)

In that case, it also solves the Exterior Neumann Problem 2.5.4.
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Table 2.1: Summary of the constructed boundary integral equations.

u = Sq u = Dq
Dirichlet problem

interior Sq = f (− I
2 +D)q = f

exterior Sq = f ( I2 +D)q = f
Neumann problem

interior ( I2 +D∗)q = g Nq = g
exterior (− I

2 +D∗)q = g Nq = g

Integral equation (2.52) involves the strongly singular kernel function
∂2G

∂nx∂ny
(x, y). The integral operator can only be evaluated in the sense

of Hadamard finite part integration. For this reason, equation (2.52) is
called the hypersingular integral equation. Since a constant density has no
influence on the value of the Hadamard integral, a normalisation condition

∫

Γ

q(x) dsx = 0

is imposed. The singularity needs to be regularised before computations
can be performed [158].

A summary of the constructed integral equations is given in Table 2.1.
All these formulations were based on representing the solution as either a
single-layer potential or a double-layer potential. The equations are there-
fore called indirect integral equations. We note that it is also possible to de-
rive so-called direct integral equations, by considering the limit case x→ Γ
directly for Green’s formula in Theorem 2.6.2. The resulting equations are
called direct, since they yield the Dirichlet or Neumann data of the unknown
function as the solution, without an intermediate evaluation of a potential
operator. The equations themselves however typically contain several ap-
plications of the integral operators.

2.6.5 Mapping properties of the integral operators

The motivation for finding the exact domain and range of the integral opera-
tors defined in §2.6.4 does not lie solely in purely theoretical considerations.
Indeed, we will see that the properties of the function spaces involved relate
directly to important numerical properties of the solution methods, such
as the condition number of the discretisation matrix. From a theoretical
point of view, the exact domain and range of the operators serve to prove
existence and uniqueness results. The importance is summarised in the
following lemma.
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Lemma 2.6.17 ([154],Cor.2.2). Let X and Y be Banach spaces. If A ∈
L(X ,Y), then the following conditions are equivalent:

(i) The subspace RangeA is closed in Y.

(ii) The induced map A/ : X/Null(A) → Range(A) has a bounded inverse.

In particular, there exists a bounded inverse A−1 ∈ L(Y,X ) if and only if
Range(A) = Y and Null(A) = {0}.

Given an integral or differential operator A, one wants to find spaces
X and Y such that A : X → Y is bounded and Range(A) is closed. If Y
is too big relative to X , than the image of A will fail to be closed. If Y
is too small, than restricting X to a suitable subspace typically yields an
unbounded operator. If both spaces match for the particular operator, then
the equation Au = f is solvable, up to a an element of the null space of A.

Suitable function spaces are given by the Sobolev spaces on the boundary
Γ, as defined in §2.4.1 for general Lipschitz domains. This characterisation
allows the definition of the order of an operator.

Definition 2.6.18. The order of an operator A is r if A : Hs → Hs−r

satisfies the conditions (i) and (ii) in Lemma 2.6.17.

The following characterisations were derived in [51]. The single-layer
potential and double-layer potentials for general Lipschitz domains give rise
to bounded linear operators

S : H−1/2(Γ) → H1/2(Γ), D : H1/2(Γ) → H1/2(Γ), (2.53)

D∗ : H−1/2(Γ) → H−1/2(Γ), N : H1/2(Γ) → H−1/2(Γ).

The order of the operator S is therefore r = −1. The negative or-
der means that applying the integral operator results in a function that is
smoother than the density function. This corresponds to the smoothing
process of integration. The mapping properties (2.53) can be extended to
hold for a whole range of Sobolev spaces. If −1/2 ≤ s ≤ 1/2, then we have

S : Hs−1/2(Γ) → Hs+1/2(Γ), D : Hs+1/2(Γ) → Hs+1/2(Γ),

D∗ : Hs−1/2(Γ) → Hs−1/2(Γ), N : Hs+1/2(Γ) → Hs−1/2(Γ).

The range of Sobolev spaces increases with increasing smoothness of the
boundary Γ. In particular, if Γ is Cm+1 for an integer index m ≥ 0, then
the mapping properties hold for the extended range −m ≤ s ≤ m.



34 CHAPTER 2. INTEGRAL EQUATIONS

2.6.6 Uniqueness and resonance frequencies

The existence and uniqueness of the solutions to the equations in Table 2.1
can be established using the results from the overview of the Riesz-Fredholm
theory in §2.4.3. For example, Theorem 2.4.5 applies to the integral equa-
tions of the second kind of the form I − K, where the integral operator
K is a compact operator. The theorem states that showing injectivity of
I − K is sufficient for the existence of a bounded inverse, and hence, for
the solvability of (I −K)q = f for each function f . If I −K is not injec-
tive, necessary and sufficient conditions for the solvability are given by the
Fredholm Alternative Theorem 2.4.9.

However, the Fredholm Alternative does not state that there is a unique
solution to the equation Au = f . Indeed, the null space of the operator A
may be non-trivial. For the Helmholtz equation, there are certain resonance
frequencies for which the interior problem is not uniquely solvable. These
resonance frequencies are related to the eigenvalues of the Laplacian ∆.
Assume that

∆u(x) = −k2u(x), x ∈ Ω−,

u(x) = 0, x ∈ Γ,

i.e., −k2 is an eigenvalue of the Laplacian on Ω− with eigenfunction u. The
eigenfunction u satisfies the Helmholtz equation in Ω− with homogeneous
Dirichlet boundary conditions. Hence, the eigenfunction lies in the null
space of the operator S, and S is not invertible for these critical values. The
interior Dirichlet problem is not uniquely solvable. Moreover, the exterior
Dirichlet problem can not be solved using the integral equation

Sq = f, (interior and exterior problem)

although one can show that the exterior Dirichlet problem has a unique
solution for each value of the wavenumber.

For the same eigenvalue of the interior Dirichlet problem for the Lapla-
cian, the exterior Neumann problem can not be solved using the single-layer
potential, i.e., the integral equation of the second kind

(−I
2

+D∗)q = g, (exterior problem)

is not solvable for these critical values. In order to see why, consider a
function u that is zero in Ω+, and that coincides with the interior Dirichlet

eigenfunction w in Ω−, such that [u] = 0 and ∂u+

∂n = 0. Then, by (2.43) we
have

S
∂w

∂n
= 0, x ∈ Ω+,
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Table 2.2: Values of the wavenumber for which the integral equations in
Table 2.1 are not solvable. The notation σ(∆D) denotes the eigenvalues of
the interior Dirichlet problem of the Laplacian. Similarly, σ(∆N ) is used to
denote the eigenvalues of the interior Neumann problem.

u = Sq u = Dq
Dirichlet problem

interior −k2 ∈ σ(∆D) −k2 ∈ σ(∆D)
exterior −k2 ∈ σ(∆D) −k2 ∈ σ(∆N )

Neumann problem
interior −k2 ∈ σ(∆N ) −k2 ∈ σ(∆N )
exterior −k2 ∈ σ(∆D) −k2 ∈ σ(∆N )

and by the exterior limit in Theorem 2.6.5 we have

(−I
2

+D∗)
∂w

∂n
= 0. (2.54)

It follows that there exists a non-trivial solution to integral equation (2.54).
Similar problems occur for the remaining integral equations in Table 2.1, ei-
ther for the eigenvalues of the interior Dirichlet problem or the interior Neu-
mann problem of the Laplacian. These critical values present a fundamental
problem for the solution of the exterior Helmholtz problems, although a so-
lution exists uniquely. The problems are summarised in Table 2.2.

A solution was suggested by Brakhage and Werner in [28], and indepen-
dently by Leis and by Panich in [143, 165]. They show that the solution
to the Helmholtz equation can be formulated as a linear combination of
single-layer and double-layer potentials,

u(x) =

∫

Γ

[

iηG(x, y) − ∂G

∂ny
(x, y)

]

q(y) dsy.

Integral equations can be derived from this representation using the jump
relations of §2.6.3. For example, an integral equation for the exterior Neu-
mann problem is given by

(
I

2
−D − iηS)q = g. (2.55)

Integral equation (2.55) is uniquely solvable if the coupling parameter η is
nonzero and real. A disadvantage of this method is that the density function
q is no longer easily associated with physical variables. A different approach
is given by the combined field integral equation,

(iηS +
I

2
+D∗)q = iηf + g, (2.56)
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proposed by Harrington and Mautz [109]. The correct boundary conditions
f and g can both be derived from the incoming wave. The solution to the
Dirichlet problem is given by the single-layer potential Sq. The density
function q is therefore related to the physical variables by Theorem 2.6.12.
For numerical purposes, the coupling parameter η in both (2.55) and (2.56)
should be chosen proportional to the wavenumber k [7].

Finally, we note that the eigenvalues of the Laplacian are always real,
because ∆ is self-adjoint. Hence, −k2 can never be an eigenvalue for complex
wavenumbers. The integral equations for complex values of k are always
uniquely solvable.

2.7 The boundary element method

2.7.1 The boundary element method

The boundary element method is essentially a finite element method, ap-
plied to the variational formulation of a boundary integral equation. A
general variational formulation for the operator equation Au = f , with
A : V → V ∗ and f ∈ V ∗, is the following: find an element u ∈ V such that

a(u, v) = lf (v), ∀v ∈ V. (2.57)

The sesquilinear form a is defined by a(u, v) = (Au, v), the functional lf is
given by lf (v) = (f, v), v ∈ V . When V = Hα is a Sobolev space, then one
can simply use the L2 inner product (·, ·)L2

∈ L2 × L2 → C, rather than
the duality pairing (·, ·) ∈ H−α × Hα → C. The two forms agree if both
arguments are elements of L2.

Let the spaces Vh be a family of finite-dimensional subspaces of V . The
Galerkin method for solving (2.57) is: find an element uh ∈ Vh such that

a(uh, vh) = lf (vh), ∀vh ∈ Vh. (2.58)

Assume that the space Vh is spanned by Nh basis functions φh,i(x), i =
1, . . . , Nh. The term boundary element is used to denote a basis function
φh,i. The Galerkin formulation leads to a linear system of equations

Mhx = bh, (2.59)

with elements given by

Mh,i,j = a(φh,j , φh,i), (2.60)

and with the right hand side bh given by bh,i = lf (φh,i).



2.7. THE BOUNDARY ELEMENT METHOD 37

Consider for example integral equation (2.47) of the first kind Sq = f .
Using the L2 inner product, the elements of the discretisation matrix are
given explicitly by

Mh,i,j =

∫

Γ

∫

Γ

G(x, y)φh,j(y)φh,i(x) dsy dsx, (2.61)

and the right hand side elements by

bh,i =

∫

Γ

f(x)φh,i(x) dsx. (2.62)

In order to construct basis functions on the boundary Γ, we introduce a
parameterisation κ : [0, 1]d−1 → Γ. We define basis functions in the param-
eter domain � = [0, 1]d−1. Expression (2.61) for the elements becomes

Mh,i,j =

∫

�

∫

�

G(κ(t), κ(τ))φh,j(τ)φh,i(t)|∇κ(τ)||∇κ(t)|dτ dt. (2.63)

The definitions can be extended to the more general case where Γ = ∪Γi,
and each part Γi has a separate parameterisation.

2.7.2 Convergence

The convergence rate of the Galerkin method depends on the order of the
operator, on the smoothness of the boundary Γ and on the smoothness of
the basis functions of Vh. The latter is expressed by the notion of regularity.

Definition 2.7.1. A function f has regularity γ if

γ = sup{s : f ∈ Hs}. (2.64)

Assume that γ is the regularity of the basis functions φh,i, and that the
function space Vh contains all polynomials of degree d−1. Let the operator
A : Hα → H−α have order r = 2α, and let the index h denote the mesh
width of an approximately uniform grid for Γ or the parameter domain
�. Then an asymptotic optimal convergence rate is given in the following
theorem.

Theorem 2.7.2. Assume that uh ∈ Vh is the solution of the Galerkin
formulation (2.58), and u is the exact solution. Then we have

‖u− uh‖Ht(Γ) ≤ chs−t‖u‖Hs(Γ), (2.65)

for −d+ r ≤ t < γ, t ≤ s and r/2 ≤ s ≤ d.

Consider a discretisation for the integral equation of the first kind Sq = f
with piecewise linear basis functions. We have r = −1 and d = 2. The
optimal rate of convergence is given by t = −d + r = −3 and s = d = 2,
which leads to a convergence rate of h5 in the norms given by Theorem 2.7.2.
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2.7.3 Conditioning

The order of an operator has an influence on the condition number of the
discretisation matrix Mh. Assume that N = h−(d−1) is the number of
basis functions on an approximately uniform grid for Γ ⊂ Rd−1 with mesh
width h. Using the L2(Γ) inner product for the computation of the matrix
elements (2.60), one can show that the condition number of Mh behaves as
(see [115, 116])

κ(Mh) = O(h−|r|) = O(N |r|/(d−1)). (2.66)

For r = −1 in two-dimensional problems (with a one-dimensional boundary
Γ), the condition number increases linearly with N . Without additional
measures, the discretisation of the integral equation of the first kind Sq = f
is therefore ill-conditioned. This property is related to the decay of eigen-
values of a compact operator, as discussed in Theorem 2.4.4.

The discretised systems may still be solvable with sufficient accuracy for
applications. However, the conditioning (2.66) will have an adverse impact
on the convergence of iterative methods, since the number of iterations in
such methods depends on the size of the condition number. Integral equa-
tions of the second kind are well conditioned, since they have order r = 0.
Increasing the number of unknowns does not have an impact on the condi-
tion number of the resulting linear system, i.e., κ(Mh) = O(1), uniformly in
h and N for integral equations of the second kind. The condition number
may still depend on the wavenumber of the Helmholtz equation.

The ill-conditioning of integral equations of the first kind can be avoided
by taking the mapping properties of the operator into account. The use of
basis functions in L2 corresponds to a discretisation for the compact oper-
ator S : L2(Γ) → L2(Γ), which leads to the ill-conditioned representation.
Using appropriate basis functions of Sobolev spaces, one may regard the
operator as an isomorphism S : H−1/2(Γ) → H1/2(Γ), which is numeri-
cally more stable. We will see that wavelets are basis functions for a whole
range of Sobolev spaces, and they can be used to obtain a well-conditioned
representation for the isomorphism. This will be described in Chapter 3.

As we will not consider other preconditioning techniques in detail, we
include a number of references that cover different approaches. A wavelet
preconditioner can be used in combination with fast multipole methods or
hierarchical matrix methods for the matrix-vector product [174]. Alterna-
tively, the LU decomposition of a coarse hierarchical matrix of the problem
can be used [17]. So-called sparse approximate inverses have been com-
bined with fast multipole methods to solve large problems in [33]. Finally,
some techniques to reduce the condition number corresponding to irregular
meshes are explored in [6, 94].



Chapter 3

Wavelet based methods

3.1 Introduction

The first multiscale method we consider for the solution of scattering pro-
blems is the wavelet method. The approximation properties of wavelets
are used to obtain a sparse representation of an integral operator. In this
chapter, we describe the wavelet method, and analyse its behaviour for in-
creasing wavenumbers. We describe a new approach for scattering problems
in the high frequency regime, and we develop wavelet-specific quadrature
rules for an efficient implementation of wavelet based methods.

The wavelet method was originally introduced by Beylkin, Coifman and
Rokhlin in [19]. These authors noted that the discretisation matrix can be
compressed to a sparse matrix in the wavelet basis. Preconditioning schemes
for integral operators of nonzero order were introduced in [55, 59, 60]. The
analysis focused on schemes that match the error of the scheme in each
step to the discretisation error of the Galerkin method. An implementation
with O(N log4N) computational complexity was presented in [197, 196].
The complexity was reduced to O(N) by considering a so-called second
compression step and adapted quadrature rules in [175]. Recent research is
conducted towards adaptive wavelet schemes [41, 53, 179].

In the low frequency regime, the wavelet method enables a matrix-vector
product in O(N) operations, where N is the number of basis functions. We
show that the sparsity of the wavelet representation is lost in the presence
of strong oscillations, leading to an O(N2) method in the high frequency
regime. We propose a new approach based on the use of wavelet packets.
Wavelet packets combine the typical subdivision of scale and position in
wavelet analysis with a subdivision of frequency. As such, wavelet packet
basis functions can be very oscillatory functions themselves. An adaptive

39
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algorithm enables the sparse representation of an oscillatory integral oper-
ator. We show that the complexity of the matrix-vector product can be
reduced to approximately O(N1.4).

We start the chapter with an overview of the wavelet method in §3.2.
We recall the definition and the main properties of wavelets in §3.3. Sub-
sequently, we give a more detailed overview of the theory of wavelet based
solution methods for integral equations in §3.4. We prove in §3.5 that the
complexity of the matrix-vector product of the wavelet method is O(N2) in
the high frequency regime. We propose a remedy for this behaviour that is
based on wavelet packets in §3.6. Next, we discuss an efficient implemen-
tation of quadrature techniques for integrals involving wavelet functions
in §3.7. Finally, we end the chapter with references for three-dimensional
problems, and with some concluding remarks.

3.2 Overview of the method

The approximation properties of wavelets can be used in the context of
integral equations by considering wavelets as basis functions in a boundary
element approach. The resulting discretisation is a multiscale representation
of the integral operator A, with elements of the form

W(j,k),(j′,k′) = 〈Aψj′,k′ , ψj,k〉, (3.1)

where ψj,k represents a wavelet function on scale j. Alternatively, matrix W
can be found by applying the wavelet transform to the regular discretisation
matrix M , if the regular basis functions correspond to the scaling function
of the wavelet. Due to the approximation properties of wavelets and the
smoothness of the kernel function away from the diagonal, many elements
of the form (3.1) are small. They can be discarded, without introducing
a significant error. The fast matrix-vector product is then an immediate
result of the sparsity of the compressed discretisation matrix. One can
show that the number of remaining significant elements is O(N logN) or
even O(N), depending on the wavelets that are used, where N is the number
of unknowns in the boundary element method.

Applying the wavelet transform to the regular discretisation matrix and
to the right hand side of the linear system Mx = b yields

Wy = c, with W = TMTT , c = Tb, (3.2)

where T represents the matrix corresponding to the wavelet transform. The
solution of the original system Mx = b is given by x = TT y. Application of
the matrix T or TT can be performed by the fast wavelet transform in O(N)
operations. An iterative solver can be used to find the solution of (3.2) in,
say, L iterations. The total time required to solve (3.2) is then O(LN).
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Figure 3.1: Illustration of a discretisation matrix in the wavelet basis. The
lines correspond to the singularity of the kernel function on all scales.

In order to have an efficient total solution method, one requires the
efficient construction of the wavelet transformed discretisation matrix W ,
and a bound on the number of iterations L. Obviously, the transforma-
tion W = TMTT is too expensive, even if the fast wavelet transform is
used, because constructing the dense matrix M requires at least O(N2)
operations. Instead, the elements of W are computed directly, using the
representation (3.1). A priori estimates for the size of the elements are
available, so that small elements need not be computed. The efficient con-
struction of W hence requires good integration routines that can compute
O(N) significant elements using only O(N) computations. Such routines
are available, but they are not trivial, because the integration domain can
be large for wavelets on rough scales, and the integrals (3.1) may be singu-
lar. The condition number of W can be bounded independently of N with
a simple diagonal preconditioner. This result is possible by considering the
mapping properties of an integral operator in terms of Sobolev spaces, and
using appropriately scaled wavelet bases that are, in fact, stable basis func-
tions for these Sobolev spaces. The number of iterations L required by the
iterative solver is then independent of N . Hence, the total solution time for
the integral equation is O(N). A typical discretisation matrix is shown in
Figure 3.1.

3.3 Wavelets

The theory of wavelets is described extensively in [67]. In this section, we
recall the basic properties of multiresolution analysis and wavelets. Specif-
ically, consider a nested series of function spaces

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ,
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such that their union is dense in L2, and with the properties

f(t) ∈ Vj ⇒ f(2t) ∈ Vj+1, and

f(t) ∈ V0 ⇒ f(t− k) ∈ V0.

If the set {φ(t−k)}k∈Z forms a Riesz basis for V0, then we call the function
spaces Vi a multiresolution analysis for L2. The function φ is called the
scaling function; it satisfies the two-scale relation

φ(t) =
√

2
∑

k∈Z

hkφ(2t− k), (3.3)

with suitable coefficients hk. The scaling function can be defined on all
scales by scaling and translating φ,

φjk(t) := 2j/2φ(2jt− k). (3.4)

Define Wj as the complement of Vj in Vj+1,

Vj+1 = Vj ⊕Wj and VJ = V0 ⊕J−1
j=0 Wj . (3.5)

There exists a wavelet function ψ(t) ∈W0 such that {ψ(t−k)}k∈Z is a Riesz
basis for W0. We can define wavelets on all scales similar to (3.4),

ψjk(t) := 2j/2ψ(2jt− k). (3.6)

Since ψ(t) ∈ V1, there exist coefficients gk such that

ψ(t) =
√

2
∑

k∈Z

gkφ(2t− k). (3.7)

Any function f ∈ VJ can be expanded in the basis of scaling functions
on scale J , or in the basis suggested by (3.5),

f =
∑

k

vJkφJk and f =
∑

k

v0kφ0k +

J−1∑

j=0

∑

k

wjkψjk. (3.8)

One can go from one representation to the other by using the fast wavelet
transform and its inverse in O(N) operations, where N is the number of
coefficients vJk, k = 1, . . . , N .

The scaling function φ and wavelet ψ have a regularity γ (see (2.64)).
The scaling functions are said to have approximation order d if all polyno-
mials of maximal degree d− 1 are in V0. Wavelets typically have a certain
number d̃ of vanishing moments,

∫ ∞

−∞
ψ(t)tl dt = 0, l = 0, . . . , d̃− 1. (3.9)
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If the scaling functions φ(t − k) are not orthogonal, a dual set of basis
functions φ̃(t − k) exists with approximation order d̃, and dual wavelet
functions ψ̃(t−k) exist with d vanishing moments and regularity γ̃. In that
case, the following biorthogonality relations hold,

(φjk, φ̃jk′) = δk−k′ , (ψjk, ψ̃j′k′) = δk−k′δj−j′ ,

(φjk, ψ̃jk′) = 0, (φ̃jk, ψjk′) = 0.

A popular choice of basis functions in boundary element methods are
CDF-wavelets [43]. They are biorthogonal wavelets, and the scaling function
corresponds to a B-spline. The wavelets are therefore piecewise polynomial.
Wavelets on a periodic one-dimensional boundary Γ can be constructed
using periodic wavelets on [0, 1], and a parameterisation κ : [0, 1] → Γ,

ψ̂jk(x) = ψjk(κ
−1(x)), x ∈ Γ. (3.10)

3.4 Theory of wavelet based methods

We describe the theory of wavelet based methods for the discretisation and
solution of integral operator equations. A detailed discussion can be found
in [52, 54]. For the purposes of subsequent sections, we will write some
constants in the form C(k), to denote explicitly that they depend on the
wavenumber of the Helmholtz equation. The exact dependence will be quan-
tified in §3.5. We restrict the discussion to two-dimensional problems.

3.4.1 Element size estimates

The elements of the form (3.1) are given explicitly by a double integral
of the form (2.63), with basis functions ψjk(t) and ψj′k′(τ). In order to
avoid having to compute matrix entries that will later be discarded, a priori
estimates are derived for the size of an entry. Elements are not computed if
they are predicted to be smaller than a prescribed threshold value. Suitable
estimates can be developed using a property that expresses the smoothness
of the kernel function away from the diagonal,

∣
∣
∣
∂|α|+|β|G

∂xα∂yβ
(x, y)

∣
∣
∣ ≤ C1(k)|x− y|−(n+r+|α|+|β|), x 6= y, (3.11)

which is developed in the theory of pseudodifferential operators [52, 178].
The orders α and β of the derivative are written in multi-index form, i.e.,
∂xα = ∂xα1

1 ∂xα2
2 with |α| = α1 + α2. The integer n is the dimension of the

boundary manifold, and r is the order of the operator. For two-dimensional
obstacles, we have n = 1.
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Define the modified kernel function G̃(t, τ) := G(κ(t), κ(τ)). An esti-
mate similar to (3.11) can be found for G̃(t, τ),

∣
∣
∣
∂α+βG̃

∂tα∂τβ
(t, τ)

∣
∣
∣ ≤ C2(k)|κ(t) − κ(τ)|−(n+r+α+β), t 6= τ. (3.12)

The parameters α and β in (3.12) are scalars. An estimate for the size of
an element can now be found by developing G̃ into a Taylor series. The
first terms are cancelled by the vanishing moment properties of the basis
functions. If the wavelets in t and τ have disjunct support, then the size of
the corresponding element in the stiffness matrix can be bounded by

|〈Aψ̂j′k′ , ψ̂jk〉| ≤ C3(k)
2−(j+j′)( n

2 +d̃)

dist(supp ψ̂jk, supp ψ̂j′k′)n+2d̃+r
. (3.13)

The support of the wavelet ψ̂jk is denoted by supp ψ̂jk ⊂ Γ. The
bound (3.13) decreases very rapidly with increasing distance between the
supports of the basis functions. Wavelets with a higher number of vanish-
ing moments d̃ yield smaller elements. Such wavelets typically also have a
larger support however.

When the supports of the wavelets ψjk and ψj′k′ overlap, the size of
the corresponding element can still be small if the difference in scale is large
enough, and if the smaller wavelet is contained entirely in an interval defined
by two successive singular points of the larger wavelet. The singular points
are those points in the support where the basis function or its derivatives
are discontinuous, and are denoted by sing supp ψ̂jk. For j > j′, one has

|〈Aψ̂j′k′ , ψ̂jk〉| ≤ C4(k)
2−j(

n
2 +d̃)2j

′ n
2

dist(sing supp ψ̂j′k′ , supp ψ̂jk)d̃+r
. (3.14)

A similar estimate can be derived for the case j′ > j.

3.4.2 Compression of the discretisation matrix

Based on estimates (3.13) and (3.14), a compression scheme can be devised
to approximate the stiffness matrix in the wavelet basis by a sparse matrix.
In an optimal scheme, the error introduced by the compression is matched
to the discretisation error of the entire method. To that end, one defines
two scale-dependent thresholds,

δj,j′ = max

{

a2−min {j,j′}, a2
J(2d′−r)−(j+j′)(d̃+d′)

2d̃+r

}

, and (3.15)

δSj,j′ = max

{

a′2−max {j,j′}, a′2
J(2d′−r)−max{j,j′}d̃−(j+j′)d′

d̃+r

}

. (3.16)
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The two constants a and a′ determine the amount of compression, and have
to be selected carefully, see [175]. Too large a value for a and a′ will lead
to a denser matrix; not all of its elements may be needed for the required
accuracy of the solution. Too small a value results in loss of convergence.

The first threshold (3.15), based on estimate (3.13), gives rise to a sparse
matrix M ε

J with elements

mε
(j,k),(j′,k′) :=

{

m(j,k),(j′,k′) if dist(supp ψ̂jk, supp ψ̂j′k′) ≤ δj,j′ ,

0 otherwise.

The number of remaining elements is linear in NJ = 2J , up to a logarithmic
factor. The second estimate (3.12) enables a second compression step, by
making a sparse matrix M̂J with elements m̂(j,k),(j′,k′) defined by







mε
(j,k),(j′,k′) if j′ < j and dist(supp ψ̂jk, sing supp ψ̂j′k′) ≤ δSj,j′ ,

mε
(j,k),(j′,k′) if j < j′ and dist(sing supp ψ̂jk, supp ψ̂j′k′) ≤ δSj,j′ ,

0 otherwise.

(3.17)

This second compression leads to an order of O(NJ ) remaining significant
entries, without a logarithmic term [175]. For this optimal case, it is required
that d̃ > d − r. For operators with negative order, this means that d̃ > d:
the primal wavelet needs to have more vanishing moments than the dual
wavelet. This condition can only be satisfied by biorthogonal wavelets.

3.4.3 Diagonal preconditioning

Recall from the discussion in §2.7.3 that an operator A : Hα → H−α with

nonzero order r = 2α has a condition number that grows as O(N
|r|
J ) =

O(2−J|r|). This is due to the shift in Sobolev spaces. As it turns out,
wavelets are stable basis functions for a whole range of Sobolev spaces ([54]),

‖v‖2
Ht ∼

∑

j

∑

k 22jt|〈v, ψjk〉|2, t ∈ (−γ̃, γ),

‖v‖2
Ht ∼

∑

j

∑

k 22jt|〈v, ψ̃jk〉|2, t ∈ (−γ, γ̃),
(3.18)

where the notation a ∼ b means the existence of constants c, C > 0 such
that a ≤ cb and b ≤ Ca. This fact can be used to represent the bijective
operator A : Hα → H−α, rather than the compact operator A : L2 → L2.
To that end, the wavelets need to be scaled with a level-dependent scaling
factor. Define the diagonal matrix Ds

J as

Ds
J,(j,k),(j′,k′) = 2sjδj,j′δk,k′ . (3.19)
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Table 3.1: Conditions for optimality in the wavelet method.

γ > r/2 conformity of the basis functions
γ̃ > −r/2 preconditioning

d̃ > d− r optimal compression
d convergence rate 2−J(2d−r)

Multiplication with the diagonal matrix Ds
J corresponds to a scaling of a

wavelet coefficient with the scale-dependent factor 2sj . The following result
was found in various levels of generality in [18, 55, 57, 60, 133, 164].

Theorem 3.4.1 ([60]). Assume that the Galerkin discretisation is stable,

b‖v‖Hα ≤ ‖
∑

j

∑

k

〈Av, ψjk〉ψ̃jk‖H−α ≤ B‖v‖Hα , ∀v ∈ VJ ,

with b,B > 0, and that the wavelet basis is stable as in (3.18) with γ > r/2
and γ̃ > −r/2. Then the preconditioned matrices

PJ = D−α
J WJD

−α
J (3.20)

have a uniformly bounded spectral condition number.

3.4.4 Convergence

The compression strategy was devised such that the compression error has
the same order as the discretisation error of the entire scheme. As such, it
has no influence on the accuracy of the overall solution method. Likewise,
the compression has no influence on the convergence rate. It can be shown
that the optimal convergence rate of Theorem 2.7.2 is preserved: one has

‖u− uh‖Ht(Γ) ≤ c2−J(s−t)‖u‖Hs(Γ),

for −d + r ≤ t < γ, t ≤ s and r/2 ≤ s ≤ d. The approximation order d
determines the optimal convergence rate 2−J(2d−r). Recall that the number
of vanishing moments d̃ determines the compression, and we should have
d̃ > d − r. We also imposed conditions on the regularities γ and γ̃ of the
primal and dual wavelet. To summarise, we have grouped together the main
conditions on the properties of the wavelets for an optimal implementation
in Table 3.1. Optimal in this context means that an implementation is
possible with a number of operations that is linear in N .
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3.5 Dependence on the wavenumber

It is known that the wavelet-based matrix compression becomes less effective
for higher frequencies in Helmholtz problems [39, 199]. More precisely, by
means of intuitive arguments, given in the previous references, it has been
demonstrated that there is a linear relation between the matrix-fill and the
frequency. In this section, we analyse this effect rigorously for the Helmholtz
equation in two dimensions. We quantify the achievable compression by
mathematical deduction and are able to establish an upper bound that is
close to, but not entirely, linear.

We will proceed by taking the effect of the wavenumber into account
in every step of the derivation of the wavelet method. First, we derive in
§3.5.1 an estimate for the derivatives of the kernel function

G(x, y) =
i

4
H

(1)
0 (|x− y|). (3.21)

This corresponds to quantifying the behaviour of the constant C1(k)
in (3.11). Likewise, we determine the behaviour of the constant C2(k)
in (3.12). Then, in §3.5.2, we derive the estimates for the size of the el-
ements in the stiffness matrix. Finally, in §3.5.3, the density of the stiffness
matrix after compression is analysed. The result of this derivation is for-
mulated in Theorem 3.5.6 of §3.5.4. An upper bound is found that is shown
to be sharp by means of some numerical results presented in §3.8.1.

3.5.1 Estimates for the derivatives of the kernel

It is well-known that the derivatives of the 2D Helmholtz kernel (3.21)
satisfy (3.11) with n = 1 and r = −1, for some constant C1(k) [175]. In
order to obtain the dependence of C1 on the wavenumber, we must explicitly
calculate these derivatives. The result is summarised in the following lemma.

Lemma 3.5.1. The function G(x, y) := i
4H

(1)
0 (k|x − y|) satisfies (3.11)

with n = 1, r = −1, and

C1(k) = O(k|α|+|β|− 1
2 ), k → ∞. (3.22)

Proof. In order to estimate the left hand side of (3.11), we define z(x, y) :=

|x−y| and f(z) := H
(1)
0 (kz). We then apply the chain rule and product rule

for derivatives. The resulting sum contains contributions that are deriva-
tives of f w.r.t. z, and partial derivatives of z. The latter are independent
of k; the former are k-dependent. A recursive argument shows that the p-th
order derivative of f with respect to z contains a term

(−1)
p
2 kpH

(1)
0 (kz) or (−1)

p−1
2 kpH

(1)
1 (kz)
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for p even, resp. odd. The term with the highest order derivative of f is

∂|α|+|β|f

∂z|α|+|β|
( ∂z

∂x1

)α1
( ∂z

∂x2

)α2
( ∂z

∂y1

)β1
( ∂z

∂y2

)β2
.

First, assume p := |α| + |β| to be even. The sum then contains the term

T := (−1)
p
2 kpH

(1)
0 (kz)

(x1 − y1)
α1

zα1

(x2 − y2)
α2

zα2

(x1 − y1)
β1

zβ1

(x2 − y2)
β2

zβ2
.

We know from (3.11) that T is bounded on Γ by Dz−p with D > 0 a
constant that depends on k. We have

|T |zp ≤ kp|H(1)
0 (kz)|zp,

so that

|T |zp ≤ kp|H(1)
0 (kL)|Lp with L = max |x− y|, ∀x, y ∈ Γ.

The dependence (3.22) now follows from the asymptotic expression [4]

H(1)
ν (x) ∼

√

2

πx
ei(x−

π
4 − νπ

2 ), x→ ∞, (3.23)

and the fact that the term T has the highest exponent of k. The argument
for p odd is completely analogous.

Recall the definition of the modified kernel function,

G̃(t, τ) := G(κ(t), κ(τ)). (3.24)

The constant C2(k) in estimate (3.12) for the derivatives of G̃(t, τ) in the
parameter domain can be found by applying the chain rule for derivatives,
and by using the previous estimate for every term in the sum.

Defining κ(t) = (x1(t), x2(t)) and κ(τ) = (y1(τ), y2(τ)), we apply the
product and chain rule to (3.24). An upper bound for each partial derivative
of G is known through Lemma 3.5.1. We assume the parameterisation
sufficiently smooth, so that the derivatives of κ are bounded. They are, of
course, independent of k. It is clear that the highest order derivative of
G determines the asymptotic behaviour around the diagonal κ(t) = κ(τ),
where the term |κ(t) − κ(τ)|−(n+r+α+β) grows to infinity. We arrive at

∂α+βG̃

∂tα∂τβ
= O(|κ(t) − κ(τ)|−(n+r+α+β)), t− τ → 0.

The asymptotic behaviour of C2(k) is determined by the largest expo-
nent of k in the constants of the upper bounds for every term. This means
that the exponent is again α+β− 1/2. Thus, we have proved the following
lemma.
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Lemma 3.5.2. The function G̃(t, τ) := i
4H

(1)
0 (k|κ(t)−κ(τ)|) with κ : [0, 1] →

Γ satisfies (3.12) with

C2(k) = O(kα+β− 1
2 ), k → ∞.

3.5.2 Estimates for the size of the elements

The analysis of the matrix compression is based on the size estimates (3.13)
and (3.14). The constants C3(k) and C4(k) in these expressions depend on
the wavenumber. Using the results of the last section, we can now quantify
that dependence. To that end, we will first repeat the derivation of (3.13).

3.5.2.1 First estimate

The modified kernel function is developed into a Taylor expansion around
a point in the support of ψj′k′(τ). For a wavelet ψj′k′ with d̃ vanishing

moments, the first d̃ terms of the expansion will vanish,

〈Aψ̂j′k′ , ψ̂jk〉 = 〈Ãψj′k′ , ψjk〉

=

∫ 1

0

∫ 1

0

∂d̃G̃

∂td̃
(t, τ ′)

(τ ′ − τ)d̃

d̃!
ψjk(t)ψj′k′(τ)|κ′(t)||κ′(τ)|dτ dt,

with τ ′ ∈ suppψj′k′ , and where Ãf = A(f ◦ κ−1) is an integral operator

in the parameter domain with the modified kernel function G̃. Doing the
same for t leads to

〈Ãψj′k′ , ψjk〉 =

∫ 1

0

∫ 1

0

∂2d̃G̃

∂td̃∂τ d̃
(t′, τ ′)

(t′ − t)d̃

d̃!

(τ ′ − τ)d̃

d̃!

ψjk(t)ψj′k′(τ)|κ′(t)||κ′(τ)|dτ dt

≤ C2(k)

dist(supp ψ̂jk, supp ψ̂j′k′)2d̃

∫ 1

0

∫ 1

0

(t′ − t)d̃

d̃!

(τ ′ − τ)d̃

d̃!

ψjk(t)ψj′k′(τ)|κ′(t)||κ′(τ)|dtdτ,

with t′ ∈ suppψjk. Knowing that suppψjk ∼ 2−j and
∫
|ψjk(t)|dt ∼ 2−j/2,

and assuming a sufficiently smooth parameterisation, we arrive at

〈Aψ̂j′k′ , ψ̂jk〉 ≤
C2(k)

dist(supp ψ̂jk, supp ψ̂j′k′)2d̃
B 2−jd̃ 2−j

′d̃ 2−j/2 2−j
′/2.

with B a constant, independent of k. The result has the same form as (3.13)
with n = 1 and r = −1. The dependence on the wavenumber k is similar
to that of C2(k), with α = β = d̃. We have

C3(k) = O(k2d̃−1/2). (3.25)
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3.5.2.2 Second estimate

The derivation of estimate (3.14) for wavelets with overlapping support is
somewhat more involved, and was first established in [175]. The property of
the vanishing moments can be used only once, for the smaller wavelet that
is fully contained within the singular points of the other wavelet. The use
of this property as was done above in the double integral 〈Ãψj′k′ , ψjk〉, is
not immediately possible due to the singularity of the kernel function. We
note, however, that the result of the application of the integral operator Ã
to a smooth function f ∈ C∞

0 is also smooth. The restriction of ψj′k′ to the
interval in the parameter domain that contains ψjk can be extended to a

smooth function f ∈ C∞
0 , with supp(f) ∼ 2−j

′

and ‖f‖Hs(R) ≤ c 2j
′s [54].

After applying operator Ã to f , we can again use the property of vanishing
moments to establish the estimate (3.14). A concise mathematical proof is
given in [54].

Define ψj′k′(τ) = f(τ) + f̃(τ), such that the support of f̃(τ) does not
overlap with the support of ψjk. We analyse the wavenumber dependence

of the estimate (3.14) for the functions f and f̃ . To this end, we need to
derive the dependence on k of the derivatives of Ãf , since

〈Ãf, ψjk〉 =

∫ 1

0

∂d̃G̃f

∂td̃
(t′)

(t′ − t)d̃

d̃!
ψjk(t)|κ′(t)|dt

≤ A 2−j(d̃+1/2) sup
t∈supp(ψjk)

∣
∣
∣
∣
∣

∂d̃Ãf

∂td̃
(t)

∣
∣
∣
∣
∣

(3.26)

with t′ ∈ supp(ψjk). An explicit formula for the derivative of the function

Ãf , is given in [100, Chapter 3 (3.4.5)] for the special case where the kernel
G̃(t, τ) is only a function of (t− τ). An expression can also be found for the
more general case where the kernel depends on (κ(t) − κ(τ)). We prove it
here specifically for the kernel (3.24).

Theorem 3.5.3. Define g(t) :=
∫ b

a
G̃(t, τ)v(τ) dτ with v ∈ C1 and G̃(t, τ)

as (3.24). Then ∀t ∈ (a, b),

g′(t) =

∫ b

a

G̃(t, τ)v′(τ) dτ +

∫ b

a

(

∂G̃

∂t
+
∂G̃

∂τ

)

v(τ) dτ

+ G̃(t, a)v(a) − G̃(t, b)v(b). (3.27)

Proof. We first show that both integrals in the right hand side of (3.27)
exist. The first integrand is improperly integrable. To show the existence
of the second integral, define r(t, τ) = |κ(t) − κ(τ)|. Note that r(t, t) = 0
and ∂r

∂t (t, t)+ ∂r
∂τ (t, t) = 0, and also ∂r

∂t (t, t+ δ)+ ∂r
∂τ (t, t+ δ) = O(δ). Hence,
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the function

∂G̃

∂t
+
∂G̃

∂τ
=
i

4

∂H
(1)
0

∂r

(
∂r

∂t
+
∂r

∂τ

)

is continuous in t = τ , and therefore the second integral exists.
To prove the expression for the derivative, we note that

g(t+ δ) =

∫ b

a

G̃(t+ δ, τ)v(τ) dτ =

∫ b−δ

a−δ
G̃(t+ δ, τ + δ)v(τ + δ) dτ

=

∫ a

a−δ
G̃(t+ δ, τ + δ)v(τ + δ) dτ +

∫ b−δ

a

G̃(t+ δ, τ + δ)v(τ + δ) dτ,

and

G̃(t+ δ, τ + δ) = G̃(t, τ) + δ

(

∂G̃

∂t
+
∂G̃

∂τ

)

+ O(δ2).

We can also write g(t) =
∫ b−δ
a

G̃(t, τ)v(τ) dτ+
∫ b

b−δ G̃(t, τ)v(τ) dτ . Now,

by the definition of the derivative, g′(t) = limδ→0
g(t+δ)−g(t)

δ yields the
result (3.27).

Higher order derivatives of Ãf can be found by applying Theorem 3.5.3
recursively, with v(τ) := f(τ)|κ′(τ)|. The factor |κ′(τ)| is independent of
j and k, and therefore will not influence the estimate. Assuming f ∈ C∞

0

with support contained in [a, b], we have v(i)(a) = v(i)(b) = 0. The higher
order derivatives of g = Ãf are then given by

g(n)(t) =

n∑

i=0

(
n

i

)∫ b

a

((
∂

∂t
+

∂

∂τ

)i

G̃(t, τ)

)

dn−i

dtn−i
(f(τ)|κ′(τ)|) dτ. (3.28)

Again, each integral on the right hand side exists, since
(
∂
∂t + ∂

∂τ

)i
r(t, t +

δ) = O(δ), i >= 0. We combine (3.28) with (3.12) to find a wavenumber

dependence for
∣
∣
∣
∂d̃Ãf

∂td̃
(t)
∣
∣
∣ of O(kd̃−1/2).

In order to establish a bound for the right hand side of (3.26),
we first note that by the Sobolev embedding theorem sup |f (i)(t)| =
‖f‖W∞,i ≤ c1 ‖f‖Hi+1/2 = c2 2j

′(i+1/2). Now, using the fact that

dist(sing supp ψ̂j′k′ , supp ψ̂jk) ≤ c2−j
′

, g(d̃)(t) can be bounded by

B

∫ b

a

2j
′(d̃+1/2) dτ ≤ C 2j

′(d̃+1/2−1)

≤ D 2j
′/2 dist(sing supp ψ̂j′k′ , supp ψ̂jk)

−(d̃−1).
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Combined with (3.26), this concludes an estimate of the form (3.14),

|〈Ãf, ψjk〉| ≤ C4(k)
2−j(d̃+1/2)2j

′/2

dist(sing supp ψ̂j′k′ , supp ψ̂jk)d̃−1
.

It remains to bound the part |〈Ãf̃ , ψjk〉|. This is more straightforward,

as the integrand is not singular. Using the fact that |f̃(t)| ≤ c2j
′/2 and

applying (3.12) once, we can proceed like in (3.26) (with f replaced by f̃),

|〈Ãf̃ ,ψjk〉| ≤ B 2−j(d̃+1/2)

∣
∣
∣
∣
∣

∂d̃Ãf̃

∂td̃
(t′)

∣
∣
∣
∣
∣

≤ C 2−j(d̃+1/2)

∫

supp(f̃)

|f̃(τ)|dist(κ(τ), supp(ψ̂jk))
−d̃ dτ

≤ C4(k) 2−j(d̃+1/2) 2j
′/2 dist(sing supp ψ̂j′k′ , supp ψ̂jk)

−(d̃−1).

With these results, we have shown that estimate (3.14) holds, with a
constant that depends on the wavenumber with the order

C4(k) = O(kd̃−1/2). (3.29)

3.5.3 Density of the compressed stiffness matrix

Define Ej,j′ := Mj,j′ − M ε
j,j′ as the error that is introduced by the first

compression in the block matrix corresponding to the scales j and j′, and
Fj,j′ := M ε

j,j′ − M̂j,j′ as the error by the second compression. Then it is
shown that (see [54])

‖Ej,j′‖ ≤ C a−2d̃−r22Jr/22−2d′(J− j+j′

2 ), (3.30)

‖Fj,j′‖ ≤ C (a′)−d̃−r22Jr/22−2d′(J− j+j′

2 ). (3.31)

Based on these expressions, one can show that the compressed scheme
is consistent with the original operator equation, and retains the order of
convergence. If the errors were bounded uniformly in k, it would ensure
that the compression error is independent of the wavenumber.

This means that we must choose the parameters a and a′ in a suitable
way. We note that expression (3.30) is established by summing the cor-
responding estimates of the form (3.13) for the discarded elements. This

introduces a dependence on k of the order O(k2d̃−1/2), that is transferred
unchanged to (3.30). It can be compensated by an asymptotic behaviour of
a = O(kp) if

k−2(d̃−1/2)p k2d̃−1/2 = O(1) ⇔ −2(d̃− 1/2)p+ 2d̃− 1/2 ≤ 0
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or

p ≥ 1 +
1

4d̃− 2
. (3.32)

The compression error is thus bounded uniformly in k if a = O(k
1+ 1

4d̃−2 ).
The asymptotic behaviour of the parameter a needs to be slightly larger than
linear in k, but improves somewhat as the number of vanishing moments
increases.

The second compression is handled similarly, leading to

p ≥ 1 +
1

2d̃− 2
. (3.33)

It is important to note here that we only consider the compression of the
stiffness matrix. The wavenumber also influences the condition number,
even after preconditioning, and will therefore have an impact on the con-
vergence of iterative solution methods. This means that, for large values of
k, the system may become increasingly ill conditioned. The uniform bound
on the compression error that we have derived ensures however that, for a
specific value of k, the compressed scheme retains the convergence properties
of the corresponding uncompressed Galerkin scheme.

3.5.4 Wavenumber dependence of the wavelet com-

pression

The number of nonzero elements in the compressed matrices M ε
J and M̂J ,

depends on the parameters a and a′ in (3.15) and (3.16). Their values
determine the sparsity structure of the submatrices M̂jj′ in the stiffness
matrix.

The thresholds indicate a minimal distance between the supports of
wavelets corresponding to a matrix element. They are chosen such that the
error introduced by discarding elements matches the discretisation error.
The allowable error varies for each combination of scales j and j′, and in
general the rougher scales require higher accuracy, while the elements cor-
responding to finer scales can be less accurate. Combining the estimates for
the matrix elements, and the thresholds used for discarding some of them,
reveals that the compressed stiffness matrix keeps only O(N) elements.

As the thresholds increase, the condition on the distance between
wavelets becomes stronger, and as a result the matrix will be less sparse.
We see from (3.15) that the required minimal distance between the support
of the wavelets corresponding to a matrix element, is directly proportional
to a. While the shape of the boundary Γ and the parameterisation κ(t)
will have an influence here, we can say in first order approximation that the
number of elements kept is also linear in a.
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Lemma 3.5.4. The number of nonzero elements in M̂J , as defined
by (3.17), is O(a) + O(a′) as a function of the wavenumber k.

We have investigated the necessary asymptotic behaviour of the param-
eters a and a′ for large values of k. The results (3.32) and (3.33) lead to
another lemma.

Lemma 3.5.5. In order to achieve compression that maintains the con-
vergence properties of the uncompressed Galerkin scheme, the parameters a
and a′ in (3.15) and (3.16) have to be chosen such that

a = O(k
1+ 1

4d̃−2 ) and a′ = O(k
1+ 1

2d̃−2 ).

The combination of these lemmas leads to the following statement.

Theorem 3.5.6. The number of nonzero elements in the wavelet com-
pressed stiffness matrix with optimal choice of a and a′ in the threshold
constants (3.15) and (3.16) increases asymptotically linear in N , with a

proportionality constant of the order O(k1+1/(2d̃−2)).

Note that the dependence on k of the proportionality constant means
that, with increasing wavenumbers, the stiffness matrix fills up to become a
dense matrix. In the high frequency regime, where N increases proportional
to k, the actual number of nonzero elements in the compressed stiffness
matrix grows asymptotically as O(N2). The matrix looses any significant
sparsity. This result will be illustrated numerically in §3.8.

3.6 Wavelet-packet based methods

3.6.1 Motivation

In the preceding section, it was shown that the wavelet method approxi-
mately requires O(N2) operations in the high frequency regime where N is
chosen proportional to k. Though wavelets are suitable to sparsely represent
a smooth function, or a smooth integral operator, all significant sparsity is
lost in the presence of strong oscillations. In this section, we further ex-
amine the effect of oscillations on the wavelet method, and we propose a
solution by using wavelet packets.

Wavelet basis functions are inherently multiscale. Aside from a sub-
division of scale and position however, wavelets also induce an uncontrol-
lable subdivision of the frequency spectrum of a function. One step of the
wavelet transform divides the frequency spectrum approximately into a low
frequency and high frequency part. Only the lower frequency part is further
subdivided in the next step. This may not be optimal for functions with
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a certain fixed, inherent frequency. It appears more appropriate to zoom
in on this specific frequency, in order to represent the function with fewer
coefficients.

Wavelet packets are a generalisation of wavelets, that allow a subdivi-
sion of scale, position and of frequency spectrum. They retain the vanish-
ing moment properties of wavelets, but add flexibility in the choice of basis
functions. The increase in frequency resolution comes at a cost of spatial
resolution. Nevertheless, we will see that wavelet packets can be adapted to
an oscillatory problem, and enable much improved sparsity of the discreti-
sation compared to wavelets. They lead to a sparse matrix with a number
of elements that scales approximately as O(N1.4).

3.6.2 Wavelet packets

3.6.2.1 Definition

Wavelet packets were introduced and developed by Coifman, Meyers, Quake
and Wickerhauser [45, 48]. They can be defined recursively in the following
way. Set w0(t) = φ(t), and define

w2n(t) =
√

2
∑

k

hkwn(2t− k) (3.34)

w2n+1(t) =
√

2
∑

k

gkwn(2t− k). (3.35)

Wavelet packets can be defined on all scales and positions by

wnjk(t) = 2j/2wn(2
jt− k). (3.36)

We represent the function spaces involved by Wnj = span{wnjk}. The
space of all scaling functions on scale J is VJ = W0J . A basis of VJ can
be identified by a subset Λ of the set of indices Ξ := {(n, j) ∈ Z2}, such
that the corresponding wavelet packets wnjk form a basis of W0J . It is
convenient here to use the multi-index notation λ = (n, j). We can expand
any function f ∈ VJ in the basis denoted by Λ as

f =
∑

λ∈Λ

∑

k

vλ,kwλ,k. (3.37)

A fast wavelet packet transformation can be devised, similar to the fast
wavelet transform. The full wavelet packet decomposition at level j =
0 is the transform corresponding to the basis functions wn0k, and has a
computational complexity of O(J2J ) = O(N logN).

The wavelet decomposition is only a special case of (3.37). In the wavelet
transform, function space Vj+1 = Vj ⊕Wj is split into two spaces, using the
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filters g and h. The resulting space Vj is split again, a process that is con-
tinued until the full wavelet decomposition (3.5) is obtained. In a wavelet
packet transform on the other hand, one employs the same splitting trick
also for the function space Wj containing the upper part of the frequency
spectrum of Vj+1. This results in a highly redundant binary tree of function
spaces, with VJ at the root. The trees for the wavelet and wavelet packet
function spaces are shown in Figure 3.2. The frequency resolution increases
downward in the tree, at a cost of decreased spatial resolution. The param-
eter n is an indication of the frequency content of the function space Wnj .
The frequency properties of wavelet packets are discussed in detail in [112].

V
J

V

V

J−1

J−2
W

W

J−2

J−1

(a) Wavelet tree

W
0,J

0,J−1
W W

1,J−1

W
0,J−2

W
1,J−2

W
2,J−2

W
3,J−2

(b) Wavelet packet tree

Figure 3.2: Binary trees of wavelet and wavelet packet function spaces.

A two-dimensional wavelet packet transform of a matrix A can be defined
by applying a one-dimensional transform to all rows and columns of the
matrix successively. The resulting matrix is called the rectangular transform
of A. Alternatively, a two-dimensional wavelet packet transform can be
obtained by considering a quadtree of function spaces of the form Wλ×Wµ,
for λ × µ ∈ Ξ × Ξ. A subtree with any selection of function spaces that
covers VJ × VJ leads to a two-dimensional basis. The tensor product basis
functions are given by

wµ,l,λ,k(s, t) = wµ,l(s)wλ,k(t). (3.38)

This approach is called the square transform. The structure of the square
transform W of a matrix is shown in Figure 3.3. In the following, we will
denote a square subblock by Wµ,λ.

3.6.2.2 Best basis algorithm of Coifman and Wickerhauser

It can be proven that, for a vector x of N elements, there exist more than
2N possible wavelet packet bases. Coifman and Wickerhauser presented a
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method to find a best basis for a given criterion, such as maximal sparsity
or minimal entropy [48]. The algorithm finds a global minimum for a cost
function P ({xλ}), among all possible wavelet packet representations {xλ}
of x. It is applicable for cost functions that satisfy P (∅) = 0, and P ({ti}) =
∑

i p(|ti|) for some function p; such cost functions are said to be additive.
For example, the choice

p(t) =

{
1 if |t| > τ
0 otherwise.

leads to the wavelet packet transform that has the smallest number of ele-
ments larger than τ .

The algorithm uses a bottom-up approach. First, a full wavelet-packet
decomposition of x is computed up to scale 0. The lowest cost representation
of the part of x that lies in W0,1 = W0,0 ⊕W1,0 has an associated cost

Q(0, 1) := min{P ({x0,1,k}), P ({x0,0,k}) + P ({x1,0,k})}. (3.39)

A similar expression can be given for Q(n, 1), n = 1 . . . 2J−1. The lowest
cost representation of the part of x that lies in Wn,j , j > 1, is given by

Q(n, j) := min{P ({xn,j,k}), Q(2n, j − 1) +Q(2n+ 1, j − 1)}. (3.40)

By induction, the global minimum of P is given by Q(0, J). The corre-
sponding best basis is found by remembering the arguments that minimise
the expressions (3.39) and (3.40).

An extension of this algorithm to the two-dimensional case is possible
only for the square transform. The cost of a subblock Wλ,µ is evaluated
by P (Wλ,µ). An additive cost function cannot be found for the rectangular
transform, since in that case the subblocks corresponding to λ and µ, for
λ, µ ∈ Λ, overlap for each combination of λ and µ. Hence, in that case the
efficient best basis algorithm can only be approximated.

3.6.2.3 The nonstandard matrix-vector product

A one-dimensional rectangular wavelet packet transform W of a regular
matrix M can be written as W = TMTT . The matrix-vector prod-
uct y = Mx can then be computed efficiently by y = T−1W (TT )−1x.
A matrix-vector product with a matrix obtained after a two-dimensional
square wavelet packet transformation is more involved, but can still be de-
fined [202]. The algorithm for the matrix-vector product is a three-step
procedure. Assume that W is a two-dimensional wavelet packet transform
of M . First, the representation coefficients xλ, for λ ∈ Ξ, are computed for
all scales j = 0, . . . , J . Next, for each block Wµ,λ in W that corresponds to
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Figure 3.3: Illustration of the nonstandard matrix-vector product. The
vector is represented on all scales. The matrix-vector product is performed
by multiplying each subblock of M on scale j with the matching block of
the vector on the same scale.

a function space Wµ ×Wλ, compute

yµ := Wµ,λxλ.

Finally, the result y is given by

y =
∑

µ

∑

k

yµ,kψµ,k.

The latter is easily computed by adding the inverse transformation of each
yµ. The algorithm is clarified in Figure 3.3. The rightmost part of the figure
depicts the representations of the vector x on each scale j. The leftmost part
of the figure shows the structure of the transformed matrix with subblocks
Wµ,λ. The matrix-vector product requires one to multiply each subblock on
scale j of the dense matrix with the matching block on scale j of x. We note
already that the structure of the matrix-vector product strongly resembles
that of the H2-matrices that will be described in §5.4.2. The three steps
described above relate directly to the three steps for a matrix-vector product
with H2-matrices: Forward Transformation, Multiplication, and Backwards
Transformation.

3.6.3 Application in boundary element methods

The use of wavelet packets for the fast solution of integral equations has
been considered previously in [93, 74, 75]. Deng and Ling, and Golik inde-
pendently studied wavelet packet based matrix compression. Both reported
a number of significant elements after compression that scales as O(N4/3)
for the combined field integral equation (2.56) using collocation. Both ap-
proaches were based on a one-dimensional transform and, hence, only an
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approximation to the best basis algorithm was applied. In [93] a top-down
approximation to the best basis algorithm is performed on the right hand
side of the linear system (2.59). The resulting basis is used for compressing
the matrix using the rectangular transform. In [74] a top-down approxi-
mation to the best basis for the rectangular transform is performed on the
matrix in (2.59) itself. In [75] a one-dimensional wavelet packet basis is
constructed that zooms in on the frequency given by k [75].

Here, we will consider the use of a two-dimensional wavelet packet basis
using the square transform. This will increase the freedom in the choice
of basis greatly. Moreover, the best basis algorithm can be applied exactly
and the sparsity results can be much improved.

3.6.3.1 Choice of basis functions

It was shown in §3.4 that an optimal implementation of the wavelet method
should employ biorthogonal wavelets. Wavelet packets based on biorthogo-
nal wavelet filters are not guaranteed to be stable however [42], so we are re-
stricted to orthogonal wavelet packets. We employ the popular Daubechies
wavelets since they are compactly supported [66]. Other orthogonal wavelets
with finite filters would lead to similar results.

The compression is influenced by the number of vanishing moments d̃.
A larger value of d̃ leads initially to better compression, but also requires a
larger number of filter coefficients hk and gk. This increases the computation
time of the wavelet and wavelet packet transformations. A suitable tradeoff
for the purposes of this study proved to be the choice d̃ = 7.

3.6.3.2 Collocation approach for the discretisation

We consider the discretisation of the combined field integral equation (2.56),

(iηS +
I

2
+D∗)q = iηf + g, (3.41)

with η proportional to k. The discretisation by collocation and by Galerkin
yield very comparable results concerning the compression of the matrix. We
proceed here with a collocation approach. A set of pulse basis functions is
used, each with height 1 on one element of Γ and zero elsewhere. We apply
a one point integration formula for the integral, as given in [108]. Define
∆i, ri and ni as the width, centre position, and outgoing normal of the i-th
pulse. The discretisation matrix M is then given by

Mi,j =







iη∆j
i
4

(

1 + 2i
π log

(
eγk∆j

4e

))

+ 1
2 if i = j

∆j

(

iη i4H
(1)
0 (k|ri − rj |)

−
(

ni · ri−rj

|ri−rj |

)

k i4H
(1)
1 (k|ri − rj |)

)

otherwise.

(3.42)
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The approximation to the solution of (3.41) is found by solving

Mx = b, (3.43)

where b corresponds to the pointwise evaluation of the right hand side
of (3.41) on Γ. The matrix M will be transformed and compressed in
order to obtain a faster matrix-vector product. The compression error can
be measured in different ways. Assume x is the exact solution of (3.43),
and y is the solution of the compressed problem. Then the relative error of
the solution and the relative residual error are given by

eS =
‖x− y‖
‖x‖ and eR =

‖b−My‖
‖b‖ , (3.44)

respectively. The residual error is a weaker error measure, but it is meaning-
ful in practice. In computational electromagnetics applications, an approxi-
mate solution y with residual error eR represents a current that induces the
same electromagnetic field as the exact solution x to a certain precision eR.

3.6.3.3 Matrix compression: scaling of the threshold

A compression of the transformed discretisation matrix is obtained by dis-
carding small elements. The most straightforward implementation uses a
fixed threshold value τ . In that case, the compressed matrix W ε is given by

W ε
i,j =

{
Wi,j if |Wi,j | > τ,
0 otherwise.

(3.45)

A more advanced compression strategy utilises a scale dependent thresh-
old, as discussed for the wavelet method in §3.4.2. Such a strategy can
improve sparsity, but for the arguments in this section the simpler strategy
is sufficient. A natural question that arises is how to choose the parameter
τ as a function of N , in order to guarantee a fixed error. To answer this
question, we will construct an estimate for the matrix compression error
as a function of τ and N . We will consider the matrix obtained with the
collocation scheme, and we measure the matrix compression error by

e =
‖W −W ε‖2

‖W‖2
. (3.46)

First we determine the asymptotic behaviour of ‖M‖2, with M the col-
location matrix whose elements are given in (3.42). The Hankel functions

for large arguments behave as |H(1)
ν (z)| ∼ 1√

z
, independent of the order

ν [4]. The pulse width ∆j is obviously O(1/N) = O(h), and η = O(k).
The contribution of the single layer potential to the off-diagonal elements
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in (3.42) is therefore O(hk/
√
k). The contribution of D∗ has the same or-

der, so the linear combination has the same order too. The diagonal element
contributions from S and D∗ are each O(1).

The maximum absolute column sum norm ‖M‖1 and the maximum
absolute row sum norm ‖M‖∞ are of order O(1 + (N − 1)(hk/

√
k)) =

O(Nhk/
√
k) = O(

√
k). From this and from the inequality ‖M‖2

2 ≤
‖M‖1‖M‖∞ we can deduce that

‖M‖2 = O(
√
k). (3.47)

The orthogonal wavelet transform and orthogonal wavelet packet transform
can be represented by a transformation matrix T with ‖T‖2 = 1. Therefore,
‖W‖2 = ‖M‖2.

The error ‖W − W ε‖1 can be bounded by the worst case value Nτ .
The infinity norm is similar, leading to ‖W −W ε‖2 = O(Nτ). Combined
with (3.47), this yields

e =
‖W −W ε‖2

‖W‖2
= O(Nτ/

√
k).

The error (3.46) will be bounded only if

τ = O(N−1/2). (3.48)

The analysis for the discretisation by Galerkin is similar, and leads to the
same behaviour (3.48) for the threshold.

Remark 3.6.1. A threshold that is often proposed in the literature is τ =
‖M‖1

N [108]. This threshold has indeed the appropriate asymptotic behaviour.

3.6.4 Computational complexity

3.6.4.1 Complexity of the matrix-vector product

The numerical results that are presented in §3.8.2 will demonstrate the
improved sparsity of the discretisation matrix when using wavelet packets
as basis functions. A rigorous proof of the reduced complexity would be
rather involved, due to the adaptive nature of the best basis algorithm.
However, an estimate is derived below, based on heuristic arguments. In
addition, insights are gained into the behaviour of the method.

Denote by ŵn(ξ) the Fourier transform of the wavelet packet function
wn(t). Since wn(t) is compactly supported, the same can not hold for ŵn(ξ).
However, the main energy of ŵn(ξ) is located inside a certain frequency band
that depends on n. Its size can be estimated from the variance

σn := inf
ξ0∈R

∫ ∞

0

|ξ − ξ0|2|ŵn(ξ)|2 dξ.
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Figure 3.4: The number of nonzero elements after compression of cos(2πfx)
with N = 10f using wavelets, and wavelet packets in the best basis.

Ideally, each wavelet packet function wn(x) has a frequency spectrum inside
a band of fixed size, that does not overlap with the spectrum of other basis
functions. This is only approximately the case. It is shown that σn ∼ n2δ

with δ > 0 a small constant [46]. The size of the band is approximately
proportional to the standard deviation

sn :=
√
σn = nδ. (3.49)

Consider a function that is sampled at N = 2L equispaced points. The
entire frequency spectrum is given by 0 ≤ f < 2L. In the ideal case,
wn,j,k(x) has a frequency spectrum of the form f ∈ [2j(ξ0 − 1/2), 2j(ξ0 +
1/2)], i.e., a band of fixed width 2j , with ξ0 the average frequency of ŵn(x).
The basis functions wn,j,k(x), n = 0, . . . , 2L−j − 1, then cover the en-
tire spectrum independently from each other. Now consider the function
cos(2πfx), with a frequency f that is proportional to N . A value of ξ0,
and a corresponding value of n, can be found for any fixed scale j such
that f ∈ [2j(ξ0 − 1/2), 2j(ξ0 + 1/2)]. Hence, the cosine can be represented
accurately on scale j by only 2j basis functions wn,j,k(x), k = 0, . . . , 2j − 1,
independently of N . Both ξ0 and n scale linearly with N .

Now assume a bandwidth of nδ. Then there are O(nδ) intervals of the
form [2j(ξ0−O(nδ)), 2j(ξ0+O(nδ))] that contain f . Hence, the total number
of coefficients required to represent the cosine accurately on scale j has order
O(2jnδ) = O(2jN δ). For j = 0, the estimate is O(N δ). The value of δ can
be determined easily for a given wavelet family from a numerical experiment.
We have computed the number of coefficients larger than a fixed threshold
for the function cos(2πfx), x ∈ [0, 1], with N = 10f . The result is shown
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for a wavelet approximation and a best basis approximation in Figure 3.4.
The number of coefficients in the wavelet approximation scales linearly in
N . For the best basis approximation, we have δ ≈ 0.7.

The two-dimensional discretisation matrix can be regarded as an exten-
sion of the one-dimensional cosine model, as it represents the discretisation
of an oscillatory function with a frequency that is approximately fixed. The
influence of the singularity may be discarded, because it can be represented
locally on each scale with only few coefficients. An estimate for the number
of coefficients in the two-dimensional transformed discretisation matrix is
then O(N2δ) = O(N1.4).

3.6.4.2 Total computational cost

Three phases of the solution method contribute to the computational com-
plexity: the setup of the discretisation matrix, the wavelet packet transform
and thresholding, and the iterative solution of the resulting system. The
construction of the full discretisation matrix requires O(N2) operations.
The computational complexity of the best basis algorithm for a matrix is
O(N2 logN), slightly larger than the setup cost. The complexity of the so-
lution phase with an iterative method depends on the condition number of
the matrix, and on the complexity of the matrix-vector product. The con-
dition number is not significantly influenced by the compression, so the gain
of our method lies solely in a faster matrix-vector product. The higher cost
for the transformation will be compensated if the same system is solved for
several different boundary conditions, since the setup has to happen only
once. This is a common case, e.g., in electromagnetics, where incoming
waves from different angles lead to different boundary conditions.

The high transformation cost can be avoided by approximating the best-
basis algorithm with lower complexity methods. To that end, we considered
a two-dimensional top-down approach: in each step of the wavelet packet
transformation, the sparsity of a subblock in the matrix corresponding to
a function space is compared to the sparsity in the representation of its
four children spaces. If the sparsity is not improved, the subblock is not
further transformed. The sparsity of the resulting basis is only a local
minimum in the space of all possible bases, compared to the global minimum
obtained by the best basis algorithm. However, the costly full wavelet packet
decomposition is not required with this approach.

The high setup cost can also be avoided if the size of the elements in a
wavelet packet basis can be estimated a priori. A suitable basis can then be
selected that leads to a large number of small elements that do not need to
be computed. Such estimates are available in the wavelet method; they are
given by (3.13) and (3.14). Similar estimates for wavelet packets are not
yet available. They should also incorporate the frequency resolution of the
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wavelet packets and the inherent frequency of the kernel function.

3.7 Wavelet quadrature

3.7.1 Integration techniques

All the wavelet based solution methods discussed so far require the compu-
tation of a large number of one-dimensional and two-dimensional integrals
involving wavelet functions or scaling functions in the integrand. The in-
tegrals may be singular, and the integration domain may be large. In the
wavelet method, the integrals corresponding to the wavelets with the largest
support require the most accuracy, while elements corresponding to wavelets
on finer scales may have larger errors [56]. A fully discrete implementation
for the wavelet method was proposed in [196], requiring O(N(logN)4) op-
erations. An efficient method for singular and nearly singular integrals
was presented in [176], enabling an O(N) implementation of the wavelet
method [175, 104, 86].

The wavelet coefficients of a function f involve integrals of the form

cj,k :=

∫ ∞

−∞
f(x)φj,k(x) dx, (3.50)

or

dj,k :=

∫ ∞

−∞
f(x)ψj,k(x) dx. (3.51)

Since coefficients dj,k can be obtained from cj+1,k using (3.7), we focus on
the former integrals involving a scaling function φ(x). We assume that the
scaling function has limited support, i.e., supp(φ(x)) = [s1, s2].

General quadrature rules for (3.50) depend on the smoothness of the
integrand. Discontinuities of the integrand or of any of its derivatives may
disturb the convergence of these methods. They will fail for scaling functions
with only small regularity. Also, it can be computationally expensive to
evaluate φ and f , so we would like to minimise the number of function
evaluations. In some cases there is even no explicit formula for φ available.

The methods described in the given references assume that the wavelet
function is at least piecewise smooth, for example piecewise polynomial.
This allows the use of high order quadrature schemes. The singularity is
removed using a regularisation [79]. Not all wavelets are smooth however. A
different approach is taken in [14, 58, 88, 142, 184]. High order quadrature
rules can be constructed for wavelets with arbitrarily low regularity, based
solely on the defining refinement equation (3.3).
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Here, we will extend this approach to singular and piecewise smooth
integrands. Our goal is to develop quadrature rules that exhibit conver-
gence characteristics that depend only on the smoothness of f , and to reuse
function evaluations whenever possible. To compute the rules themselves,
we will only need the coefficients hk of the refinement equation (3.3). Our
approach is based on the method originally discussed in [19] and extended
in [184]. We recall the quadrature method of [184] for smooth functions in
§3.7.2. In §3.7.3, the method is extended to cover piecewise smooth func-
tions. In §3.7.4, we cover singular functions.

Throughout this section, the integration error is determined by compar-
ison with the results of the integration package Cubpack [50].

3.7.2 An integration rule for smooth functions

3.7.2.1 The quadrature rule and its construction

The modus operandi is based on a technique described by Sweldens and
Piessens in [184, 183]. These authors have constructed a quadrature rule
Q[·] that only requires the evaluation of f in a number of quadrature points,

∫ ∞

−∞
f(x)φ(x) dx ' Q[f(x)] =

r∑

i=1

wif(xi). (3.52)

The convergence rate of this integration rule depends on the number of ab-
scissae r and on the smoothness properties of f , but not on the smoothness
of the scaling function φ.

The integrals of type (3.50) can be approximated for all values of j and
k using rule (3.52), by

cj,k ' 2−j/2Q[f(2−j(x+ k))]. (3.53)

The abscissae xi are chosen on a regular grid that enables reusing the values
f(xi) for neighbouring scaling functions. Points of the form xi = (i− 1)2s,
e.g., with s a negative integer, are good candidates, since any integer shift
transforms the set of points {xi} onto itself. A real shift τ on the entire
grid preserves that property.

These observations lead one to consider the points xi = (i − 1)2s + τ .
In [184] it is shown that many function evaluations can be shared: if s = 0,
each additional coefficient requires only one extra evaluation of f . All the
other values that are needed for the computation of cj,k in (3.50), are also
needed for cj,k−1. The parameter τ is an additional degree of freedom, and
can be used to increase the order of the quadrature rule.

The rule (3.52) is derived by imposing that the quadrature is exact for
all polynomials of degree lower than r,

Q[Pl(x)] = M l, l = 0, 1, . . . , r − 1, (3.54)
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with

M l :=

∫ ∞

−∞
Pl(x)φ(x) dx. (3.55)

The polynomials Pl(x), l = 0, 1, . . . , r − 1 in (3.54) form a basis for the
set of polynomials of degree lower than r. The unknowns are the quadra-
ture weights, and the matrix representing the system is found by simply
evaluating Pl(x) in the quadrature abscissae. Since the resulting system of
equations is ill conditioned for the monomial basis Pl(x) = xl, Sweldens
and Piessens considered using the Chebyshev polynomials of the first kind,
Tl(x). These polynomials form an orthogonal basis on [−1, 1] for the weight
function w(x) = (1 − x2)−1/2. When properly scaled Chebyshev polynomi-
als are used in (3.54), the system is well conditioned. Scaling the interval
[s1, s2] to [−1, 1], we have the basis polynomials

Pl(x) = Tl

(

2
x− s1
s2 − s1

− 1

)

. (3.56)

By making use of the refinement equation (3.3) and properties of Chebyshev
polynomials, an explicit formula for the moments M l can be derived [184].
The system (3.54) can then be solved to find the quadrature weights.

3.7.2.2 Some comments on the accuracy of the quadrature rule

With a regular grid of r abscissae, we typically expect for the corresponding
quadrature rule a degree of accuracy, denoted by q, of at most q = r−1. The
integration error is then of the order O(hq+1), with h being proportional
to the interval length s2 − s1, i.e., the support of φ. In some cases, we can
achieve an order q = r with a proper choice of τ . The number r depends on
the parameter s that determines the regular grid. In [184], it is shown that
the application of the rule to a scaling function φj,k(x) on scale j leads to
a relative error on the approximation of cj,k of O(2−j(q+1)). As one might
have expected, a finer scale, i.e., a reduction of the integration interval,
leads to a more accurate result.

The technique described here leads to an interpolatory integration rule,
with the scaling function as a weight function. In general, the weights for
such rules can have alternating signs, which negatively impacts the stability
of the computations. Even if the weight function is strictly positive, there
will be at least one negative weight for each rule with a sufficiently high
degree of accuracy. For weight functions that switch signs, which is not
uncommon, each rule has negative and positive weights. For this reason,
we will quantify the stability properties of the weights in the examples,
presented further on by using the sum of absolute values as a measure [69].
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If we abandon the principle of using a regular grid for the abscissae,
better rules can be made by constructing Gaussian quadrature rules with
φ as weight function. Since for Gaussian rules the weight function has to
be positive, for some scaling functions g(x) := φ(x) + c is used instead.
Here, the constant c is chosen such that g is a suitable nonnegative weight
function. Such rules are constructed in [14, 142]. In that setting, one loses,
however, the ability to reuse function evaluations.

3.7.3 Improving accuracy by composite quadrature

For a larger number of abscissae, say r ∼ 30, the high order methods
from [184] become unstable due to large quadrature weights with alter-
nating signs. As with composite quadrature rules, the accuracy can be
improved by splitting the integration interval, and by applying a lower or-
der quadrature rule on each subinterval. Hence, we aim for a new rule on
the subinterval [a, b] ⊂ [s1, s2]

∫ b

a

f(x)φ(x) dx ' Qa,b[f(x)]. (3.57)

The support [s1, s2] of the scaling function φ is divided into a sequence of in-
tervals [ai, bi]. Typically, the integration subinterval [ai, bi] has its endpoints
on points of discontinuity or singularity of f .

3.7.3.1 Computation of the moments

In order to find the quadrature weights, we need to compute the moments
of the scaling function on the interval [a, b],

M l
a,b :=

∫ b

a

Pl(x)φ(x) dx. (3.58)

Using refinement equation (3.3), we have, for the zeroth order moment,

M0
a,b :=

∫ b

a

φ(x) dx =

√
2

2

∑

k

hk

∫ 2b−k

2a−k
φ(x) dx

=

√
2

2

∑

k

hkM
0
2a−k,2b−k. (3.59)

This formula expressesM0
a,b as a linear combination of zeroth order moments

on the intervals [2a−k, 2b−k]. Applying (3.59) recursively for the moments
in the right hand side, leads to a set of linear equations for the unknowns
M0
ai,bi

, for different intervals [ai, bi]. Since the support of φ is finite, only
those moments where the interval intersects the support [s1, s2] are nonzero.
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We define S(a, b) as the set of all intervals generated starting from [a, b],
by recursively adding [2ai−k, 2bi−k]∩[s1, s2], k = s1, . . . , s2, for each inter-
val [ai, bi] in the set. These intervals correspond to the unknown moments
in (3.59). We will first generalise equation (3.59) to moments of higher
order, and then we will discuss the size of the set S(a, b).

3.7.3.2 An algorithm based on using Chebyshev polynomials

For the computation of M l
a,b, we may use the Chebyshev polynomials Tl(x)

scaled to the interval [s1, s2]. In this way we avoid evaluating the polyno-
mials outside the interval [−1, 1]. One scaling can be converted to another
easily by using the following relation,

Tn

(
x+ λ1

L1

)

= 2−n
n∑

i=0

w
(n)
i Ti

(
x+ λ2

L2

)

, (3.60)

with real parameters λ1, L1, λ2 and L2, and L1, L2 6= 0. Note that the

parameter w
(n)
i depends on λ1, L1, λ2, L2. A stable recursive scheme to

compute the coefficients w
(n)
i in (3.60) is given in [121]. The scheme is based

directly on the three-term recurrence relation for Chebyshev polynomials.
A similar scheme, only slightly different, was used and derived in [184].

The moments can then be found in the following way. If l = 0, we
solve the system of equations of type (3.59). For larger l, we use (3.60) to
introduce lower order Chebyshev polynomials,

M l+1
a,b =

∫ b

a

Tl+1

(
x+ λ1

L1

)

φ(x) dx

=

√
2

2

∑

k

hk

∫ 2b−k

2a−k
Tl+1

(
x+ k + 2λ1

2L1

)

φ(x) dx

=

√
2

2

∑

k

hk

l+1∑

i=0

∫ 2b−k

2a−k
2−(l+1)w

(l+1)
i (k)Ti

(
x+ λ1

L1

)

φ(x) dx

=

√
2

2

∑

k

hk

l+1∑

i=0

2−(l+1)w
(l+1)
i (k)M i

2a−k,2b−k.

The coefficients w
(l+1)
i (k) are written this way in order to make the depen-

dence on the parameter k explicit in the equation, since we applied (3.60)
with a k-dependent parameter λ2. The coefficients need to be computed
once for every value of k. The parameters λ1 and L1 are defined here such

that Tl

(
x+λ1

L1

)

= Tl

(

2 x−s1
s2−s1 − 1

)

.
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A separation of the known and unknown components yields the equation

M l+1
a,b −

√
2

2

∑

k

hk2
−(l+1)w

(l+1)
l+1 (k)M l+1

2a−k,2b−k (3.61)

=

√
2

2
2−(l+1)

∑

k

hk

l∑

i=0

w
(l+1)
i (k)M i

2a−k,2b−k.

The right hand side of (3.61) is fully known and can easily be evaluated at
step l + 1.

In order to find the quadrature weights for the integration on the interval
[a, b], we need to solve a system of equations similar to (3.54),

Q

[

Tl

(

2
x− s1
s2 − s1

− 1

)]

= M l
a,b. (3.62)

The matrix entries are evaluations of Chebyshev polynomials, scaled to
[s1, s2], in the interval [a, b]. In order to obtain a good condition number,
we will use the same matrix as in (3.54). The Chebyshev polynomials are
then scaled to the interval [a, b]. The new right hand side can be found from
the moments M l

a,b, by combining (3.58) and (3.60),

Q

[

Tl

(

2
x− a

b− a
− 1

)]

= M̃ l
a,b :=

n∑

i=0

2−nw(n)
i M i

a,b. (3.63)

3.7.3.3 Computational complexity of the construction

The performance of the algorithm described above, depends on the cardi-
nality of the set S(a, b) defined in §3.7.3.1. The following lemma shows that
the set is finite only when a and b are rational numbers.

Lemma 3.7.1. #S(a, b) <∞ ⇐⇒ a, b ∈ Q.

Proof. As can be seen from the recursion, each interval in S(a, b) can be
written as [2na − z, 2nb − z] ∩ [s1, s2], n ∈ N, z ∈ Z. For n large enough,
one endpoint of the interval will always be s1 or s2.

Assume a is irrational, i.e., a ∈ R \ Q. Set a0 := a, and define ai :=
2ai−1−ki for a sequence {ki|ki ∈ Z} such that ai ∈ [s1, s2]. The cardinality
of S(a, b) can only be finite if the sequence {ai} is self-repeating. Then a
has to solve 2na− k = 2ma− l, m,n ∈ N, k, l ∈ Z. This means a = k−l

2n−2m .
Clearly, a cannot be irrational.

Now assume a is rational. It can be written as a = c
d , c, d ∈ Z. Then

2na − z = 2nc−dz
d is again a rational number with the same denominator.

The cardinality of the set {ai} is bounded by the total number of such
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rational numbers in [s1, s2], d(s2 − s1). A similar reasoning for b proves
boundedness of #S(a, b), with a cardinality that is bounded by the sum of
#{ai} and a similarly defined set #{bi}.

The lemma shows that the system to be solved for the moments of the
scaling function will be the smallest for integers or rational numbers a and
b with a small denominator. For irrational values, it is infinitely large;
obviously the algorithm can then not be applied. However, each number
on a computer is represented by a rational number a ' A2−N , A ∈ Z.
The interval sequence will self-repeat after N recursion steps, since then
2Na − z ∈ Z and 2Nb − z ∈ Z. An upper bound for the cardinality of
S(a, b) is then given by 2N(s2 − s1), i.e., the number of iterations times the
number of integer shifts of 2ia and 2ib that lie in [s1, s2] in each iteration i.
Typically, however, the size of the set is way smaller than this upper bound:
this will be illustrated with some examples further.

When the construction of a quadrature rule is required in a time-critical
part of a program, it may be desirable to reduce the size of the system
to be solved. This can be done by computing the moments using rounded
values a ' a and b ' b that guarantee a lower cardinality #S(a, b). The
constructed rule can be seen as a rule for the integration on the interval
[a, b]. If ε := max(|a− a|, |b− b|) is the roundoff error, the integration error
can be estimated by

∫ a

a

f(x)φ(x) dx+

∫ b

b

f(x)φ(x) dx ≤ 2ε max
x∈[a,a]∪[b,b]

(f(x)φ(x)) = 2εM.

A good estimate for the constant M is just max(f(a)φ(a), f(b)φ(b)). Ex-
periments indicate that this error bound is sharp, giving good control of the
round-off error.

3.7.3.4 Convergence of the quadrature rule

Define the integration error Ea,b[·] as

Ea,b[f(x)] :=

∫ b

a

f(x)φ(x) dx−Qa,b[f(x)]. (3.64)

If f(x) ∈ Cq+1[a, b] then the first q + 1 terms of the Taylor expansion of f
around a point in [a, b] are integrated exactly, and the error will depend on
the (q + 1)-th derivative of f .

To specify this further, let Pq(x) be the polynomial of degree q that
interpolates the function f in x1, . . . , xr, with r = q + 1. Then [31],

∀x ∈ [s1, s2] : ∃ξ(x) ∈ [s1, s2] : f(x) = Pq(x) + eq(x),
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Table 3.2: Absolute error for the integration of the functions fi, specified
in Example 3.7.2, with CDF or Daubechies (DB) scaling functions.

CDF24 CDF24 DB2 DB3
[s1, s2] [−1, 1] [−1, 1] [−2, 2] [−3, 3]

s f1 f1 split f2 f2 split f2 split f2 split
0 5.6E − 2 1.5E − 2 5.6E − 1 1.5E − 2 7.1E − 2 1.4E − 2
−1 4.5E − 4 1.4E − 4 9.9E − 2 3.0E − 4 2.1E − 4 5.4E − 6
−2 8.1E − 8 4.6E − 9 1.5E − 2 4.4E − 8 4.3E − 11 9.6E − 13
−3 6.7E − 16 3.3E − 16 1.5E − 1 1.6E − 15 (8.6E − 6) (3.0E + 9)

P

|wi| 4.3 2.9 4.3 2.9 78 5266

with

eq(x) =
Π(x)

(q + 1)!
f (q+1)(ξ(x)), and Π(x) = Πr

i=1(x− xi).

The error is now given by

Ea,b[f(x)] = Ea,b[eq(x)] =
1

(q + 1)!

∫ b

a

φ(x)Π(x)f (q+1)(ξ(x)) dx. (3.65)

Estimates based on this expression are in general rather pessimistic. More-
over, the function ξ(x) is not known. However, it can be seen from (3.65)
that the asymptotic behaviour is essentially the same as in the rule for
smooth functions. The relative error of the quadrature method with the
degree of accuracy q remains O(hq+1), or O(hr), r = q + 1. Yet, this order
is to be evaluated for a smaller value of h, since |b− a| < |s2 − s1|.

For a smooth function f , this may not be the best solution. A more
accurate result can be obtained by computing coefficients on a finer scale,
and using the refinement equation to obtain values for the rougher scale.
This would lead to an error of the order O(h2r). If the function is only
piecewise smooth however, we can split the interval [s1, s2] into pieces that
correspond to the smooth parts of f . The convergence is then not adversely
affected by discontinuities of f , or of any of its derivatives.

Example 3.7.2. We consider the functions f1(x) := cos(2x)+ sin(3x) and
f2(x) := cos(|2x|) + sin(|3x|). We compare the integration rule of [184],
discussed in §3.7.2, with the integration rule discussed in §3.7.3. The pa-
rameter s determines the number of abscissae r used in the interval [s1, s2]
for the first method: r = 2−s(s2−s1)+1. For the second method, the inter-
val is split at the origin, and r abscissae are used in both intervals. Hence,
there is a total of 2r abscissae.

The values in Table 3.2 represent the absolute error for the integrals
∫ b

a
fi(x)φ(x) dx. The values in the last row represent the maximum sum
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of the absolute values of the weights that were used in the corresponding
column. We consider three different scaling functions. The numbers 2 and 4
in the notation CDF24 represent the order of the primal and dual wavelets
respectively of the CDF wavelet. The Daubechies wavelets of order 2 and
3 have very low regularity on each subinterval of their support.

The first two columns show that splitting the interval (and thus doubling
the points) is not very useful for the case of a smooth function. The result
is only slightly better, and does not compensate sufficiently for the extra
effort. For function f2 however, which is not smooth at the origin, the reg-
ular method shows no convergence. The second method converges rapidly
to almost machine precision. Similar results are obtained for the scaling
functions of two different Daubechies wavelets. The values corresponding
to s = −3 in the last two columns indicate the presence of a large error, due
to a number of abscissae greater than 30 (respectively 33 and 49). This is
an illustration of the instability for large r. The values are given between
parentheses. In order to get better accuracy results, the subintervals should
be split into a larger number of smaller intervals.

The values in the last row, i.e., the maximum sum of the weights, are
very moderate, even for the Daubechies scaling functions that switch sign.
This indicates good stability properties of the constructed rules.

Example 3.7.3. We now look at a different example to illustrate the size
of S(a, b). The computation of the moments on the interval [π/10, π/4] for
the CDF scaling functions, leads to a system with 195 unknowns with a
representation in double precision. The condition number of the system to
be solved in level l = 0 of the algorithm is only 47. It is smaller in the next
levels corresponding to the higher order moments. Rounding the interval
boundaries to the nearest multiple of 2−16 reduces the size of the system to
57 unknowns, and a maximum condition number of 27. The upper bound
on the number of unknowns here is 2N(s2 − s1) = 64. The error induced
on the integration is 5E − 6 for the function f(x) = 1.

This example illustrates the trade-off between computation time for the
construction of the rule, and the round-off error for intervals with irrational
endpoints. The error can always be made as small as needed however.

Having described the convergence as a function of q, it is also of interest
to consider the convergence as a function of j, which is the scale of the scaling
function φj,k(x) in the integrand. This is because in most applications we
would like to match the integration error of the numerical quadrature to the
discretisation error of the corresponding wavelet approximation on a given
scale. The values we want to compute using rule (3.57) are given by

dj,k =

∫ bn

an

f(x)φj,k(x) dx. (3.66)
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Table 3.3: Relative error for the integration of f1 on the interval [aj , bj ] for
DB3 wavelets.

q j = 0 j = 1 j = 2 j = 3

0 1.1E − 1 2.6E − 1 1.8E − 1 1.0E − 2
2 4.0E − 3 6.6E − 4 9.6E − 5 1.3E − 5
4 2.1E − 5 8.9E − 7 3.2E − 8 1.1E − 9
6 8.1E − 8 8.6E − 10 8.7E − 12 9.9E − 14

For the case of smooth functions in §3.7.2, seeing that h is proportional
to 2−j , one obtains the error estimate O(2−j(q+1)) that was mentioned in
§3.7.2.2. Here, contrary to that single case, we need to consider two cases:

1. the endpoints of the integration interval change with j, such that the
same part of the scaling function is covered on each scale. In this case,
aj = 2−j(a+ k).

2. the endpoints remain fixed as j increases, i.e., aj = a.

The first case occurs, e.g., when we would like to increase the accuracy
of the integration, by splitting the support of the scaling function in a finite
number of subintervals. The second case occurs when f has a discontinuity
(in a derivative) at a fixed point a or b. We can see that the convergence in
the first case will be asymptotically similar to the case of smooth functions,
i.e., O(2−j(q+1)), albeit with a smaller constant since the integration interval
is also smaller. In the second case, the error will still behave like O(hq+1),
but h does not scale as 2−j initially. That only happens when the scaling
parameter j becomes large enough, such that the support of the scaling
function is contained entirely within the fixed interval [a, b]. The problem
then reduces to the previous case.

Example 3.7.4. To illustrate the above discussion, consider again the func-
tion f1(x). Table 3.3 shows the relative error for the case of Daubechies
wavelets with k = 0.

The error for fixed q decreases with the expected factor 2−(q+1). For fixed
j, we expect to see in Table 3.3 a convergence rate of 2−j(q+2+1)/2j(q+1) =
22j . For increasing j, the convergence rates indeed approximately improve
by a factor of 4 from left to right in each column.

3.7.4 An integration rule for singular functions

3.7.4.1 Functions with a known singularity

The method can be extended to work for functions with an integrable sin-
gularity, e.g., s(t) = |t|α, for −1 < α < 0 or s(t) = log(|t|). First we will
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assume that the singularity of f is known analytically and can be subtracted,
i.e., f(x) = p(x) + q(x)s(x − x′), x′ ∈ [s1, s2], where p(x) is a non-singular
function. We develop a quadrature rule Qs[·] such that

∫ b

a

f(x)φ(x) dx =

∫ b

a

p(x)φ(x) dx+

∫ b

a

q(x)s(x−x′)φ(x) dx ' Q[p]+Qs[q],

with Q[p] being quadrature rule (3.52).
We demand for quadrature rule Qs[·] an exact integration of the func-

tions s(x− x′)Pl(x), with Pl(x) from (3.56). The required moments are in
their most general form given by

M l,m
a,b :=

∫ b

a

Tl

(
x+ λ1

L1

)

s(x−m)φ(x) dx. (3.67)

First, we discuss how to deal with the singularity, and consider the integra-
tion interval (−∞,∞). Using the refinement relation, we have

M0,m :=

∫ +∞

−∞
s(x−m)φ(x) dx

=

√
2

2

∑

k

hk

∫ +∞

−∞
s

(
x+ k

2
−m

)

φ(x) dx. (3.68)

Hence, in the right hand side integrals, the singularity has been shifted.
For the algebraic singularity, the shifted singularity can be rewritten in the
original notation s(x−m),

∣
∣
∣
∣

x+ k − 2m

2

∣
∣
∣
∣

α

= |x− (2m− k)|α 2−α

and, similarly, for the logarithmic singularity,

log

(∣
∣
∣
∣

x+ k − 2m

2

∣
∣
∣
∣

)

= log (|x− (2m− k)|) − log(2).

For s(t) = log(|t|), relation (3.68) becomes

M0,m =

√
2

2

∑

k

hkM
0,2m−k − log(2)

√
2

2

∑

k

hk, (3.69)

while for s(t) = |t|α we find

M0,m =

√
2

2
2−α

∑

k

hkM
0,2m−k.



3.7. WAVELET QUADRATURE 75

Recursive application of the above expressions for different values of m
leads again to a set of linear equations in the unknown moments M0,m(i).
The parameter m(i) = 2m(i−1)−k with m(0) = m grows in principle without
bound. Yet, if it is large enough the integral is no longer singular. The corre-
sponding moments can then be computed by using the techniques of §3.7.2.
For accurate computations, it is better to also include the nearly singular
moments as unknowns in the set of equations. Good results were obtained
by including the moments for all intervals that satisfy dist(m, [a, b]) < 1,
i.e., when the distance of the singularity to the integration interval is of the
same order as the size of the interval, which is O(1) on scale j = 0.

Combined with the approach of splitted intervals, we find a linear equa-
tion for each moment. For example, for the logarithmic singularity, we have
an equation of the following type,

M l+1,m
a,b = 2−(l+3/2)

∑

k

hk

l+1∑

i=0

w
(l+1)
i (k) (3.70)

(

M i,2m−k
2a−k,2b−k − log(2)M l+1

2a−k,2b−k

)

.

The moments can be computed for each value of l successively, starting from
l = 0 and the known partial moments M l

a,b.
Again, the size of the system to be solved is finite only under certain

conditions. Define S(a, b,m) as the set of intervals and singularity locations
corresponding to the moments found by applying (3.70) recursively, for
which dist(m, [a, b]) < 1. The cardinality of this set is bounded only if m is
a rational number.

Lemma 3.7.5. #S(a, b,m) <∞ ⇐⇒ m ∈ Q.

Proof. The intervals [2na−z, 2nb−z]∩[s1, s2] with corresponding singularity
2m− z are in S(a, b,m) only if 2m− z ∈ [s1 − 1, s2 +1]. Using the same line
of reasoning as in Lemma 3.7.1 leads to the condition m ∈ Q.

Conditions on a and b are not required if a, b 6= m, since for n large
enough we have that 2na−z−(2nm−z) = 2n(a−m) > s2−s1+1. This means
that for any 2nm−z ∈ [s1−1, s2+1], [2na−z, 2nb−z]∩[s1, s2] = [s1, s2].

Note that, in order to compute the nonsingular moments, it is still re-
quired that a and b be rational numbers. In a time-critical code part, m
can also be rounded to a near rational number. The error made is given by

∫ b

a
f(x)φ(x)(log |x−m| − log |x−m|) dx ≤M(m− a) log |a−m|

+(a−m) log |a−m| + (b−m) log |b−m| + (m− b) log |b−m|,
withM = max f(x)φ(x). We have x log(x)−(x+ε) log(x+ε) ≈ ε(log(x)+1).
Using this expression, we see that when m = a or m = b, the error has order
O(ε log(ε)). Otherwise it has order O(ε).
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Table 3.4: Absolute error for the quadrature approximation of the inner
product of log(|x|)fi(x) with CDF24, DB2, or DB3 scaling functions.

CDF24 CDF24 DB2 DB3

r log(|x|)f1 log(|x|)f2 log(|x|)f2 log(|x|)f2

3 4.1E − 2 1.6E − 2 8.9E − 1 1.3E − 1
5 2.8E − 4 7.2E − 4 1.4E − 1 6.0E − 2
9 1.8E − 9 1.5E − 7 5.0E − 4 3.2E − 3
13 1.6E − 13 6.3E − 12 4.2E − 7 1.5E − 5
17 5.5E − 15 8.9E − 15 1.2E − 10 2.1E − 8

P

|wi| 1.5 117 263 94

The error Es[f(x)] :=
∫ b

a
log(x− x′)f(x)φ(x) dx−Qs[f(x)] is given by

Es[eq(x)] =
1

(q + 1)!

∫ b

a

log(x− x′)φ(x)Π(x)f (q+1)(ξ(x)) dx. (3.71)

This leads, asymptotically, to the same relative error O(hq+1), with h = 2−j

or smaller depending on the size of [a, b], for scaling functions on scale j.

Example 3.7.6. Table 3.4 lists the absolute error of the approximation
obtained by the quadrature method for two singular functions, log(|x|)f1(x)
and log(|x|)f2(x), with f1(x) and f2(x) as defined in Example 3.7.2. In
this example, we compare different scaling functions for a fixed number of
abscissae r. For the test function f2, the interval [s1, s2] is split at the origin
in order to cope with the discontinuity of the derivative.

It is clear from Table 3.4 that the results converge rapidly. Note that
the Daubechies wavelets require a larger number of abscissae for the same
absolute error, due to a wider support. The largest system that was needed
to compute the required moments for this table had only dimension 6.

3.7.4.2 Functions with an unknown singularity

In some cases, one does not wish to subtract the singularity explicitly, as
in §3.7.4.1, and use a separate rule for the smooth and the singular parts.
It is still possible to compute an efficient quadrature rule in this situation,
by requiring exactness of the integration result for the functions Tl(x) and
s(x − x′)Tl(x). The right hand side of the resulting set of equations is set
up in a similar way as in §3.7.3.1 and §3.7.4.1, based on the moments M l

a,b

and M l,m
a,b . Obviously, the number of abscissae necessary to obtain a degree

of accuracy doubles, as does the size of the system, i.e., r = 2q + 2 if the
above functions are used for l = 0, 1, . . . , q.
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Table 3.5: Absolute error for the approximation of the inner product with
log(|x|)fi(x) via rules with known (A) and unknown (B) singularity.

CDF24 DB2 CDF24
log(|x|)f1 log(|x|)f1 log(|x|)f2

q A B A B A B
1 1.9E − 0 2.0E − 2 2.1E − 0 1.1E − 0 8.3E − 1 3.5E − 1
3 4.8E − 2 8.2E − 4 8.2E − 1 4.0E − 1 2.8E − 2 2.5E − 2
7 3.4E − 6 3.0E − 6 3.2E − 3 1.6E − 3 7.6E − 6 9.5E − 5
11 4.4E − 11 9.4E − 11 2.1E − 6 7.5E − 7 5.0E − 10 5.9E − 8
15 2.0E − 15 5.8 − 14 3.7E − 10 9.1E − 11 1.4E − 14 (9.7E − 7)

P

|wi| 1.7 1625 2.0 4180 67 9.9E8

Unfortunately, the matrix of the resulting system may become ill-
conditioned again. The method is usable however in practice, if the required
degree of accuracy for the application is not too high. If the unknown func-
tions p(x) and q(x) are smooth, as in the example below, conditioning does
not pose a significant problem. For the function log(|x|)f2(x), with f2(x)
defined in Example 3.7.2, we could only obtain good rules with an order of
up to 11 after we split the interval at the origin. Rules with higher accuracy
require different basis functions, to avoid the ill-conditioning, or the use of
higher precision arithmetic.

Example 3.7.7. We consider functions with known singularity, and com-
pare the results with those obtained with the previous method. All calcula-
tions were performed in double precision; no additional measures were taken.
The results are given in Table 3.5.

For function log(|x|)f1(x), there is no significant difference between the
two methods for most values of q. The method for unknown singularity
requires two times the number of abscissae (i.e., r = q + 1 for method A
and r = 2q + 2 for method B). That explains why in some rows the result
is actually better. The degree of accuracy is the same in both cases.

The last column illustrates the problem of ill-conditioning. The conver-
gence of method B stops after the fourth row. Depending on the application,
the error may however be already small enough at that point.

3.8 Numerical results

In this section, we illustrate the theoretical results that were obtained in
this chapter with numerical examples. The fill-in of the discretisation matrix
for increasing wavenumbers is illustrated in §3.8.1. The reduced complexity
of the matrix-vector product using wavelet packets is discussed in §3.8.2.
Finally, we illustrate the application of the quadrature rules that were con-
structed in §3.8.3 to the integrals arising in the boundary element method.
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3.8.1 Wavenumber dependence

First, we illustrate the wavelet compression of the discretisation matrix
for fixed k and increasing N . The typical structure of a sparse wavelet-
transformed matrix for two-dimensional problems was shown in Figure 3.1.
The number of significant elements in the discretisation matrix for a fixed
value of the wavenumber k and for increasing N is shown in the left panel
of Figure 3.5. The condition number before and after the preconditioning
defined by (3.20) is shown in the right panel. The number of unknowns is
approximately linear in N , and the condition number after preconditioning
is bounded. The scattering obstacle is an ellipse with radius R1 = 0.3 and
R2 = 0.5 along the X- and Y-axis. The wavenumber was chosen k = 10.
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Figure 3.5: The number of significant entries (nze) and the condition num-
bers for scattering by an ellipse for a fixed value k = 10 of the wavenumber.

The situation is different when k increases proportionally to N . In that
case, we have shown that the number of significant elements scales approx-
imately as O(kN) = O(N2). In order to compare the number of significant
entries for different values of k, we have chosen a simple level-independent
threshold. Following the analysis in §3.6.3.3, the threshold was chosen

τ =
δ

N
‖M‖1.

The parameter δ can be chosen so as to obtain a certain accuracy; here
it is set to 0.1. The numerical results in Figure 3.6 show the dependence
on the wavenumber for scattering by a circle and an ellipse. The circle has
radius R = 0.5, the ellipse is the same as in the previous example. The figure
shows the number of significant elements divided by N . This corresponds to
the numerical values of the constant C(k) in the computational complexity
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Figure 3.6: The number of significant entries divided by N (nze/N) for a
scattering problem on a circle and an ellipse, with 10 points per wavelength.

estimate O(C(k)N) of the wavelet method. The behaviour seems to be
linear in each case, C(k) ∼ k, as predicted by the theory.

3.8.2 Wavelet-packet based methods

In this section, we will discuss the results of four numerical experiments to
evaluate the proposed methods based on wavelet packets. First, we evaluate
the performance of the discussed matrix compression methods for a fixed
threshold that scales with N as determined in §3.6.3.3. Next, we evaluate
the matrix compression for a threshold that is adaptively chosen in order
to obtain a fixed error. Third, we investigate the complexity of the number
of nonzero entries in the compressed matrices, and finally we discuss the
condition number of the discretisation matrices.
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Figure 3.7: The obstacles: a circle with diameter D = 1, and a duct with
circumference 16.
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Figure 3.8: Absolute value of the solution along the boundary of the duct,
counter-clockwise from the bottom-left point, with k = 20 and N = 512.

We consider two different shapes for the boundary Γ, a circle and a duct,
inspired by the shapes used in [74, 199], see Figure 3.7. The circle has di-
ameter D = 1, and the duct has a total circumference D = 16. We have
obtained qualitatively similar results with other shapes. Although a simple
geometry, the duct has sharp corners, and a non-convex shape with possi-
ble resonances - these are two important complications in two-dimensional
wave scattering. The extension of the method to more complicated geome-
tries, including multiple scattering configurations, is straightforward. Some
numerical results involving multiple scattering are presented in [122].

The boundary condition in all examples is a plane wave eikx, incoming
at an angle of 45 degrees with respect to the X-axis. The value of k is
chosen proportional to N , such that there are 10 degrees of freedom for each
wavelength. For completeness, we also depict a solution for one particular
value of k in Figure 3.8. We compare five compression methods for each
example: the regular wavelet transformation itself, the approach of [74]
and [93], discussed in §3.6.1, the two-dimensional best basis algorithm and
its top-down approximation that was suggested in §3.6.4.2. These methods
will be referenced by (W), (NearBB1), (RhsBB), (BB2) and (NearBB2).

We used the two error measures (3.44), i.e., the relative solution error
and the relative residual error. As a first example, we chose a threshold
such that the error for the problem with size N = 128 was about 2.0%.
The threshold was then scaled with N as suggested by the estimate (3.48).
The results are given in Figure 3.9. The plotted values are the numbers
of nonzero elements in the compressed discretisation matrix, divided by
N . Corresponding to the previous experiment in §3.8.1, we expect the line
representing the regular wavelet transformation to be linear, i.e., the number
of elements grows quadratically with N . This is clearly visible in the figure.

The results show a much reduced number of significant elements of the
wavelet packet transformations compared to the wavelet transformation.
The residual error criterion increases the sparsity level in all cases. The
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(c) nze/N for the duct, relative solu-
tion error
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Figure 3.9: The number of nonzero elements (nze) relative toN after thresh-
olding with a scaling threshold. The initial threshold is such that the error
(eR or eS) is 2% for N = 128.

two-dimensional best basis produces the highest sparsity, and is better than
the wavelet transformation by a factor of 17 at N = 4096 for the circle. The
wavelet packet basis captures the inherent problem frequency much better
than the classical wavelet basis. The factor for the duct is approximately 2.5.
Due to the sharpness of the corners and the complex shape, it appears more
difficult for the wavelet packet basis to capture all of the relevant frequencies.
The computed errors eR and eS are not constant at 2% however, and tend
to decrease slowly with N . All values varied between 2.5% and 1% for the
current example. The errors for the wavelet-packet transformations seemed
to decrease faster than for the wavelet transformation. These observations



82 CHAPTER 3. WAVELET BASED METHODS

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

N

nz
e

W
NearBB1
ExciteBB
NearBB2
BB2

(a) nze/N for the circle, eR = 2%
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Figure 3.10: The number of nonzero elements (nze) relative to N after
thresholding with an adaptive threshold, such that the relative residual
error is fixed at 2 ± 0.05%.

indicate that the scaling threshold (3.48) is somewhat too restrictive, and
that the wavelet-packet transformations not only produce more sparsity, but
also a more accurate representation. The threshold can therefore be larger
than for the wavelet transformation.

To quantify the maximal possible sparsity in this setting, we choose
the threshold in the next example such that the error is kept constant at
2.0 ± 0.05%. Of course, in practice this procedure is not feasible, but for
analysis purposes it does provide some additional insight. A binary search
algorithm, starting with the scaling threshold as initial value, found a suit-
able threshold value typically in 4 to 6 iterations. The results are given
in Figure 3.10 for the residual error criterion. The threshold values scaled
approximately as O(N−1/3) for (BB2). The sparsity is much improved: for
N = 4096, (BB2) for the circle requires 36, 596 elements to satisfy the er-
ror criterion, compared to 56, 842 in the previous example. The difference
for the duct is in this case negligible: 468, 775 elements for the adaptive
threshold, compared to 475, 246 for the scaling threshold. The correspond-
ing dense matrix has 16 million elements.

One should note that for the duct, (NearBB2) and (BB2) are not signif-
icantly better than the one-dimensional (NearBB1). While (BB2) guaran-
tees the best compression for a two-dimensional basis for a fixed threshold,
the criterion in which we match the threshold to the final compression er-
ror leads to different thresholds for the different methods. The (NearBB2)
method is the best one in this case by a small margin. It was verified for
other obstacles that the largest gain with (BB2) is obtained for smooth ob-
stacles. For non-smooth obstacles with corners, such as the duct, the top-
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scaling threshold fixed error eR = 2%
N2 256 512 1024 2048 4096 256 512 1024 2048 4096
W 1.74 1.77 1.87 1.91 1.95 1.64 1.76 1.88 1.88 1.95

NearBB1 1.67 1.46 1.46 1.59 1.50 1.86 1.36 1.48 1.41 1.52
RhsBB 1.41 1.37 1.70 1.56 1.45 1.37 1.16 1.45 1.31 1.33

NearBB2 1.19 1.84 1.26 1.79 1.15 1.22 1.66 1.06 1.60 0.98
BB2 1.53 1.44 1.59 1.58 1.51 1.43 1.41 1.28 1.50 1.33

Table 3.6: Value of β in the estimate S = O(Nβ) for the circle, using the
residual error criterion.

scaling threshold fixed error eR = 2%
N2 256 512 1024 2048 4096 256 512 1024 2048 4096
W 1.58 1.61 1.60 1.67 1.75 1.67 1.54 1.60 1.64 1.73

NearBB1 1.37 1.49 1.48 1.50 1.44 1.63 1.29 1.40 1.45 1.26
RhsBB 1.56 1.53 1.50 1.45 1.58 1.77 1.39 1.42 1.36 1.47

NearBB2 1.45 1.45 1.51 1.47 1.42 1.52 1.38 1.38 1.30 1.30
BB2 1.45 1.43 1.50 1.43 1.38 1.54 1.36 1.48 1.37 1.23

Table 3.7: Value of β in the estimate S = O(Nβ) for the duct, using the
residual error criterion.

down approximations (NearBB1) and (NearBB2) perform almost equally
well or sometimes even marginally better than (BB2). The other obstacles
considered were an ellipse, a rounded gear wheel and an L-shaped domain.

Finally, we would like to examine the asymptotic complexity of the num-
ber of nonzero elements in the compressed matrices as a function of N .
Assume we can write the number of significant elements S as S = O(Nβ),
for some β ∈ R. The value of β can then be estimated from two successive
discretisations with N1 and N2 unknowns, and S1 and S2 significant ele-
ments, by β ≈ log(S1/S2)/ log(N1/N2). Tables 3.6 and 3.7 show the results
for the circle and the duct. The value of β approximates 1.5 for the scaling
threshold, but is lower for the threshold that corresponds to a fixed error.
The number of elements is therefore empirically O(N1.5) for the scaling
threshold, and at best O(N) for the computed threshold. A complexity of
O(N1.4) appears to be a good fit. This corresponds to the estimate that
was obtained by simple arguments in §3.6.4.

The condition number of the formulation (3.41) depends on the choice
of the coupling parameter η. With the optimal choice η = k, the condition
number is monotonously but slowly increasing. The values for the test
problems are given in Table 3.8. The condition number for the duct with
N = 4096 unknowns is 465, compared to the moderately large value of 2.5e4
for the common choice η = 1. The latter choice leads to more irregular
behaviour for the condition number. It can be seen from formula (3.42) for
the matrix elements, that the contribution of I

2 +D∗ to the discretisation
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Table 3.8: Condition number of the discretisation matrix for different
choices of the coupling parameter η in equation (3.41).

N 256 512 1024 2048 4096 8192

η = 1 circle 101.6 20.0 92.0 852 197 3.7e3
duct 1.7e2 1.1e3 6.1e2 1.1e3 2.5e4 1.1e4

η = k circle 4.3 5.4 6.7 8.5 10.7 13.4
duct 26.8 27.2 40.4 87.5 465 448

dominates for large values of k. The ill conditioning is therefore still caused
by the resonant eigenvalues. The choice η = k reduces this behaviour.

3.8.3 Wavelet quadrature

Some examples that illustrate the convergence rates of the constructed
quadrature rules were already given in §3.7. Here, we illustrate the use
of the quadrature rules for the efficient construction of the discretisation
matrix. Specifically, the implementation exploits the fact that function
evaluations can be shared among neighbouring matrix entries.

Each element of the matrix is given by a double integral of the form

e(j′,k′),(j,k) =

∫

Ωj,k

∫

Ωj′,k′

K(t, τ)φj,k(t)φj′,k′(τ) dτ dt, (3.72)

with Ωj,k = supp(φj,k). The application of any type of tensor-product
quadrature rule with n points per dimension requires n2 evaluations of the
kernel function, and 2n evaluations of the basis functions. The application
of the quadrature rules that were constructed in §3.7 also requires n2 eval-
uations of the kernel function, and no evaluations of the basis functions.
Due to the regular grid of quadrature points, it becomes easy to share the
evaluation of the kernel function among neighbouring basis functions. The
singularity of the kernel function for elements that are close to the diagonal
can be treated with the constructed quadrature rules by noting that

H
(1)
0 (z) = J0(z) + iY0(z) = J0(z) + i

(
2

π
(log(z/2) + γ)J0(z) + P (z)

)

,

where γ = 0.577 . . . is Euler’s constant, and where P (z) is a smooth function.
In order to illustrate the performance gain that results from an efficient

implementation of this strategy, we conducted the following numerical ex-
periment. The full matrix is constructed for a scattering problem, using the
scaling functions of a number of different wavelets as basis functions. We



3.9. THREE-DIMENSIONAL PROBLEMS 85

Table 3.9: Number of Bessel function evaluations required for constructing
a discretisation matrix with N = 128. The table shows the total number of
function evaluations, and the number of evaluations per element (p.e.).

CDF2 ([-1,1]) s r not shared p.e. shared p.e.

0 3 146, 304 8.93 19, 096 1.16
−1 5 407, 936 24.9 74, 818 4.57
−2 9 1, 324, 416 80.8 285, 314 18.1

DB6 ([-6,6]) s r not shared p.e. shared p.e.

0 13 2, 747, 264 168 32, 736 2.00
−1 25 10, 199, 936 623 129, 218 7.89
−2 49 39, 261, 056 2396 513, 426 31.3

have counted the total number of evaluations of the Hankel and Bessel func-
tions for two different approaches of the construction. The first approach
is the classical tensor-product application of the one-dimensional rule. The
second approach is the optimised implementation where function evalua-
tions are maximally shared. The evaluation of Bessel functions is much
slower than basic arithmetic operations. The number of Bessel function
evaluations is therefore a good measure for the computation time.

The results are shown in Table 3.9, for different values of the scale
parameter s that was defined in §3.7. The number of weights in a one-
dimensional rule is r = 2−s(s2 − s1) + 1, where [s1, s2] is the support of
the scaling function. The number of evaluations per matrix entry in the
classical tensor-product approach is close to r2, as could be expected. The
number of evaluations per entry in the optimised approach scales like r2,
but with a much lower constant. The total number of Bessel function eval-
uations is one or two orders of magnitude less for this example. In fact, in
the case s = 0, the optimised approach is almost as cheap as the pointwise
evaluation of the kernel function for each matrix entry. But the accuracy
is much higher - for the Daubechies scaling function at s = 0, each element
is computed from r2 = 169 values of the kernel function. Likewise, the op-
timised Galerkin approach is competitive with collocation methods, where
the evaluation of the elements involves a single integral rather than a double
integral. The accuracy of the Galerkin approach is typically much higher
than in a collocation approach with the same number of basis functions.

3.9 Three-dimensional problems

The extension of the wavelet method to three-dimensional problems requires
a considerable extension of the theory. Specifically, the main obstacle is the



86 CHAPTER 3. WAVELET BASED METHODS

construction of a suitable wavelet basis on higher-dimensional boundaries.
The norm equivalences (3.18) are not satisfied in the full range of Sobolev
spaces for most proposed constructions of multidimensional wavelets. This
is necessary for the preconditioning of operators with negative order. One
approach that satisfies all conditions for an optimal method is suggested in
literature, but has not yet been implemented [62].

Still, several constructions exist that are close to optimal, and lead to
good results in practice [61, 32, 44, 105, 180]. The approach in the given ref-
erences are variations of the following: starting from biorthogonal wavelets
on the interval [0, 1], tensor-product wavelets are constructed on [0, 1]d. The
boundary Γ is divided into a number of patches. Wavelets are lifted from
[0, 1]d to each patch using a parameterisation. Apart from this construction,
the method follows the same lines in three dimensions as in two dimensions.
Numerical results for three-dimensional problems are given in [106, 193].

3.10 Conclusions

The wavelet method is the only method discussed in this thesis that achieves
O(N) convergence, i.e., without a logarithmic term, in the low frequency
regime where the accuracy of the solution scales with the discretisation er-
ror to preserve the optimal convergence rate of the Galerkin scheme. The
reduction to linear complexity is achieved by the second compression step,
that discards certain singular elements of the discretisation matrix. In the
physical context of the scattering problem, these elements correspond to
near field interactions. We will see in the next two chapters that the fast
multipole method and hierarchical matrix methods do not perform approx-
imations of the near field.

The theory of the wavelet method also focuses on the area of precondi-
tioning. The use of wavelets presents a fundamental solution to the typical
ill-conditioning of integral equations of the first kind. The matrix-vector
product reduces to a regular matrix-vector product with a sparse matrix,
that can be implemented very efficiently. The construction of the sparse ma-
trix is complicated however. It involves the evaluation of possibly singular
double integrals with a very large integration domain.

We have shown that the wavelet method is not suited for high frequency
problems. A different approach was suggested based on wavelet packets,
and it was shown that an appropriate wavelet packet basis again leads to
a sparse discretisation matrix. In this method, the oscillatory problem is
represented using oscillatory basis functions.



Chapter 4

Fast multipole methods

4.1 Introduction

A different multiscale approach for scattering problems is taken by the fast
multipole method (FMM). There are two major variants of the method,
often referred to by low frequency FMM and high frequency FMM, that are
suitable for low-frequency and high-frequency scattering problems respec-
tively. Similar to the wavelet method, the fast multipole method is efficient
in the low-frequency regime. The computational complexity is O(N) for
a fixed error, and O(N logN) for an error that improves with increasing
N . We will see that an implementation is also possible with complexity
O(N logpN) for one matrix-vector product in the high frequency regime,
where N increases proportionally to k in two dimensions. Currently, this is
the best known result for general oscillatory integral equations. The pur-
pose of this chapter is the description of the fast multipole method, in order
to appreciate the similarities and differences with hierarchical matrices and
wavelet based methods described in the previous and the next chapter.

The fast multipole method was pioneered by Greengard and Rokhlin
in [98], originally in the context of N -body simulations. Other fast al-
gorithms were being developed for these problems at the time, such as
particle-in-cell methods [114] and tree-codes [9, 15]. The principles of the
fast multipole method were far more general however, enabling an adaptive
implementation [34, 37] and applications to integral equations [171, 172].
Rokhlin introduced the so-called diagonal form of translation operators for
two- and three-dimensional problems in [172, 173], which led to an effi-
cient implementation for oscillatory integral equations in the high frequency
regime. Originally, two level fast multipole methods were suggested, yield-
ing O(N3/2) or O(N4/3) complexity. A multilevel method was proposed

87
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for two-dimensional scattering problems by Lu and Chew in [152], and for
three-dimensional Helmholtz and Maxwell problems in [80, 170, 63, 64].
The implementation has a computational complexity of O(N log2N) or
O(N logN) operations for one matrix-vector product. The constants in-
volved are large however - much of the current research in fast multipole
methods consists of reducing the constants.

We start with an overview of the fast multipole method in §4.2. We de-
scribe the method in more detail in §4.3. The relevant translation operators
for two-dimensional low-frequency scattering are given in §4.4. The high fre-
quency FMM is discussed next in §4.5. We briefly discuss three-dimensional
problems in §4.7 and end with some concluding remarks in §4.8.

4.2 Overview of the method

The aim of the fast multipole method is to provide a fast matrix-vector
product Ax, without an explicit representation for the full matrix A. In
the context of integral equations, the coefficient matrix A is the dense dis-
cretisation matrix of the boundary element method. The idea of the fast
multipole method is more general however, and we will describe the main
properties here for the general setting y = Ax. Assume that the coeffi-
cients Am,n of the dense matrix A ∈ CM×N are given by the evaluation of
a smooth function G(p, q),

Am,n = G(pm, qn), 1 ≤ m ≤M, 1 ≤ n ≤ N,

with points pm, qn ∈ Rd. The function G(p, q) usually corresponds to an
interaction between two points p and q, for example the electrical potential
energy G(p, q) = log(|p − q|), for p, q ∈ R2. The matrix-vector product
y = Ax corresponds to the summations

ym =
N∑

n=1

Am,nxn, m = 1, . . . ,M. (4.1)

Computing all these summations explicitly requires O(NM) operations.
Considerable savings can be made if the function G is separable,

G(x, y) =

L∑

l=1

ul(x)vl(y). (4.2)

In that case, summation (4.1) can be rewritten as

ym =

L∑

l=1

ul(pm)

N∑

n=1

vl(qn)xn =

L∑

l=1

ul(pm)Vl. (4.3)
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The numbers Vl, l = 1, . . . , L, need to be computed only once, requiring
O(LN) operations. The number of operations required to evaluate ym,
m = 1, . . . ,M , using (4.3) is O(LM). Hence, the total number of operations
is O(L(N + M)). If L << N,M , the computational complexity of the
matrix-vector product is drastically reduced.

This is the enabling observation of the fast multipole method: the com-
plexity of a matrix-vector product can be significantly reduced if the un-
derlying discretised function is separable. Naturally, only few functions are
separable in the sense of (4.2). Smooth functions may be approximated well
by separable functions however. Consider for example the kernel function
G(x, y) of an integral equation, that is singular along the diagonal x = y.
Away from the diagonal, the kernel is a smooth function, and it may be ap-
proximated locally by a separable expansion of the form (4.2). The speedup
of (4.3) can be performed in the part of the matrix A where the expansion is
valid. The complexity can be further reduced by considering a multilevel al-
gorithm. In such algorithms, both the computation of the coefficients Vl and
the evaluation of the summations is performed hierarchically. The key in-
gredients of FMM are the construction of suitable expansions, and so-called
translation operators for translating and transforming these expansions.

4.3 Multilevel fast multipole method

The kernel function of an integral equation typically has the form G(|x −
y|). In a fast multipole method, this function is approximated locally by
separable expansions. We describe the types of expansions in §4.3.1, and
show how they can be used to expedite the matrix-vector product. This is
done for a single level algorithm in §4.3.2, and for a multilevel algorithm in
§4.3.3. A more detailed description can be found in [47, 99].

4.3.1 Multipole expansions and local expansions

In order to define local separable expansions, the domain of interest is subdi-
vided into a number L of boxes Cl with centre cl and radius rl, l = 1, . . . , L.
There are two types of expansions in FMM, called multipole expansions
and local expansions. The multipole expansion for a point x ∈ Cl is an
expansion with the general form

G(x, y) ≈
P∑

p=1

ap(x, cl)Sp(y − cl), x ∈ Cl, y /∈ Cl. (4.4)

The coefficients ap are called the expansion coefficients. The expansion
approximates the interaction of x ∈ Cl with a point outside Cl; it can be
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evaluated for y /∈ Cl. The functions Sp(y − cl) are chosen to reflect the
behaviour of G(x, y) with y away from the box Cl. These functions are
typically singular for y = cl. The name multipole originates historically
from the choice S0(y − cl) = G(cl, y); the first term of the expansion (4.4)
is then called a monopole.

A local expansion for a point x /∈ Cl has the general form

G(x, y) ≈
P∑

p=1

bp(x, cl)Rp(y − cl), x /∈ Cl, y ∈ Cl. (4.5)

This expansion approximates the interaction of x /∈ Cl with a point inside
Cl; it can be evaluated for y ∈ Cl. The functions Rp(y − cl) are non-
singular for y ∈ Cl. Multiple expansions of the form (4.4) or (4.5) can be
added together by adding the expansion coefficients. One expansion can
be transformed into another expansion that is centred around a different
centre point cm by applying a translation operator. There are three possible
translation operators: a multipole-to-multipole operator S|S, a multipole-
to-local operator S|R, and a local-to-local operator R|R. Usually, these
operators can be represented by a matrix with dimensions P × P . We will
give an explicit example in §4.6.1.

4.3.2 Single level fast multipole method

Consider a matrix-vector product Ac = d, with elements of matrix A given
by Ai,j = G(xi, xj), corresponding to a set of points {xi}Ni=1, xi ∈ Rd.
The matrix-vector product is a summation di =

∑

j Ai,jcj . In a FMM, the
summation is carried out approximately.

Consider a covering of all points xi by L boxes Cl with centre cl and
radius rl, such that each point xi is attributed to exactly one box. For one
point xi ∈ Cl, we call the interactions with the other points in Cl the near
field, and the interactions with the points outside Cl the far field. We have
the decomposition

di = dNFi
+ dFFi

=
∑

j:xj∈Cl

Ai,jxj +
∑

j:xj /∈Cl

Ai,jxj .

Multipole and local expansions can be used to speed-up the evaluation of
the far field interaction dFFi

. Specifically, the single level fast multipole
method consists of the following steps:

1. Construct a multipole expansion for each box Cl around its centre
point cl, by adding the multipole expansion coefficients of all points
xi ∈ Cl.
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S

R

R

S

Figure 4.1: Schematic illustration of the interactions in a single level FMM:
construct the multipole expansions, use multipole-to-local translation S|R,
and evaluate the local expansions.

2. Construct a local expansion for each box Cl around its centre cl, by
transforming the multipole expansions of all boxes Cl′ , l

′ 6= l, to Cl
using the multipole-to-local translation operator S|R.

3. For each point xi ∈ Cl, evaluate the local expansion around cl. This
is the far field dFFi

. The near field dNFi
is evaluated by summing the

interactions with all points xj ∈ Cl.

These steps are illustrated schematically in Figure 4.1.

The computational complexity of the scheme depends on a number of
parameters, such as the number of terms P in the expansions, and the num-
ber of boxes L. For simplicity, assume a uniform distribution of the points
over the boxes, such that each box contains s = N/L points on average.
The first step requires the addition of s expansions of length P for each
of the L boxes, which requires O(sPL) = O(PN) operations. Translation
operators generally require O(P 2) operations. The second step consists of
the transformation of L expansions of length P for each box, and requires
O(L2P 2) operations. Finally, the last step requires O(sPL) = O(PN) op-
erations for evaluating the far field for each point, and O(Ns) operations
for the near field. The total complexity of the single level FMM is

κSL = O(PN + P 2L2 + PN +Ns).

The complexity is minimised by choosing L = O(N2/3P−1/3) and, corre-
spondingly, s = O(P 1/3N1/3). This leads to the complexity estimate

κSL = O(P 4/3N4/3). (4.6)
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(a) E1 (b) E2

(c) E3 (d) E4

Figure 4.2: Definition of the box sets corresponding to Cl,j .

4.3.3 Multilevel fast multipole method

The complexity can be further reduced by constructing separable expan-
sions recursively for larger and larger bounding boxes. In this approach,
the boxes Cl,j are grouped in a hierarchical manner, and multipole and
local expansions are built for each box on each level j. The expansions
corresponding to a large box group the interaction of many points together.
Hence, we will always try to work with the expansions of the largest box
possible, subject to the validity of the expansions (4.4) and (4.5). We say
that two boxes Cl,j and Cl′,j′ are well separated if

rl,j + rl′,j′ ≤ η‖cl,j − cl′,j′‖, (4.7)

with a constant η < 1. Condition (4.7) is called the admissibility condition.
We will only approximate the kernel function by a separable expansion if
the admissibility condition is satisfied.

We define four sets of boxes, associated with each box Cl,j . The sets are
illustrated in Figure 4.2 for the two-dimensional case. They are:
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• E1(l, j): the box Cl,j itself;

• E2(l, j): the box Cl,j and its direct neighbours;

• E3(l, j): boxes outside the neighbourhood of Cl,j ;

• E4(l, j): boxes in the neighbourhood of the parent of Cl,j on level
j − 1, but not in the neighbourhood of the box Cl,j itself.

The boxes in E3(l, j) - outside the neighbourhood of Cl,j - satisfy the ad-
missibility condition with η =

√
2/2. We could therefore approximate the

interaction with these boxes using expansions. However, if the boxes are
also outside the neighbourhood of the parent of Cl,j , it is a better choice to
use the approximation on a coarser level. This cannot be done for the boxes
in E4(l, j): the set E4(l, j) is therefore called the interaction list of Cl,j .

The multilevel fast multipole method consists of two passes, the upward
pass and the downward pass. The upward pass has the following steps:

1. At the finest level j = J , create multipole expansions around cl,J for
each box Cl,J .

2. At each coarser level j, with j = J − 1, . . . , 0, construct a multipole
expansion for each box Cl,j by translating the multipole expansions
of each child box of Cl,j , using the S|S translation operator.

Multipole expansions have now been constructed for all boxes on all levels.
Local expansions are constructed in the downward pass:

1. At the coarsest level j = 0 considered, construct a local expansion for
each box Cl,j by translating each multipole expansion of the boxes in
E3(l, j) using the S|R translation operator.

2. For each finer level j, with j = 1, . . . , J , construct a local expansion for
each box by translating the local expansion of the parent box using the
R|R translation operator. Add the S|R translation of the expansions
of each box in the interaction list E4(l, j) of Cl,j .

The total field for each point is obtained by evaluating the local expansion
of the bounding box on the finest level, and by directly evaluating the near
field interaction with all points in the boxes of the neighbourhood E2(l, j).

It can be shown that, using a fixed number of terms P in each expansion,
the algorithm described above requires O(N) steps. However, N is usually
increased to improve accuracy and, hence, P should increase accordingly.
One should choose P = O(logN), introducing logarithmic terms in the com-
plexity. The total computational complexity of the scheme depends on the
cost of the translation operators. The most expensive step of the algorithm
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is step 2 of the downward pass, i.e., the translation of each multipole expan-
sion in the interaction list of Cl,j , for each box Cl,j . The number of boxes in
E4(l, j) depends on the dimension of the problem. From Figure 4.2, there
are 27 boxes in the interaction list. For three-dimensional problems, there
are 189; the number grows exponentially fast with increasing dimension.

4.3.4 Application to integral equations

The discretisation matrix of an integral equation does not correspond ex-
actly to a matrix with entries Ai,j = G(xi, xj). Rather, it has elements of
the form (2.61),

Ai,j =

∫

Γ

∫

Γ

G(x, y)φj(y)φi(x) dsy dsx.

A multipole expansion for the kernel function of the form (4.4) leads to
a multipole expansion with a similar form, but with different expansion
coefficients. Consider the integral in x, corresponding to a basis function
φi(x) with support in Cl. Using the multipole expansion for the kernel, the
integral can be written as

∫

Γ

G(x, y)φi(x) dsx ≈
∫

Γ

P∑

p=1

ap(x, cl)Sp(y − cl)φi(x) dsx

=

P∑

p=1

Sp(y − cl)

∫

Γ

ap(x, cl)φi(x) dsx.

The new expansion coefficients are given by

a∗i,p =

∫

Γ

ap(x, cl)φi(x) dsx. (4.8)

We denote the vector of expansion coefficients by ai ∈ CP . Assume that
the translation operator S|R for x ∈ Cl and y ∈ Cl′ is given by a matrix
Tl,l′ ∈ RP×P , and define bi = Tl,l′a

∗
i . The integral for the element Ai,j can

then be written as

Ai,j ≈
∫

Γ

P∑

p=1

a∗i,pSp(y − cl)φj(y) dsy ≈
∫

Γ

P∑

p=1

bi,pRp(y − cl′)φj(y) dsy

=
P∑

p=1

bi,p

∫

Γ

Rp(y − cl′)φj(y) dsy
︸ ︷︷ ︸

c∗j,p

=
P∑

p=1

bi,pc
∗
j,p.
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The approximation corresponds to a low rank approximation of a subblock
of the dense discretisation matrix A. Specifically, consider the subblockMl,l′

corresponding to the combination of Nl basis functions φi(x) with support
in Cl, with Nl′ basis functions φj(y) with support in Cl′ . Define the matrix
U ∈ RNl×P with elements Ui,p = a∗i,p, and the matrix V ∈ RNl′×P with
elements Vj,p = c∗j,p. We have

Ml,l′ ≈ UTTl,l′V
T . (4.9)

The subblock Ml,l′ can be approximated by a low rank matrix with rank P .
In the multilevel fast multipole method, the computation is more involved
than in (4.9). The method more closely resembles a product of the form

Ml,l′ ≈ Uβl,l1βl1,l2 . . . βlL−1,lLαlL,l′Lβl′L,l′L−1
. . . βl′1,l′V

T . (4.10)

The matrices β represent the S|S and R|R operators, the matrix α corre-
sponds to the S|R operator. The connection of fast multipole methods to
matrix representations is explored in [182].

4.4 Expansions and translation operators

The fast multipole method was originally presented for two-dimensional
problems involving a kernel function G(x, y) = log(|x − y|), which is the
fundamental solution of the Laplace problem. Assume that the box Cl has
centre cl = (cl1, cl2) ∈ R2, and set z0 = cl1 + icl2 ∈ C and z = y1 + iy2 ∈ C

for y = (y1, y2) ∈ R2. The kernel function can then be written as G(x, y) =
<(log(z − z0)) =: φ(z − z0). The multipole expansion for the kernel that
was proposed in [98] is given by

φ(z − z0) ≈ Q log(z − z0) +

P∑

p=1

ap
(z − z0)p

, (z − z0) > rl, (4.11)

and the local expansion by

φ(z) ≈
P∑

p=0

bp(z − z0)
p, (z − z0) < rl′ . (4.12)

Translation operators are obtained by straightforward calculations. Note
that the basis functions in the multipole expansion are singular for z = z0.

Similar expansions can be defined for the two-dimensional Helmholtz

problem. They are based on the singular and regular functions H
(1)
n (z)

and Jn(z), that are shown to be solutions to the Helmholtz equation in
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Appendix A. More often however, a separable expansion for the Helmholtz
kernel (2.25) is based on the following series. Assume x ∈ Cl and y ∈ Cl′

and define

x− cl = rx,le
iθx,l , y − cl′ = ry,l′e

iθy,l′ , and cl − cl′ = rl,l′e
iθl,l′ .

Then we have (see, e.g., [40])

H
(1)
0 (k|x− y|) = (4.13)
∞∑

m=−∞

∞∑

l=−∞
Jl+m(krx,l)e

i(l+m)θx,l Hm(krl,l′)e
imθl,l′Jl(kry,l′)e

ilθy,l′ .

Truncation of this series leads to a separable representation of the kernel
function. Similar to (4.9), it leads to a low rank approximation with the
general form Ml,l′ ≈ UΣV T . The elements of U and V are defined in terms
of Bessel functions Jn(z) and complex exponentials, the elements of Σ in
terms of Hankel functions Hn(z) and complex exponentials. An interesting
observation is that Σ has Toeplitz structure. As such, it can be diagonalised
using the Fourier transform. This leads to a representation Ũ Σ̃Ṽ T with a
diagonal matrix Σ̃. The elements of the transformed matrices Ũ and Ṽ are
defined in terms of plane wave basis functions. The translation of these
functions can also be performed by multiplication with a diagonal matrix.

Unfortunately, there are stability issues involved in the truncation of
the series (4.13). Specifically, for small arguments or for large orders, the
function Hn(z) can be exponentially large; it behaves as [4]

H(1)
n (z) ∼ −

√

2

πn

(
2n

ez

)n

, n→ ∞. (4.14)

The accuracy of the computations can be lost due to rounding errors. The
computations involving Σ can be stabilised using a renormalisation of the
Hankel functions [205]. In that case however, the Toeplitz structure of Σ is
lost, and the diagonal form Σ̃ can no longer be constructed.

4.5 High frequency fast multipole method

In the high frequency regime, it is not sufficient to consider a fixed number
P of terms in the expansions (4.4) and (4.5). Specifically, the number of
terms should scale as P = O(kD), where D is the diameter of the box in
which the expansion is valid. This linear dependence on the wavenumber is
a well-known result [30, 186]. The physical meaning of this condition in the
context of electromagnetic scattering problems is explained in [38].
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An efficient fast multipole method can still be constructed however with
O(N logN) complexity, where N increases proportionally to k in two di-
mensions, by varying the number of terms in the expansion depending on
the level of the bounding box [152, 8, 13]. In this approach, the number of
terms increases linearly with the size of the box. This means that for an
implementation with low computational complexity, it is required that the
translation operators are diagonal. Indeed, at a coarse scale j, the number
of terms in the expansions is proportional to N . Translations that require
more than O(P ) or O(P logP ) operations when P = O(N) should therefore
be avoided. Suitable separable representations have been proposed based
on the truncation of the series (4.13).

The different lengths of the expansions at different levels require changes
in the translation operators. Specifically, the translation of an expansion
to a higher level with more expansion coefficients requires an interpolation
procedure. The reverse translation requires a prolongation. The approxima-
tion of a subblock Ml,l′ , as given by (4.10), is in this setting more accurately
given by

Ml,l′ ≈ UIl,l1βl,l1I1βl1,l2I1 . . . βlL−1,lLαlL,l′Lβl′L,l′L−1
. . . IT1 βl′1,l′V

T . (4.15)

The matrices I1 and IT1 perform one level interpolation and prolongation
respectively. The matrices α and β are diagonal matrices.

There are still issues associated with this approach, related to the insta-

bility of the series (4.13) for small arguments z or large orders n of H
(1)
n (z).

This means that the high frequency fast multipole method does not con-
verge for small values of the wavenumber. Moreover, arbitrary accuracy
cannot be obtained, because increasing the number of terms may introduce
roundoff errors again. Several methods have been proposed to remedy this
instability [117, 13]. We will revisit the method of [13] in the next chapter
on hierarchical matrices.

4.6 Numerical results

This chapter contains no elements that are not already described in litera-
ture. Still, we will illustrate the theory with some experiments, including a
full implementation of the fast multipole method with linear complexity for
a one-dimensional large summation problem. We investigate the numerical
instability of the high frequency fast multipole method for relatively low
wavenumbers, as it is an important characteristic of FMM that prevents
computations with high accuracy. More elaborate numerical results will be
given in the next chapter on hierarchical methods, as both methods yield
qualitatively similar results.
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Figure 4.3: Time (in seconds) for one matrix-vector product involving in-
teractions of the form G(x, y) = 1/(y − x), with fixed-length expansions.

4.6.1 Low frequency fast multipole method

We have implemented the fast multipole method for a one-dimensional
model problem with kernel function G(x, y) = 1

y−x . A multipole expan-

sion of the form (4.4) is easily obtained,

1

y − x
=

1

y − cl − (x− cl)
=

1

(y − cl)
(

1 − x−cl

y−cl

)

=
1

y − cl

∞∑

p=0

(x− cl)
m

(y − cl)m
, |x− cl| < |y − cl|.

Similarly, a local expansion can be found for the case |y − cl| < |x− cl|,

1

y − x
=

1

y − cl − (x− cl)
=

−1

(x− cl)
(

1 − y−cl

x−cl

)

=
−1

x− cl

∞∑

p=0

(y − cl)
m

(x− cl)m
, |y − cl| < |x− cl|.

We have the singular functions Sp(y − cl) = (y − cl)
−p−1 and the regular

functions Rp(y − cl) = (y − cl)
p. The R|R translation operator from cl to

cl′ is derived as follows,

Rp(y − cl) = (y − cl′ + (cl′ − cl))
p =

p
∑

i=0

(
p

i

)

(cl′ − cl)
p−iRi(y − cl′).
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For the multipole-to-local operator S|R, we have |y − cl| < |cl − cl′ |, and

Sp(y − cl) = (y − cl′ + (cl′ − cl))
−p−1

= (cl′ − cl)
−p−1(1 +

y − cl′

cl′ − cl
)−p−1

=

∞∑

m=0

(−1)m(m+ p)!

m!p!
(cl′ − cl)

−p−m−1(y − cl′)
p

≈
P∑

m=0

(−1)m(m+ p)!

m!p!
(cl′ − cl)

−p−m−1Rp(y − cl′).

Figure 4.3 shows the time required for evaluating the matrix vector product
y = Mc, with Mi,j = G(xi, xj), i 6= j, and Mii = 0. A uniform distribution
of points xi was used on the interval [0, 1]. We used a fixed length P of the
expansions, independently of N . The algorithm clearly requires a number
of operations that is linear in N .

The total complexity is actually O(P 2N), with P the length of the
expansions. The term P 2 arises from the matrix-vector product due to the
matrix representation of the operators S|S, S|R and R|R. If the error of
the method should decrease with N , then the length P of the expansions
should grow at least logarithmically with N , and the complexity becomes
O(N log2N).

4.6.2 High frequency fast multipole method

For numerical results involving the high frequency fast multipole method for
two-dimensional integral equations, we refer the reader to [8, 13, 152, 205].
Scattering problems are solved in these references for circle, ellipse and
square-shaped scattering objects. The implementations have O(N log2N)
complexity, which is supported by the numerical results. The constant
involved is reported to be large.

Here, we restrict the numerical results to an illustration of the conver-
gence properties of the separable expansions that are obtained by truncating
(4.13). They correspond to an approximation of the form

i

4
H

(1)
0 (k|x− y|) ≈ uTΣv, (4.16)

with column vectors u, v ∈ CP , and a Toeplitz or diagonal matrix Σ ∈
CP×P . The Toeplitz structure is obtained by the direct truncation of (4.13).
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(b) Diagonal matrix Σ̃

Figure 4.4: Convergence behaviour of the separable kernel approximations
for the high frequency FMM.

In that case, for odd P = 2M + 1, the elements are given by

uj = Jj−M−1(krx,l)e
i(j−M−1)θx,l , (4.17)

vj = Jj−M−1(kry,l′)e
−i(j−M−1)θy,l′ , (4.18)

Σj,n =
i

4
H

(1)
n−j(krl,l′)e

i(n−j)θl,l′ , (4.19)

for 1 ≤ j, n ≤ P . The diagonal matrix Σ̃ is obtained as the Fourier transform
of Σ. This results in the approximation ũT Σ̃ṽ with elements given by

ũj =
1√
P
e−ikrx,lcos(2π(j−1)/P−θx,l),

ṽj =
1√
P
eikry,l′cos(2π(j−1)/P−θy,l′ ),

Σ̃j,j =
i

4

M∑

m=−M

1

im
H(1)
m (krl,l′)e

im(θl,l′−2π(j−1)/P ),

for 1 ≤ j ≤ P . The accuracy of the expansions is illustrated in Figure 4.4
for an example with two well separated clusters Cl and Cl′ . The figure in
the left panel shows that the series starts converging only after a certain
minimal number of terms. The required minimal number of terms increases
proportionally to k. The figure in the right panel illustrates the numer-
ical instability of the diagonal translation operator when more terms in
the expansion are used. The instability is worse for smaller values of the
wavenumber.
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4.7 Three-dimensional problems

Fast multipole methods for the three-dimensional Helmholtz equation have
similar properties as in the two-dimensional case. Separable expansions for
the three-dimensional Helmholtz kernel eikr/r are usually defined in terms
of spherical harmonics [99]. Diagonal translation operators were presented
by Rokhlin in [173], based on a representation in terms of plane waves.
Similar to the 2D-case, there are stability problems at low frequencies. A
number of approaches have been developed for the efficient solution of low
frequency scattering problems [97, 65, 135]. We refer the reader to [65] for
an overview of the issues and remedies, and to [64, 99] for a full description
of the method and its implementation.

A useful simplification of the three-dimensional FMM exists in the case
of scattering obstacles that are nearly planar, called the steepest descent
FMM [134, 156]. Such scattering problems arise in the development of pla-
nar electronic circuits and antennas. The resulting method requires O(N)
operations for a fixed accuracy, and O(N logN) operations for an accuracy
that increases with N . In the steepest descent FMM, the three-dimensional
problem is reduced to a small number of two-dimensional problems, that
are solved using the two-dimensional high frequency FMM.

4.8 Conclusions

The fast multipole method enables a fast matrix-vector product for dis-
cretisation matrices that arise in integral equations. Both the memory re-
quirements and the computational complexity of a matrix-vector product
scale as O(N logpN), where p ≥ 0 is a small number. The result is ob-
tained by constructing low rank approximations to the kernel function, and
exploiting the resulting structure of the operations. Moreover, the fast mul-
tipole method is the only viable fast solution method currently known in
the high frequency regime. The computational complexity is O(N logpN),
with p ≥ 1. In this regime, low rank approximations are constructed only
for small domains. On coarser scales, the rank is increased proportionally
to the size of the domain. The reduced complexity is possible by using very
efficient translation operators.

The construction and the analysis of fast multipole methods keep a close
connection to the underlying physical problem. As a consequence, separable
expansions have to be devised for each new kernel function. In the high
frequency regime, this is likely unavoidable. In the low-frequency regime
however, several other approaches are possible that allow a more general
implementation. In the next chapter, we treat a number of approaches
based on the algebraic concept of H-matrices.
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Chapter 5

Hierarchical matrix

methods

5.1 Introduction

The third multiscale method we consider in this thesis is based on hierar-
chical matrices, also known as H-matrices. Hierarchical matrices are block-
structured matrices that consist of submatrices of low rank. They are well
suited to approximate the discretisation matrix of integral equations and,
more generally, to approximate the inverse of the sparse discretisation ma-
trix of elliptic partial differential equations. A fast matrix-vector product
is obtained by using low rank approximations to parts of the discretisation
matrix. This approach bears a close resemblance to fast multipole methods.
In this chapter, we explore hierarchical matrices and their application to in-
tegral equations, and we highlight some similarities and differences with fast
multipole methods.

Hierarchical matrices originate in the mosaic-skeleton approach and in
panel clustering methods [187, 103]. They were proposed by Hackbusch
in [101, 102], with applications in multidimensional finite element methods
and boundary element methods. The use of hierarchical matrices leads to a
storage requirement of O(N logN) complexity, and a similar complexity for
the matrix-vector product. The arithmetic of hierarchical matrices is de-
scribed in [96]. Computations with even lower complexity can be performed
by H2-matrices [23]: H2-matrices require O(N) memory, and O(N) opera-
tions for a matrix-vector product. An algebraic technique to further reduce
memory requirements is proposed in [95]. Efficient algorithms for the black-
box construction of hierarchical matrices for general integral equations have
been described in [16, 26].

103
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We present an overview of hierarchical matrix based methods in §5.2.
We define H-matrices and H-matrix arithmetic in §5.3. The application to
integral equations is discussed with more detail in §5.4. An adapted method
for the high frequency regime based on H2-matrices is closely related to the
high frequency fast multipole method; it is described in §5.5. We present
some numerical results for two-dimensional scattering problems in §5.5. The
numerical experiments in this chapter are used to discuss and illustrate the
differences between the three multiscale methods that are considered in this
thesis: wavelet based methods, fast multipole methods and hierarchical ma-
trix methods. Finally, we discuss the issues for three-dimensional problems.

5.2 Overview of the method

Computations involving matrices can often be performed by fast methods
with low computational complexity when the matrices have structure. Com-
mon examples are diagonal matrices, semiseparable matrices, matrices with
Toeplitz or Hankel structure, and matrices that have low rank. In the latter
case, a full matrix M ∈ CN×N of rank k can be written as M = ABT , with
A,B ∈ CN×k. The matrix-vector product z = My, for example, can be
computed efficiently as z = A(BT y). This requires O(kN) operations, as
opposed to O(N2) operations for the classical matrix-vector product.

A hierarchical matrix or H-matrix is a block-structured matrix that con-
sists of submatrices of rank k. The matrix-vector product can be expedited
by performing small matrix-vector products of the form A(BT y) in each
subblock of the matrix that has rank k. A natural representation of H-
matrices is given by storing these matrices A and B, that each have only
k columns, rather than storing all elements of the dense subblock. The
fast matrix-vector product is only one property of H-matrices. Fast ap-
proximative methods for other matrix operations can be devised, such as
addition, matrix multiplication and inversion. An example of the structure
of a typical hierarchical matrix is shown in Figure 5.1.

In the context of integral equations, hierarchical matrices can be ob-
tained from any locally separable approximation of the kernel function. A
matrix-vector product can be performed with fixed rank k approximations in
O(N logN) operations for H-matrices, and in O(N) operations for so-called
H2-matrices. This is related to the fact that, away from the diagonal, the
kernel function is a smooth function. In that sense, the method is similar to
the fast multipole method; we will see that the fast multipole method actu-
ally corresponds to the use of H2-matrices. Hierarchical matrices differ from
the fast multipole method in their algebraic nature: an H-matrix is mainly
an algebraic concept. This approach has inspired the development of black
box algorithms for integral equations, rather than algorithms that require
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Figure 5.1: Illustration of a typical H-matrix in integral equations. Each
block is of low rank.

a separate and analytically derived expansion for each new kernel function.
The H-matrix representation suggests adaptive and purely algebraic opera-
tions, such as adaptive recompression to reduce memory requirements. An
efficient black-box implementation for general integral equations is possible
by adaptive cross approximation [16, 26].

The H-matrix format can also be used in the solution of certain ma-
trix equations, such as the Sylvester and Riccati equations, or in the solu-
tion of boundary value problems corresponding to elliptic partial differential
equations. It can be shown that the inverse of a sparse finite element dis-
cretisation matrix can be well approximated by a hierarchical matrix. This
knowledge can be used, even if the fundamental solution of the differential
equation is not known.

5.3 H-matrices

5.3.1 Definition of hierarchical matrices

The location of a subblock of a block-structured matrix is fully determined
by the range of rows and columns that are covered. We denote a range of
indices by a cluster τ . The number of elements in that range is denoted
as nτ = #τ . First, we shall define the central concept of a cluster tree. A
cluster tree TI is a tree whose nodes are clusters, corresponding to a subset
of the index set I = {1, . . . , N}, with the following properties:

• the root of the tree contains all indices: τr = I;

• if a cluster τ has sons, then they form a partition of the father: τ =
∪{τ ′ : τ ′ ∈ sons(τ)}, and τ1, τ2 ∈ sons(τ) : τ1 6= τ2 ⇒ τ1 ∩ τ2 = φ;
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• each cluster τ that is not a leaf has two sons;

• a constant Cleaf exists independent of N such that, for each leaf τ ,
0 < nτ ≤ Cleaf .

The number of nodes in the tree is bounded by 2N − 1. The number of
clusters on each level j is bounded by 2j , where level j = 0 corresponds to
the root of the tree.

A cluster tree represents a hierarchical subdivision of a set of indices. In
order to identify a subblock of a matrix, we require two sets of indices. This
leads to the definition of a block cluster tree. The root of a block cluster tree
TI×J is the couple (τr, σr), where τr and σr are the roots of cluster trees TI
and TJ respectively. The nodes have the form τ ×σ ∈ TI ×TJ . The sons of
a node τ × σ are given by

{τ × σ′ : σ′ ∈ sons(σ)} if sons(τ) = ∅, sons(σ) 6= ∅,
{τ ′ × σ : τ ′ ∈ sons(τ)} if sons(τ) 6= ∅, sons(σ) = ∅,
{τ ′ × σ′ : τ ′ ∈ sons(τ), σ′ ∈ sons(σ)} otherwise.

The definition of a block cluster tree TI×J is such that the leaves form a
partition of the index set I × J .

We denote the subblock of a matrixM corresponding to the block cluster
τ×σ byM |τ×σ. For increased generality, we assume a rank k approximation
only in a subset of all leaves, the set of admissible leaves L+. The remaining
set L− of inadmissible leaves is represented by a regular dense matrix. A
hierarchical matrix is defined as follows.

Definition 5.3.1. Let TI×I be a block cluster tree for the index set I. We
define the set of H-matrices of rank k as

H(TI×I , k) := {M ∈ CN×N | rank(M |τ×σ) ≤ k, ∀τ × σ ∈ L+}.

A more general definition allows a variable rank in each admissible leaf.

5.3.2 H-matrix arithmetic

The multiplication of a matrix M ∈ CN×N of rank k by a matrix U does
not increase the rank. If M = ABT , then UM = (UA)BT and MU =
A(UTB)T . The sum of two matrices with rank k has, in general, rank 2k.
This means that the set of matrices of rank k is not closed under addition.
The sum of two such matrices can efficiently be approximated however by
a matrix that has rank k by truncating the singular value decomposition of
the sum [96]. It can be shown that this approximation is optimal, in the
sense that the approximation error is minimal in the Frobenius norm and
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in the spectral norm. The approximation can be computed in O(k2n+ k3)
operations, if the matrices involved are of the form ABT with A and B
having dimensions n× k.

It is a consequence that the set of H-matrices is not closed under addi-
tion. The sum of two H-matrices can be defined by performing the blockwise
sum of the low-rank matrices, and then truncating each low rank matrix to
rank k. The set of H-matrices is not closed under multiplication either,
since the blockwise multiplication of two block-structured matrices requires
the addition of blockwise products. Similarly to addition, multiplication
can be performed by truncating the submatrices of the result to rank k. In
general, the block structure of the resulting matrix may be different from
the structure of the matrices that are multiplied. Then, a new block cluster
tree is required [96].

5.4 The H-matrix method

The discretisation matrix of an integral operator equation is well suited for
approximation by hierarchical matrices. We summarise the main elements of
the approach in this section. A detailed description is given in [101, 102, 96]
for H-matrices, and in [23, 24, 13] for H2-matrices.

5.4.1 Construction of the H-matrix

Consider the set of basis functions φi, with i ∈ I = {1, . . . , N}, used for
solving a boundary integral equation. With any cluster τ of a cluster tree
TI , one can associate a bounding box Cτ such that

suppφi(x) ⊂ Cτ , ∀i ∈ τ.

The centre of the bounding box Cτ is denoted by cτ , and we define the radius
of Cτ as the radius of the smallest ball with centre cτ that contains the box.
In the H-matrix method, the cluster tree TI is constructed such that the
size of the bounding boxes Cτ is as small as possible. This construction is
based on purely geometric considerations; basis functions are clustered if
they lie close together on Γ ⊂ Rd. Usually, only basis functions with small
support are considered.

The admissibility condition is defined similarly to the definition (4.7) in
fast multipole methods. Two clusters are called admissible if

rτ + rσ ≤ η‖cτ − cσ‖, (5.1)

for a sufficiently small constant η < 1. The corresponding element τ × σ
of the tensor product TI × TI is also called admissible. The aim of the
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construction of the block cluster tree TI×I is to maximise the size of the
admissible leaf nodes. Each leaf node τ×σ ∈ TI×I with large clusters τ and
σ corresponds to a large subblock Mτ×σ of the discretisation matrix. The
larger the block, the larger the savings that result from an approximation
of that block with fixed rank k.

Given a cluster tree TI , the block cluster tree TI×I is constructed using
the following algorithm. Starting with τ × σ equal to the root τr × σr, one
proceeds:

• if τ × σ is admissible, add it to the admissible leaves L+;

• if both τ and σ are leaves of TI , add τ × σ to the set of inadmissible
leaves L−;

• otherwise, consider the combinations of the sons of τ and the sons of
σ in the next iteration (proceed with τ if τ has no sons, or with σ if
σ has no sons). These become sons of the node τ × σ in TI×I .

The leaves of the block cluster tree that are not admissible usually cor-
respond to small dense matrices along the diagonal of the matrix. Their
appearance is a consequence of the admissibility condition (5.1), which is
required because of the singularity of the kernel function.

A low rank approximation is then constructed for the submatrix Mτ×σ
corresponding to the admissible leaves. The representation ABT is obtained
from a separable expansion of the kernel function G(x, y),

G(x, y) ≈
k∑

l=1

fl(x)gl(y). (5.2)

The double integral corresponding to an element of the discretisation matrix
can be written as a product of univariate integrals,

∫

Γ

∫

Γ

G(x, y)φi(x)φj(y) dsy dsx ≈
k∑

l=1

(∫

Γ

fl(x)φi(x) dsx

)

︸ ︷︷ ︸

Ai,l

(∫

Γ

gl(y)φj(y) dsy

)

︸ ︷︷ ︸

Bj,l

=

k∑

l=1

Ai,lBj,l.

This leads to Mτ×σ = ABT , with A ∈ Cnτ×k and B ∈ Cnσ×k. It can be
shown that the resulting block matrix has O(N logN) memory complexity.
A matrix-vector product with the resulting matrix has O(N logN) compu-
tational complexity.
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5.4.2 H2-matrices

A different kind of separable approximation to the kernel function leads to
the so-called H2-matrices. Consider an approximation of the form

G(x, y) ≈
k∑

m=1

k∑

n=1

sm,nfm(x, cτ )gn(y, cσ). (5.3)

This corresponds to an approximation of the form Mτ×σ = UτSτ×σV Tσ ,
where Sτ×σ,m,n = sm,n, and

Uτ,i,m =

∫

Γ

fm(x, cτ )φi(x) dsx,

Vσ,i,n =

∫

Γ

gn(y, cσ)φi(y) dsy.

The matrix Uτ ∈ Cnτ×k is called the row cluster basis for cluster τ , and
Vσ ∈ Cnσ×k the column cluster basis. The data representing the kernel
function is now stored in the small dense matrix S ∈ Ck×k. Compared to
the regular H-matrix method, memory is saved because the matrices Uτ
and Vσ have to be stored only once.

In addition, the complexity of the matrix-vector product can be reduced
if the cluster bases are nested. A cluster basis is called nested , if for each
non-leaf cluster τ and each son cluster τ ′ ∈ sons(τ), there exist transfer
matrices TUτ ′,τ , T

V
τ ′,τ ∈ Ck×k such that

Uτ =

(
Uτ ′TUτ ′,τ

Uτ ′′TUτ ′′,τ

)

and Vσ =

(
Vσ′TVσ′,σ

Vσ′′TVσ′′,σ

)

,

where τ ′ and τ ′′ are the sons of τ , and similarly for σ. Nested cluster bases
allow a fast matrix-vector product z = My by the following algorithm [13].
We denote by yσ the part of the vector y corresponding to the indices in
the cluster σ.

1. Forward transformation (upward pass)

• for all leaves σ ∈ TI , compute ŷσ = V Tσ yσ

• for each parent σ, compute ŷσ = (TVσ′,σ)
T ŷσ′ + (TVσ′′,σ)

T ŷσ′′

2. Multiplication (far field interaction)

• for all τ ∈ TI , compute ẑτ =
∑

τ×σ∈L+ Sτ×σ ŷσ

3. Backward transformation (downward pass)

• initialise the output vector z to zero
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• for all parents τ , perform ẑτ ′ := ẑτ ′ + TUτ ′,τ ẑτ and ẑτ ′′ := ẑτ ′′ +

TUτ ′′,τ ẑτ

• for every leaf τ ∈ TI , perform zτ := zτ + Uτ ẑτ

4. Non-admissible blocks (near field interaction)

• for each τ × σ ∈ L−, perform zτ := zτ +Mτ×σyσ

The matrix-vector product has O(N) computational complexity for fixed
rank k approximations. The method largely corresponds to the multilevel
fast multipole method. The corresponding FMM phases are written be-
tween parentheses. The transfer matrices TUτ ′,τ and TVσ′,σ correspond to the
R|R and S|S translation operators respectively, the multiplication by Sτ×σ
corresponds to the S|R translation operator. A difference is that the H2-
matrix method allows the combination of two clusters with different sizes,
whereas the S|R operator in the fast multipole method is only used for boxes
on the same level. The algebraic approach of H2-matrices have also inspired
a number of black-box implementations for general kernel functions.

5.4.3 Black-box separable approximations

In the fast multipole method, separable approximations for the kernel func-
tion are usually constructed starting from a series expansion that is specific
to one particular kernel function. However, approximations of the form (5.2)
or (5.3) can be constructed in various other ways. The most straightforward
one is perhaps a truncated Taylor series of the kernel, which, for 2D, reads

G(x, y) ≈
∑

i,j

∂i+jG

∂yi1∂y
j
2

(x, y0)
(y1 − y0

1)i(y2 − y0
2)j

i!j!
.

This approach may require high order derivatives of the kernel, which is
not always practical. An alternative is to use polynomial interpolation,
which requires only evaluations of the kernel function. For one-dimensional
applications, the approximation has the form

G(x, y) ≈
k∑

ν=1

G(x, yσν )Lσν (y), (5.4)

where the Lagrange polynomials Lσν (y) satisfy Lσν (yν′) = δν,ν′ . The values
yσν , ν = 1, . . . , k, are the interpolation points in the cluster σ. Higher
dimensional functions can be approximated using tensor-product Lagrange
polynomials. Approximations of the form (5.3) for H2-matrices can be
obtained using interpolation in both variables,

G(x, y) ≈
∑

µ

∑

ν

G(xτµ, y
σ
ν )Lτµ(x)Lσν (y).
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The row and column cluster bases Uτ and Vσ are constructed using poly-
nomial approximations of degree k − 1. The existence of suitable transfer
matrices is an immediate result, because the approximating functions on
each level span the space of polynomials of degree k − 1. In fact, the ele-
ments of the transfer matrices TUτ ′,τ are simply given by

tµ′,µ = Lτµ(xτ
′

µ′).

An automatic and adaptive way to construct low-rank approximations
for general kernel functions is adaptive cross approximation. There, k rows
and k columns of the regular dense matrix are computed, and a rank k
approximation is constructed based on this information. For details, the
reader is referred to [188] for the idea of cross approximation, and to [16, 26]
for the application in hierarchical matrix methods. Memory requirements
can be further reduced by adaptive recompression. This technique consists
of a posteriori optimisation of the rank by computing the singular value
decomposition of subblocks of the form ABT , or by coarsening several sub-
blocks into one larger block [95]. The algorithm can be performed during
the construction of the H-matrix.

For boundary integral equations, an expansion for the kernel function
can also be constructed in the parameter space, because the kernel function
is always evaluated on the boundary Γ. In that case, an expansion is sought
for G̃(t, τ) := G(κ(t), κ(τ)), where κ(t) is the parameterisation of Γ. This
approach has advantages and disadvantages. Roughly speaking, since less
information is required, the approximation in the parameter space may be
better for a fixed number of terms than an approximation in the full space
around a part of Γ. On the other hand, an approximation in the full space
is more robust with respect to non-smooth boundaries. Approximations
in the parameter space are usually not considered in the fast multipole
method. They are an option in hierarchical matrix methods. It was shown
in Chapter 3 that wavelet based methods always operate in the parameter
domain.

5.5 High frequency H-matrix methods

A recent application of H2-matrices to oscillatory integral equations in the
high frequency regime was proposed in [13]. The method is based on expan-
sion (4.13), and is therefore very similar to fast multipole methods in the
high frequency regime. One difference is that the method allows the inter-
action of clusters on different levels in the hierarchy, because the standard
data structures of H2-matrices can represent such interactions. Another
difference is the approach that is used to solve the stability issues at low
frequencies that were illustrated in the numerical results in §4.6.2.
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Specifically, subblocks of the matrix where the expansion is unstable are
replaced by the regular H-matrix representation ABT using adaptive cross
approximation. The rank k for this subblock may have to be large, but
the approximation remains stable for all values of k. It is shown in [160]
that there exists a constant C(ε) such that expansion (4.13) in the cluster
τ × σ is stable if kmin(rτ , rσ) ≥ C(ε). Hence, asymptotically, the special
treatment of some admissible leaves where this condition is not satisfied has
no influence on the order of the method, because for large enough k the
condition will eventually be satisfied. Then, the expansion and the efficient
diagonal translation operators (or transfer matrices) can be applied.

5.6 Numerical results

We present some numerical results of hierarchical matrix methods. First,
we illustrate the convergence behaviour of the boundary element method
using a Galerkin discretisation in §5.6.1. This example is not specific to the
H-matrix method, but the results will be referred to in §5.6.2. There, we
solve large scattering problems using H-matrices. The implementation was
based on the software library HLib [25]. Finally, we compare a number of
different choices for the separable approximations and discuss the differences
with other multiscale methods in §5.6.3.

5.6.1 Convergence of the boundary element method

We illustrate the results of Theorem 2.7.2 with a numerical example. Recall
from the theorem that the approximation uh to the exact solution u satisfies

‖u− uh‖Ht(Γ) ≤ chs−t‖u‖Hs(Γ), (5.5)

for −d + r ≤ t < γ, t ≤ s and r/2 ≤ s ≤ d. Specifically, this means that
‖u− uh‖L2(Γ) ≤ chd‖u‖Hd(Γ) if the solution is sufficiently smooth, where d
is the approximation order of the basis functions. The optimal convergence
rate s−t = 2d−r corresponds to the choice t = −d+r and s = d. Although
the Sobolev norms involved are hard to compute, this optimal rate can be
observed and is important in practice: the error of the evaluation of the
single-layer potential outside Γ, i.e., the error of the actual solution to the
Helmholtz equation, converges with this optimal rate. Assume that u is the
exact solution of the integral equation of the first kind Su = f on Γ. Recall
the evaluation of the single-layer potential S in a point y outside Γ,

(Su)(y) =

∫

Γ

G(x, y)u(x) dsx, y /∈ Γ.
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Figure 5.2: A two-dimensional scattering obstacle.

The error in the point y is given by

|(Su)(y) − (Suh)(y)| = |(G(·, y), u− uh)L2(Γ)|
≤ ‖G(·, y)‖H−t(Γ)‖u− uh‖Ht(Γ)

≤ chs−t‖u‖Hs(Γ)‖G(·, y)‖H−t(Γ).

The function G(x, y) is always smooth for x ∈ Γ, because y /∈ Γ. Hence,
the factor ‖G(·, y)‖H−t(Γ) can be bounded by a constant that depends only
on the diameter of Γ. If the exact solution u is sufficiently smooth, we can
choose t = −d+ r and s = d, leading to the optimal convergence rate.

We considered the integral equation Su = f using the single-layer po-
tential on the domain that is shown in Figure 5.2. The solution of the
Helmholtz equation was evaluated in the origin, y = (Su)(0), for a low
value of the wavenumber k = 2. Table 5.1 shows the convergence results for
this example. The convergence factor is shown in parentheses. For d = 2,
corresponding to the use of piecewise linear hat functions, the L2-error in
the solution of the integral equation decreases at a quadratic rate. This
corresponds to (5.5) with t = 0 and s = 2. The error of the solution to
the Helmholtz equation in a point outside Γ decreases much faster. The
optimal convergence factor is 25 = 32 in this case. For d = 3, corresponding
to the use of quadratic B-splines, the optimal rate is 27 = 128. This rate is
not observed in the bottom row only because maximal accuracy has already
been achieved.

5.6.2 H-matrix method

We revisit the example of scattering by the object shown in Figure 5.2,
using H-matrices. For simplicity, we consider H-matrices with a fixed rank
k, regardless of the size of the clusters. There are several ways to choose the



114 CHAPTER 5. HIERARCHICAL MATRIX METHODS

Table 5.1: Illustration of the convergence of the boundary element method.
The table shows the L2 error of the computed solution of the integral equa-
tion, and the error |ỹ − y| of the solution to the Helmholtz equation in the
origin. The convergence factor is shown in parentheses.

d = 2 d = 3
N ‖u − uh‖ |ỹ − y| ‖u − uh‖ |ỹ − y|

64 4.4E − 0 3.0E − 3 4.0E − 0 3.8E − 3
128 1.0E − 0 (4.4) 3.4E − 5 (87) 5.4E − 1 (7) 1.4E − 6 (2667)
256 1.9E − 1 (5.4) 3.9E − 7 (88) 4.3E − 2 (12) 1.3E − 8 (106)
512 4.3E − 2 (4.4) 1.0E − 8 (39) 1.0E − 3 (42) 9.0E − 11 (148)
1024 9.9E − 3 (4.4) 3.0E − 10 (34) 1.5E − 4 (7) 6.1E − 12 (15)

rank, and to measure the error. Often, a fixed tolerance error ε is chosen a
priori, and the separable approximations are constructed such that the error
of each approximation is smaller than ε. For larger values of N , ε is given a
smaller value, because the discretisation error is smaller as well. Here, we
will measure the error by evaluating the solution in a point outside Γ.

We compare two ways of choosing the rank: a fixed rank k for all values of
N , and a rank that increases with N . The fixed rank was chosen k = 18, the
latter rank was chosen such that the high accuracy of the results in Table 5.1
are preserved. The results are shown in Figure 5.3. The computation time is
shown in the top panel, the accuracy of a point evaluation in the interior of Γ
is shown in the bottom panel. For a fixed rank k, the error remains bounded
as N increases and the computation time is approximately linear. Even for
N = 524, 288, corresponding to a dense matrix with 274 billion elements,
the error is fixed at approximately 5E − 5. This experiment illustrates the
robustness of the method. In order to preserve the optimal convergence
rate, the rank has to increase with N . In that case, the total time appears
to increase only slightly more than linear in N . No computations were done
for N > 2048 in this example, because the maximal obtainable precision was
reached. We have plotted one function that behaves as N2 in Figure 5.3(a)
to illustrate the different slope of a linear and a quadratic function.

5.6.3 The choice of separable approximations

We investigate the influence of the approximation on the error of the solu-
tion method. Approximations may be constructed in Rd, or in the lower-
dimensional parameter domain. They can be based on analytical manip-
ulations of a specific kernel function, or on general black-box approaches.
The separable expansions of the fast multipole method are usually (but
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Figure 5.3: The total time and the error of a point evaluation outside Γ for
scattering by the object in Figure 5.2. The figure shows the results for a
fixed rank approximation, and a variable rank approximation.

not necessarily) analytically constructed approximations in space. We have
seen that the wavelet method constructs general approximations in the pa-
rameter domain. The flexible algebraic concept of H-matrices leaves the
choice.

First, if the boundary Γ is smooth, then approximations in the parame-
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ter domain are likely to be more accurate. Consider for example a polyno-
mial interpolation procedure for two-dimensional problems: an interpolating
polynomial of degree p− 1 in the parameter domain results in a rank p ap-
proximation of the form (5.4). A two-dimensional interpolating polynomial
of degree p− 1 in y1 and y2, where y = (y1, y2), results in a rank p2 approx-
imation. For smooth boundaries, both approximations have approximately
the same error along the boundary, but the latter approach requires a much
larger rank. If the boundary is not so smooth however, an approximation
in space may be more accurate because its accuracy is not influenced by the
shape of the boundary. As an example, consider a curve parameterised by

κ(t) : [0, 1] → Γ :

{
x1 = (0.5 + 0.1 cos(L2πt)) cos(2πt),
x2 = (0.5 + 0.1 cos(L2πt)) sin(2πt).

This is the parameterisation of the object shown in Figure 5.2, for L = 20.
The parameter L determines the number of oscillations along the boundary.
We implemented the H-matrix method using polynomial interpolation in
the parameter domain [0, 1] and in the space R2, for L = 100. At N = 2048,
a rank 25 approximation for the former yields a relative error of 35% for a
point evaluation outside Γ. A rank 25 approximation for the interpolation of
the kernel function in two dimensions (of degree 4 in each dimension), yields
a relative error of 1.2E− 7. The interpolation in the two-dimensional space
is robust, and very accurate. Polynomial interpolation in the parameter
domain leads to a major loss of accuracy for this example.

Finally, we illustrate the difference between a tailored separable expan-
sion for a specific kernel function, and a general purpose black-box ap-
proximation. We compare the rank required for a fixed error ε = 10−6

for increasing values of the wavenumber of the Helmholtz equation. As an
example of a tailored expansion, we consider the approximation given by
(4.17)-(4.19). The approximation is compared with the rank obtained by
polynomial interpolation in R2, and with the optimal rank computed us-
ing the singular value decomposition. The results are shown in Figure 5.4.
The rank increases linearly with the wavenumber for all three methods,
as expected. Clearly, polynomial interpolation is not a good method for
approximating the oscillatory function. In general, customised expansions
lead to a smaller approximation error, although the difference is often much
smaller than in the example shown. This improved accuracy comes at a
cost of decreased flexibility.

The rank that is obtained using (4.17)-(4.19) is still approximately ten
times larger than the optimal rank obtained with SVD for this example.
Note however that the analytical expansion leads to a representation of
the form M |τ×σ = UτΣτ×σV Tσ , where the row and column cluster bases
are independent of each other. The expansion can therefore be used for
the construction of H2-matrices. On the other hand, the singular value
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Figure 5.4: The rank required for a fixed error ε = 10−6 for a single admissi-
ble cluster as a function of the wavenumber of the Helmholtz problem. The
figure compares the singular value decomposition (SVD), the fast multipole
method expansion (EXP) and polynomial interpolation (POLY).

decomposition of M |τ×σ that was computed in this example is specific for
a single block cluster τ × σ.

5.7 Three-dimensional problems

Hierarchical matrices have been proposed for multivariate problems from
their introduction [102]. In that case, the creation of the block cluster tree
TI×I is more involved. In particular, TI×I does not have to be a binary
tree, and several different approaches for the construction of the tree have
been proposed [96]. The type of clustering may have a large impact on the
efficiency of the overall scheme.

Black-box separable approximations for higher dimensional kernel func-
tions can be constructed, for example, using tensor product Lagrange in-
terpolating polynomials. In fact, this approach is already used for two-
dimensional problems, because the kernel is often approximated in the two-
dimensional space, rather than in the one-dimensional parameter domain.
Numerical results for three-dimensional problems are reported in [26, 95].

5.8 Conclusions

H-matrices represent an algebraic approach to the approximation of ma-
trices that arise in integral equations. A matrix-vector product can be
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obtained in O(N logN) operations for H-matrices, and in O(N) operations
for H2-matrices, for a fixed error. The numerical results have shown that
the low rank approximation is stable: very large matrices can be approxi-
mated without loss of accuracy. Several algorithms have been proposed for
the black-box construction of H-matrices for general kernel functions, and
for the adaptive optimisation of the memory requirements based on purely
algebraic operations. These algorithms illustrate the difference in approach
compared to fast multipole methods. Fundamentally, both methods are
quite similar. Fast multipole methods and H-matrices will yield similar
results for a similar problem.

In the high frequency regime, the proposed application of H2-matrices in
literature is highly related to the high frequency fast multipole method. The
numerical instability of the approach at low frequencies can be remedied by
combining H2-matrices with H-matrices: the subblocks corresponding to
a block cluster where the separable expansion is unstable are represented
by the low-rank approximation of a regular H-matrix. The asymptotic
complexity of this approach remains O(N logpN), with p ≥ 1, where N
increases linearly with k.



Chapter 6

The evaluation of

oscillatory integrals

6.1 Introduction

The discretisation of oscillatory integral equations invariably involves the
evaluation of a large number of oscillatory integrals. Efficient solution
methods for integral equations therefore require efficient methods for the
evaluation of such integrals. Vice versa, we will see in the next chapter
that the study of the properties of oscillatory integrals may actually lead
to new solution methods for oscillatory integral equations. The problems of
evaluating oscillatory integrals and of solving oscillatory integral equations
are highly correlated. For that reason, this chapter is devoted to a study of
oscillatory integrals.

Oscillatory integrals were not always explicitly present in the methods
discussed so far. For example, we have seen in Chapter 2 that the elements
of the discretisation matrix in a standard boundary element method are
given by the double integrals (2.61). The integration domain depends on
the size of the support of the basis functions. Using a fixed number of basis
functions per wavelength, where the basis functions have local support, the
integral may not be oscillatory at all. Still, even in that case, one may
regard an entire row of the discretisation matrix as the discretisation of an
oscillatory integral using many basis functions. In the wavelet method, some
basis functions may span a large part of the boundary. In that case, the
double integral (2.61) itself is highly oscillatory for large wavenumbers. The
presence of oscillatory integrals is even more pronounced in hybrid methods,
as we will see in Chapter 7.

119
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We will model oscillatory integrals by integrals of the form

I[f ] :=

∫ b

a

f(x)eiωg(x) dx. (6.1)

The parameter ω in (6.1) determines the frequency of the oscillations of the
integrand. We assume that the functions f and g are non-oscillatory. We
call f the amplitude function, and g the oscillator of (6.1). Traditional inte-
gration techniques fail for integrals of the form I[f ] at large frequencies. For
example, classical quadrature rules of Newton-Cotes type or Gaussian type
are based on polynomial interpolation. It is well known that polynomials
are not suited for the approximation of oscillatory functions, and the inte-
gration error of these quadrature rules increases rapidly with increasing ω.
For that reason, (6.1) is usually evaluated using composite quadrature [69].
The number of subintervals of the integration interval [a, b] is chosen pro-
portional to ω, thereby eliminating oscillation. This means that a fixed
number of quadrature points is used per wavelength. It is an immediate
consequence that the number of operations in this approach scales linearly
in ω. For higher-dimensional integrals, the dependence is more than linear.

In the past few years, several new methods have been proposed that
require only a fixed number of operations for increasing ω, and that deliver
an accuracy that increases with ω [145, 129, 128, 161, 124]. These efficient
methods rely on the observation that the value of I[f ] asymptotically de-
pends only on the behaviour of f and g near the endpoints a and b, and
near the so-called stationary points of g. These are all the points ξ where
g′(ξ) = 0. Their importance lies in the fact that, locally, the integrand is
not oscillatory near a stationary point. Away from the endpoints and all
stationary points, the oscillations of the integrand increasingly cancel out.
The foundations of the new methods can be traced back to Louis Filon [84],
and to the development of the method of stationary phase and the method
of steepest descent in the last two centuries [151, 181, 70]. The recent ad-
vances consist of the construction of general computational tools that allow
the evaluation of I[f ] with arbitrarily high asymptotic order . It is said that
an approximation Q[f ] to I[f ] has asymptotic order s, with s ≥ 0, if

I[f ] −Q[f ] = O(ω−s−1), ω → ∞. (6.2)

This means that the absolute error of the approximation decreases rapidly
with increasing frequency ω. In the absence of stationary points, the relative
error of a method with asymptotic order s scales as O(ω−s).

The first method with high asymptotic order is obtained by truncating
the asymptotic expansion of I[f ] for large ω. This method is the natural
precursor to a number of different methods with different properties. We
present an overview in §6.2, and refer the reader to [132] for a more detailed
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discussion. We present the numerical steepest descent method (NSD) in
§6.3. Finally, we consider multivariate integrals in §6.4. We restrict the
discussion in this thesis to methods with high asymptotic order for integrals
of the general form (6.1). Various other approaches for oscillatory integrals
have been developed, such as exponential fitting methods and generalised
quadrature rules; for these, the reader is referred to [82, 81, 137, 191].

Throughout this chapter, the integration error in the numerical experi-
ments was determined by comparison with the results of Cubpack [50].

6.2 Methods with high asymptotic order

6.2.1 The asymptotic method

The properties of the integral I[f ] are revealed by the asymptotic expansion
for large values of the frequency parameter ω. It was mentioned in the
introduction of the chapter that the value of I[f ] depends on the behaviour
of the amplitude f and of the oscillator g near the endpoints a and b, and
near the stationary points. Here, we make this statement more precise. It
is said that a stationary point ξ has order r if

{
g(j)(ξ) = 0, j = 1, . . . , r,
g(r+1)(ξ) 6= 0.

(6.3)

Assume that g has one stationary point ξ ∈ (a, b) of order r in the interior of
the integration domain [a, b]. It is shown in [178] that I[f ] has an asymptotic
expansion of the form

I[f ] ∼
∞∑

j=0

cj [f ]

ω(j+1)/(r+1)
, ω → ∞, (6.4)

for every smooth function f that is compactly supported near ξ in (a, b).
Unfortunately, the linear functionals cj [f ] in (6.4) are not given in explicit
form. The first coefficient c0[f ] can be obtained using the method of station-
ary phase [178], the remaining coefficients can in some cases be determined
numerically using the method of steepest descent (see Appendix B). Still,
the expansion is useful: it can be shown that the first few coefficients cj
are determined by the first few derivatives of f and g at ξ. The analysis
can be extended to functions f that are not compactly supported in (a, b)
by considering bump functions and remainders [126, 127]. In that way, it
can be shown that the asymptotic expansion of I[f ] is determined by the
derivatives of f and g at the points a, b and ξ.

A different approach was taken by Iserles and Nørsett in [129, 128],
leading to an asymptotic expansion with an explicit representation for the
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coefficients. The approach consists of factoring out generalised moments of
the functional I[f ], given by

µj(ω; ξ) = I[(x− ξ)j ] =

∫ b

a

(x− ξ)jeiωg(x) dx, j ≥ 0. (6.5)

Assume the function g has a stationary point ξ ∈ (a, b) of order r. Then I[f ]
has an asymptotic expansion for every smooth function f given by (see [129])

I[f ] ∼
r−1∑

j=0

1

j!
µj(ω; ξ)

∞∑

m=0

1

(−iω)m
ρ(j)
m [f ](ξ) (6.6)

−
∞∑

m=1

1

(−iω)m

(
eiωg(b)

g′(b)
{ρm−1[f ](b) − ρm−1[f ](ξ)}

−e
iωg(a)

g′(a)
{ρm−1[f ](a) − ρm−1[f ](ξ)}

)

,

where

ρ0[f ](x) = f(x),

ρm+1[f ](x) =
d

dx

ρm[f ](x) −∑r−1
j=0

1
j!ρm[f ](j)(ξ)(x− ξ)j

g′(x)
, m ≥ 0.

The asymptotic method QA[f ] is defined by truncating expansion (6.6),

QA[f ] =

r−1∑

j=0

1

j!
µj(ω; ξ)

s−j−1
∑

m=0

1

(−iω)m
ρ(j)
m [f ](ξ) (6.7)

−
s∑

m=1

1

(−iω)m

(
eiωg(b)

g′(b)
{ρm−1[f ](b) − ρm−1[f ](ξ)}

−e
iωg(a)

g′(a)
{ρm−1[f ](a) − ρm−1[f ](ξ)}

)

.

The size of the moments µj(ω; ξ) as a function of ω is µj(ω; ξ) =
O(ω−j/(r+1)). Specifically, we have µ0(ω; ξ) = O(ω−1/(r+1)) by van der Cor-
put’s lemma [178]. It follows that the asymptotic method has an asymptotic
error of size

I[f ] −QA[f ] = O(ω−s−1/(r+1)), ω → ∞. (6.8)

Because we also have I[f ] = O(ω−1/(r+1)), the method has a relative error
of order O(ω−s).

A disadvantage of the asymptotic method is that the error is essen-
tially uncontrollable. Asymptotic expansions may diverge after a number
of terms. This means that the method may break down for low values of ω.
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6.2.2 Filon-type methods

The defining characteristics of Filon-type methods are the construction of an
approximation to the amplitude function f , and the exact integration of that
approximation. Originally, Louis Filon proposed a quadratic approximation
to f in 1928 [84]. This idea was generalised several times since then [153, 85].
A fundamental generalisation was realised in [129, 128], leading to a method
with arbitrarily high asymptotic order.

We can describe Filon-type methods formally as follows. Assume

f(x) ≈
n∑

i=0

ai[f ]φi(x),

i.e., the amplitude function can be approximated by a linear combination
of given basis functions φi with coefficients ai[f ] that depend linearly on f .
Then we have

I[f ] ≈
n∑

i=0

wiai[f ], with wi := I[φi].

Hence, the result is a quadrature rule with a classical form. The weights wi
are given by oscillatory integrals themselves; they need to be computed in
a different way, or be available analytically.

Iserles and Nørsett identified suitable approximations for f that yield a
method with arbitrarily high asymptotic order in [129, 128]. The approxi-
mation is such that the first coefficients of the asymptotic expansion (6.6) of
the error vanish. Specifically, the exact interpolation of f and its derivatives
is required at the endpoints and stationary points. This can be accomplished
using Hermite interpolation. Choose points cl and integers θl, l = 1, . . . , ν,
and construct the polynomial f̃ that satisfies

f̃ (j)(cl) = f (j)(cl), j = 0, . . . , θl, l = 1, . . . , ν. (6.9)

This interpolating polynomial can be written as a linear combination of
function values and derivatives of f at the nodes cl,

f̃(x) =
ν∑

l=1

θl∑

j=0

f (j)(cl)ψl,j(x),

with

ψ
(j)
l,j (cl) = 1, and ψ

(m)
l,j (cn) = 0, (m,n) 6= (i, j).

The Filon-type method is defined by

QF [f ] = I[f̃ ] =

ν∑

l=1

θl∑

j=0

wl,jf
(j)(cl), with wl,j = I[ψl,j ]. (6.10)
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The integration error depends on the number of derivatives θl that is inter-
polated in the nodes. Let c1 = a, cν = b, and assume all stationary points
correspond to a node cl. If θ1, θν ≥ (s − 1) and if θl ≥ (s − 1)(r + 1) for
each stationary point cl of order r, then the error has asymptotic size

I[f ] −QF [f ] = O(ω−s−1/(r+1)). (6.11)

The method has the same asymptotic accuracy as the asymptotic method.
An important difference is that the Filon-type method yields good results
for low values of ω as well because, by construction, it is exact for all poly-
nomials of degree

∑ν
l=1 θl − 1. The accuracy can be increased arbitrarily

by adding interpolation points. The evaluation of derivatives of f can be
avoided by choosing the interpolation points as a function of ω [128]. A dis-
advantage is that the method requires knowledge of the weights, or moments
wl,j = I[ψl,j ]. The moments are given by oscillatory integrals themselves.

6.2.3 Levin-type methods

An entirely different approach for the evaluation of I[f ] was pioneered by
David Levin in [144, 145, 146]. Contrary to Filon-type methods, the method
does not require moments for the approximation of I[f ]. It was extended
to arbitrarily high asymptotic order by Olver [161].

The Levin-type method of [161] can be formulated as follows. Assume
we have a function F (x), such that

d

dx

[

F (x)eiωg(x)
]

= f(x)eiωg(x). (6.12)

It then follows that

I[f ] =

∫ b

a

f(x)eiωg(x) dx =
[

F (x)eiωg(x)
]b

a
. (6.13)

As it turns out, in the absence of stationary points, F (x) is a smooth func-
tion. From (6.12), we note that it satisfies the ordinary differential equation
L[F ] = f , with L[F ] = F ′ + iωg′F . An approximation v(x) =

∑ν
l=1 alψl(x)

to F (x) can be constructed by solving the system of collocation equations

L[v](xl) = f(xl),

dL[v]

dx
(xl) = f ′(xl),

...

dθlL[v]

dxθl
(xl) = f (θl)(xl),
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for l = 1, . . . , ν. The Levin-type method is defined by

QL[f ] =
[

v(x)eiωg(x)
]b

a
. (6.14)

If the collocation points xl include the endpoints a and b, c1 = a and
cν = b, and if in addition θ1, θν ≥ s − 1, then the error of the method has
asymptotic size

I[f ] −QL[f ] = O(ω−s−1). (6.15)

The method has the same high asymptotic order as the previous methods.
It does not require the knowledge of moments of I, and it works for low val-
ues of the frequency parameter ω. The accuracy can be arbitrarily increased
by adding collocation points. In some cases, a choice of basis functions is
available such that adding internal collocation points increases the asymp-
totic order [161]. A disadvantage is that the approach only works in the
absence of stationary points.

6.3 Numerical steepest descent method

6.3.1 Overview of the method

The method described in this section achieves a similar high asymptotic
order of accuracy as the previously discussed methods. We will see that
it solves some of the problems of the other methods, and introduces some
peculiarities of its own, thus adding to the spectrum of available approaches.

The method depends on two simple observations. First, the oscillatory
function eiωg(x) decays exponentially fast for a complex g(x) along a path
with a growing imaginary part. Second, the oscillatory function eiωg(x)

does not oscillate for complex g(x) along a path with fixed real part. These
observations are exploited numerically in combination with a corollary to
Cauchy’s Theorem: the value of a line integral of an analytic function along a
path between two points in the complex plane does not depend on the exact
path taken [111]. The same observations provide the foundation for the
method of steepest descent (see appendix B). In that method, an asymptotic
expansion of the form (6.4) is developed for I[f ]. The method dates back to
Cauchy and Riemann in the nineteenth century, before it was made popular
by Debye in 1909 [70]. Methods in the complex plane have been considered
for oscillatory integrals several times since, in specific applications or for
Laplace transforms (see, e.g., [35, 68, 185]).

We will present a rather general implementation of the steepest descent
method, that is also valid for small values of ω. We prove convergence esti-
mates of the numerical scheme as a function of the frequency, and we extend
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the method to functions f and g that are not analytic. The implementa-
tion can be entirely numerical; hence we shall refer to the method as the
numerical steepest descent method. We start the discussion in §6.3.2 with
some practical and motivating examples that illustrate most of the theory
described later. In §6.3.3 we describe and analyse the idealised setting that
gives the best possible convergence. It is shown that a suitable n-point
quadrature rule in that setting leads to an asymptotic order of 2n. This
setting comes with the most restrictions, but still covers many important
applications. The first requirement is that the functions f and g in (6.1)
be analytic in an (infinitely) large region of the complex plane containing
the integration interval [a, b]. Further, it is assumed that there are no sta-
tionary points in [a, b], and that the equation g(x) = c should be “easily
solvable”. This rather vague description will be made more precise further
on. We then proceed by relaxing the requirements one by one, until a more
generally applicable method is obtained. This increase in generality will, at
times, come with a loss in convergence rate. In §6.3.4 we will allow station-
ary points. We relax the “easy-solvability” requirement in §6.3.5. We drop
the requirements that f and g should be analytic in §6.3.6 and §6.3.7.

6.3.2 Some motivating examples

Consider the following integral, which frequently appears in Fourier analysis,

I1[f ] :=

∫ b

a

f(x)eiωx dx. (6.16)

This integral has the form of (6.1) with g(x) = x. An important observation
is that the function eiωx decays rapidly for complex values of x with a
positive imaginary part, since eiωx = e−ω=xeiω<x. The speed of the decay
actually grows as the frequency parameter ω increases. Additionally, the
function does not oscillate if the real part of the argument x remains fixed.

Based on these observations integral (6.16) can be reformulated in such
a way that the difficulty - the highly oscillatory nature - is removed. To that
end, the integration on interval [a, b] is replaced with a path in the complex
plane as illustrated in the left panel of Figure 6.1. The first, vertical part
of the path is of the form z = ha(p) := a + ip for p ∈ [0, P ]. The second
part is horizontal and connects the points ha(P ) := a + iP to the point
hb(P ) := b + iP . Finally, the third part connects hb(P ) to b with the
vertical path z = hb(p) for p ∈ [0, P ]. Now assume that f is analytic,
and that f itself does not grow exponentially large in the complex plane.
Letting P go to infinity, and using paths parameterised by ha(p) and hb(p),
for p ∈ [0,∞), we can write (6.16) as

I1[f ] = eiωa
∫ ∞

0

f(a+ ip)e−ωp dp− eiωb
∫ ∞

0

f(b+ ip)e−ωp dp. (6.17)
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(b) g(x) = x2

Figure 6.1: Illustration of the integration paths for g(x) = x and g(x) = x2.

The integral along the path that connects the endpoints of ha(P ) and hb(P )
vanishes for P = ∞ and can therefore be discarded. Both integrals in
the right-hand side of (6.17) are well behaved. They can be evaluated
efficiently by standard numerical integration techniques, e.g., by Gauss–
Laguerre integration [69]. It can be expected from (6.17) that the accuracy
of any numerical integration scheme will increase with increasing ω, thanks
to the faster decay of the integrand. This expectation will be confirmed
both theoretically and numerically in the subsequent sections. One also
sees that, asymptotically, the behaviour of f around x = a and x = b
completely determines the value of (6.16).

Next, we consider the function g(x) = x2 and the corresponding integral

I2[f ] :=

∫ 1

−1

f(x)eiωx
2

dx.

Again, we can remove the integration difficulty by a careful selection of
an integration path in the complex plane. The path is drawn in the right
panel of Figure 6.1. The following notation is used for the parameterisation:
hxj(p) = (−1)j

√

x2 + ip. Integrating along any such path for p ∈ [0,∞)

leads to an integrand with the desired decay properties, since eiωhxj(p)
2

=
eiωx

2

e−ωp. One can see that, for general g, a similar result is obtained if
the path satisfies g(hx(p)) = g(x) + ip. This path can be found by using
the inverse of g, if it exists, i.e., hx(p) = g−1(g(x) + ip). Returning to the
example function g(x) = x2 however, we note that the inverse of y = g(x)
is multivalued: we have x = −√

y corresponding to the restriction g1 :=
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g|[−1,0], and x =
√
y corresponding to g2 := g|[0,1]. The paths leaving −1

and arriving at 1 are uniquely determined by the requirement that hx,j(0) =
x. Hence,

h−1,1(p) = −
√

1 + ip and h1,2(p) =
√

1 + ip.

Contrary to the first example, the integral along the path that connects
the limiting endpoints of h−1,1(p) and h1,2(p) cannot be discarded. Since
h−1,1(p) and h1,2(p) have opposite signs, any connecting path should cross
the real axis. Additionally we require the connecting path to be such that
the integrand along the path is non-oscillatory. The solution is to pass
explicitly through the point x = 0, via two new paths

h0,1(p) = −
√

ip and h0,2(p) =
√

ip.

The point x = 0 is such that the paths corresponding to the two inverses
coincide at x = 0. We can now write I2[f ] as

eiω
∫ ∞

0

f(h−1,1(p))e
−ωph′−1,1(p) dp−

∫ ∞

0

f(h0,1(p))e
−ωph′0,1(p) dp

+

∫ ∞

0

f(h0,2(p))e
−ωph′0,2(p) dp− eiω

∫ ∞

0

f(h1,2(p))e
−ωph′1,2(p) dp.

These four integrals are well behaved, although the derivatives h′0,1(p) and
h′0,2(p) introduce a weak singularity of the form 1/

√
p, for p → 0. The

integrands do not oscillate, and their decay is exponentially fast.
Note that ξ = 0 is a stationary point because g′(ξ) = 0. More general

stationary points, where also higher order derivatives of g vanish, are treated
in a similar way. Consider, e.g., g(x) = x3 and its inverse g−1(y) = 3

√
y.

The cubic root has three branches in the complex plane, and the optimal
path hx(p) = g−1(g(x) + ip) at the point x is found by taking the branch
corresponding to the inverse of g that is valid at x, i.e., for which hx(0) =
x. At ξ = 0, we have that g′(ξ) = g′′(ξ) = 0 and the three branches
coincide. For this example, integral (6.1) can again be decomposed into 4
contributions, each of which corresponds to a non-oscillating integral. The
integration path is drawn in Figure 6.2.

6.3.3 The ideal case: analytic integrand and no sta-

tionary points

6.3.3.1 An approximate decomposition of the oscillatory integral

The ideal setting for our approach has three conditions: both f and g are
analytic functions, there are no stationary points in the integration interval
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Figure 6.2: Illustration of the integration path for g(x) = x3.

[a, b] (i.e., g′(x) 6= 0), and the equation g(x) = z is easily solvable, preferably
by analytical means. None of these conditions is crucial in order to obtain
a convergent quadrature method, as we will relax all conditions later on.
But, the ideal case leads to the highest convergence rate among all cases
described, and is most suited to demonstrate our approach: the problem
of evaluating (6.1) can be transformed into the problem of integrating two
integrals on [0,∞) with a smooth integrand that does not oscillate, and
that decays exponentially fast. This will be proved in this section in Theo-
rem 6.3.3. First, we give a basic lemma for the approximation of an integral
with an integrand that becomes small in a region S of the complex plane.

Lemma 6.3.1. Assume u is analytic in a simply connected complex region
D ⊂ C with [a, b] ⊂ D, and there exists a bounded and connected region
S ⊂ D such that |u(z)| ≤ ε, ∀z ∈ S. If the shortest distance between any
two points p and q of S along a curve that lies in S can be bounded from
above by a constant M > 0, then there exists a function F (x), x ∈ [a, b],
such that the integral of u can be approximated by

∫ x

a

u(z) dz ≈ F (a) − F (x) (6.18)

with an error e that satisfies |e| ≤Mε. The function F is of the form

F (x) =

∫

Γx

u(z) dz (6.19)

with Γx any path in D that starts at x and ends in S.

Proof. Let Γx be a curve in D from x to an arbitrary point in S, denoted by
q(x), and Γa a curve in D from a to q(a) ∈ S. Choose κ as the shortest path
in S that connects q(a) and q(x). Since u is analytic in D, the integration



130 CHAPTER 6. OSCILLATORY INTEGRALS

path between a and x may be chosen as the concatenation of Γa, κ and
−Γx. The integral can be written as

∫ x

a

u(z) dz = F (a) +

∫

κ

u(z) dz − F (x), with

∣
∣
∣
∣

∫

κ

u(z) dz

∣
∣
∣
∣
≤Mε.

This proves the result.

Note that the function F is not completely determined by the conditions
of this Lemma. In particular, the endpoint q(x) of Γx may be an arbitrary
function of x.

If g is analytic, then the oscillating function eiωg(x) in the integrand
of (6.1) is also analytic as a function of x. This function is small in absolute
value if

|eiωg(x)| ≤ ε ⇐⇒ e−ω=g(x) ≤ ε ⇐⇒ =g(x) ≥ − log(ε)

ω
.

Hence, if the inverse of g exists, we can find a suitable region S that is
required for Lemma 6.3.1 with points given by g−1(c + id), for d ≥ d0 :=
− log(ε)

ω . Note that, in general, the inverse of an analytic function may be
multi-valued. Each single-valued branch of the inverse has branch points
that are located at the points ξ where g′(ξ) = 0, and it is discontinuous
across branch cuts that extend from one branch point to another, or from
a branch point to infinity. By explicitly excluding the presence of branch
points locally, a single-valued branch of the inverse can be found that is an-
alytic in a neighbourhood of [a, b]. We can then characterise the error of the
decomposition given in Lemma 6.3.1 for the particular case of integral (6.1)
as a function of ω.

Theorem 6.3.2. Assume f and g are analytic in a bounded and open com-
plex neighbourhood D of [a, b], and assume g′(z) 6= 0, z ∈ D. Then there
exists an approximation of the form (6.18) for (6.1), with an error that has
order O(e−ωd0) as a function of ω, for a real constant d0 > 0.

Proof. Define S := {z : =g(z) ≥ d0}∩D with d0 > 0. A positive constant d0

can always be found such that S is non-empty because g is analytic. In order
to prove this, consider a point x ∈ [a, b]. Since g is analytic at x, the equation
g(z) = g(x) + id0 always has a solution z for sufficiently small d0 > 0 [111].
Additionally, d0 can be chosen small enough such that z ∈ D, because D
contains an open neighbourhood of x. The necessary geometrical conditions
on S required by Lemma 6.3.1 follow from the continuity properties of g.
We have

∀x ∈ S : |f(x)eiωg(x)| ≤ |f(x)|e−ωd0 .
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Since S is finite (because D is bounded), there exists a constant C > 0 such
that |f(x)| ≤ C, x ∈ S. The result is established by Lemma 6.3.1 with
u(x) = f(x)eiωg(x) and ε = Ce−ωd0 .

Theorem 6.3.2 shows that the error in the approximation I ≈ F (a)−F (b)
for (6.1) decays exponentially fast as the frequency parameter ω increases.
It only requires that f and g are analytic in a finite neighbourhood of [a, b].
The function F is given by an integral along a curve that originates in x,
and leads to a point z such that g(z) has a positive imaginary part. The
result follows from the observation that the integrand has exponential decay
along such a path.

6.3.3.2 An exact decomposition of the oscillatory integral

Next, we will take the second observation into account: eiωg(x) does not
oscillate along a path where g(x) has a fixed real part. This will lead to a
particularly useful choice for the path Γx in the definition (6.19) of F .

Let hx(p) be a parameterisation for Γx, p ∈ [0, P ], then we find a suitable
path as the solution to

g(hx(p)) = g(x) + ip, x ∈ [a, b].

If the inverse of g exists, we have the unique solution hx(p) = g−1(g(x)+ip).
The path hx(p) is also called the steepest descent path (see appendix B).
This can be understood as follows. Define k(x, y) := ig(z) = u(x, y) +
iv(x, y), with z = x + iy. Then we have eiωg(z) = eωk(x,y). It can be
shown that the path is such that v(x, y) = v(x0, y0) is constant, and that
the descent of u(x, y) is maximal. In particular, the direction of steepest
descent coincides with −∇u at each point z = x+ iy.

Using this path in the definition of F , the decomposition becomes
∫ x

a

f(z)eiωg(z) dz ≈ F (a) − F (x) = eiωg(a)
∫ P

0

f(ha(p))e
−ωph′a(p) dp

− eiωg(x)
∫ P

0

f(hx(p))e
−ωph′x(p) dp.

The integrands in the right-hand side do not oscillate, and they decay ex-
ponentially fast as the integration variable p or the frequency parameter ω
increases.

In the following Theorem, we will consider the limit case P → ∞ in
which the error of the approximation vanishes. This will require stronger
analyticity conditions for both f and g. Additionally, the function f can
no longer be assumed to be bounded. The result of the theorem will hold
if f does not grow faster than polynomially in the complex plane along the
suggested integration path.
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Theorem 6.3.3. Assume that the functions f and g are analytic in a sim-
ply connected and sufficiently (infinitely) large complex region D containing
the interval [a, b], and that the inverse of g exists on D. If the following
conditions hold in D:

∃m ∈ N : |f(z)| = O(|z|m), and (6.20)

∃ω0 ∈ R : |g−1(z)| = O(eω0|z|), |z| → ∞, (6.21)

then there exists a function F (x), for x ∈ [a, b], such that
∫ x

a

f(z)eiωg(z) dz = F (a) − F (x), ∀ω > (m+ 1)ω0, (6.22)

where F (x) is of the following form,

F (x) :=

∫

Γx

f(z)eiωg(z) dz, (6.23)

with Γx a path that starts at x. A parameterisation hx(p), p ∈ [0,∞), for
Γx exists such that the integrand of (6.23) is O(e−ωp).

Proof. In this proof, we will use u(z) to denote the integrand of (6.1). Using
the fact that |u(z)| = |f(z)eiωg(z)| = |f(z)|e−ω=g(z), and conditions (6.20)
and (6.21), we can state

c+ id ∈ D ⇒ |u(g−1(c+ id))| = O(e(mω0−ω)d), d→ ∞. (6.24)

If ω > mω0, then (6.24) characterises the exponential decay of the integrand
in the complex plane. We will now choose an integration path from the point
a to the region where the integrand becomes small, and from that region
back to the point x ∈ [a, b]. We will show that the contribution along the
line that connects both paths can be discarded. This will establish the
existence of Γa and Γx in (6.23), and the independence of Γa and Γx.

Assume an integration path for I that consists of three connected parts,
parameterised as ha(p) and hx(p) with p ∈ [0, P ], and κ(p) with p ∈ [a, x].
The parameterisations can be chosen differentiable and satisfy ha(0) = a,
hx(0) = x, ha(P ) = κ(a) and hx(P ) = κ(x). We have

∫ x

a

u(z) dz =

∫ P

0

u(ha(p))h
′
a(p) dp (6.25)

+

∫ x

a

u(κ(p))κ′(p) dp−
∫ P

0

u(hx(p))h
′
x(p) dp.

Since the inverse function g−1 exists, we can choose the points ha(P )
and hx(P ) as follows: ha(P ) = g−1(g(a)+ iP ) and hx(P ) = g−1(g(x)+ iP ).
Hence, by (6.24),

|u(ha(P ))| = O(e(mω0−ω)P ) and |u(hx(P ))| = O(e(mω0−ω)P ).
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We will now show that, as P → ∞, the second integral vanishes. Equa-
tion (6.25) is then of the form (6.22), with Γa and Γx parameterised by
ha(p) and hx(p) respectively, p ∈ [0,∞).

The contribution of the integral along κ(p) is bounded by
∣
∣
∣
∣

∫ x

a

u(κ(p))κ′(p) dp

∣
∣
∣
∣
≤ max
p∈[a,x]

|u(κ(p))| max
p∈[a,x]

|κ′(p)| |x− a|. (6.26)

By selecting the path κ(p) = g−1(g(p) + iP ), we have from (6.24):
|u(κ(p))| = O(e(mω0−ω)P ), p ∈ [a, x]. We can write the second factor in
the bound (6.26) as

κ′(p) =
∂g−1

∂y
(g(p) + iP )

dg

dp
(p).

The derivative of g(p) with respect to p is bounded on [a, b] because g is

analytic. The factor ∂g−1

∂y (g(p) + iP ) is bounded by O(eω0P ). Combining

the asymptotic behaviour of the factors in (6.26), the second term in (6.25)
vanishes for P → ∞ and for all x ∈ [a, b] if ω > (m+ 1)ω0. This proves the
result.

Remark 6.3.4. Note that f and g should be analytic in a simply connected
region D that contains the paths ha(p), hb(p) and κ(p) in order to apply
Cauchy’s Theorem. The unique existence of the inverse of g is a necessary
condition: if g′(z) = 0 with z ∈ D, then the point z is a branch point of the
inverse function. The path κ(p) may cross the branch cut that originates at
z, and Cauchy’s Theorem cannot be applied.

Remark 6.3.5. Conditions (6.20) and (6.21) are sufficient but not neces-
sary. For example, the limit case also applies when f(x) = ex and g(x) = x.

If however f(x) = e−x
2

and g(x) = x, the integrand always diverges at in-
finity along the steepest descent path, regardless of the value of ω. In that
case, the path should be truncated at a finite distance from the real axis. The
accuracy of the decomposition is then described by Theorem 6.3.2, i.e., the
error decays exponentially fast.

Remark 6.3.6. The decomposition I[f ] = F (a) − F (b) is similar to the
result of the form I[f ] = FL(b)eiωg(b)−FL(a)eiωg(a) in the Levin-type method
of [161] discussed in §6.2.3. Although the approach is very different, both
methods yield nearly the same function: we have F (x) = −FL(x)eiωg(x).

6.3.3.3 Evaluation of F (x) by Gauss–Laguerre quadrature

Next, we consider the evaluation of F (x) as defined by (6.23). The param-
eterisation of the path hx(p) solves the equation

g(hx(p)) = g(x) + ip. (6.27)
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The integrand of (6.1) along this path is non-oscillatory and exponentially
decaying,

f(hx(p))e
iωg(hx(p)) = f(hx(p))e

iωg(x)e−ωp.

In the simplest, yet important case g(x) := x the suggested path is given
by hx(p) = x+ ip.

An efficient approach for infinite integrals with exponentially decaying
integrand is Gauss–Laguerre quadrature [69]. Laguerre polynomials are
orthogonal w.r.t. e−x on [0,∞]. A Gauss–Laguerre rule with n points is
exact for polynomials up to degree 2n − 1. The integral F (x) with the
suggested path can be written as

F (x) =

∫ ∞

0

f(hx(p))e
iω(g(x)+ip)h′x(p) dp

= eiωg(x)
∫ ∞

0

f(hx(p))h
′
x(p)e

−ωp dp

=
eiωg(x)

ω

∫ ∞

0

f(hx(q/ω))h′x(q/ω)e−q dq

with q = ωp in the last expression. Applying a Gauss–Laguerre quadrature
rule with n points xi and weights wi yields a quadrature rule

F (x) ≈ QS [f ;x] :=
eiωg(x)

ω

n∑

i=1

wif(hx(xi/ω))h′x(xi/ω). (6.28)

The rule requires the evaluation of f in a complex neighbourhood of x.

Theorem 6.3.7. Assume functions f and g satisfy the conditions of The-
orem 6.3.3. Let I be approximated by the quadrature formula

I ≈ QNSD[f ] := QS [f ; a] −QS [f ; b], (6.29)

where QS is evaluated by an n-point Gauss–Laguerre quadrature rule as
specified in (6.28). Then the quadrature error behaves asymptotically as
O(ω−2n−1).

Proof. A formula for the error of the n-point Gauss–Laguerre quadrature
rule applied to the integral

∫∞
0
f(x)e−xdx is given by [69]

E =
(n!)2

(2n)!
f (2n)(ζ), ζ ∈ [0,∞).
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Table 6.1: Absolute error of the approximation of I[f ] by QS [f ; a]−QS [f ; b]
with n quadrature points for the functions f(x) = 1/(1 + x) and g(x) = x
on [0, 1]. The last row shows the value of log2(e40/e80): this value should
approximate 2n+ 1.

ω \ n 1 2 3 4 5

10 1.0E − 3 3.1E − 5 1.9E − 6 1.7E − 7 2.1E − 8
20 1.2E − 4 1.1E − 6 2.3E − 8 7.5E − 10 3.2E − 11
40 1.7E − 5 3.9E − 8 2.1E − 10 2.0E − 12 2.8E − 14
80 2.0E − 6 1.2E − 9 1.7E − 12 4.2E − 15 1.6E − 17

rate 3.1 5.0 6.9 8.9 10.8

Using this formula, one can derive an expression for the error E := F (a) −
QS [f ; a]:

E =
eiωg(a)

ω

(n!)2

(2n)!

d2n(f(ha(q/ω))h′a(q/ω))

dq2n

∣
∣
∣
∣
q=ζ

=
eiωg(a)

ω2n+1

(n!)2

(2n)!

d2n(f(ha(q))h
′
a(q))

dq2n

∣
∣
∣
∣
q=ζ/ω

(6.30)

with ζ ∈ C. The error behaves asymptotically as O(ω−2n−1). The absolute
error for the approximation to (6.1) is composed of 2 contributions of the
form (6.30), and, hence, has the same high order of convergence.

Remark 6.3.8. The number of function evaluations required to evaluate
QNSD[f ] is 2n, and the asymptotic order of the method is also 2n. The
Filon type method using derivatives of f up to order n−1 at the points a and
b requires 2n function values and derivatives in (6.10), and has asymptotic
order n. For the same amount of data, the asymptotic order of the numer-
ical steepest descent method is twice as large as the order of the Filon-type
method. A similar observation holds when comparing with the Levin-type
method discussed in §6.2.3.

Example 6.3.9. We end this section with a numerical example to illustrate
the sharpness of our convergence result. The absolute error for different
values of ω and of n is given in Table 6.1 for the functions g(x) = x and
f(x) = 1/(1+x) on [0, 1]. The parameterisation for Γx is given by hx(p) =
x + ip. The behaviour as a function of ω follows the theory until machine
precision is reached. The relative error scales only slightly worse, since
I[f ] = O(ω−1).

One should note that decomposition (6.22) is exact for all positive values
of the parameter ω > (m + 1)ω0 > 0. The conditions from Theorem 6.3.3
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yield the minimal frequency parameter (m + 1)ω0. The method itself is
therefore not asymptotic, only the convergence estimate is. Table 6.1 shows
an absolute error of 2.1E − 8 (relative error 1.4E − 7) for ω = 10 with a
number of quadrature points as small as n = 5. The corresponding integral
is not highly oscillatory at all. In order to achieve the same absolute error
with standard Gaussian quadrature on [0, 1], we had to choose a rule with
10 points. Considering the fact that we evaluate both QS [f ; a] and QS [f ; b]
with n = 5 points, the amount of work is the same. Thus, even at relatively
low frequencies, our approach is competitive with conventional quadrature
on the real axis. For higher frequencies, obviously, the new approach may
be many orders of magnitude faster.

6.3.4 The case of stationary points

6.3.4.1 A new decomposition for the oscillatory integral

At a stationary point ξ, the derivative of g vanishes and the integrand
f(x)eiωg(x) does not oscillate, at least locally. The contribution of the inte-
grand and its derivatives at ξ can therefore not be neglected. The Theorems
of §6.3.3 do not apply, because the inverse of g does not exist uniquely due
to the branch point at ξ.

In order to illustrate the problem, consider the following situation. As-
sume that the equation g′(x) = 0 has one solution ξ and ξ ∈ [a, b]. Now
define the restrictions

g1 := g|[a,ξ] and g2 := g|[ξ,b] (6.31)

of g to the intervals [a, ξ] and [ξ, b] respectively. Then, the unique inverse
of g on [a, b] does not exist, but a single-valued branch g−1

1 can be found
that satisfies g−1

1 (g1(x)) = x, x ∈ [a, ξ]. This branch is analytic everywhere
except at the point ξ, and along a branch cut that can be chosen arbitrarily
but that always originates at ξ. Similarly, a single-valued branch g−1

2 exists
that satisfies g−1

2 (g2(x)) = x, x ∈ [ξ, b]. Both branches satisfy g(g−1
i (z)) =

z, i = 1, 2, in their domain of analyticity. The integrand is small in the
region S1 with points of the form g−1

1 (c + id), d ≥ d0, or in the region S2

with points of the form g−1
2 (c+ id), d ≥ d0. It is easy to see that S1 and S2

are not connected: applying g on both sides of the equality g−1
1 (y) = g−1

2 (z)
leads to y = z, which is only possible if z = ξ /∈ S1, S2. The path (6.27)
that solves g(hx(p)) = g(x) + ip, as suggested in §6.3.3, leads to a path in
S1 for a, and to a path in S2 for b.

The solution is therefore to split the integration interval into the two
subintervals [a, ξ] and [ξ, b]. This procedure can be repeated for any number
of stationary points. The analogues of Theorems 6.3.2 and 6.3.3 can be
stated as follows.
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Theorem 6.3.10. Assume that the functions f and g are analytic in a
bounded and open complex neighbourhood D of [a, b]. If the equation g′(x) =
0 has only one solution ξ in D and ξ ∈ (a, b), then there exist functions
Fj(x), j = 1, 2, such that

∫ t

s

f(z)eiωg(z) dz = F1(s)−F1(ξ)+F2(ξ)−F2(t)+O(e−ωd0), d0 > 0,

for s ∈ [a, ξ] and t ∈ [ξ, b], where Fj(x) is of the form

Fj(x) :=

∫

Γx,j

f(z)eiωg(z) dz (6.32)

with Γx,j a path that starts at x.

Proof. Define g2(x) as in (6.31). A decomposition for
∫ t

ξ
f(x)eiωg2(x) dx

can be found using the proof of Theorem 6.3.2 with two modifications.
First, the equation g(z) = g(x) + id0 now has at least two solutions locally
around x = ξ. We choose the solution that corresponds to the single-valued
branch g−1

2 of the inverse of g that satisfies g−1
2 (g(x)) = x, x ∈ [ξ, b].

The branch cut can always be chosen such that it does not prevent from
applying Cauchy’s Theorem. Secondly, the set S in the proof is now defined
as S := {z : =g(z) ≥ d0 and g−1

2 (g(z)) = z} ∩ D, i.e., the set is restricted
to one connected part of D where the integrand is small, as opposed to
the set of all points where the integrand is small. The latter set would not
be connected in this case. With these modifications, the proof shows the
existence of F2 such that

∫ t

ξ

f(z)eiωg2(z) dz = F2(ξ) − F2(t) +O(e−ωd0).

The same reasoning can be applied in order to find a decomposition on the
interval [a, ξ]. This leads to the result.

The next Theorem is the limit case of Theorem 6.3.10 where the error
vanishes. The notation g−1

1 denotes a branch of the multi-valued inverse of
g that satisfies g−1

1 (g1(x)) = x, x ∈ [a, ξ]. The notation g−1
2 is similar.

Theorem 6.3.11. Assume that the functions f and g are analytic in a
simply connected and sufficiently (infinitely) large complex region D con-
taining the interval [a, b]. Assume further that the equation g′(x) = 0 has
only one solution ξ in D and ξ ∈ (a, b). Define g1 and g2 as in (6.31). If
the following conditions hold:

∃m ∈ N : |f(z)| = O(|z|m),

∃ω0 ∈ R : |g−1
1 (z)| = O(eω0|z|) and |g−1

2 (z)| = O(eω0|z|), |z| → ∞,
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then there exist functions Fj(x), j = 1, 2, of the form (6.32) such that
∫ t

s

f(z)eiωg(z) dz = F1(s)−F1(ξ)+F2(ξ)−F2(t), ∀ω > (m+1)ω0, (6.33)

for s ∈ [a, ξ] and t ∈ [ξ, b]. A parameterisation hξ,j(p), p ∈ [0,∞), for Γx,j
exists such that the integrand of (6.32) is O(e−ωp).

Theorems 6.3.10 and 6.3.11 are easily extended to the case where ξ = a
(or ξ = b), by discarding the two terms F1(a) − F1(ξ) (or F2(ξ) − F2(b)).

Example 6.3.12. We consider the function g(x) = (x − 1/2)2, with a
stationary point at ξ = 1/2. The inverse of g, i.e., g−1(y) = 1/2±√

y, is a
two-valued function. One branch is valid on the interval [0, ξ], the other on
[ξ, 1]. The paths suggested by (6.27) on [0, ξ] that originate at the endpoints
0 and ξ respectively are parameterised by

h0,1(p) = 1/2 −
√

1/4 + ip and hξ,1(p) = 1/2 −
√

ip

The paths on [ξ, 1] for the points 1/2 and 1 are parameterised by

hξ,2(p) = 1/2 +
√

ip and h1,2(p) = 1/2 +
√

1/4 + ip

These paths correspond to the two inverse functions. We have found the
decomposition I = F1(a) − F1(ξ) + F2(ξ) − F2(b).

Note that the paths hξ,1 and hξ,2 that originate in the point ξ introduce
a numerical problem. Their derivatives, that appear in the integrand of
the line integral, behave like 1/

√
p, p → 0 at ξ. This weak singularity

is integrable, but prevents convergence of the Gauss–Laguerre quadrature
rules. We will require a new method to evaluate Fj(ξ).

6.3.4.2 The evaluation of Fj(x) by generalised Gauss–Laguerre
quadrature

The previous example showed a numerical problem for the evaluation of
Fj(x) by numerical quadrature: the integrand of Fj(ξ) along the path sug-
gested by (6.27) becomes weakly singular at the stationary point ξ. A similar
singularity occurs if higher order derivatives of g(ξ) also vanish. Assume
that g(k)(ξ) = 0, k = 1, . . . , r. The Taylor expansion of g is then

g(x) = g(ξ) + 0 + . . .+ 0 + g(r+l)(ξ)
(x− ξ)r+1

(r + 1)!
+O((x− ξ)l+2).

The path hξ,j(p) solves the equation g(hξ,j(p)) = g(ξ) + ip. Its behaviour
at p = 0 is

hξ,j(p) ∼ ξ + r+1

√

(r + 1)! p

g(r+1)(ξ)
i. (6.34)
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The derivative has a singularity of the form p
1

r+1−1, p→ 0.
Fortunately, these types of singularities can be handled efficiently by

generalised Gauss–Laguerre quadrature. Generalised Laguerre polynomials
are orthogonal with respect to the weight function xαe−x, α > −1 [69].
Function Fj(ξ) with optimal path hξ,j(p) is given by

Fj(ξ) =

∫ ∞

0

f(hξ,j(p))e
iω(g(ξ)+ip)h′ξ,j(p) dp

=
eiωg(ξ)

ω

∫ ∞

0

f(hξ,j(q/ω))h′ξ,j(q/ω)e−q dq. (6.35)

Generalised Gauss–Laguerre quadrature will be used with n points xi and
weights wi that depend on the value of α = 1/(r+1)−1 = −r/(r+1). The
function Fj(x) is then approximated by

QαSj
[f ; ξ] :=

eiωg(ξ)

ω

n∑

i=1

wi f(hξ,j(xi/ω))h′ξ,j(xi/ω)x−αi . (6.36)

This expression is similar to (6.28) but includes the factor x−αi to regularise
the singularity.

Theorem 6.3.13. Assume functions f and g satisfy the conditions of The-
orem 6.3.11. Assume that g(k)(ξ) = 0, k = 1, . . . , r and g(r+1)(ξ) 6= 0. Let
the function Fj(ξ) be approximated by the quadrature formula

Fj(ξ) ≈ QαSj
[f ; ξ]

with α = −r/(r + 1). Then the quadrature error behaves asymptotically as
O(ω−2n−1/(r+1)).

Proof. The error formula for an n-point generalised Gauss–Laguerre quadra-
ture rule is

n!Γ(n+ α+ 1)

(2n)!
f (2n)(ζ), 0 < ζ <∞. (6.37)

We can repeat the arguments of the proof of Theorem 6.3.7. An expression
for the error e := Fj(ξ) − QαSj

[f ; ξ] can be derived by using (6.37). This
leads to

e =
eiωg(ξ)

ω

n!Γ(n+ α+ 1)

(2n)!

d2n(f(hξ,j(q/ω))h′ξ,j(q/ω)q−α)

dq2n

∣
∣
∣
∣
∣
q=ζ

=
eiωg(ξ)

ω2n+1

n!Γ(n+ α+ 1)

(2n)!

d2n(f(hξ,j(q))h
′
ξ,j(q)(ωq)

−α)

dq2n

∣
∣
∣
∣
∣
q=ζ/ω

with ζ ∈ C. Hence, the error is asymptotically of the order O(ω−2n−1−α).
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Remark 6.3.14. Generalised Gauss–Laguerre quadrature converges rapidly
only if the function v(x) in an integrand of the form v(x)xαe−x has polyno-
mial behaviour. Depending on f , the function f(hξ,j(p)) may not resemble
a polynomial very well, due to the root in (6.34) for small p. An alternative
to generalised Gauss–Laguerre quadrature with α = −1/2 is to remove the
singularity by the transformation u =

√
p or p = u2. The same transforma-

tion also removes the square root behaviour of hξ,j(p). The integrand after

the transformation decays like e−u
2

. In that case, variants of the classi-
cal Hermite polynomials that are orthogonal w.r.t. e−u

2

on the half-range
interval [0,∞) can be used, with corresponding Gaussian quadrature rules
as constructed by Gautschi [87]. A similar convergence analysis yields the
order O(ω−n−1/(r+1)) in this case.

We can now characterise the approximation of (6.1) in the presence of
several stationary points.

Theorem 6.3.15. Assume that f and g are analytic in a sufficiently large
region D ⊂ C, and that the equation g′(x) = 0 has l solutions ξi ∈ (a, b).
Define ri := (mink>1 g

(k)(ξi) 6= 0) − 1 and r := maxi ri. If the conditions
of Theorem 6.3.11 are satisfied on each subinterval [ξi, ξi+1], and on [a, ξ1]
and [ξr, b], then (6.1) can be approximated by

I[f ] ≈ QNSD[f ] :=QS0
[f ; a] −Qα1

S0
[f ; ξ1] +

l−1∑

i=1

(
Qαi

Si
[f ; ξi] (6.38)

−Qαi+1

Si
[f ; ξi+1]

)
+Qαl

Sl
[f ; ξl] −QSl

[f ; b]

with αi = −ri/(ri+1), with a quadrature error of the order O(ω−2n−1/(r+1)).

Proof. This follows from a repeated application of the decomposition given
by Theorem 6.3.11, and from the approximation of each term Fi(x) by
Qαi

Si
[f ;x] as in Theorem 6.3.13.

Theorem 6.3.15 can easily be extended to the case where g′(a) = 0
or g′(b) = 0. If, e.g., g′(a) = 0, we can set ξ1 = a and use the general
decomposition (6.38) with the first two terms left out.

Example 6.3.16. We return to the Example 6.3.12 of this section in order
to illustrate the convergence results. The approximation of (6.1) for the
function g(x) = (x− 1/2)2 is given by

I[f ] ≈ QNSD[f ] =QS1
[f ; 0] −Q

−1/2
S1

[f ; 1/2]

+Q
−1/2
S2

[f ; 1/2] −QS2
[f ; 1].

Theorem 6.3.15 predicts an error of the order O(ω−2n−1/2). The sharpness
of this estimate can be verified by the results in Table 6.2.
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Table 6.2: Absolute error of the approximation of I[f ] by QNSD[f ] using
(generalised) Gauss-Laguerre quadrature with f(x) = 1/(1+x) and g(x) =
(x − 1/2)2 on [0, 1]. The last row shows the value of log2(e80/e160): this
value should approximate 2n+ 1/2.

ω \ n 1 2 3 4 5

10 4.7E − 3 7.1E − 4 1.7E − 4 4.9E − 5 1.7E − 5
20 7.8E − 4 5.6E − 5 7.2E − 6 1.3E − 6 2.7E − 7
40 1.2E − 4 2.8E − 6 1.5E − 7 1.2E − 8 1.3E − 9
80 1.6E − 5 1.0E − 7 1.7E − 9 5.0E − 11 2.1E − 12
160 2.3E − 6 3.4E − 9 1.6E − 11 1.3E − 13 1.6E − 15

rate 2.8 4.9 6.8 8.6 10.4

Remark 6.3.17. There exists a useful technique that can be used for the
evaluation of F (x) when x is near a stationary point ξ. In that case, the
integral F (x) is nearly singular, and it may be expensive to evaluate the
integral numerically. The proposed technique is as follows: instead of F (x),
one evaluates F (ξ), which can be done cheaply. Following Remark 6.3.6, we
have F (x) = −FL(x)eiωg(x). The derivatives of FL(x) of all order can be
computed based on expression (6.12), requiring only the value FL(x) itself.
Hence, the Taylor series of F (x) can be constructed around ξ, requiring
only the value of F (ξ). The desired value F (x) is obtained from the Taylor
approximation.

6.3.4.3 The case of complex stationary points

So far, we have required the stationary point ξ ∈ [a, b] to be real. But
even for functions g that are real-valued on the real axis, the equation
g′(x) = 0 may have complex solutions. The value of g′(x) on [a, b] can
become very small, if a complex stationary point ξ lies close to the real
axis. We may therefore expect that such a point contributes to the value of
the integral (6.1). Here, we will not pursue the extension of the theory to
the case of complex stationary points in any detail. Instead, we will restrict
ourselves to a number of remarks that address some of the relevant issues.

A first observation is that Theorem 6.3.10 can still be applied, if the
region D is chosen small enough such that it does not contain ξ. This means
that the contribution of ξ to the value of I, if any, decays exponentially
fast as ω increases. Still, for small values of ω, the error may become
prohibitively large if ξ lies close to the real axis.

In order to resolve this problem, one must first know which stationary
points can contribute to the error of the approximations of §6.3.4. In ge-
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neral, the question can be answered by inspecting the integration paths. A
stationary point contributes if it lies in the interior of the domain bounded
by the integration interval on the real axis and the complex integration path
(including the limiting connecting part at infinity). In order to obtain an ex-
act decomposition, the integration path should be changed to pass through
ξ explicitly. Specifically, the decomposition should include two additional
terms for ξ of the form (6.35).

As a final remark, we note that the integral of the form (6.35) has a
factor eiωg(ξ) with g(ξ) = c + id complex. If d > 0 then the contribution
decays exponentially as e−ωd. We know from Theorem 6.3.10 that the error
introduced by discarding complex stationary points should decay exponen-
tially. Hence, complex stationary points for which d ≤ 0 cannot contribute
to the value of I.

6.3.5 The case where the oscillator is not easily in-

vertible

Theorems 6.3.3 and 6.3.11 continue to hold for paths different from the one
implicitly defined by (6.27). The value of F (a) does not depend on the path
taken, and does not even depend on the limiting endpoint of the path, as
long as the imaginary part of g(x) grows infinitely large. We have merely
suggested (6.27) as it yields a non-oscillatory integrand with exponential de-
cay, suitable for Gauss-Laguerre quadrature. Other integration techniques
may be applied for other paths with different numerical properties. We will
not explore these possibilities in depth here.

We restrict the discussion to an approach that is useful when the inverse
function of g is known to exist, but when the suggested path is not easily
obtained by analytical means. As ω increases, we see from (6.28) that
QS [f ; a] requires function values in a complex region around a of diminishing
size. Therefore, it is reasonable to assume that approximating the path
defined by (6.27) locally around x = a is acceptable. Use of the first order
Taylor approximation g(x) ≈ g(a) + g′(a)(x − a) to replace the left hand
side of (6.27) leads to the path

ha(p) = a+
ip

g′(a)
. (6.39)

The second order Taylor approximation leads to the path

ha(p) = a− g′(a) −
√

g′(a)2 + 2ipg(2)(a)

g(2)(a)
.

In the case of stationary points the path can be approximated by us-
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ing (6.34),

hξ,i(p) = ξ + r+1

√

(r + 1)! p

g(r+1)(ξ)
i.

The general expression for the integral along the approximate path is
given by

F (a) =

∫ ∞

0

f(ha(p))e
iωg(ha(p))h′a(p) dp.

Computing F (a) by Gauss-Laguerre quadrature yields a numerical approx-
imation with an error given by

E = ω−1 (n!)2

(2n)!

d2n(f(ha(q/ω))eiωg(ha(q/ω))h′a(q/ω)eq)

dq2n

∣
∣
∣
∣
q=ζ

= ω−2n−1 (n!)2

(2n)!

d2n(f(ha(q))h
′
a(q)e

iωg(ha(q))eωq)

dq2n

∣
∣
∣
∣
q=ζ/ω

.

The order of convergence is not necessarily O(ω−2n−1) in this case be-
cause the derivative still depends on ω. However, the function eiωg(ha(q)) is
a good approximation to eiωg(a)e−ωq and we can expect the quadrature to
converge. This will be illustrated further on.

The results can be improved to preserve the original convergence rate of
O(ω−2n−1) at the cost of a little extra work to determine the optimal path.
The optimal path depends only on g(x) and on the interval [a, b], and can
therefore be reused for different functions f . The extra computations have
to be done once for each combination of g(x) and [a, b].

The Taylor approximation of the path can be used to generate suitable
starting values for a Newton-Raphson iteration, applied to find the root x
of the equation

g(x) − g(a) − ip = 0. (6.40)

For the set of n (fixed) values for p that are required by the quadrature rule,
the iteration yields the points x = ha(p) on the path. The values of h′a(p),
i.e., dx

dp , are found by taking the derivative of (6.40) with respect to p,

g′(x)
dx

dp
= i. (6.41)

With the Newton-Raphson method, the points on the optimal path and
the derivatives at these points can be found to high precision. Since the Tay-
lor approximation is already a good approximation for large ω, the required
number of iterations is small.
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Table 6.3: Absolute error of approximation of F (a) − F (b) by Gauss-
Laguerre quadrature with f(x) = 1/(1 + x) and g(x) = (x2 + x + 1)1/3

on [0, 1] and second order Taylor approximation of the optimal path. The
last row shows the value of log2(e160/e320).

ω \ n 1 2 3 4 5

20 1.4E − 2 2.7E − 3 7.4E − 4 2.4E − 4 8.9E − 5
40 2.5E − 3 2.6E − 4 4.6E − 5 1.0E − 5 2.5E − 6
80 3.8E − 4 1.8E − 5 1.7E − 6 2.0E − 7 2.9E − 8
160 5.2E − 5 1.1E − 6 4.0E − 8 2.1E − 9 1.5E − 10
320 6.7E − 6 6.8E − 8 7.7E − 10 1.6E − 11 4.4E − 13

rate 3.0 4.0 5.7 7.0 8.4

Table 6.4: The same example as in Table 6.3, but using Newton-Raphson
iterations to compute the optimal path. The number of iterations per
quadrature point varied between 1 and 4. The last row shows the value
of log2(e320/e640): this value should approximate 2n+ 1.

ω \ n 1 2 3 4 5

20 1.1E − 2 2.4E − 3 7.4E − 4 2.5E − 4 7.5E − 5
40 2.1E − 3 2.4E − 4 4.4E − 5 1.0E − 5 2.4E − 6
80 3.3E − 4 1.5E − 5 1.2E − 6 1.5E − 7 2.3E − 8
160 4.5E − 5 6.1E − 7 1.8E − 8 8.7E − 10 6.2E − 11
320 5.9E − 6 2.1E − 8 1.8E − 10 2.7E − 12 6.2E − 14
640 7.2E − 7 6.7E − 10 1.5E − 12 6.3E − 15 4.3E − 17

rate 3.0 5.0 6.9 8.8 10.5

Example 6.3.18. We consider the second order Taylor approximation of
the path for f(x) = 1/(1+x) and g(x) = (x2 +x+1)1/3. The absolute error
is shown in Table 6.3. Use of the Newton-Raphson iteration for the same
example yields an error of order O(ω−2n−1). This is shown in Table 6.4.
The number of iterations per quadrature point varied between 1 and 4.

6.3.6 Filon-type methods for a non-analytic function f

If f(x) is not analytic in a complex region surrounding [a, b], then the
method presented thus far will not work. If f(x) is piecewise analytic (e.g.,
piecewise polynomial), the integration can be split into the integrals corre-
sponding to the analytic parts of f . More generally however, we need to
resort to another approach. For a suitable analytic function f̃ that approx-
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imates f , we can expect the integral

I[f̃ ] =

∫ b

a

f̃(x)eiωg(x) dx

to approximate the value of I. This leads to Filon-type methods that were
discussed already in §6.2.2. Since polynomials are analytic, we can use
the Hermite interpolating polynomials satisfying (6.9) as basis functions
for the analytic approximation f̃ of f . The weights wl,j = I[ψl,j ] of the
Filon-type method (6.10) can be evaluated using the numerical steepest
descent method. (Note that the method also enables the computation of
the moments in the asymptotic method (6.7).)

The asymptotic order of the Filon-type method using Hermite interpo-
lation was given by (6.11). It is lower than the asymptotic order of the
numerical steepest descent method using the same amount of data (see Re-
mark 6.3.8). Unfortunately, the asymptotic order of the Filon-type method
can not be improved using steepest descent for approximations of f . We can
improve on the Filon-type method however in a different way. Thanks to the
decomposition of (6.1) as I[f ] = F (a) − F (b), it is possible to use different
approximations around a and b, and, hence, to approximate F (a) and F (b)
independently. Since F (a) only depends on the behaviour of f around a,
the approximating Hermite polynomial can have much lower degree. In the
theorem below, we show that we can obtain the same asymptotic order s of
the Filon-type method with two independently constructed polynomials of
degree s−1 instead of with one polynomial of degree 2s−1. For notational
convenience, we define the integral S[f ;x] by

S[f ;x] := F (x), (6.42)

as the line integral along the optimal path hx(p) for the oscillator g.

Theorem 6.3.19. Assume that f is a smooth function, and g is analytic.
Let fa(x) and fb(x) be the Hermite interpolating polynomials of degree s−1
that satisfy

f (k)
a (a) = f (k)(a) and f

(k)
b (b) = f (k)(b), k = 0, . . . , s− 1.

Then the approximation I[f ] ≈ S[fa; a] − S[fb; b] has asymptotic order s.

Proof. First we consider the approximation with the Hermite interpolat-
ing polynomial f̃(x) of degree 2s − 1 that satisfies f̃ (k)(a) = f (k)(a) and
f̃ (k)(b) = f (k)(b), k = 0, . . . , s − 1. Since f̃ is analytic, it can be used to
approximate (6.1) as I[f ] ≈ I[f̃ ] = S[f̃ ; a]−S[f̃ ; b]. This approximation has
an asymptotic error of O(ω−s−1) by [129, Theorem 2.3].
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Now consider the approximation of S[f̃ ; a] by S[fa; a]. Since f̃(x) is a
polynomial, we can write S[f̃ ; a] as

S[f̃ ; a] =

2s−1∑

k=0

f̃ (k)(a)
S[(x− a)k; a]

k!
:=

2s−1∑

k=0

f̃ (k)(a)
µk(a)

k!
.

The moments µk(a) = S[(x− a)k; a] are given explicitly by

µk(a) =

∫ ∞

0

(ha(p) − a)keiωg(ha(p))h′a(p) dp (6.43)

=

∫ ∞

0

eiωg(a)

ω
(ha(q/ω) − a)ke−qh′a(q/ω) dq.

Although q goes to infinity, the behaviour for small q/ω dominates due to the
factor e−q (this follows from Watson’s Lemma [3, 200]). Since (ha(q/ω) −
a) ∼ ω−1, we see that µk(a) ∼ ω−k−1. For S[fa; a], we have

S[fa; a] =

s−1∑

k=0

f (k)
a (a)

µk(a)

k!
. (6.44)

The first discarded moment, µs(a), has asymptotic size O(ω−s−1). The
approximation of S[f̃ ; b] by S[fb; b] has an error of the same order. This
concludes the proof.

There are two ways to proceed: either fa(x) can be evaluated explicitly
in the quadrature evaluation of S[fa; a], or the moments (6.43) can be pre-
computed with the previous techniques and used in the summation (6.44).
The latter leads to a localised Filon-type quadrature rule for I[f ], using
function values of f at a and b,

I[f ] ≈ QLF [f ] :=

s−1∑

j=0

w1,jf
(j)(a) +

s−1∑

j=0

w2,jf
(j)(b), (6.45)

with the weights given by

w1,j = S

[
(x− a)j

j!
; a

]

, and w2,j = −S
[
(x− b)j

j!
; b

]

.

The quadrature rule has asymptotic order s, like the regular Filon-type
method. For a fixed frequency, the localised Filon-type method is exact
for polynomials up to degree s− 1, while the regular Filon-type method is
exact for polynomials up to degree 2s−1. Hence, the simplified construction
comes at a cost; the order of accuracy as a function of ω is the same, but
one can expect the coefficient to be much larger.
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We can generalise the result to include stationary points. The same
reasoning applies, but we need to interpolate more derivatives in order to
achieve a similar convergence rate. The number of derivatives depends on
the order r of the stationary point. We use the notation Sj [f ; ξ] to denote
the line integral corresponding to the path hξ,j(p).

Theorem 6.3.20. Assume that g is analytic and that g(k)(ξ) = 0, k =
1, . . . , r, and g(r+1)(ξ) 6= 0. Let f be sufficiently smooth, and let fξ(x) be
the Hermite interpolating polynomial of degree s(r + 1) − 1 that satisfies

f
(k)
ξ (ξ) = f (k)(ξ), j = 0, . . . , s(r + 1) − 1.

Then the sequence Sj [fξ; ξ] converges for increasing values of s to a limit
with an error of order O(ω−s−1/(r+1)).

Proof. The proof follows essentially the same lines as the proof of Theo-
rem 6.3.19. Define the moments µj,k(ξ) = Sj [(x− ξ)k; ξ], given by

µj,k(ξ) =

∫ ∞

0

eiωg(ξ)

ω
(hξ,j(q/ω) − ξ)ke−qh′ξ,j(q/ω) dq. (6.46)

The derivative of the parameterisation hξ,j in the integrand has an inte-
grable singularity of the form (q/ω)−r/(r+1) at the stationary point ξ, and
leads to a factor ωr/(r+1). By (6.34) we have (hξ,j(q/ω) − ξ) ∼ ω−1/(r+1).
This makes µk,j(ξ) ∼ ωr/(r+1)−k/(r+1)−1 = ω(−k−1)/(r+1). The first dis-
carded moment µk,j(ξ) in the sum Sj [fξ; ξ] of the form (6.44) has the index
k = s(r + 1), which leads to the result.

Assume there is one stationary point ξ ∈ (a, b) of order r. Then we can
extend the definition of quadrature rule (6.45) to

I[f ] ≈ QLF [f ] =

s−1∑

j=0

w1,jf
(j)(a) +

s(r+1)−1
∑

j=0

w2,jf
(j)(ξ) +

s−1∑

j=0

w3,jf
(j)(b),

with the weights given by

w1,j = S1

[
(x− a)j

j!
; a

]

, (6.47)

w2,j = −S1

[
(x− ξ)j

j!
; ξ

]

+ S2

[
(x− ξ)j

j!
; ξ

]

, (6.48)

w3,j = −S2

[
(x− b)j

j!
; b

]

. (6.49)

The rule has an absolute error of order O(ω−s−1/(r+1)), and a relative error
of order O(ω−s).
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Table 6.5: Absolute error of the approximation of I[f ] for f(x) = 1/(1 + x)
and g(x) = (x − 1/3)2 on [0, 1]. We approximate f by interpolating m
derivatives. The last row shows the value of log2(e1280/e2560): this value
should approximate (m+ 2)/2 for odd m, and (m+ 3)/2 for even m.

ω \ m 0 1 2 3 4

160 1.0E − 4 1.8E − 4 9.5E − 7 9.7E − 7 8.6E − 9
320 6.5E − 5 6.5E − 5 1.7E − 7 1.7E − 7 7.6E − 10
640 2.8E − 5 2.3E − 5 3.1E − 8 3.0E − 8 6.7E − 11
1280 8.1E − 6 8.2E − 6 5.4E − 9 5.4E − 9 5.9E − 12
2560 3.2E − 6 2.9E − 6 9.5E − 10 9.5E − 10 5.2E − 13

rate 1.4 1.5 2.5 2.5 3.5

Example 6.3.21. We consider the functions f(x) = 1/(1 + x) and g(x) =
(x−1/3)2 on [0, 1]. Since f is analytic, we could use the previous techniques.
However, here we will only use the values of the first few derivatives of f
at 0 and 1 and at the stationary point ξ = 1/3. The results are shown
in Table 6.5 for varying degrees of interpolation. The convergence rate is
limited to the convergence rate at the stationary point. According to The-
orem 6.3.20, in order to obtain an error of order O(ω−s−1/(r+1)), we need
to interpolate up to the derivative of order m = s(r+1)− 1. Hence, solving
the latter expression for s, we expect a convergence rate of (m+ 2)/(r+ 1).
The rate is actually higher in the columns with even m, due to the cancel-
lation of the moments at ξ with odd index. For a more general function g
there is no exact cancellation, but the difference of the moments at ξ, i.e.,
µ1,k(ξ) − µ2,k(ξ), can have lower order than predicted by Theorem 6.3.20.
This cancellation does not occur if the stationary point ξ is the endpoint of
the integration interval.

Example 6.3.22. We make a numerical comparison between the regular
Filon-type method, the localised Filon-type method and the numerical steep-
est descent method for f(x) = 1/(1 + x2) and g(x) = (x− 1/2)2 on [−1, 1].
Filon-type methods for this integral suffer from Runge’s phenomenon: the
interpolation error for the function f is large [169]. We choose s = 1,
i.e., we use only function values of f in {−1, 1/2, 1} and no derivatives.
The order of the Filon-type methods is then O(ω−3/2). We choose n = 1
in Theorem 6.3.15. The order of the numerical steepest descent method is
then O(ω−5/2), using 4 evaluations of f in the complex plane. We also in-
terpolate two additional derivatives at 1/2 for the Filon-type method: this
yields a quadrature rule with 5 weights, and order O(ω−2). The results are
illustrated in Figure 6.3.
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Figure 6.3: A numerical comparison between the regular and localised Filon-
type methods, and the numerical steepest descent method (Example 6.3.22).

6.3.7 Generalisation to a non-analytic function g

If g(x) is piecewise analytic, the integration interval can be split into subin-
tervals where the function is analytic. Otherwise we can try to approximate
g(x) by an analytic function g̃(x) on [a, b]. We should take care not to intro-
duce new stationary points, and make sure that we accurately approximate
all stationary points of g(x). This can be accomplished using comonotone
polynomial approximations [166, 167]. Alternatively, we can approximate
g(x) locally around the special points, possibly by using different functions
for each point. This will turn out to be easier and will yield the same
convergence rate.

When g(x) is smooth, it can be approximated arbitrarily well by an
analytic function g̃(x) on [a, b], using for example comonotone polynomial
approximations with sufficiently high degree. Hence, there exist analytic g̃
such that the integral

I[f, g̃] :=

∫ b

a

f(x)eiωg̃(x) dx = S[f, g̃; a] − S[f, g̃; b], (6.50)

is arbitrarily close to the value of I[f, g]. The notation S[f, g;x] is used to
denote the line integral at x along the optimal path corresponding to g. Ow-
ing to decomposition (6.50), it becomes possible to do Hermite interpolation
in a and b separately by different polynomials.
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Theorem 6.3.23. Assume that f and g̃ are analytic. Let ga(x) be the
Hermite interpolating polynomial of degree s that satisfies

g(k)
a (a) = g̃(k)(a), k = 0, . . . , s.

Then we have S[f, g̃; a] − S[f, ga; a] = O(ω−s−1), ω → ∞.

Proof. In order to determine the asymptotic size of the error e, it can be
written as

e ∼
∫ ∞

0

f(ha(p))(e
iωg̃(ha(p)) − eiωga(ha(p)))h′a(p) dp (6.51)

=

∫ ∞

0

f(ha(p))e
iωga(ha(p))(eiω(g̃(ha(p))−ga(ha(p))) − 1)h′a(p) dp

=
eiωga(a)

ω

∫ ∞

0

f(ha(
q

ω
))e−q(eiω(g̃(ha( q

ω ))−ga(ha( q
ω ))) − 1)h′a(

q

ω
) dq,

where ha(p) is a parameterisation that agrees with the optimal paths for the
oscillators g̃ and ga at p = 0 up to the first few derivatives. This is possible

because g
(k)
a (a) = g̃(k)(a), k = 0, . . . , s. Using a Taylor approximation

around a, we have

g̃(x) − ga(x) = (g̃(s+1)(a) − g(s+1)
a (a))

(x− a)s+1

(s+ 1)!
+O((x− a)s+2).

Because ha(q/ω) − a ∼ ω−1, we have

eiω(g̃(ha(q/ω))−ga(ha(q/ω))) − 1 ∼ iω(g̃(ha(q/ω)) − ga(ha(q/ω))) ∼ ω−s.

The error e is therefore of order O(ω−s−1).

The value of I[f, g̃], defined by (6.50), is completely determined by the
derivatives of g̃ at a and b. If I[f, g̃] − I[f, g] is small, it follows from
Theorem 6.3.23 that g̃ should satisfy g̃(j)(a) = g(j)(a) and g̃(j)(b) = g(j)(b),
j = 0, . . . , s, for some maximal order s that depends on the smoothness of
g. Hence, g̃ need not be explicitly constructed.

At a stationary point ξ, more derivatives are needed. The convergence
rate depends on the order r of the stationary point.

Theorem 6.3.24. Assume that f and g̃ are analytic and that g̃(k)(ξ) = 0,
k = 1, . . . , r, and g̃(r+1)(ξ) 6= 0. Let gξ(x) be the Hermite interpolating
polynomial of degree (s+ 1)(r + 1) − 1 that satisfies

g
(k)
ξ (ξ) = g̃(k)(ξ), k = 0, . . . , (s+ 1)(r + 1) − 1.

Then the approximation of Sj [f, g̃; ξ] by Sj [f, gξ; ξ] has an error of order
O(ω−s−1/(r+1)).



6.4. MULTIVARIATE NUMERICAL STEEPEST DESCENT 151

Table 6.6: Absolute error of the approximation of S[f, g̃; a] by S[f, ga; a]

for f(x) = 1/(1 + x) and g(x) = (x − 1/2)2(x − 2)ex
2

at a = 0. We
approximate g by interpolating m derivatives. The last row shows the value
of log2(e400/e800): this value should approximate m+ 1.

ω \ m 1 2 3 4

100 6.1E − 5 7.6E − 7 1.3E − 8 1.9E − 10
200 1.5E − 5 9.5E − 8 8.4E − 10 6.1E − 12
400 3.8E − 6 1.2E − 8 5.3E − 11 1.9E − 13
800 9.6E − 7 1.5E − 9 3.3E − 12 6.0E − 15

rate 2.0 3.0 4.0 5.0

Proof. The proof follows the same lines as the proof of Theorem 6.3.23. The
difference is that, similar to the situation in the proof of Theorem 6.3.20,
we have hξ,j(q/ω) − ξ ∼ ω−1/(r+1) and h′ξ,j(q/ω) ∼ ωr/(r+1). This leads to

eiω(g̃(hξ,j(q/ω))−gξ(hξ,j(q/ω))) − 1 ∼ ω−s.

The error estimate for this case is analogous to (6.51) in the proof of The-
orem 6.3.23. Adding all contributions, it is of order O(ω−1−s+r/(r+1)) =
O(ω−s−1/(r+1)).

Example 6.3.25. We illustrate the convergence with two examples. The
function g(x) = (x − 1/2)2(x − 2)ex

2

is approximated by a polynomial of
degree m in the end points a = 0 and b = 1, and in the stationary point
ξ = 1/2. The resulting errors are displayed in Tables 6.6 and 6.7. Table 6.6
shows the error in approximating only F̃ (a). Table 6.7 shows the error of
the approximation of I. The latter error is dominated by the error made at
the stationary points but follows the theory. As in the last example for a
non-analytic function f , the convergence rate is actually higher for even m,
because the difference of the terms at ξ in the decomposition of I can have
lower order than predicted by Theorem 6.3.24. Note that it is not possible to
approximate g(x) by a fixed constant since in that case also eiωga(x) = eiωc

reduces to a constant. At a stationary point with r vanishing derivatives,
the minimal number of derivatives to interpolate is r + 1.

6.4 Multivariate numerical steepest descent

6.4.1 Overview

Multivariate oscillatory integrals exhibit a number of features that are not
seen in the univariate case. Still, the main observations that were made
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Table 6.7: Absolute error of the approximation of I[f, g] by I[f, g̃] for f(x) =

1/(1 + x) and g(x) = (x − 1/2)2(x − 2)ex
2

on [0, 1]. We approximate g by
interpolating m derivatives. The last row shows the value of log2(e400/e800):
this value should approximate m/2 for odd m, and (m+ 1)/2 for even m.

ω \ m 2 3 4

100 1.6E − 4 2.7E − 4 1.8E − 7
200 5.5E − 5 9.8E − 6 3.2E − 8
400 2.0E − 5 3.5E − 6 5.6E − 9
800 6.9E − 6 1.2E − 6 9.9E − 10

rate 1.5 1.5 2.5

regarding strong oscillations for one-dimensional integrals remain the same,
and methods can be devised with high asymptotic order. In this section, we
consider integrals on a bounded and connected domain S ∈ Rn, with the
general form

In[f ] :=

∫

S

f(x)eiωg(x) dx, (6.52)

where both f and g are smooth n-dimensional functions. Integral (6.52) is
a straightforward generalisation of (6.1).

As in the univariate case, the value of In[f ] is determined by the be-
haviour of f and g near a number of critial points. The equivalent of
stationary points are those points ξ where all derivatives of the oscillator
vanish: ∇g(ξ) = 0. The point is said to be degenerate if the Hessian of the
oscillator is singular. The endpoints in the univariate case correspond to the
corner points of the integration domain S, and in general to all points on
the boundary where the surface of S is not smooth. A new set of points are
the so-called resonance points. These are points on the boundary where the
oscillator is orthogonal to the boundary: ∇g(ξ) ⊥ ∂S. Their importance
lies in the fact that, locally, the integrand of (6.52) does not oscillate along
the boundary. The boundary ∂S may also have an entire curve of resonance
points. In fact, even more degenerate cases can be found where each point
on the surface is a resonance point. The integrand is then only oscillatory
in the interior of S.

The methods that were discussed in this chapter can all be extended
to a multivariate setting with varying levels of generality. The asymptotic
method and, correspondingly, Filon-type methods were constructed for n-
dimensional polytopes in [131]. The presence of critical points and resonance
points was explicitly avoided in this approach by the so-called nonresonance
condition. The approach was subsequently extended to include critical and
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resonance points for a number of relevant two-dimensional problems in [130].
The multivariate extension of Levin-type methods is described in [162]. In
that approach, the oscillator and the integration domain may be arbitrary,
subject to the nonresonance condition. Here, we discuss the extension of the
numerical steepest descent method to multivariate integrals. The results are
obtained by repeated one-dimensional integration. In the process, resonance
points are identified as stationary points in lower-dimensional integrals.

6.4.2 Extension to two-dimensional integrals

As motivating examples that illustrate the general case, we extend the re-
sults of the one-dimensional steepest descent approach to a number of two-
dimensional oscillatory integrals. The problems that arise are introduced
one by one, in a series of examples that become exceedingly more general.
First, we consider the integration on a rectangular domain which will be
handled by repeated one-dimensional integration. Next, we generalise to
smooth integration boundaries, which introduces possible resonance points.
Finally, we study an example with a critical point in the interior of S. Such
points appear as stationary points in each integration variable.

In this section, we will assume that all considered functions f and g
are such that the error in the decompositions vanishes. This assumption is
made in this section purely for the sake of clarity and brevity. The theory
will be described without this assumption in §6.4.3.

6.4.2.1 Rectangular domains in two dimensions

The simplest extension of the one-dimensional method to multivariate in-
tegrals is the use of repeated one-dimensional integration on a rectangular
domain. In order to illustrate the basic approach, we restrict the discussion
to a strictly monotonically increasing function g. Consider therefore the
double integral

I2 =

∫ b

a

∫ d

c

f(x, y)eiω(x+y) dy dx, (6.53)

with f analytic in both variables x and y. For a fixed value of x, the inner
integration in y can be written as a finite sum of contributions by applying
Theorem 6.3.2. We have

∫ d

c

f(x, y)eiω(x+y) dy = G(x, c) −G(x, d).

An expression for G(x, y) is given by

G(x, y) = eiω(x+y)

∫ ∞

0

f(x, vy(x, q))
∂vy
∂q

(x, q)e−ωq dq, (6.54)
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where vy(x, q) is found as the solution to g(x, vy(x, q)) = g(x, y) + iq. The
particular oscillator g(x, y) = x + y in this example leads to the path
vy(x, q) := y + iq. An important observation is that the function G(x, y)
is analytic as a function of x, because all factors in expression (6.54) are
analytic in x. In addition, G(x, y) is an oscillatory function of x with the
oscillator g1(x) := x. Hence, the integration of G(x, y) in x can also be writ-
ten as a sum of contributions. The optimal path is given by ux(p) := x+ ip.
We arrive at

I2 =

∫ b

a

(G(x, c) −G(x, d)) dx = [F (a, c) − F (b, c)]− [F (a, d) − F (b, d)] ,

where the function F (x, y) is given by

F (x, y) = eiω(x+y)

∫ ∞

0

∫ ∞

0

f(ux(p), vy(ux(p), q))
∂ux
∂p

(p) (6.55)

∂vy
∂q

(ux(p), q)e
−ω(p+q) dq dp

= eiω(x+y)

∫ ∞

0

∫ ∞

0

f(x+ ip, y + iq)i2e−ω(p+q) dq dp.

The value of I2 is found by summing contributions from each of the corner
points of the rectangular domain. These contributions are given by a double
integral with a non-oscillating integrand that decays exponentially fast as
a function of both integration variables. They can be evaluated efficiently
using, e.g., tensor-product Gauss-Laguerre quadrature.

6.4.2.2 Smooth boundaries in two dimensions

The double integral (6.53) is generalised by considering integration bound-
aries for y that depend on x. The simplest of those extensions is a simplex.
We therefore consider the evaluation of the following integral first,

I2 :=

∫ b

a

∫ x

a

f(x, y)eiω(x+y) dy dx. (6.56)

Applying Theorem 6.3.2 for the inner integration in y leads to
∫ x

a

f(x, y)eiω(x+y) dy = G(x, a) −G(x, x),

with G(x, y) again given by (6.54). The term G(x, x) did not appear before;
it is given by

G(x, x) = eiω2x

∫ ∞

0

f(x, x+ iq)ie−ωq dq. (6.57)
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This means that the oscillators in x of G(x, a) and of G(x, x) are different:
they are respectively given by g1(x) := x and g2(x) := 2x. A decomposition
can be written for the integration in x, applying Theorem 6.3.2 for both
terms separately. This leads to

I2 =

∫ b

a

(G(x, a) −G(x, x)) dx = [F1(a, a)−F1(b, a)]−[F2(a, a)−F2(b, b)],

with F1(x, y) = F (x, y) corresponding to the integral of G(x, a), and with
F2 given by

F2(x, x) = eiω2x

∫ ∞

0

∫ ∞

0

f(x+
p

2
i, x+

p

2
i+ iq)

i2

2
e−ω(p+q) dq dp.

This expression is obtained by following the paths vy(x, q) = y + iq and
ux(p) = x+ p

2 i. Although function F2 is a function of only one variable x,
the notation F2(x, x) is used for later notational convenience. Note that all
contributions in the total decomposition are given by the evaluation of a
function F1 or F2 at a corner point of the simplex.

A new difficulty arises when the boundaries of the integration in y are
more general. Assume analytic functions c(x) and d(x) are given and define
the double integral

I2 :=

∫ b

a

∫ d(x)

c(x)

f(x, y)eiω(x+y) dy dx. (6.58)

Decomposing the inner integration in y now leads to

∫ d(x)

c(x)

f(x, y)eiω(x+y) dy = G(x, c(x)) −G(x, d(x))

= eiω(x+c(x))

∫ ∞

0

f(x, c(x) + iq)ie−ωq dq

− eiω(x+d(x))

∫ ∞

0

f(x, d(x) + iq)ie−ωq dq.

The oscillator of G(x, c(x)) is g1(x) := g(x, c(x)) = x + c(x). Although
the partial derivatives of the original function g(x, y) = x+ y do not vanish
anywhere, the function g1(x) may have stationary points:

d

dx
g(x, c(x)) =

∂g

∂x
+
∂g

∂y

dc

dx
= 0 ⇐⇒ ∇g · ∇

[
x
c(x)

]

= 0,

Function g1(x) has a stationary point in x if the gradient of g(x, y) is or-
thogonal to the tangent line of the boundary, which is parameterised by
[x c(x)]T . Such points are called resonance points.



156 CHAPTER 6. OSCILLATORY INTEGRALS

Assume that g1(x) has lc stationary points ξc,i ∈ (a, b), i = 1, . . . , lc,
and g2(x) := g(x, d(x)) = x + d(x) has ld stationary points ξd,i ∈ (a, b),
i = 1, . . . , ld. Set ξc,0 := a, ξc,lc+1 := b, ξd,0 := a and ξd,ld+1 := b. Then we
can write I2 as

I2 =

lc+1∑

i=1

[F1,i(ξc,i−1, c(ξc,i−1)) − F1,i(ξc,i, c(ξc,i)) ]

−
ld+1∑

i=1

[F2,i(ξd,i−1, d(ξd,i−1)) − F2,i(ξd,i, d(ξd,i)) ] .

The contributions come from the boundary points (a, c(a)), (b, c(b)),
(a, d(a)) and (b, d(b)), and also from other points on the boundary, given
by (ξc,i, c(ξc,i)) and (ξd,i, d(ξd,i)). The latter are all the points where the
gradient of g is orthogonal to the boundary; they are resonance points.

Note that for a simplex we have c(x) = a and d(x) = x. For the
particular choice of oscillator g(x, y) := x−y, we have g2(x) := g(x, d(x)) =
0. In other words, the function G(x, d(x)) is not oscillatory at all! The
gradient of g is orthogonal to the boundary at all points (x, x); each point
is a resonance point. For this case, the integration in x cannot be written
as a sum of contributions. However, there is no need for a decomposition,

as the integral
∫ b

a
G(x, d(x))dx can be evaluated by, e.g., regular Gaussian

quadrature on the real line [a, b].

6.4.2.3 Stationary points

A final complication that may arise in decomposing highly oscillatory two-
dimensional integrals into a sum of contributions, is the presence of station-
ary points where ∇g = 0. Consider the model integral

I2 :=

∫ b

a

∫ d

c

f(x, y)eiω(x2−xy−y2) dy dx, (6.59)

with a, c < 0 and b, d > 0. We have g(x, y) = x2 −xy− y2 and ∇g(0, 0) = 0
in the internal point (0, 0). In the following, we will derive a decomposition
for I2 as a sum of contributions of the form Fjkl(x, y). Each function Fjkl is
evaluated in a special point that is to be determined. The index j denotes
the path for y: vy,j(x, q). The combination of index j and index k denotes
the different oscillators in x that result: gjk(x). Finally, index l is used to
denote the path for x: ux,jkl(p). The general form of the contribution Fjkl
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will be shown to be

Fjkl(x, y) = eiωgjk(x)

∫ ∞

0

∫ ∞

0

f(ux,jkl(p), vy,j(ux,jkl(p), q))

∂ux,jkl
∂p

(p)
∂vy,j
∂q

(ux,jkl(p), q)e
−ω(p+q) dq dp. (6.60)

Stationary points in y

For any x ∈ [a, b], function g(x, y) has a stationary point in y given by
y = −x/2, since ∂g

∂y (x,−x/2) = 0. We can write the integral (6.59) as

∫ d

c

f(x, y)eiωg(x,y)dy =

∫ −x/2

c

f(x, y)eiω(x2−xy−y2)dy (6.61)

+

∫ d

−x/2
f(x, y)eiω(x2−xy−y2)dy.

For this decomposition, we have assumed that c ≤ −b/2 and −a/2 ≤ d, as
illustrated in Figure 6.4. The problem has now become similar to the prob-
lem of a smooth boundary treated earlier. Consider the first integral in the
right-hand side of (6.61). By Theorem 6.3.10, there exists a decomposition

∫ −x/2

c

f(x, y)eiω(x2−xy−y2)dy = G1(x, c) −G1(x,−x/2).

The path for y is found by solving g(x, vy,1(x, q)) = g(x, y) + iq, leading to

vy,1(x, q) = −x/2 − 1/2
√

x2 + 4xy + 4y2 − 4iq.

The function G1(x, y) is given in its general form by

G1(x, y) = eiωg(x,y)
∫ ∞

0

f(x, vy,1(x, q))
∂vy,1
∂q

(x, q)e−ωq dq,

and thus G1(x, c) has an oscillator g11(x) := x2 − cx− c2, with a stationary
point at x = c/2. The latter corresponds to the point (c/2, c) on the inte-
gration boundary. The oscillator for G1(x,−x/2) is g12(x) := 5/4x2, with
a stationary point at x = 0. This corresponds to the internal point (0, 0).

Similarly, the second integral in the right-hand side of (6.61) can be
written as

∫ d

−x/2
f(x, y)eiω(x2−xy−y2)dy = G2(x,−x/2) −G2(x, d).
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(0,0)

(c/2,c)

(d/2,d)

(b,−b/2)

(a,−a/2)

(a,d)

(a,c)

(b,d)

(b,c)

Figure 6.4: The points that contribute to the double integral I2 for g(x, y) =
x2 − xy − y2 on the rectangle [a, b] × [c, d].

The path for y differs from the path used to obtain the function G1. We
denote the path by vy,2(x, q), and note that it is given by

vy,2(x, q) = −x/2 + 1/2
√

x2 + 4xy + 4y2 − 4iq.

We can define oscillators g21(x) := 5/4x2 and g22(x) := x2 − dx − d2,
corresponding to the functions G2(x,−x/2) and G2(x, d) respectively. They
have a stationary point at x = 0 and x = d/2.

Stationary points in x

We have already shown that I2 can be written as a sum of four integrals of
the form

∫ b

a

Gj(x, sjk(x)) dx, j = 1, 2, k = 1, 2,

where each Gj(x, sjk(x)) has an oscillator in x of the form gjk(x) :=
g(x, sjk(x)), with one stationary point x = ξjk. Applying Theorem 6.3.10
shows the existence of two functions Fjk1(x, y) and Fjk2(x, y) such that

∫ b

a

Gj(x, sjk(x)) dx =Fjk1(a, sjk(a)) − Fjk1(ξjk, sjk(ξjk))

+ Fjk2(ξjk, sjk(ξjk)) − Fjk2(b, sjk(b)).

The paths for x are found by solving gjk(ujkl(p)) = gjk(xjkl) + ip, j = 1, 2,
k = 1, 2, l = 1, 2. Analytic expressions are easily derived: for the oscillator
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g21(x) = g(x,−x/2) = 5/4x2, evaluated at x211 = ξ21 = 0, we find

g21(u211(p)) = g21(x211) + ip⇒ 5

4
u2

211(p) = ip⇒ u211(p) =

√

4

5
ip.

We have arrived at a decomposition for I2 with 16 functions of the
form (6.60). Substituting the functions s11(x) = c, s12(x) = s21(x) = −x/2
and s22(x) = d into the general form, the total decomposition is given by

I2 = F111(a, c) − F111(c/2, c) + F112(c/2, c) − F112(b, c)

− F121(a,−a/2) + F121(0, 0) − F122(0, 0) + F122(b,−b/2)

+ F211(a,−a/2) − F211(0, 0) + F212(0, 0) − F212(b,−b/2)

− F221(a, d) + F221(d/2, d) − F222(d/2, d) + F222(b, d).

There is one evaluation in each corner point, there are two evaluations
in the points where ∇g is orthogonal to the boundary, and there are four
evaluations in the central stationary point (0, 0) where ∇g vanishes in all
integration variables. All relevant points are shown in Figure 6.4. The lines
connecting (a,−a/2) with (b,−b/2), and (c/2, c) with (d/2, d) are given
by y = −x/2 and x = y/2 respectively: they correspond to curves along
which the partial derivative of g(x, y) with respect to x or y vanishes. They
intersect in the stationary point.

6.4.3 A decomposition of multivariate highly oscilla-

tory integrals

In the previous section, we have illustrated the issues that arise in iden-
tifying the individual contributions to oscillatory integrals in two dimen-
sions. These examples will motivate and clarify the results for the general
n-dimensional case. First, we prove a decomposition for a one-dimensional
integral of an n-dimensional function in section §6.4.3.1. Next, a decom-
position of multivariate integrals is obtained by repeated one-dimensional
integration in §6.4.3.2.

6.4.3.1 A decomposition for one variable

The decomposition of a one-dimensional integral is given in Theorem 6.3.2
for the case without stationary points, and in Theorem 6.3.10 in the presence
of a stationary point. Here, we will refine Theorem 6.3.2 and obtain an
expression for the error of the decomposition.

Lemma 6.4.1. Assume that the functions f and g are analytic in an open
complex neighbourhood D of [a, b]. If g′(x) 6= 0, x ∈ (a, b), then there exists
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a function F (x), x ∈ [a, b], and a constant d0 > 0 such that
∫ x

a

f(z)eiωg(z) dz = F (a) − F (x) + E(x), (6.62)

with F (x) and E(x) of the form

F (x) = eiωg(x)
∫ d0

0

f(hx(p))e
−ωp dhx

dp
(p) dp, (6.63)

E(x) = e−ωd0
∫ x

a

f(κ(z))eiωg(z)
dκ

dz
(z) dz. (6.64)

Proof. We will prove the existence of decomposition (6.62) by the explicit
construction of a new integration path for the integral. The construction
of the path is illustrated in Figure 6.5. The first part of the new path is
parameterised by z = ha(p), p ∈ [0, d0], such that eiωg(ha(p)) = eiωg(a)e−ωp.
This means that the parameterisation ha(p) should satisfy g(ha(p)) = g(a)+
ip. The second part is parameterised by z = κ(y), y ∈ [a, x], such that
g(κ(y)) = g(y) + d0i. Finally, the last part is parameterised by z = hx(p),
p ∈ [0, d0], such that g(hx(p)) = g(x) + ip.

Assuming that these paths exist and lie in D, we have by Cauchy’s
theorem

∫ x

a

f(z)eiωg(z) dz =

∫ d0

0

f(ha(p))e
iωg(ha(p)) dha

dp
(p) dp

+

∫ x

a

f(κ(y))eiωg(κ(y))
dκ

dy
(y) dy

−
∫ d0

0

f(hx(p))e
iωg(hx(p)) dhx

dp
(p) dp.

This decomposition has the form of (6.62).
It remains to show that such a path exists. Here, we will prove this is

the case for an integration over [a, b] with g′(a) = g′(b) = 0. The easier case
of an interval [a, x] with no stationary points, or with a single stationary
point at a, is proven along the same lines.

Since g′ is analytic in D, any compact singly connected subset of D will
contain at most a finite number of isolated zeros of g′. Since g′(x) 6= 0 for
x ∈ (a, b), one can always construct such a subset D0 with [a, b] ⊂ intD0,
containing no zeros of g′ except a and b. Consider g(D0), with boundary
∂g(D0), and set d0 to be the minimum vertical distance defined as

d0 = min{=z for z ∈ ∂g(D0)∩ iC+ satisfying <z ∈ g([a, b])} . (6.65)

Since g is analytic and non-constant, we have that the image of [a, b] is
strictly in the interior of the compact region g(D0). Hence, the minimum
in (6.65) is well-defined and d0 > 0.
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Figure 6.5: Illustration for Lemma 4.1 for the case where g′(a) = g′(b) =
g′(c) = 0. The figure shows the connection between the domain D0 and its
image g(D0).

The inverse of g is typically a multivalued function on g(D0) with branch
points at each point g(z) where g′(z) = 0 [111]. In the present case those
branch points are g(a) and g(b). Function g can be made uniquely invertible
by selecting non-intersecting branch cuts connecting those points to ∂g(D0).
These cuts can always be constructed in such a way that they do not in-
tersect the rectangle. Define g−1 as the branch that satisfies g−1(g(x)) = x
for x ∈ [a, b]. Then, the inverse of the rectangular path lies entirely within
D0, and hence, within the region of analyticity of f and g.

A general decomposition in the presence of multiple stationary points
can be obtained by repeatedly applying Lemma 6.4.1 on suitable subinter-
vals. Note that the value of d0 in the definition of F and E is determined
by the size of D0, or, more precisely, by the presence of stationary points
z ∈ C that lie close to the interval [a, b], and by the region of analyticity D
of f and g. In most cases, d0 may be quite large or even infinite.

The following theorem gives a decomposition for a one-dimensional in-
tegral with an n-dimensional integrand. A function in n variables is called
analytic if it is analytic in each variable. We denote such a function f here
by f(x, y), with x ∈ Cn−1 and y ∈ C. A similar notation is used for g.

Theorem 6.4.2. Assume f and g are n-dimensional functions that are
analytic for x in an open complex neighourhood of a closed domain B ⊂
Rn−1, and y in an open complex neighbourhood D(x) of [a(x), b(x)]. If
∂g
∂y (x, y) 6= 0, for x ∈ B, a(x) < y < b(x), and if

∂g

∂y
(x, a(x)) 6= 0 or

∂g

∂y
(x, a(x)) ≡ 0, ∀x ∈ B, and (6.66)

∂g

∂y
(x, b(x)) 6= 0 or

∂g

∂y
(x, b(x)) ≡ 0, ∀x ∈ B, (6.67)
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then there exist functions F and E, such that

∫ b(x)

a(x)

f(x, y)eiωg(x,y) dy = F (x, a(x))−F (x, b(x))+E(x), ∀x ∈ B, (6.68)

and with F and E of the form

F (x, y) = eiωg(x,y)
∫ d0

0

f(x, h(x, p))e−ωp
∂h

∂p
(x, p) dp, (6.69)

E(x) = e−ωd0
∫ b(x)

a(x)

f(x, κ(x, y))eiωg(x,y)
∂κ

∂y
(x, y) dy, (6.70)

with d0 > 0. The functions F and E are analytic in x in an open neigh-
bourhood of B if a(x) and b(x) are analytic.

Proof. For a fixed value of x ∈ B, we can apply Lemma 6.4.1. This yields
two functions of y, F1(y;x) and E1(y;x), such that

∫ b(x)

a(x)

f(x, y)eiωg(x,y) dy = F1(a(x);x) − F1(b(x);x) + E1(b(x);x).

These functions can be identified with (6.69) and (6.70) by F (x, y) :=
F1(y;x) and E(x) := E1(b(x);x). However, as the constant d0(x) still
depends on x, it remains to be proven that it can be chosen independently
of x.

Recall that the region D0 in the proof of Lemma 6.4.1 was chosen such
that it contains no zeros of g′, except possibly a and b. The size of the region
D0 and, hence, of the constant d0, is restricted only by the analyticity of f
and g, and by the presence of isolated stationary points other than a and b.
In the current multivariate application of the lemma, this means that D0(x)
is chosen such that it contains no zeros of ∂g

∂y , except possibly (x, a(x))

and (x, b(x)). Now consider a (complex) curve c(x) of stationary points,
i.e., ∂g

∂y (x, c(x)) ≡ 0, x ∈ B. The value d0(x) could become arbitrarily

small if c(x) lies arbitrarily close to [a(x, b(x)]. However, conditions (6.66)
and (6.67), together with the closedness of B, guarantee that c(x) either
coincides with a(x) or b(x), or it is an isolated stationary point for all
x ∈ B including x ∈ ∂B. Therefore, d0(x) can be bounded from below by
a constant d0 > 0.

Finally, we note that all factors in the expressions for F and E are
analytic in x, and the integral of an analytic function is again analytic if
the integration boundaries are given by a constant, or by an analytic func-
tion [111]. Hence, F (x, a(x)), F (x, b(x)) and E(x) are analytic in x ∈ B if
the boundary functions a(x) and b(x) are analytic. By a similar reasoning as
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in the previous paragraph, d0 can be chosen small enough, but still positive,
such that F and E are analytic at least in an open complex neighbourhood
of B.

Remark 6.4.3. Condition (6.66) requires that the boundary function a(x)
does not cross a curve c(x) of stationary points in y: either a(x) and c(x)
are disjunct, or they coincide. If a(x1) = c(x1) at a single point x1 ∈ B,
then the constant d0 may become arbitrarily small. The function F (x, y)
can still be shown to exist, but it may not be possible to evaluate the func-
tion using the path of steepest descent due to the presence of stationary
points in the complex plane. Aside from the numerical singularity at such
points, crossing a stationary point means that the line integral that connects
the endpoints of the paths for a and b can no longer be discarded. Still,
the function F (x, y) can be evaluated using any other path that yields ex-
ponential decay, as long as the total decomposition is justified by Cauchy’s
Theorem, and the integration path does not cross any stationary points. An
example of this special case will be given in §6.4.5.

We can now describe the total decomposition in the presence of real
stationary points. For n-dimensional functions, the equation ∂f

∂y (x, y) = 0

has (n − 1)-dimensional solutions y = si(x), i = 1, . . . , l. As in the one-
dimensional case, the integration region will be subdivided, using these
solutions as new boundaries.

Theorem 6.4.4. Assume f and g are n-dimensional functions that are
analytic for x in an open complex neighbourhoof of a closed domain B ⊂
Rn−1, and y in an open complex neighbourhood D(x) of [a(x), b(x)]. Assume
further that ∂g

∂y (x, si(x)) = 0, i = 1, . . . , l, and ∂g
∂y (x, y) 6= 0 otherwise. If

s0(x) := a(x) ≤ s1(x) ≤ . . . ≤ sl(x) ≤ sl+1(x) := b(x), and a(x) and b(x)
satisfy (6.66)-(6.67), then there exist functions Fi and Ei of the form (6.69)
and (6.70) such that

∫ b(x)

a(x)

f(x, y)eiωg(x,y) dy =

l+1∑

j=1

[Fj(x, sj−1(x)) − Fj(x, sj(x))]

+

l+1∑

j=1

Ej(x), ∀x ∈ B. (6.71)

Proof. We can write the integral as

∫ b(x)

a(x)

f(x, y)eiωg(x,y) dy =

∫ s1(x)

a(x)

·dy +

∫ s2(x)

s1(x)

·dy + . . .+

∫ b(x)

sl(x)

·dy

The result follows from the repeated application of Theorem 6.4.2.
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6.4.3.2 Repeated one-dimensional integration

The results of the previous subsection can be used in a recursive setting in
order to obtain a decomposition for an n-dimensional integral,

In :=

∫ b1

a1

∫ b2(x1)

a2(x1)

∫ b3(x1,x2)

a3(x1,x2)

. . .

∫ bn(x1,...,xn)

an(x1,...,xn)

f(x)eiωg(x) dx. (6.72)

The decomposition of the inner integral in xn can be obtained by The-
orem 6.4.4. Assume that the equation ∂g

∂xn
(x, xn) = 0 has l solutions

xn = si(x), i = 1, . . . , l. Then, the decomposition of the inner integral
in xn has the form of (6.71). The functions Fi(x, sj(x)) are analytic in x,
and have an oscillator of the form g(x, sj(x)). Define s0(x) = an(x) and
sl+1(x) = bn(x); then every function Fj , for j = 1, . . . , l + 1, leads to two
oscillators,

gj,1(x) = g(x, sj−1(x)) and gj,2(x) = g(x, sj(x)). (6.73)

Obviously gj,1(x) = gj−1,2(x). These oscillators are (n − 1)-dimensional
analytic functions. The first index i denotes the subinterval of [an(x), bn(x)],
the second index denotes an endpoint of that interval.

In the following we will denote an oscillator compactly by gλ, where
λ is a multi-index. An integral corresponding to gλ can be decomposed
again using Theorem 6.4.4. If gλ(x, xn−1) has lλ stationary points sλ,i(x),
i = 1, . . . , lλ, this yields lλ + 1 functions Fλ,i, i = 1, . . . , lλ + 1. Denote by
sλ,0(x) := an−1(x) and sλ,lλ+1(x) := bn−1(x). Each contribution has the
form Fλ,i(x, sλ,i−1(x)) or Fλ,i(x, sλ,i(x)). The oscillators can be defined
recursively by

gλ,i,1(x) := gλ(x, sλ,i−1(x)) and gλ,i,2(x) := gλ(x, sλ,i(x)). (6.74)

These oscillators are (n−2)-dimensional analytic functions. The definitions
can be extended recursively, applying Theorem 6.4.4 for each integration
variable until integral In is fully written as a sum of integrals that are no
longer oscillatory. Extending our notation, each recursive step adds two
layers of indices to λ: the decomposition of an integral with oscillator gλ
yields the functions Fλ,i, i = 1, . . . , lλ + 1, and the evaluation of Fλ,i in
the endpoints leads to the new oscillators gλ,i,1 and gλ,i,2. After the final
recursive step, we have functions Fλ′ with size(λ′) = 2n − 1, evaluated in
points xλ with size(λ) = 2n of the form

xλ = gλ(a) = (a, f1(a), f2(a, f1(a)), f3(a, f1(a), f2(a, f1(a))), . . .), (6.75)

with a = a1 or a = b1. Examples will be given in §6.4.5. The functions fi
can either be one of the boundary functions aj or bj of In, or a curve of
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stationary points for one integration variable. In the following theorem, we
use Fλ′ to denote the function that is evaluated at xλ (i.e., λ′ is λ with the
last index omitted).

Theorem 6.4.5. Assume f and g are n-dimensional functions that are
analytic in a complex neighbourhood of the integration region of In, given
by (6.72), with all boundary functions ai and bi analytic, i = 2, . . . , n. De-
fine the functions gλ recursively by (6.73) and (6.74). If the following con-
dition holds,

∀λ,∃y :
∂gλ
∂y

(x, y) 6= 0, (6.76)

then there exist functions Fλ′ and points xλ such that

In =
∑

size(λ)=2n

sλFλ′(xλ) +O(e−ωd0), (6.77)

with sλ = ±1 and with a constant d0 > 0.

Proof. The construction of the functions Fλ and the points xλ follows from
the recursive description given earlier in this section, based on applying
Theorem 6.4.4 repeatedly for all integration variables. Condition (6.76)
guarantees that each oscillator encountered for an integration variable y is
not independent of y. It remains to show in this proof that the error of the
full decomposition decays exponentially fast as O(e−ωd0) with a constant
d0 > 0.

Consider the decomposition of the integration in xn of an n-dimensional
oscillatory integrand, as given by Theorem 6.4.4. The error expression Ej
has the form of (6.70),

Ej(x) = e−ωd0,j

∫ b(x)

a(x)

f(x, κj(x, xn))e
iωg(x,xn) ∂κj

∂xn
(x, xn) dxn. (6.78)

Function f is analytic on a (finite) complex neighbourhood of the integra-
tion domain, and can therefore be bounded uniformly on that domain by
a constant M > 0. Additionally, we have |eiωg(x,xn)| ≤ 1 since g(x, xn)

is real. Finally, in order to bound the third factor
∂κj

∂xn
(x, xn), recall that

κj(x, xn) := g−1
n (g(x, xn) + d0,ji), where g−1

n (y) represents the inverse of g
with respect to xn. We have

∂κj
∂xn

(x, xn) =
∂g−1

n

∂y
(g(x, xn) + d0,ji)

∂g

∂xn
(x, xn).

The derivative of g is bounded, because g is analytic on the (finite)
integration domain. The derivative of g−1

n can only be unbounded if
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g′(x, κ(x, xn)) = 0. This situation occurs when there is a stationary point
along the path for the error integral. By construction, this is never the case.
Hence, the third factor of (6.78) can also be bounded by a constant N > 0.
Combining these observations, we have

∣
∣
∣
∣
∣

∫ b1

a1

∫ b2(x1)

a2(x1)

∫ b3(x1,x2)

a3(x1,x2)

. . .

∫ bn−1(x)

an−1(x)

Ej(x) dxn−1 . . . dx1

∣
∣
∣
∣
∣
≤ DMNe−ωd0,j ,

with D the size of the integration domain.
The decomposition for the integration in xn yields l + 1 functions Fi,

when there are l stationary points si(x) in xn. From expression (6.69) for
Fi, we see that each contribution to In is of the form

∫ b1

a1

∫ b2(x1)

a2(x1)

∫ b3(x1,x2)

a3(x1,x2)

. . .

∫ bn−1(x)

an−1(x)

f̃(x)eiωg̃(x) dx.

Each contribution has the form of In−1. The line of arguments can therefore
be repeated in order to bound the error for the decomposition in xn−1, and
recursively for xn−2, . . . , x1. The constant d0 in (6.77) is obtained as the
smallest of the d0,j constants.

Remark 6.4.6. Condition (6.76) explicitly excludes those case where
∂gλ

∂y (x, y) ≡ 0. In that case, gλ(x, y) = f(x) is independent of y, and
hence, it is not an oscillator for the variable y. The corresponding integral
cannot be decomposed. However, since the integral is not oscillatory, this
case does not pose a problem: it can be evaluated using standard integration
techniques. If ∂gλ

∂z (x, z, y) 6= 0, the recursive procedure can be continued for
the oscillatory integral in the variable z.

Remark 6.4.7. Throughout this section we have assumed that equations of
the form ∂g

∂xn
(x, xn) = 0 have l solutions, where l is a constant independent

of x. If l depends on the value of x, then the integration region can always
be split into a number of regions where l is a constant. This may introduce
integrals for which conditions (6.66) and (6.67) in Theorem 6.4.2 cannot
hold. Still, the decomposition can be computed following Remark 6.4.3. A
numerical example of this special case will be given in §6.4.5.

6.4.3.3 Integration on closed volumes

The procedure to locate the special points is simplified when the integra-
tion region is a closed and smooth n-dimensional volume without corner
points. In order to see this, note that there are many equivalent ways of
writing an integral over a closed and smooth volume in the general form
of (6.72). In particular, the integration boundary functions ai and bi are
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not unique: they correspond to a certain parameterisation of the volume, of
which there are infinitely many. However, a different choice of integration
boundary functions leads to a different set of critical points xλ, as identified
by the recursive procedure described in §6.4.3.2. Although the resulting
decomposition will be correct, we can expect that some of these points are
merely an artefact of our arbitrary choice of boundary functions. Indeed,
one can verify that such points appear twice in the decomposition, and that
xλ = xµ, Fλ′(xλ) = Fµ′(xµ) and sλ = −sµ. Hence, the artificial contribu-
tions cancel out. They need not be computed. The relevant points are the
critical points in the interior, and the resonance points on the boundary.

6.4.4 The construction of cubature rules using deri-

vatives

The decomposition of an n-dimensional integral as described in §6.4.3 can
be written as

In[f ] :=

∫

S

f(x)eiωg(x) dx =
∑

size(λ)=2n

sλFλ′ [f ](xλ) +O(e−ωd0), (6.79)

with

Fλ′ [f ](xλ) :=eiωg(xλ)

∫ d0

0

. . .

∫ d0

0

f(h1(p1), h2(h1(p1), p2), . . .)

e−ω(
P

pi)
∂h1

∂p1
(p1)

∂h2

∂p2
(h1(p1), p2) . . .

∂hn
∂pn

(. . . , hn−1(. . . , pn−1), pn) dp1 . . . dpn, (6.80)

The functions hi represent the optimal paths with respect to the oscillators
that are implied by the multi-index λ. This is a generalisation of the two-
dimensional form given by (6.60). If the function f is easily evaluated for
complex arguments, tensor-product Gauss-Laguerre rules can be used to
obtain an accurate approximation to each of the Fλ′ [f ](xλ) values. This is
a straightforward extension of Theorems 6.3.7 and 6.3.13. Alternatively, the
function value Fλ′ [f ](xλ) can be approximated by approximating f locally
around the point xλ. That is the approach taken in this section. The result
is a cubature rule that requires only function values and derivatives of f at
xλ. The use of tensor-product Gauss-Laguerre quadrature rule to evaluate
the weights of the cubature rule will be illustrated in §6.4.5.

6.4.4.1 A localised Filon-type method

The multivariate extension of the Filon-type method, discussed in §6.2.2, is
straightforward: if f can be approximated by a linear combination of basis
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functions, f(x) =
∑N
i=1 aiφi(x), then In[f ] can be approximated by

In[f ] ≈ QF [f ] :=
N∑

i=1

wiai, with wi := In[φi]. (6.81)

Similarly to the univariate case, a polynomial basis is suggested in [131, 130],
such that the value of f and a number of its derivatives are interpolated in
the critical points xλ. Depending on the number of critical points and the
number of derivatives interpolated, the degree of the basis functions may
have to be high. Owing to our decomposition of the integral into a sum of
independent contributions however, the contributions can be approximated
separately, i.e., there is no need for a global approximation of f . This will
lead to a cubature rule with the same order of accuracy, but using a much
lower degree of polynomials.

We will now construct an approximation for Fλ′ [f ](xλ) as given in (6.80).
Define the multi-index i = i1i2 . . . in with |i| = i1 + i2 + . . .+ in, and denote
(x1 − y1)

i1 . . . (xn − yn)
in by (x− y)i. Then we can write the Taylor series

of f in the following way,

Fλ′ [f ](xλ) =
∑

|i|≤∞

Fλ[(x − xλ)
i](xλ)

i1!i2! . . . in!
f (i)(xλ), (6.82)

where f (i)(x) is used to denote

f (i)(x) =
∂i1∂i2 . . . ∂inf

∂xi11 ∂x
i2
2 . . . ∂xinn

(x1, x2, . . . , xn).

The truncated Taylor series can be used in order to obtain a convergent
cubature rule for (6.81). Assume that the total order of the derivative at
point xλ is limited by dλ, then we propose the cubature rule

QLF [f ] :=
∑

size(λ)=2n

∑

|i|≤dλ

wλ,if
(i)(xλ), (6.83)

with the weights given by

wλ,i := sλ
Fλ′ [(x − xλ)

i](xλ)

i1!i2! . . . in!
. (6.84)

Remark 6.4.8. The method of constructing the cubature rule is as follows.
The oscillator g(x) and the integration domain S determine the location of
the critical points xλ and the optimal paths, by the recursive procedure de-
scribed in §6.4.3. Hence, the abscissae xλ depend only on the oscillator and
on the domain. The value of the weights is found by evaluating (6.84) along
these paths. The weights depend in general on ω. Finally, an approximation
to In[f ] is obtained by evaluating the function f and its derivatives in the
abscissae and evaluating (6.83).
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6.4.4.2 Convergence properties

In order to obtain the asymptotic order as a function of ω of the cubature
rule (6.83), we will first examine the error in the truncation of (6.82). The
size of the truncation error will determine the integration error.

Lemma 6.4.9. Consider the point xλ with size(λ) = 2n, and the oscillator
gλ obtained by repeated one-dimensional integration. If the oscillator for
integration variable xj has a stationary point of order rj, j = 1, . . . , n, then
we have, with i the multi-index i1 . . . in,

∣
∣Fλ′ [(x − xλ)

i](xλ)
∣
∣ = O(ω−αλ,i), with αλ,i =

n∑

j=1

ij + 1

rj + 1
.

The technical proof is omitted. It is based on a repeated application of
the reasoning in the proof of 6.3.20 for each integration variable. Integration
variable xj contributes a factor ω−(ij+1)/(rj+1); the sum of all contributions
yields the result.

Theorem 6.4.10. The approximation of In[f ] by the cubature rule (6.83)
has an error of the order

In[f ] −QLF [f ] = O(ω−α), with α = min
size(λ)=2n

min
|i|=dλ+1

αλ,i. (6.85)

Proof. From Lemma 6.4.9, we see that the error in the truncation of (6.82)
is asymptotically equivalent to the asymptotic order of the first discarded
term. The latter is given by αλ,i with |i| = dλ + 1. Hence, the order
of the truncation error is found as the minimum for all λ and i of αλ,i,
with |i| = dλ + 1. The order of the error In[f ] − QLF [f ] is the same.
The exponentially decaying error e−ωd0 in (6.79) may be discarded because,
asymptotically, it vanishes faster than any power of ω−1.

Remark 6.4.11. The convergence rate may actually be faster than the
rate predicted by Theorem 6.4.10. This is due to the cancellation of mo-
ments at stationary points. In particular, it may be that xλ = xµ, and that
Fλ′ [(x− xλ)

i](xλ)−Fµ′ [(x− xµ)
i](xµ) = o(ω−αλ,i) and o(ω−αµ,i), i.e., the

difference of the moments at the special point xλ can have lower order than
the moments themselves.

6.4.5 Numerical results

In this section, we illustrate the convergence of the constructed cubature
rules for some arbitrary functions f . The integration domains considered are
the right half of a circle in §6.4.5.1, the unit ball in §6.4.5.2 and a rectangular
domain in §6.4.5.3 and §6.4.5.4. We consider the Fourier oscillator and more
general oscillators that lead to an internal stationary point.
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(1,0)

(0,1)

(0,−1)

)( ,

Figure 6.6: The integration domain for example 1. The gradient of the
oscillator ∇g = [1 1]T is orthogonal to the tangent line at the point
(
√

2/2,
√

2/2).

6.4.5.1 Half of a circle

We consider an integral over half a circle, written as

I2 :=

∫ 1

0

∫
√

1−x2
1

−
√

1−x2
1

(

cos(x1x2) +
1

2 + x1 + x2

)

eiω(x1+x2) dx2 dx1.

The integration domain is shown in Figure 6.6. The set of critical points
consists of the points (0,−1) and (0, 1), because they are boundary points
of the piecewise smooth integration domain, and the point (

√
2/2,

√
2/2),

because the gradient of the Fourier oscillator is orthogonal to the circle at
that point. This also follows from the analysis following §6.4.3: we have

{
g11(x) = x−

√
1 − x2

g12(x) = x+
√

1 − x2,

with stationary points at −
√

2/2, and +
√

2/2 respectively. Since x =
−
√

2/2 lies outside the integration domain, the special points are

{
x1111 = (0,−1)
x1112 = (1, 0),

and






x1211 = (0, 1)

x1212 = (
√

2/2,
√

2/2)

x1221 = (
√

2/2,
√

2/2)
x1222 = (1, 0).
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Table 6.8: Absolute error of the approximation of I2 by a cubature rule
using derivatives of maximal order d. The last row shows the value of
log2(e400/e800). The theoretically predicted asymptotic lower bound is
shown between parentheses. The rules in columns 1− 3 require 3, 9 and 18
function evaluations respectively.

ω \ d 0 1 2

50 6.1E − 5 1.4E − 5 1.3E − 6
100 1.0E − 5 2.6E − 6 1.1E − 7
200 2.4E − 6 4.5E − 7 9.4E − 9
400 3.9E − 7 7.9E − 8 8.3E − 10
800 6.2E − 8 1.4E − 8 7.3E − 11

rate 2.7 (2.0) 2.5 (2.5) 3.5 (3.0)

This corresponds to the total decomposition

[F111(x1111) − F111(x1112)] − [F121(x1211) − F121(x1212)

+F122(x1221) − F122(x1222)] .

The two contributions from the point (1, 0) cancel out, F111(x1112) =
F122(x1222); they are an artefact from the chosen parameterisation of which
the point appears to be a boundary point.

The moments F121[(x − x1212)
i](x1212) and F122[(x − x1221)

i](x1221)
have a stationary point of order r1 = 1 in the variable x1, due to the
stationary point

√
2/2 of g12; the other moments are regular. Using a

fixed number of derivatives d at each point, the moments at (
√

2/2,
√

2/2)
will asymptotically be the largest. From Lemma 6.4.9, the moment
F121[(x − x1212)

i](x1212) with i = (0, d) scales as O(ω−1−(d+1)/2). Hence,
the first discarded moment with minimal order has order ω−1−(d+2)/2. By
Theorem 6.4.10, this is the leading order of the integration error. This is
illustrated in Table 6.8. The columns with d even have a higher convergence
rate than predicted due to the (partial) cancellation of moments.

The total number of weights in the cubature formula for the rightmost
column (d = 2) is 18: there are 3 critical points, and the evaluation of
6 partial derivatives with total order less than or equal to 2 is required in
each point. The value of I2 itself scales as the zero-th order moments, ω−3/2.
Hence, the convergence rate of the relative error is 1.5 smaller than the rate
shown for the absolute error.

The weights were evaluated using tensor-product rules. Following Re-
mark 6.3.14, half-range Gauss-Hermite rules were used for evaluating one-
dimensional integrals with a singularity due to a stationary point [87].
Hence, we expect a convergence rate of the relative error of O(ω−n), where
n is the number of quadrature rules used in each dimension. The absolute



172 CHAPTER 6. OSCILLATORY INTEGRALS

Table 6.9: Absolute error of the approximation of the zero-th order moment
F121[(x − x1212)

0](x1212) by a tensor-product of Gauss-Laguerre and half-
range Gauss-Hermite rules with n points in each dimension. The last row
shows the value of log2(e100/e50). The theoretically predicted asymptotic
lower bound is shown between parentheses.

ω \ n 1 2 3

25 2.3E − 05 4.6E − 08 2.3E − 10
50 4.1E − 06 4.1E − 09 1.0E − 11
100 7.2E − 07 3.6E − 10 4.5E − 13

rate 2.5 (2.5) 3.5 (3.5) 4.5 (4.5)

error scales as O(ω−n−3/2). This is confirmed by the results in Table 6.9.
Note that this approach is possible for more general f , and that the results
require much less operations than the construction of the appropriate cu-
bature rule. If applicable, and if high accuracy and efficiency is required,
this approach is preferable over the use of a cubature rule. For ω = 100 and
n = 3, 9 function evaluations were required by the 2D tensor-product rule
for an absolute error of 4.5E − 13 and a relative error of 5.8E − 10.

6.4.5.2 The unit ball

We consider an integral over the unit ball, written as

I3 :=

∫ 1

−1

∫
√

1−x2
1

−
√

1−x2
1

∫
√

1−x2
1−x2

2

−
√

1−x2
1−x2

2

ex1+x
2
2x3(3x3 +cos(x2))e

iω(x1+x2+x3) dx.

There are no corners in this example, since the integration domain is smooth
everywhere. The critical points are those where the gradient of the Fourier
oscillator is orthogonal to the boundary: (−

√
3/3,−

√
3/3,−

√
3/3) and

(
√

3/3,
√

3/3,
√

3/3).
The decomposition for the integration variable x3 yields the oscillators

g11(x1, x2) = x1 + x2 −
√

1 − x2
1 − x2

2, and

g12(x1, x2) = x1 + x2 +
√

1 − x2
1 − x2

2.

These oscillators have a curve of stationary points in x2, given by x2 =
±
√

2 − 2x2
1. The relevant oscillators after the second decomposition are

g1112(x1) = g1121(x1) = x1 −
√

2 − 2x2
1, and

g1212(x1) = g1221(x1) = x1 +
√

2 − 2x2
1,
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Table 6.10: Absolute error of the approximation of I3 on the unit ball by
a cubature rule using derivatives of maximal order d. The last row shows
the value of log2(e400/e800). The theoretically predicted asymptotic lower
bound is shown between parentheses. The rules in columns 1− 3 require 2,
8 and 20 function evaluations respectively.

ω \ d 0 1 2

100 2.6E − 5 2.4E − 6 1.2E − 7
200 3.2E − 6 3.6E − 7 8.0E − 9
400 3.9E − 7 5.2E − 8 5.5E − 10
800 5.0E − 8 3.8E − 9 2.7E − 11
1600 6.3E − 9 5.2E − 10 1.7E − 12

rate 3.0 (2.5) 2.9 (3.0) 4.0 (3.5)

with the stationary points x1 = ±
√

3/3.
At the point (

√
3/3,

√
3/3,

√
3/3), there is a stationary point of order

1 in the variables x1 and x2. The size of the moments hence scales as
ω−(i1+1)/2−(i2+1)/2−(i3−1). With the restriction |i| = i1 + i2 + i3 = d + 1
from Theorem 6.4.10, the leading order of the error is given by ω−(d+3)/2−1.
The rate is higher in the columns with d even. The size of I2 scales as the
zero-th order moments, ω−1/2−1/2−1 = ω−2. The convergence rate of the
relative error is therefore 2 less than that shown for the absolute error.

Note that for ω = 1600 and d = 0, only two function evaluations are
required for an absolute error of 6.3E − 9 and a relative error of 1.4E − 3.
The computation of the two weights in this case took less than a second of
computation time. For comparison, a general purpose integration package
was used on the same computer for the case ω = 10, using polar coordinates:
it took 100, 000 function evaluations to obtain an absolute error of 1E − 7.
Assuming that the number of function evaluations scales at a cubic rate
with respect to the frequency, due to the presence of oscillations in three
dimensions, a comparable error for the case ω = 1600 would require roughly
400 billion function evaluations.

6.4.5.3 A rectangular domain with critical points

We consider a two-dimensional integral with the more general oscillator that
was used in §6.4.2.3,

I2 :=

∫ 0.5

0

∫ 1

0

1

1 + x+ y
eiω(x2−xy−y2) dy dx.

The stationary points in x are given by x = y/2, and the stationary points
in y are given by y = −x/2. There is a critical point (0, 0) where ∇g = 0.
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(0,0)

x=y/2 y=−x/2

(0.5,1)(0,1)

(0.5,0)

(0.5,ε)xxx

x x x (0.5,1−ε)

Figure 6.7: The points that contribute to the double integral I2 for g(x, y) =
x2−xy−y2 on the rectangle, indicated by the •-s; the points that contribute
to the integral over [0, 0.5] × [ε, 1 − ε] are indicated by x-symbols.

The integration domain is illustrated in Figure 6.7. The contributions for
this example integral come from the four corner points of the integration
region: (0, 0), (0.5, 0), (0.5, 1) and (0, 1). The example was constructed
however such that in the origin (0, 0) the conditions of Theorem 6.4.2 are
not satisfied.

In order to find the decomposition, consider first the integral Iε with
the same integrand on [0, 0.5] × [ε, 1 − ε]. The decomposition of Iε consists
of 8 contributions associated with the six points indicated by x-symbols in
Figure 6.7,

Iε ∼F111(0, ε) − F111(ε/2, ε) + F112(ε/2, ε) − F112(0.5, ε)

− F121(0, 1 − ε) + F121(0.5 − ε/2, 1 − ε)

− F122(0.5 − ε/2, 1 − ε) + F122(0.5, 1 − ε).

The first index a in Fabc is the same for all contributions since it denotes the
inverse of g with respect to y, which is unique on the integration domain.
The second index b denotes y = ε when b = 1, and y = 1−ε when b = 2. The
third index denotes the two inverses of g with respect to x, corresponding
to the regions on the left and on the right of the line x = y/2 respectively.
In the limiting case ε→ 0, we find that

I2 ∼ F112(0, 0) − F112(0.5, 0) − F121(0, 1) + F121(0.5, 1).

The example was constructed such that the decomposition of the inner
integral in y does not satisfy the conditions of Theorem 6.4.2. Indeed,
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Table 6.11: Absolute error of the approximation of I2 by a cubature rule
using derivatives of maximal order d. The last row shows the value of
log2(e400/e800). The theoretically predicted asymptotic lower bound is
shown between parentheses. The rules in columns 1, 2 and 3 require 4,
12 and 24 function evaluations respectively.

ω \ d 0 1 2

50 1.4E − 03 1.6E − 04 1.5E − 05
100 5.2E − 04 4.0E − 05 2.7E − 06
200 1.9E − 04 1.0E − 05 4.8E − 07
400 6.7E − 05 2.6E − 06 8.6E − 08
800 2.4E − 05 6.5E − 07 1.5E − 08

rate 1.48 (1.5) 1.99 (2.0) 2.49 (2.5)

the boundary function y = 0 coincides with the curve of stationary points
y = −x/2 in exactly one point x = 0. Following remark 6.4.3, we cannot
evaluate the contribution F112(0, 0) using the path of steepest descent for y
due to the presence of complex stationary points. However, an alternative
integration path can be constructed. There are two disjunct regions where
the integrand becomes arbitrarily small, corresponding to the two inverses
of g with respect to y. These regions can be characterised by g−1

1 (x, y+ ip)
for p > 0, y ≤ −x/2 and g−1

2 (x, y+ ip) for p > 0, y ≥ −x/2. The integration
path for y at the point (0.5, 0) leads to the latter region. The integration
path for y at the point (0, 0) should therefore lead to the same region: the
line integral that connects the paths can then be discarded. An equivalent
condition is that the imaginary part of g(x, y) should be positive along the
total integration path for y, including the discarded connecting part. For
this particular example, we arbitrarily chose a linear path for y from y0 = 0
to the point y1 = 1 − 1i.

The results are shown in Table 6.11. Since (0, 0) is a stationary point for
both integration variables, the absolute error is the largest for the contribu-
tion of the origin. The size of the first discarded term scales as O(ω(−d−3)/2)
by Theorem 6.4.10 and hence this is also the size of the absolute error. The
convergence rate of the relative error is 1 less than the rate shown for the
absolute error.

6.4.5.4 A degenerate critical point

In the final example, we consider a degenerate critical point. Consider the
integral

Ideg :=

∫ 1

−1

∫ 1

−1

1

3 + x+ y
eiω(x3+y3) dy dx,
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Table 6.12: Absolute error of the approximation of Ideg by a cubature
rule using derivatives of maximal order d. The last row shows the value
of log2(e400/e800). The theoretically predicted asymptotic lower bound is
shown between parentheses. The rules in columns 1, 2 and 3 require 9, 27
and 54 function evaluations respectively.

ω \ d 0 1 2

50 5.3E − 03 2.5E − 04 2.9E − 05
100 2.7E − 03 9.9E − 05 9.0E − 06
200 1.3E − 03 3.9E − 05 2.8E − 06
400 6.7E − 04 1.6E − 05 8.9E − 07
800 3.4E − 04 6.1E − 06 2.9E − 07

rate 0.98 (1.0) 1.34 (1.33) 1.63 (1.66)

that has a stationary point of order r = 2 in both integration variables
x and y at the origin (0, 0). There are additional contributions from the
corner points (−1,−1), (−1, 1), (1,−1) and (1, 1), and from the boundary
points (−1, 0), (1, 0), (0,−1) and (0, 1). Cubature rules can be constructed
using function evaluations at these 9 critical points.

The leading order of the size of Ideg as a function of ω is determined by
the contribution of the degenerate critical point (0, 0). Since r = 2 for x
and for y, we expect that the value of |Ideg| behaves as O(ω−1/3ω−1/3) =
O(ω−2/3). The leading order of the error of the cubature rule behaves as
O(ω−(2+d)/3). The theoretically predicted convergence rate is confirmed by
the results in Table 6.12.

6.5 Conclusions

Traditionally, the evaluation of oscillatory integrals is considered a hard
problem, because the number of operations usually increases linearly with
the frequency. For multivariate integrals, the total number of operations
increases more than linearly. The analysis of oscillatory integrals have led to
a number of efficient methods that require only a fixed number of operations,
and that yield increasingly accurate approximations for the integral. All
methods exploit the same observations: the value of an oscillatory integral
is determined largely by the behaviour of the integrand near the stationary
points, and near the endpoints of the integration interval.

The same observations hold for the oscillatory integrals that arise in
scattering problems. Moreover, they also hold for the integral equation
itself. In the next chapter, we investigate the possibilities of exploiting
these observations in the solution method.



Chapter 7

A hybrid asymptotic

boundary element method

7.1 Introduction

The limitations of a traditional boundary element method for the solution
of integral equations in the high frequency regime have become clear in
the previous chapters. The method requires a large number of unknowns
in order to represent the solution. The discretisation matrix is dense, and
even with an efficient implementation of the high frequency fast multipole
method or hierarchical matrix method, each matrix-vector product requires
O(N logN) operations, with N proportional to k. It is at present still an
open problem how the condition number of the system behaves for increas-
ing wavenumber k. This dependence has a direct impact on the number
of iterations required in iterative solution methods, and hence, on the total
solution time. Likewise, it is unknown how the accuracy of the solution
depends on the wavenumber. Similar to finite element methods for the
Helmholtz equation, the boundary element method at high frequencies ex-
hibits the so-called pollution error. One may regard the pollution error as
an error in the numerical wavenumber of the discretisation; for a detailed
discussion, in the context of finite element methods, see [12] and the ref-
erences therein. The pollution error may require that N grows faster than
linearly with k. A fundamental cause of these problems is that the typi-
cal piecewise polynomial basis functions in boundary element methods are
not well adapted for oscillatory problems. For example, the solution space
contains many functions that are completely impossible as wave solutions.

There are various other approaches for problems involving short wave-
lengths. At increasing frequencies, asymptotic methods become increasingly

177



178 CHAPTER 7. A HYBRID ASYMPTOTIC METHOD

effective. The solution is expanded in an asymptotic expansion in terms
of the small parameter 1/k. Rather than solving for an oscillatory func-
tion u(x), one can solve for the phase φ(x) and amplitude A(x) such that
u(x) = A(x)eφ(x) + O(1/kα). This leads to the eikonal equation for the
phase and transport equation for the amplitude. Both are nonlinear equa-
tions which can be solved numerically [163]. Linearised approximations yield
raytracing methods, Geometrical Optics [27] and wavefront methods [195].
The Physical Optics approximation consists of using the Geometrical Op-
tics approximation as the density function in the single layer potential.
The Geometrical Theory of Diffraction was developed to extend asymptotic
methods to model diffraction for a number of canonical problems [136, 22].
A disadvantage of these asymptotic methods is that the error is essentially
uncontrollable. The higher order coefficients of the expansion are hard to
obtain. Moreover, asymptotic expansions are not very flexible, especially
for more complex geometries.

A new direction of research is the combination of finite element meth-
ods and asymptotic methods. This can be achieved by considering basis
functions that incorporate the asymptotic form of the solution at large fre-
quencies. This approach combines the fine error control of finite element
methods with the accuracy of asymptotic methods for large frequencies.
The asymptotic behaviour of the solution to the problem of scattering by
smooth convex obstacles was analysed in [155]. Motivated by these results,
a hybrid scheme was considered by Abboud et al. in [1]. The authors report
an overall solution method that requires O(k1/3) number of basis functions
as a function of the wavenumber, a huge improvement over the linear de-
pendence on k. The basis functions are piecewise polynomials, multiplied
by plane waves in a number of directions. Similar hybrid methods with even
better results are proposed in [2, 29, 141, 140, 92, 78]. A number of opera-
tions that is independent of the wavenumber, for a fixed error, is achieved
by Bruno, Geuzaine, Monro and Reitich in [29] for the scattering by smooth
convex obstacles, and by Langdon and Chandler-Wilde in [141] for scatter-
ing on a half-plane. Elements of the Geometric Theory of Diffraction are
used in [92] to model diffraction. In this chapter, we combine a similar
approach with the insights of Chapter 6 on the behaviour of oscillatory
integrals. As a result, we obtain a small, and highly sparse discretisation
matrix. In addition, the accuracy of a large part of the solution actually
increases with increasing frequency.

7.2 Overview of the method

The hybrid asymptotic boundary element method is inspired by the progress
in evaluation methods for oscillatory integrals. Recall the oscillatory integral
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(6.1) from Chapter 6,

I[f ] :=

∫ b

a

f(x)eikg(x) dx, (7.1)

with f and g smooth functions. We will denote the frequency parameter
by k in this chapter, for notational correspondence to the wavenumber of
the Helmholtz equation. Several methods were discussed in Chapter 6 that
yield increasingly accurate approximations for I[f ] for increasing k, using
a fixed number of operations. It turns out that the value of the integral is
determined by the behaviour of f and g near a set of contributing points -
the endpoints and the stationary points.

We can apply these methods to the oscillatory integrals that arise in
the discretisation of an oscillatory integral equation. Even more interesting
however, is that we may apply the methods to the integral equation itself.
Assume we know the phase of the kernel function of an integral equation,
and, in addition, we know the phase of the solution of that equation. We
can model a general integral equation satisfying these conditions as

(Aq)(x) =

∫ 1

0

G(x, y; k)eikg1(x,y)q(y; k)eikg2(y) dy = f(x), (7.2)

where both the kernel function G(x, y; k) and the solution qs(y; k) are
smooth functions that may still depend on k. For a fixed value of x, the
integral in (7.2) closely resembles the model integral (7.1). The oscillator
g(y;x) for the integration variable y is found as the sum of the phase of
the kernel function and the phase of the solution, g(y;x) = g1(x, y)+ g2(y).
The value of the integral (Aq)(x) is determined by the behaviour of the
integrand near the endpoints and the stationary points of g. Now consider
an approximation of the form qc(y) =

∑

j cjφj(y) of the solution q(y), in
a collocation approach with collocation points xi. Each value (Aq)(xi) is
determined by the behaviour of G(x, y; k) and qc(y) near the endpoints of
[0, 1] and the stationary points of g(y;xi). The behaviour of the kernel
function is known. If the basis functions φj(y) have compact support, then
the behaviour of qc(y) is determined by only a small number of coefficients
cj , corresponding to the basis functions that are nonzero in the contribut-
ing points. For each particular fixed value xi, it does not matter what the
value of the other coefficients is in the approximation of q. An immediate
consequence of this insight is that it should be possible to derive a sparse
discretisation matrix for equation (7.2) for large values of k.

There are still some issues associated with this approach. First, the
phase of the solution is not known for general problems. For scattering
problems however, it is known for the case of a smooth and convex scattering
obstacle. In that case, the phase of the solution is asymptotically determined
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by the phase of the boundary condition. Second, there is an important
difference between (7.2) and (7.1): the smooth amplitude function in (7.2)
depends on k. We will see that this dependence influences the convergence
of Filon-type methods for the evaluation of integral (7.2).

We commence in §7.3 by generalising the results of Filon-type meth-
ods in the previous chapter to model integrals that resemble (7.2) for the
scattering problems of interest. We formulate a suitable high frequency
boundary integral equation in §7.4, and examine the asymptotic behaviour
of the solution. The efficient quadrature rules are used to obtain a sparse
discretisation matrix for the integral equation in §7.5. We examine the con-
vergence of the quadrature rules as a function of k. Finally, we illustrate
the new method with numerical results in §7.6.

7.3 Specialised quadrature rules

Filon-type methods for the evaluation of oscillatory integrals lead to a
quadrature rule involving derivatives. The quadrature rules that were de-
rived in Chapter 6 only apply to the model integral (7.1). Intuitively how-
ever, one sees that the ideas underlying the method can be readily gen-
eralised to any oscillatory integral. The value of an oscillatory integral is
determined by the behaviour of the integrand near the endpoints of the in-
tegration interval, and near the points where the integrand locally does not
oscillate. In order to construct similar quadrature rules for more general in-
tegrals, one requires knowledge of the phase of the integral. In this section,
we will construct such rules for a family of integrals that will arise in the
scattering problem discussed later. In particular, the integrand involves an
oscillatory Hankel function.

7.3.1 A generalised model form

Consider the oscillatory integral

IH [f ] =

∫ b

a

f(x)H(1)
ν (kg1(x))e

ikg2(x) dx, (7.3)

where f , g1 and g2 are smooth functions, and H
(1)
ν (z) is the Hankel function

of the first kind of order ν. The Hankel function of order zero H
(1)
0 (z) has

a logarithmic singularity at z = 0. Hankel functions of higher order have
algebraic singularities of the form 1/zν , z → 0 [4].

For large arguments, the Hankel functions behave like an oscillatory
complex exponential with a decaying amplitude,

H(1)
ν (z) ∼

√

2

πz
ei(z−

1
2νπ−1/4π), −π < arg z < 2π, |z| → ∞. (7.4)
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Hence, the oscillator of the integrand of (7.3) is approximately given by

g(x) = g1(x) + g2(x), (7.5)

up to the addition of a constant. The Hankel function decays exponentially
fast for complex arguments with a positive imaginary part, as can be seen
from the asymptotic behaviour (7.4). This means that the approach of §6.3
using the path of steepest descent is applicable. Hence, we may conjecture
that a quadrature rule exists of the form

IH [f ] ≈ QH [f ] :=

l∑

i=0

di∑

j=0

wHi,jf
(j)(xi). (7.6)

In the remainder of the section, we will prove this conjecture, determine
the quadrature abscissae xi and show how the weights can be computed
efficiently.

7.3.2 Construction of the quadrature rule

We start by stating some assumptions on the functions f and g. These
assumptions are a.o. needed to guarantee the integrability and analyticity
of the integrand in (7.3). First, we assume that f is analytic in an open
complex neighbourhood D of [a, b], so that [a, b] ⊂ intD. Likewise, we
assume that g1 and g2 are non-singular and analytic in D, except possibly
along a branch cut that extends from a or b to the boundary of the region
D, i.e., a and b may be branch points but not singular points. We assume
furthermore that g(x), defined by (7.5), is strictly monotonic on the open
interval (a, b) and hence invertible, but possibly g′(a) = 0 or g′(b) = 0.
Also, we assume that g1(x) 6= 0, x ∈ (a, b). Finally, if ν > 0 and g1(ξ) = 0
we assume that f behaves like

f(x) ∼ (x− ξ)ν−1+ε, x→ 0, with ε > 0. (7.7)

Condition (7.7) guarantees that the integrand of IH [f ] is integrable. Subject
only to condition (7.7) and the analyticity requirements, the integration
interval of (7.3) can always be split into a number of subintervals that satisfy
the conditions. The assumptions guarantee that the integrand of IH [f ] is
analytic on [a, b] except possibly in the points a and b. In particular, this
will allow us to apply Cauchy’s integral theorem to select the integration
path of (7.3).

Theorem 7.3.1. Under the assumptions stated above, the integral IH [f ]
can be approximated by a sum of contributions

IH [f ] = SH [f ; a] − SH [f ; b] +O(e−kd0), (7.8)
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with d0 > 0, and with the contributions given by the integrals

SH [f ;x] =

∫ P

0

f(hx(p))H
(1)
ν (kg1(hx(p)))e

ikg2(hx(p))h′x(p) dp, (7.9)

where hx(p) satisfies

g(hx(p)) = g(x) + ip. (7.10)

The proof is almost identical to the proof of Lemma 6.4.1 and is omitted;
it differs mainly in the special treatment of the Hankel function based on
the asymptotic expression (7.4).

We note from the asymptotic behaviour (7.4) that the integrand of the
line integral SH [f ;x] in (7.9) is non-oscillatory and exponentially decaying
in the integration variable p,

H(1)
ν (kg1(hx(p)))e

ikg2(hx(p)) ∼
√

2

πkg1(hx(p))
eikg(x)ei(−

1
2νπ−1/4π)e−kp,

for k → ∞. The size of the constant d0 is related to the size of the region
of analyticity of f and g (see Theorem 6.3.2). In the numerical examples
of the scattering problem, given in §7.6, we will be able to choose the limit
case P = ∞. The error of decomposition (7.8) then vanishes even at low
frequencies.

We proceed in a similar way as for the construction of the localised
Filon-type method in §6.3.6. Since f is analytic in D, it has an absolutely
convergent Taylor series. By the linearity of SH , we may write

SH [f ;x0] =

∞∑

j=0

f (j)(x0)S
H

[
(x− x0)

j

j!
;x0

]

.

Now, consider a subdivision of [a, b] into subintervals [ai, bi], i = 1, . . . , l,
such that on each subinterval the conditions of Theorem 7.3.1 are satisfied.
Truncating the Taylor series of f at each special point ai and bi after a finite
number of terms, we arrive at a quadrature rule QH [f ] of the form (7.6),
with weights given by

wH0,j = SH1

[
(x− a)j

j!
; a

]

, (7.11)

wHi,j = −SHi
[
(x− xi)

j

j!
;xi

]

+ SHi+1

[
(x− xi)

j

j!
;xi

]

, i = 1, . . . , l − 1,

(7.12)

wHl,j = −SHl
[
(x− b)j

j!
; b

]

. (7.13)
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The weights can be explicitly computed very efficiently, by using Gauss-
Laguerre quadrature or similar techniques. The accuracy of these methods
improves rapidly as a function of k, due to the faster decay of the integrands
as k increases. For the purposes of our application, this advantageous char-
acteristic is not even needed. It suffices already that the number of opera-
tions for a fixed accuracy is bounded with respect to k. We therefore choose
to focus on the convergence properties of the quadrature rule itself, rather
than on the convergence of methods to compute the weights.

7.3.3 Convergence properties of the quadrature rule

We discuss the properties of the specialised quadrature rule QH [f ] as a func-
tion of k. It is clear that the rule is exact by construction for polynomials
of degree less than or equal to

p = min
i
di. (7.14)

For more general functions, the accuracy as a function of k is determined by
the asymptotic size of the weights. We will show that the size of the weights
decreases both with increasing frequency and with increasing order of the
corresponding derivative. The order of accuracy of the quadrature rule is
therefore equal to the asymptotic size of the first weight that is discarded
by truncation. In order to quantify this size, we require a few technical
lemmas.

Lemma 7.3.2. Assume x0 is a stationary point that has order r. The
parameterisation of the path (7.10) behaves as

hx0
(p) = x0 +O(p1/(r+1)), p→ 0, (7.15)

h′x0
(p) = O(p1/(r+1)−1), p→ 0. (7.16)

Proof. Since g(j)(x0) = 0, j = 1, . . . , r, we can write the Taylor series of g
as

g(x) = g(x0) + g(r+1)(x0)
(x− x0)

r+1

(r + 1)!
+O((x− x0)

r+2).

The path hx0
(p) = g−1(g(x) + ip) solves g(hx0

(p)) = g(x) + ip, and hence

hx0
(p) ∼ x0 + r+1

√

ip(r + 1)!

g(r+1)(x0)
, p→ 0. (7.17)

The second result follows by differentiation. Note that the complex root is
multi-valued: the correct root is selected by using the analytic continuation
of the inverse g−1

i that satisfies g−1
i (g(x)) = x on [ai, bi] in expression (7.10).
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The size of the weights follows from the size of the line integrals

SH
[

(x−x0)
j

j! ;x
]

. Recall that the integral may be singular if g1(x) = 0.

We will assume for the sake of brevity that, in that case, g′1(x) 6= 0. This
condition is always satisfied by the applications in §7.6.

Lemma 7.3.3. Let SH [f ;x] be defined by (7.9) with P = ∞, and g defined
by (7.5). Assume that g′(x0) 6= 0, i.e., x0 is not a stationary point. If
g1(x0) 6= 0, we have

∣
∣SH [(x− x0)

j ;x0]
∣
∣ = O(k−j−3/2), k → ∞.

If g1(x0) = 0 and g′1(x0) 6= 0, the integral is singular and we have

∣
∣SH [(x− x0)

j ;x0]
∣
∣ = O(k−j−1), j ≥ ν, k → ∞.

Proof. We write the integral SH [(x− x0)
j ;x0] as

SH [(x− x0)
j ;x0] =

∫ ∞

0

u(p)e−kp dp =
1

k

∫ ∞

0

u(q/k)e−q dq, (7.18)

with

u(p) = (hx0
(p) − x0)

jh′x0
(p)H(1)

ν (kg1(hx0
(p)))eikg2(hx0

(p))ekp. (7.19)

It is a consequence of Watson’s Lemma that the asymptotic expansion of
the integral can be obtained by integrating the asymptotic expansion of
1
ku(q/k) as k → ∞ term by term in (7.18) [21, 200]. Generalising Watson’s

Lemma, this remains true for integrals of the form
∫∞
0
u(p)h(kp) dp where

h(z) ∼ log(z)nzse−z, n ≥ 0, s ∈ Z, z → 0, if the integrand is integrable [20].
This means that the singularity of the Hankel function has no influence on
the asymptotic expansion.

First, consider the case g1(x0) 6= 0. Then, combining the asymptotic
behaviour of the Hankel function for large arguments (7.4) with the re-
sults (7.15)-(7.16) of Lemma 7.3.2 for r = 0, we have u(q/k) ∼ k−j−1/2.
From (7.18) we can conclude

∣
∣SH [(x− x0)

j ;x0]
∣
∣ = O(k−j−3/2).

Next, consider the case g1(x0) = 0. If g′1(x0) 6= 0, then we have

g1(hx0
(p)) ∼ p1/(r+1) = p. It follows that H

(1)
ν (kg1(hx0

(q/k))) = O(1),
k → ∞. Hence, by the generalisation of Watson’s Lemma, we may con-
clude

∣
∣SH [(x− x0)

j ;x0]
∣
∣ = O(k−j−1), j ≥ ν.

The corresponding lemma for stationary points is very similar. The dif-
ference is due to the different behaviour of the parameterisation as described
by Lemma 7.3.2.
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Lemma 7.3.4. Let SH [f ;x] be defined by (7.9) with P = ∞, and g defined
by (7.5). Assume that x0 is a stationary point of order r. If g1(x0) 6= 0,
then we have

∣
∣SH [(x− x0)

j ;x0]
∣
∣ = O(k−(j+1)/(r+1)−1/2), k → ∞.

If g1(x0) = 0 and g′1(x0) 6= 0 then we have

∣
∣SH [(x− x0)

j ;x0]
∣
∣ = O(k−(j+1+r/2)/(r+1)), j ≥ ν, k → ∞.

Proof. Consider again the function u(p), given by (7.19). Assume first
that g1(x0) 6= 0. We have (hx0

(q/k) − x0)
j ∼ k−j/(r+1) and h′x0

(q/k) ∼
kr/(r+1). Since kg1(hx0

(q/k)) ∼ kg1(hx0
(0)) = kg1(x0), we also have

H
(1)
ν (kg1(hx0

(q/k))) ∼ k−1/2. Combined in (7.18), and by applying Wat-
son’s Lemma, this yields the first result.

The case where g1(x0) = 0 is slightly different. Since g′1(x0) 6= 0, we
have g1(hx0

(q/k)) ∼ k−1/(r+1) and, hence, kg1(hx0
(q/k)) ∼ kr/(r+1). The

Hankel function therefore yields the factor k−(r/2)/(r+1) instead of k−1/2 as
in the first case.

The convergence of the quadrature rule (7.6) as a function of k can now
be established. Note that the results of Lemma 7.3.3 agree with those of
Lemma 7.3.4 if we take the order of a regular point to be r = 0. Hence, we
need not distinguish between stationary points and regular (end)points.

Lemma 7.3.5. The error of the approximation of SHi [f ;x0] by QSi [f ;x0],
for x0 ∈ [ai, bi], is

SHi [f ;x0]−QSi [f ;x0] = SHi [f ;x0]−
di∑

j=0

wHi,jf
(j)(x0) = O(k−αi), (7.20)

for k → ∞. If g1(x0) 6= 0 then αi := (di + 2)/(r + 1) − 1/2. If g1(x0) = 0
and g′1(x0) 6= 0, then αi := (di + 2 + r/2)/(r + 1).

Proof. Since the weights decay as a function of k, and as a function of the
order of derivative j, the error of the quadrature scheme is asymptotically
determined by the size of the first discarded weight. The result follows from
Lemma’s 7.3.3 and 7.3.4 by setting j = di + 1.

The theorem that characterises the accuracy of the complete quadrature
rule follows immediately.

Theorem 7.3.6. Consider the approximation of IH [f ] by QH [f ]. The error
has asymptotic order α − 1 with α = mini αi, and where αi is specified in
Lemma 7.3.5.
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Table 7.1: Absolute error of the approximation of IH [f ] by QH [f ], with
f(x) = (x− 1), g1(x) = x and g2(x) = x2 + x3 − x. The last row shows the
value of log2(e400/e800): this value should approximate d0/2 + 5/4.

k \ d0 0 1 2 3
100 1.2E − 3 2.8E − 5 1.3E − 6 2.6E − 8
200 5.1E − 4 8.6E − 6 2.9E − 7 4.1E − 9
400 2.2E − 4 2.6E − 6 6.4E − 8 6.2E − 10
800 9.3E − 5 7.8.1E − 7 1.4E − 8 9.7E − 11
rate 1.23 1.73 2.20 2.68

Consider the integral
∫ 1

0
cos(x − 1)H

(1)
0 (kx)eik(x

2+x3−x) dx. The total
oscillator for this integral is g(x) = x2 + x3. There are two quadrature
points: there is a singularity and a stationary point of order 1 at x = 0, and a
regular endpoint at x = 1. The weights wH0,j and wH1,j are given by (7.11) and

(7.13) respectively. From Lemma 7.3.4 we have |wH0,j | = O(k−(j+1)/2−1/4)

and from Lemma 7.3.3 we have |wH1,j | = O(k−j−3/2). Using d0 and d1

derivatives, the error has order min{O(k−(d0+2)/2−1/4), O(k−(d1+1)−3/2)}
by Theorem 7.3.6. We choose d1 = max{0, d(2d0 − 5)/4e} to match the
errors. Table 7.1 shows the convergence of the quadrature rule QH [f ] as a
function of k and d0. The integration error was determined by comparison
with the results of Cubpack [50].

7.4 High frequency scattering problems

7.4.1 High frequency integral equation formulation

We will describe the method for the exterior problem of the two-dimensional
Helmholtz equation, subject to a Dirichlet boundary condition on the boun-
dary. We find a solution in terms of the single-layer potential

(Sq)(x) =

∫

Γ

i

4
H

(1)
0 (k|x− y|)q(y) dsy, (7.21)

where q is the density function defined on the boundary Γ of the scattering
obstacle. The density function q is found as the solution to the integral
equation (2.47) of the first kind,

(Sq)(x) = ui(x), x ∈ Γ. (7.22)

The same method applies to the combined field integral equation (2.56)
that is solvable for all values of the wavenumber. An important observation
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is that q = ∂u
∂n , i.e., the density function is exactly the (exterior) normal

derivative of the total solution u = ui + us. This means that the solution
to equation (7.22) is directly related to a physical property of the problem.
For example, in electromagnetics, the normal derivative of the electric field
is proportional to the induced current on the surface of the conducting
obstacle [159].

The density function q is highly oscillatory for large values of the
wavenumber k. The solution of equation (7.22) therefore requires, gen-
erally, a large number of unknowns. In some cases however, one has a priori
information about the phase of the solution. For example, if the obstacle
is convex, and if the incoming wave is a plane wave, then the phase of the
solution q is approximately the same as the phase of the incoming wave.
Assume the incoming wave is ui(x) = uis(x)e

ikgi(x). Then we can write

q(x) = qs(x)e
ikgi(x), x ∈ Γ, (7.23)

where qs(x) is a non-oscillatory function, at least approximately. In physical
terms, the oscillations of the induced current on a perfectly conducting
surface tend to follow the oscillations of the incoming electromagnetic wave.
This is the reason why the problem should be formulated such that the
solution q corresponds to a physical variable - only in that case is the phase
known in the form of (7.23). This was noted in [29]; the integral equation
formulation of this section follows the same pattern as [29].

Substituting (7.23) in (7.22) yields

∫

Γ

i

4
H

(1)
0 (k|x− y|)qs(y)eikg

i(y) dsy = ui(x) = uis(x)e
ikgi(x).

Dividing by the oscillatory factor in the right hand side, and introducing a
periodic parameterisation κ : [0, 1] → Γ for Γ, we have the integral equation

∫ 1

0

i

4
H

(1)
0 (k|x−κ(τ)|)eik(gi(κ(τ))−gi(x))|∇κ(τ)|qs(τ) dτ = uis(x). (7.24)

The unknown in (7.24) is qs(τ), defined in the parameter domain for sim-
plicity. The unknown is non-oscillatory, and one can therefore solve (7.24)
using a coarse discretisation for qs(τ).

7.4.2 Asymptotic behaviour of the solution

In the past decades, a lot of effort has been invested in studying the asymp-
totic behaviour of the solution q to (7.22) as a function of the wavenumber,
concentrating mainly on the scattering of a plane wave (see, e.g., [136, 155]
and references therein). For smooth and convex obstacles, there are three
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Figure 7.1: Reflection and diffraction effects in the scattering of an incoming
wave ui by a smooth and convex obstacle.

important regions with different properties, illustrated in Figure 7.1: the il-
luminated region, the shadow region, and the transitional shadow boundary
region. In the illuminated region, the scattered wave is described asymp-
totically by geometrical optics: a wave is reflected such that the angle of
incidence and the angle of reflection are identical. A wave tangential to the
shadow boundary causes diffraction. The density function decays rapidly
away from the shadow boundary into the shadow region, due to the contin-
uous emission of diffracted waves. In the deep shadow region, the density
function vanishes.

The asymptotic behaviour of qs reflects these three regions. Assume
an incoming plane wave in the direction α of the form ui(x) = eikα·x with
|α| = 1. It was proved in [155] that qs has an asymptotic expansion, for
τ ∈ [0, 1], of the form

qs(τ) ∼
∑

m,n≥0

k2/3−n−2m/3bm,n(α, τ)Ψ
(n)(k1/3Z(α, τ)). (7.25)

We recall the main characteristics of this expansion that are needed in our
analysis. For a more complete discussion, we refer to [155]. The function
Z ∈ C∞ is infinitely smooth, and has a simple root at the two shadow
boundary points. The shadow boundary points are characterised by α · ν =
0, with ν the exterior normal to Ω. The function Z is positive when α·ν < 0,
i.e., in the illuminated region, and negative in the shadow region. The
function Ψ(z) is smooth for positive arguments, with

Ψ(z) ∼ z, z → ∞, (7.26)

and exponentially but oscillatory decaying for large negative arguments.
This means that, as k → ∞, we can derive the asymptotic properties from
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the leading order of (7.25),

|qs(τ)| =







O(k), illuminated region,
O(k2/3), shadow boundary,

O(e−k
1/3d(τ)), shadow region.

(7.27)

There is a k-dependent transition region near the shadow-boundary,
since the order of the size of qs changes smoothly from 1 to 2/3. The
behaviour in the shadow region is also k-dependent, as the solution is os-
cillatory decaying. Motivated by (7.25), we introduce a transition region of
size O(k−1/3) around the shadow boundary points, and define the shadow
boundary regions as

TB1(k) = [tsb1 −D1k
−1/3, tsb1 + C1k

−1/3], (7.28)

TB2(k) = [tsb2 − C2k
−1/3, tsb2 +D2k

−1/3], (7.29)

with constants C1, C2,D1,D2 > 0 independent of k, but small enough such
that TB1(k) and TB2(k) are non overlapping, and with tsb1 and tsb2 the
locations of the two shadow boundary points in the parameter domain [0, 1].
The illuminated region is defined as

TI(k) = (tsb1 + C1k
−1/3, tsb2 − C2k

−1/3). (7.30)

The shadow region is the remaining part of the interval [0, 1].
The size of the transition region is related to the behaviour of the argu-

ment k1/3Z(ω, τ) of the function Ψ(n) in (7.25). Since Z(ω, τ) has a simple
zero at tsb1, we have

Z(ω, τ) ≈ Z ′(ω, tsb1)(τ − tsb1), τ → tsb1.

Hence, |k1/3Z(ω, τ)| = O(1) for τ ∈ TB1(k). We can therefore state

|qs(τ)| =







O(k), τ ∈ TI(k),
O(k2/3), τ ∈ TB1(k) ∪ TB2(k),

O(e−k
1/3d(τ)), τ ∈ [0, 1] \ (TI(k) ∪ TB1(k) ∪ TB2(k)) .

(7.31)

We also state the size of the first order derivative for further reference,

|q′s(τ)| =

{
O(k), τ ∈ TI(k),
O(k), τ ∈ TB1(k) ∪ TB2(k).

(7.32)

7.5 A high frequency boundary element

method

The collocation of integral equation (7.24) in a point xn leads to a one-
dimensional and oscillatory integral in the integration variable τ . In this
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section, we show how an efficient quadrature rule can be used for the dis-
cretisation of that collocation integral. First, we discuss both the classical
boundary element approach and a discretisation based on the quadrature
rule in §7.5.1. We show that the quadrature rule can not always be applied
in §7.5.2, and we arrive at a method combining both approaches in §7.5.3.

7.5.1 Collocation approach for the discretisation

Consider a collocation scheme for integral equation (7.24), with a set of
N distinct collocation points xn = κ(tn), tn ∈ [0, 1], n = 1, . . . , N . The
classical way to proceed is to look for an approximation qc to solution qs in
the form

qc(τ) =

N∑

m=1

cmφm(τ), (7.33)

where the φm functions are a set of linearly independent basis functions with
support Ωm := supp(φm). The number of basis functions may be small,
since the exact solution qs is not oscillatory. Collocating equation (7.24),
with qs replaced by qc, in the points tn leads to the equations

∫ 1

0

i

4
H

(1)
0 (k|κ(tn)−κ(τ)|)eik(g

i(κ(τ))−gi(κ(tn)))|∇κ(τ)|qc(τ) dτ = uis(xn),

(7.34)

for n = 1, . . . , N . The collocation approach therefore leads to a linear system
Ac = b of size N ×N , where the elements of the discretisation matrix A are
given by

An,m =

∫

Ωm

i

4
H

(1)
0 (k|κ(tn)−κ(τ)|)eik(g

i(κ(τ))−gi(κ(tn)))|∇κ(τ)|φm(τ) dτ,

(7.35)

and the right hand side by bn = uis(xn). The discretisation matrix A is
dense, but small compared to the classical boundary element discretisation
for the original equation. Hence, this is a big improvement over the direct
discretisation of (7.22). Since the elements An,m are given by oscillatory
integrals in (7.35), they can be computed efficiently using the numerical
steepest descent technique described in §6.3. This yields an efficient total
solution method, that remains efficient when k increases.

However, there are still some issues associated with this approach. Since
the matrix is dense, the method requires the evaluation of N2 integrals.
Although N may be rather small, the computational cost can still be high.
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Interestingly, it was observed in [91] that many of the elements are small,
and can in fact be discarded, reducing the computation time. A second,
and more important issue is that the results of [91] indicate that the error
of the scheme increases with increasing wavenumber. Here, we examine a
different discretisation of (7.34) that aims to address these issues, based
on the quadrature rule developed in §7.3 and motivated by the accuracy of
the rules for high wavenumbers. Owing to the small number of required
quadrature points, the resulting discretisation matrix will be highly sparse.

Based on the collocation integral (7.34), we define the oscillatory integral

Ic[f ; tn] :=

∫ 1

0

i

4
H

(1)
0 (k|κ(tn)−κ(τ)|)eik(g

i(κ(τ))−gi(κ(tn)))|∇κ(τ)|f(τ) dτ.

(7.36)

The integral Ic[f ; tn] is highly similar to the model integral IH [f ] that was
introduced in §7.3. In particular, one can find a quadrature rule such that

Ic[f ; tn] ≈ Qc[f ; tn] :=

ln∑

i=0

dn,i∑

j=0

wcn,i,jf
(j)(τn,i). (7.37)

The weights are found by evaluating line integrals Sc[f ; tn] in the complex
plane similar to SH [f ]. A difference of Qc[f ; tn] compared to QH [f ] is the
additional factor i

4 |∇κ(τ)| in the integrand. Assuming an analytic parame-
terisation κ, this factor can simply be included in the weight function of the
rule. Hence, the construction and the convergence properties of Qc[f ; tn]
are described by the corresponding analysis for QH [f ] in §7.3. The weights
wcn,i,j depend on k and on tn, the constants ln and dn,i and the points τn,i
depend on tn only.

The quadrature points are found from the oscillator. The oscillator
of (7.36) is known explicitly; it is given by

g(τ ; tn) =
√

(κ1(tn) − κ1(τ))2 + (κ2(tn) − κ2(τ))2 (7.38)

+ gi(κ1(τ), κ2(τ)) − gi(κ1(tn), κ2(tn)),

with κ(t) = (κ1(t), κ2(t)). The quadrature points τn,i of Qc[f ; tn] are the
points τ where the integrand becomes singular (and hence non-analytic),
and the stationary points of the oscillator g(τ ; tn). These points are derived
by a straightforward, but technical analysis of g(τ ; tn). There are no con-
tributing endpoints, as the integrand is periodic on the closed curve Γ. The
location of the quadrature points is illustrated in Figure 7.2 for the scatter-
ing of a plane wave by a circular obstacle. There is one stationary point if tn
lies in the illuminated region, and there are three stationary points if tn lies
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Figure 7.2: The location of the contributing points of the collocation integral
for the scattering of a plane wave by a circular obstacle. Each row corre-
sponds to a fixed value t ∈ [0, 1], with the shadow boundary points at 0.25
and 0.75, and the illuminated region in between. The singular points are
located along the diagonal. The remaining points correspond to stationary
points.

in the shadow region. Two of these points coalesce into one stationary point
of order r = 2 exactly at the shadow boundary. Figure 7.2 is illustrative for
more general convex shapes and incoming waves. If the incoming wave is
not a plane wave however, then the point where two stationary points coa-
lesce may differ from the point where the incoming wave is tangential to the
boundary. In the following, we consistently use the term shadow boundary
to refer to the point where two stationary points coalesce into one, as that
point determines the numerical properties of the scheme.

We now describe how the quadrature rule (7.37) can be used in the
discretisation. The derivatives of qc can be written in terms of the basis
functions φm,

q(j)c (τ) =

N∑

m=1

cmφ
(j)
m (τ).

Hence, applying the quadrature rule to qc yields a matrix B with entries

Bn,m =

{
∑

i:τn,i∈Ωm

∑dn,i

j=0 w
c
n,i,jφ

(j)
m (τn,i), ∃i ∈ [0, ln] : τn,i ∈ Ωm,

0 otherwise

(7.39)

The entry Bn,m is nonzero only if at least one quadrature point τn,i exists



7.5. A HIGH FREQUENCY BOUNDARY ELEMENT METHOD 193

that lies in the support of the basis function φm. The number of nonzero
points therefore depends on the size of the supports of the basis functions.
If all basis functions are local, then the structure of B will resemble the
structure shown in Figure 7.2.

However, the value Qc[qc; tn] is not always a good approximation for the
collocation integral (7.34). It turns out that the quadrature rule can not
always be used, depending on the collocation point tn. Therefore, we first
examine the accuracy of Qc[qc; tn]. We will formulate a combined approach
in §7.5.3 that uses the quadrature rule only where it is sufficiently accurate.

7.5.2 Convergence of the specialised quadrature rule

as a function of k

The convergence of quadrature rule Qc[f ; tn] as a function of k can be
derived from the results for QH [f ] discussed in §7.3.3. These results were
derived with the assumption that the function f is independent of k. The
solution qs of integral equation (7.24) depends on k; an important issue in
the derivation of our hybrid scheme is what can be said about the accuracy
of the quadrature rule Qc[qs; tn] when applied to the exact solution qs. As
it turns out, in that case, the accuracy of the rule depends on the location
of the quadrature points.

First, we consider the case of a function that is independent of k. We
will show that for a given collocation point tn and a given value of i, the
quadrature point τn,i yields a contribution to the value of Qc in (7.37) with
an accuracy that increases with k. Define the partial sums

S(d; f, n, i) =

d∑

j=0

wcn,i,jf
(j)(τn,i).

The definition of S is such that one can write Qc[f ; tn] =
∑ln
i=0 S(dn,i; f, n, i), where ln + 1 is the total number of quadrature points

for a given collocation point tn. The partial sum S(dn,i; f, n, i) may be re-
garded as the contribution of the quadrature point τn,i to the total value of
the quadrature approximation. This local contribution converges to a fixed
value s(k) for increasing d, and the convergence becomes faster with in-
creasing k. In order to see this, consider a point τn,i that is not a stationary
point. By Lemma 7.3.3, we have wcn,i,j = O(k−j−3/2). If f is independent
of k, it follows that

|S(d+ 1; f, n, i) − S(d; f, n, i)| = O(k−(d+1)−3/2). (7.40)

The error of the partial sum using d derivatives decreases with increasing
wavenumber.
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Figure 7.3: The real part of the integrand for tn = tsb1 for a circular obstacle
and k = 100.

When the function f depends on k, the asymptotic behaviour of f and
its derivatives at τn,i should be included in the derivation of estimate (7.40).
We shall elaborate this for the case of f equal to the exact solution qs. The
necessary information for this elaboration was derived in §7.4.2. We will
show that the error of the quadrature rule may actually be O(1) in k ,
depending on the location of the quadrature points τn,i.

Consider first the case τn,i ∈ TI(k), i.e., the quadrature point lies in
the illuminated region. If τn,i = tn, then τn,i is a singular point. From
Lemma 7.3.3, we have |wcn,i,0| = O(k−1) and |wcn,i,1| = O(k−2). We have
|qs(τn,i)| = O(k) from (7.31) and |q′s(τn,i)| = O(k) from (7.32). Combined,
this yields the estimate

|S(1; qs, n, i) − S(0; qs, n, i)| = O(k−1), τn,i = tn ∈ TI(k).

This means that the accuracy increases with increasing k: the error when
using only the first term scales as O(k−1). Using Lemma 7.3.4, it can be
found that the error of the first term for a stationary point τn,i 6= tn is
O(k−1/2).

Next, consider the case τn,i ∈ TB1(k). At the shadow boundary
τn,i = tn = tsb1, we have |wcn,i,0| = O(k−2/3) and |wcn,i,1| = O(k−1)

from Lemma 7.3.4, and |qs(tn)| = O(k2/3) and |q′s(tn)| = O(k) from (7.31)
and (7.32). The exponents cancel exactly; we have

|S(1; qs, n, i) − S(0; qs, n, i)| = O(1), τn,i = tsb1.

The accuracy of the contribution S(d; f, n, i) does not improve with in-
creasing k for a fixed d, although the partial sum may still converge if more
derivatives are used. Similar observations hold for τn,i 6= tsb1 in the shadow
boundary region. It turns out that the quadrature rule is not as useful in
the shadow boundary region as in the illuminated region.

There is however an important remark that can be made here. Due to
the square root in the definition (7.38) of the oscillator, the singular point
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τn,i = tn is a branch point of the oscillator. A consequence is that the
left and right limit of the derivatives of the oscillator may differ. Indeed,
the oscillator has a stationary point of order r = 2 at tn = tsb1 only in
the right limit. The left limit of the derivative of the oscillator is nonzero.
This is illustrated in Figure 7.3: the integrand is highly oscillatory to the
left of the shadow boundary, and not oscillatory to the right. It turns
out that the quadrature rule can be used on the left interval [0, tsb1] and
in the illuminated region. It is not suited for the intermediate interval
[tsb1, tsb1 + C1k

−1/3]. Due to the stationary point, the integrand is not
oscillatory in that interval.

7.5.3 A sparse discretisation

The basis functions for the discretisation are chosen corresponding to the
behaviour of the solution in the three different regions identified in §7.4.2.
Recall that the solution is smooth in the illuminated region, and oscillatory
but exponentially decaying in the shadow region. First, following [29], we
approximate the solution by zero in the shadow region. We choose a fixed
number of basis functions in the illuminated region. Finally, we also choose a
fixed number of basis functions in the transitional shadow boundary region,
independently of k. Based on the asymptotic expansion (7.25), one can
see that this corresponds to using a fixed number of basis functions per
oscillation of the solution. It was already noted in §7.4.2 that the argument
k1/3Z(α, τ) of the function Ψ is bounded in k, τ ∈ TB1(k). The oscillatory
behaviour of the exact solution qs in TB1(k) is due to the oscillations of Ψ
for negative arguments. Since the argument of Ψ is bounded, the number
of possible oscillations is also bounded, independently of k.

In our implementation, we have chosen to use cubic B-splines as basis
functions. The nodes of the splines are the collocation points of the colloca-
tion method. They are chosen equidistantly in the regions TB1(k), TB2(k)
and TI(k). Owing to the small number of quadrature points τn,i for each
collocation point tn, the discretisation matrix is highly sparse. Since the
quadrature rule, applied to the exact solution qs, may not provide sufficient
accuracy for quadrature points in the shadow boundary region, we propose
the following scheme.

If tn ∈ TI(k), then

• the quadrature rule is applied for the singular point in the illuminated
region,

• the stationary points lie in the shadow region, and they are discarded.

For cubic splines, the singular point tn lies in the support of only three
separate basis functions. The three corresponding matrix entries are given
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Figure 7.4: Illustration of the sparse discretisation matrix using cubic B-
splines for the scattering of a plane wave by a circular obstacle. The middle
part of the matrix is tridiagonal.

by (7.39). The contributions of the stationary points are discarded because
the solution is approximated by zero in the shadow region.

If tn ∈ TB1(k), then

• the quadrature rule is applied on the interval [0, tn],

• a classical dense discretisation is used on the interval [tn, tsb1 +
C1k

−1/3],

• the quadrature rule is applied on the interval [tsb1 + C1k
−1/3, 1].

The quadrature rule on [0, tn] reduces to the contribution of the singular
point tn. The corresponding weights have the form of (7.13) with SHl re-
placed by Sci ,

wcn,s,j = −Scis
[
(x− tn)

j

j!
; tn

]

,

where is is the index such that tn = τn,is . The quadrature rule on [tsb1 +
C1k

−1/3, 1] consists of the contributions of the stationary points τn,i outside
the shadow boundary region, and of the endpoint tr := tsb1 +C1k

−1/3. The
weights corresponding to that endpoint have the form of (7.11),

wcn,r,j = Scir+1

[
(x− tr)

j

j!
; tr

]

,
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where ir is the index such that tr ∈ [τn,ir , τn,ir+1]. Finally, the dense
discretisation in the interval [tn, tr] leads to elements of the form

σn,m =

∫

Ωm∩[tn,tr ]

i

4
H

(1)
0 (k|κ(tn) − κ(τ)|) (7.41)

eik(g
i(κ(τ))−gi(κ(tn)))|∇κ(τ)|φm(τ) dτ,

The only difference compared to (7.35) is that the integration domain may
be cut at the boundaries of [tn, tr]. Summarising, the elements of the dis-
cretisation matrix for tn ∈ TB1(k) can be written as

Cn,m =







σn,m if Ωm ∩ [tn, tr] 6= ∅

+
∑dn,is
j=0 wcn,s,jφ

(j)
m (tn) if tn ∈ Ωm

+
∑dn,ir
j=0 wcn,r,jφ

(j)
m (tr) if tr ∈ Ωm

+
∑

i:tr<τn,i∈Ωm

∑dn,i

j=0 w
c
n,i,jφ

(j)
m (τn,i), ∃i : tr < τn,i ∈ Ωm,

∑

i:tr<τn,i∈Ωm

∑dn,i

j=0 w
c
n,i,jφ

(j)
m (τn,i), ∃i : tr < τn,i ∈ Ωm,

0 otherwise.

The case tn ∈ TB2(k) can be treated similarly. The structure of the sparse
matrix C is illustrated in Figure 7.4. The two small dense parts correspond
to the dense discretisation in the intervals [tn, tsb1 + C1k

−1/3] and [tsb2 −
C2k

−1/3, tsb2]. For simplicity, we have chosen the constant C1 large enough
such that, for tn ∈ TB1, all stationary points τn,i ∈ TB1(k) also lie in the
shadow boundary region. The constant C2 was chosen similarly. One can
show that the required integrals of the form (7.41) are not oscillatory. Due

to the stationary point of order r = 2, the integrand behaves as eikc(τ−tsb1)
3

.
The argument of the exponential is bounded in k, since by construction

|τ − tsb1| ≤ max{C1,D1}k−1/3.

Hence, there is only a bounded number of oscillations in the integrals for
increasing k. The integrals can therefore be evaluated with a number of
operations that is independent of k. In our implementation, these integrals
were evaluated using Cubpack [50]. Since the weights of the quadrature rule
can be evaluated efficiently as well, and because the number of unknowns
is fixed, the matrix in Figure 7.4 can be computed with a total number of
operations that is independent of k.

7.6 Numerical results

7.6.1 Convergence and total solution time

We consider the scattering by two convex obstacles, a circle and an ellipse,
shown in Figure 7.5. We use two types of boundary conditions: a plane
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Figure 7.5: Illustration of two smooth convex scattering obstacles. The
boundary conditions are plane waves, or circular waves originating from a
point source.

wave, modelled in the form ui(x) = eikα·x, and a point source, modelled by

ui(x) = H
(1)
0 (|x − x0|), with x0 a point in the exterior Ω+ of the obstacle.

The circle and ellipse are parameterised by

κ(t) =

{
R cos(2πt)
R sin(2πt)

and κ(t) =

{
R1 cos(2πt)
R2 sin(2πt)

respectively. The boundary conditions for the ellipse are deliberately chosen
to yield a non-symmetric problem. We use N cubic B-spline basis functions,
defined on the interval [tsb1 −D1k

−1/3, tsb2 +D2k
−1/3]. A fixed number N1

of these functions are defined on the shadow boundary regions TB1 and
TB2. The collocation points are the nodes of the spline function, chosen
equidistantly in the intervals TB1, TI and TB2 respectively.

The smooth function qc is illustrated in Figure 7.6 for the different scat-
tering problems. The mild oscillatory behaviour of the function near the
shadow boundary is illustrated in the left panel of Figure 7.7, showing only
the real part of the solution. Two spikes are present near the shadow boun-
dary, with a peak value that scales as O(k2/3) as predicted by our esti-
mate (7.27). The dashed line shows the effect of doubling k. The O(k)
behaviour in the illuminated region is clear from the imaginary part illus-
trated in the right panel of Figure 7.7

Table 7.2 shows the timings for an implementation of the algorithm of
§7.5.3 in Matlab. In all examples considered, the time actually decreases
with increasing wavenumber k. This is due to the fact that, at larger fre-
quencies, the weights of the specialised quadrature rule Qc[f ; tn] are easier
to compute. In a classical boundary element method, and using 10 un-
knowns per wavelength, the case k = 100000 corresponds to a dense matrix
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(d) Ellipse, point source

Figure 7.6: The real and imaginary part of the smooth function qs for differ-
ent scattering problems. The real part is the lower curve in each example.
The wavenumber is k = 200.

with N = 500000 unknowns.

7.6.2 Error of the solution

In applications, one is usually interested in the quantity qs/k. For example
in electromagnetics, the quantity qs/k is proportional to the induced cur-
rent on the surface of the obstacle, with a proportionality constant that is
independent of k. The exact solution qs of the scattering problem is known
only for the case of scattering of a plane wave by a circle. The relative error
(qc − qs)/qs and the absolute error (qc − qs)/k for this case are illustrated
in Figure 7.8 for a number of different values for k. We have chosen to
use derivatives up to order dn,i = d = 1 in each quadrature rule for this
example. The error decreases rapidly with increasing k in the illuminated
region. This is due to the higher accuracy of the quadrature rule Qc[f ; t]
at larger frequencies. The relative error tends to 100% in the deep shadow
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Figure 7.7: The real part (left) and imaginary part (right) of qs for the
scattering of a plane wave by a circle. The dense line corresponds to k = 200,
the dashed line to k = 400.

Table 7.2: Total solution time in seconds for the different scattering pro-
blems. All parameters are kept fixed, except the wavenumber k. We used
d = 2 derivatives and N = 150 unknowns.

Circle Ellipse
k Plane wave Point source Plane wave Point source

200 232s 546s 322s 616s

400 226s 531s 308s 596s

800 224s 525s 303s 589s

1600 221s 521s 299s 583s

10000 217s 505s 290s 567s

100000 211s 495s 272s 542s

region because we have approximated the solution by 0 in that region. One
can verify from the figures that the absolute error in that region is still quite
small compared to the average value of the function qs(τ).

It is important to know how the error can be controlled, i.e., how the
parameters of the method can be chosen to achieve a given accuracy. The
parameters are:

• N , N1: the total number of unknowns, and the number of unknowns
in the shadow boundary region respectively;

• C1, C2, D1, D2: these parameters control the size of the shadow
boundary region in definitions (7.28)-(7.30);

• dn,i: the number of derivatives used in the quadrature rule Qc[f ; tn]
given by (7.37).
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Figure 7.8: Absolute and relative error for the scattering of a plane wave
by a circle for different values of k. We have used d = 1 derivative in the
quadrature rule Qc[f ; t].
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Figure 7.9: Comparison of the relative error for different values of d, the
number of derivatives used in the quadrature rule Qc[f ; t].

Increasing each of these parameters decreases the error, although the
effect of increasing each parameter independently is bounded. For example,
increasing N indefinitely does not yield arbitrary accuracy, because the
accuracy of the quadrature rule is independent of N . The constants C1,
C2, D1 and D2 can be chosen so large that the shadow boundary region
covers the whole boundary. In that case, the method almost reduces to
the regular boundary element method. The accuracy of the quadrature
rule is increased by increasing dn,i. We have considered a fixed number of
derivatives d = dn,i in each example. Figure 7.9 shows the relative error
for different values of d. The accuracy of the method greatly increases with
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increasing d, while the sparsity structure of the matrix remains exactly the
same. For a cubic spline, d = 2 is the largest possible value since higher
order derivatives are discontinuous.

Finally, we note that the matrices are well conditioned. The matrices
that were constructed to produce the results in Table 7.2 have size 150×150.
The largest condition number in these example was 167. Since the matrices
are small, the corresponding system of equations can be readily solved using
a direct solver.

7.7 Three-dimensional problems

The enabling properties of the scattering problems are the same in two and
three dimensions. First, for smooth and convex scatterers, the phase of
the solution is known a priori. Second, the value of oscillatory integrals
in one or two dimensions is determined by the behaviour of the integrand
in only a small part of the integration domain. Hence, it is reasonable to
expect that a sparse discretisation matrix exists for three-dimensional high
frequency scattering problems. An implementation may be based on the
cubature rules for multivariate oscillatory integrals that were constructed
in Chapter 6. Their application to three-dimensional scattering problems is
the subject of future research.

7.8 Conclusions

The method that was proposed in this chapter computes the solution of
a high frequency scattering problem in a number of operations that is
bounded, independently of the wavenumber. The discretisation matrix is
small and sparse, the accuracy of the solution increases with increasing
wavenumber. All these properties are the opposite of the properties of the
multiscale methods that were discussed in the previous chapters. Rather
than focusing on a multiscale approximation of the discretisation matrix, the
result is achieved by focusing on the specific properties of highly oscillatory
integrals.

The method is currently still rather restricted however. Specifically,
the phase of the solution should be known a priori. This problem was
avoided in this chapter by considering only smooth convex scatterers. The
approach of [29] was extended to multiple scattering configurations using
an iterative approach [90]. It is reasonable to expect that the same will hold
for our approach. Multiple scattering and scattering by concave objects is
the subject of future research.



Chapter 8

Conclusions and

suggestions for future

research

In this chapter, we formulate the conclusions of this thesis, and present
some suggestions for further research. First, we briefly summarise our main
contributions:

• the analysis of the matrix compression in the wavelet method for in-
creasing wavenumbers;

• a new method using wavelet packets with improved compression for
oscillatory problems;

• the construction of efficient quadrature rules for integrals involving
wavelets or scaling functions in the integrand;

• an efficient numerical method for the evaluation of univariate highly
oscillatory integrals using the path of steepest descent;

• the extension of this method to multivariate integrals;

• a hybrid asymptotic boundary element method for highly oscillatory
integral equations for scattering problems.

8.1 Multiscale methods

We have considered three different multiscale methods for the solution of
integral equations: the fast multipole method, hierarchical matrix methods
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and wavelet based methods. One could place the first two methods under
the common denominator of low-rank approximation methods. We have
seen that both methods essentially achieve a speed-up of the matrix-vector
product by approximating subblocks of the discretisation matrix with a
matrix of low rank, that is represented with less data than the original dense
matrix. These approximations are possible thanks to the smoothness of the
kernel function of the integral operator away from the diagonal. Wavelet
based methods exploit the smoothness of the kernel function in a different
way. Rather than agglomerating basis functions that are defined on a fine
scale, wavelet methods focus on refining a coarse discretisation.

At low frequencies, the wavelet method is the only method that achieves
O(N) computational complexity, where the accuracy of the solution scales
like the discretisation error for increasing N . However, the absence of loga-
rithmic terms in the asymptotic complexity is less significant in practice, and
the other multiscale methods are competitive. Due to the approximation
of the kernel function in the parameter space, the wavelet method is more
sensitive to irregularly shaped boundaries. The approximation of the kernel
function in the full domain surrounding the scattering obstacle avoids this
dependence in the low-rank approximation methods. The specific multipole
and local expansions that are constructed in the fast multipole method for
a given kernel function are usually more accurate than black-box separable
approximations, at a cost of decreased flexibility. The best solution method
therefore depends very much on the application at hand.

Of the methods that we considered, we found that, at high frequencies,
the high frequency fast multipole method is the only viable efficient solu-
tion method, together with the intimately related implementation of H2-
matrices. There, subblocks of the discretisation matrix are approximated
by low rank matrices, where the rank scales linearly with the size of the
subblock. A fast matrix-vector product is made possible by the efficient hi-
erarchical construction of the low rank approximations of these subblocks,
using so-called diagonal translation operators. In addition, computations
are maximally shared among different blocks. Additional care is required in
this method for relatively low values of the wavenumbers, or for high accu-
racy computations, due to the numerical instability of the efficient diagonal
translation operators.

We have shown that the wavelet method does not scale to high frequency
problems. Using wavelet packets, the complexity of the matrix-vector
product can be reduced however from O(N2) to approximately O(N1.4).
The method is not as efficient overall as the high frequency fast multi-
pole method. The study of wavelet packets does however support the idea
that oscillatory problems require oscillatory basis functions. The choice of
wavelet packets actually corresponds to choosing a specific set of oscilla-
tory basis functions. The basis functions can be matched adaptively to the
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problem, in order to obtain a sparse discretisation matrix.

8.2 Hybrid methods

One may ask whether solving high frequency problems using the classical
piecewise polynomial basis functions is a good idea at all. Such basis func-
tions are not adapted to the oscillatory nature of the problem. On the
other hand, asymptotic methods for very high frequency problems lack the
robustness and fine error control of finite element methods. It is there-
fore reasonable to expect that the future of solution methods in the high
frequency regime lies in a combination of the two. So far in the available
literature, a number of approaches have been suggested that enrich the ap-
proximation space of the smooth basis functions with oscillatory functions.
The use of oscillatory wavelet packet basis functions that was considered in
this thesis also resembles this idea.

For the specific case of smooth and convex obstacles, the combination of
finite element methods with asymptotic methods was taken to a new direc-
tion in Chapter 7. The scattering problem was reformulated such that the
difficulty - the highly oscillatory nature - was removed. Based on a thorough
analysis of the properties of oscillatory integrals, and using corresponding
efficient evaluation techniques elaborated in Chapter 6, the resulting scheme
has a number of surprising properties. The number of operations required
for the solution of the scattering problem is bounded independently in k.
The discretisation matrix is small and sparse, and the accuracy of the solu-
tion may even increase with increasing frequency. Scattering problems have
been solved in Chapter 7 for values of the wavenumber that are much larger
than currently feasible with even the most efficient multiscale methods on
standard computers.

8.3 Future research directions

8.3.1 Oscillatory integrals

The recent development of efficient evaluation techniques for highly oscilla-
tory integrals, that are described and summarised in Chapter 6, represents
a genuine progress in our understanding of the numerical treatment of oscil-
latory problems. These algorithms will likely enable many new applications
in the future, only one of which was explored in the hybrid method in
Chapter 7.

The algorithms can still be improved and extended in many ways.

• A possible direction of research is a robust implementation of the
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numerical steepest descent method for univariate and multivariate in-
tegrals involving complex stationary points. For example, we have
seen that the path of steepest descent may not be suitable due to the
possible presence of complex stationary points along the path, when a
real stationary point coincides with a corner point of the integration
domain in two dimensions.

• Neither conditions involving the complex plane or the knowledge of
certain moments are required in Levin-type methods; an interesting
innovation would therefore be the extension of Levin-type methods to
integrals with stationary points. A useful starting point is the rela-
tion that was identified between Levin-type methods and the steepest
descent method (Remark 6.3.6).

• The asymptotic expansion of univariate oscillatory integrals can be
obtained using the steepest descent method (see Appendix B). Results
regarding the asymptotic expansion of multivariate integrals involving
degenerate critical points do not appear to be available [21, 178, 204].
The asymptotic analysis of the multivariate numerical steepest descent
method may lead to new results in this field.

• Efficient algorithms should be constructed for a number of variations
of the model integral. Consider, for example, problems where the os-
cillator is not known a priori, or where the oscillator is only known
approximately. Alternatively, other types of oscillators can be consid-
ered, such as a cosine, or Bessel functions.

• Although originally developed in the context of integral equations, the
use of our quadrature methods may turn out to be advantageous in
very different applications, e.g., in the solution of oscillatory differen-
tial equations, in the J-matrix method for quantum scattering and in
the Wave Based method for the simulation of sound and vibrations
in mechanical structures. Current research directions involving these
methods are summarised in Appendix C.

• Finally, we strongly believe that the algorithms will turn out to be
useful in a rich range of applications. Yet, a wider acceptance of the
methods in the engineering community will require easy accessibility
of the algorithms through optimised, robust and user friendly software
packages.

8.3.2 Boundary element methods

An important advantage of classical boundary element method formula-
tions over hybrid methods, is that no additional knowledge is required of
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the asymptotic behaviour of the problem. The classical method is well un-
derstood and robust, and is being used in many implementations for the
numerical simulation of scientific problems.

• It remains important to improve existing fast solution methods for
boundary element method discretisations of integral equations, and
to better understand the behaviour of the standard method at high
frequencies. For example, the efficiency of an implementation also
depends on the value of the condition number, which influences the
number of matrix-vector products that are required in an iterative
solution method. Likewise, the importance of the pollution error in
boundary element methods remains to be determined.

• The separable approximation of the kernel function in the high fre-
quency fast multipole method is essentially based on the discretisation
of an oscillatory integral. It may be possible, based on the insights
regarding oscillatory integrals that are developed in Chapters 6 and 7,
to improve this discretisation, thereby reducing the constants in the
computational complexity of the FMM for oscillatory integral equa-
tions.

• Another possible direction of research is the extension of the O(1)
hybrid method that was proposed in Chapter 7 to more general scat-
tering configurations. Multiple scattering or concave scatterers may
perhaps be simulated using an iterative approach, such as the one
considered in [90]. For these scattering problems, the solution no
longer has the form of a smooth function times a certain oscillatory
function. Rather, the solution consists of a (possibly infinite) sum
of functions with this form, corresponding to the superposition of re-
flected, diffracted, and refracted waves in the medium. The issues
that need to be considered are the asymptotic behaviour of each term
in the sum, and the extension of the hybrid method to the new model
form of the solution.

• The application area can be further extended by considering three-
dimensional problems, Maxwell’s equations and non-perfectly con-
ducting or non-smooth obstacles. Extensions of the hybrid method
may be based on the existing asymptotic analysis of such scattering
problems.

• It is at present very much an open question whether hybrid meth-
ods can be formulated for general problems with industrially relevant
complexity, such as a planar antenna consisting of several electronic
elements. The problem is complicated further by the presence of edges
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and sharp corners. The asymptotic form of the solution for these pro-
blems may become very complex. The development and implemen-
tation of O(1) complexity methods for real-life problems with high
wavenumbers remains a fascinating challenge.



Appendix A

Scattering by the circle

The scattering of a plane wave by a circular obstacle has a known, analytical
solution. Despite its simplicity, the problem is well suited to illustrate the
boundary element method, since it already exhibits most of the properties of
more general scattering problems. Scattering by a circle is frequently used
as an example in the thesis. In this appendix, we show how the analytical
solution is obtained. The interested reader is referred to [107] for a more
detailed analysis.

A.1 Solution by separation of variables

The two-dimensional scattering by a circle is equivalent to the scattering by
an infinitely long cylinder with circular cross section in three dimensions.
The cylindrical symmetry of this problem is expressed best in cylindrical
coordinates. Figure A.1 shows the convention of cylindrical coordinates that
will be used. The three-dimensional scalar Helmholtz equation in cylindrical
coordinates, applied to the function ψ(ρ, φ, z), is given by

1

ρ

∂

∂ρ

(

ρ
∂ψ

∂ρ

)

+
1

ρ2

∂2ψ

∂φ2
+
∂2ψ

∂z2
+ k2ψ = 0. (A.1)

Using the method of separation of variables, we look for a solution of
the form

ψ(ρ, φ, z) = R(ρ)Φ(φ)Z(z). (A.2)

Substituting (A.2) into (A.1), and subsequently dividing by ψ, yields

1

ρR

d

dρ

(

ρ
dR

dρ

)

+
1

ρ2Φ

d2Φ

dφ2
+

1

Z

d2Z

dz2
+ k2 = 0. (A.3)
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Figure A.1: Cylindrical coordinates.

The third term in (A.3) is independent of ρ and of φ, and therefore it
must be independent of z as well, because the equation sums to zero. Hence,
we can write

1

Z

d2Z

dz2
= −k2

z , (A.4)

with kz a constant. This is an harmonic equation, giving rise to solutions
of the form cos(kzz), sin(kzz), e

±ikzz or a linear combination of these func-
tions. We will denote such harmonic functions in general by Z(z) = h(kzz).
Substituting (A.4) into (A.3), and multiplying by ρ2, yields

ρ

R

d

dρ

(

ρ
dR

dρ

)

+
1

Φ

d2Φ

dφ2
+ (k2 − k2

z)ρ
2 = 0. (A.5)

Now the second term is independent of ρ. Hence, we can write

1

Φ

d2Φ

dφ2
= −n2,

and we have Φ(φ) = h(nφ). Define a constant kρ such that

k2
ρ + k2

z = k2. (A.6)

The remaining equation (A.5) can then be written as

ρ
d

dρ

(

ρ
dR

dρ

)

+ [(kρρ)
2 − n2]R = 0.

This is Bessel’s equation of order n. The solution can be the Bessel function
of the first kind Jn(kρρ), the Bessel function of the second kind Yn(kρρ), or
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a linear combination of these functions. Usual combinations are the Hankel
function of the first and second kind,

H
(1)
0 (kρρ) = Jn(kρρ)+ iYn(kρρ) and H

(2)
0 (kρρ) = Jn(kρρ)− iYn(kρρ).

We denote the possible Bessel functions by R(ρ) = Bn(kρρ). In summary,
we can form a solution to the Helmholtz equation as

ψkρ,n,kz
= Bn(kρρ)h(nφ)h(kzz), (A.7)

subject to condition (A.6). More general solutions can be obtained by sum-
ming functions of the form (A.7).

The Hankel function of the first kind H
(1)
n (kρρ) represents an outward

travelling wave.1 Outward travelling solutions therefore correspond to the

choice Bn(kρρ) = H
(1)
n (kρρ). Such solutions satisfy the required Sommerfeld

radiation condition (2.18) at infinity. The Bessel function of the first kind
Jn(kρρ) is the only Bessel function that is non-singular at ρ = 0. Fields that

are finite at ρ = 0 therefore correspond to the choice Bn(kρρ) = J
(1)
n (kρρ).

A.2 An analytical solution

Consider a plane wave propagating in the positive x-direction,

ui = eikx = eikρ cos(φ).

This wave is finite at ρ = 0. One can express the plane wave as an infinite
series of solutions of the form (A.7) by

eikx =

∞∑

n=−∞
anJn(kρ)e

−inφ, with an = (−i)−n.

The total solution is given by u = us+ui. The scattered wave is an outgoing
wave, and therefore it can be written in the form

us =

∞∑

n=−∞
bn(−i)−nH(1)

n (kρ)e−inφ.

Hence, the total field is given by

u =

∞∑

n=−∞
(−i)−n(Jn(kρ) + bnH

(1)
n (kρ))e−inφ. (A.8)

1This is a consequence of the time dependence of the form e−iωt. With the other

choice eiωt, H
(2)
n (kρρ) would represent an outward travelling wave.
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Assume the Dirichlet condition u = 0 is imposed at the boundary ρ = a of
the cylinder with radius a. One obtains from (A.8) that this condition is
satisfied if

bn =
−Jn(ka)
H

(1)
n (ka)

. (A.9)

Expression (A.8) with the coefficients bn given by (A.9) is an analytical
expression for the total solution of the exterior Dirichlet problem.

A.3 Eigenvalues

The eigenvalues and eigenfunctions of the scattering problem are also known
analytically. The single-layer potential has the eigenvalues

λp =
iaπ

2
Jp(ka)H

(1)
p (ka), p = 0, 1, . . .

with corresponding eigenspaces {ψp, ψ−p}, where

ψp =
eikp√

2π
.

It follows from the properties of Bessel functions that, asymptotically, the
rate of decay of the eigenvalues is given by

λp ∼ 1/p, p→ ∞.

The operator has resonant frequencies for those values of k where ka
corresponds to a zero of the Bessel or Hankel function of some order p.
This is more likely to occur if ka is large. Note that the eigenfunctions
corresponding to increasing values of p are increasingly oscillatory.



Appendix B

The method of steepest

descent

The numerical steepest descent method that was presented in Chapter 6
builds on the ideas of the method of steepest descent, see [21, 204]. This
method was invented independently by Cauchy and by Riemann, and has
been continuously used since the description by Debye in 1909 [70]. It is
closely related to the method of stationary phase that was introduced by
Lord Kelvin in 1887 [151]. The method leads to an asymptotic expansion for
the oscillatory integral I[f ], as given by (6.1), for large values of ω. Usually,
the result is obtained after a series of analytical manipulations that are
specific for the integrand. Here, we describe a black-box method to find the
asymptotic expansion.

B.1 Watson’s Lemma

The first step in the method of steepest descent is to identify the critical
points of the integrand. In the case treated in Chapter 6, the integration on
[a, b] for real-valued functions f and g, the critical points are the endpoints
a and b, and all real stationary points in [a, b]. The next step is to deform
the integration path onto the path of steepest descent at all critical points,
subject to the validity of the deformation by Cauchy’s integral theorem.
Finally, the asymptotic expansion is obtained by summing the asymptotic
expansions of each line integral along a path of steepest descent. The ex-
pansion for a typical line integral is found using Watson’s lemma.

Lemma B.1.1 (Watson’s Lemma). Assume f(p) is a locally integrable
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function on (0,∞) and f(p) = O(eap), p→ ∞, with a ∈ R. If

f(p) ∼
∞∑

k=0

ckp
ak , p→ 0,

with <ak > −1, then we have, for ω → ∞,
∫ ∞

0

e−ωpf(p) dp ∼
∞∑

k=0

ck

∫ ∞

0

e−ωppak dp =
∞∑

k=0

ckΓ(ak + 1)

ωak+1
.

Watson’s Lemma essentially states that it is justified to perform the
term-by-term integration of the series of f(p) for p→ 0.

The difference between the numerical approach described in Chapter 6
and the steepest descent method, is that no asymptotic expansion is con-
structed in the numerical approach. Instead, the integral representation
along the path of steepest descent is kept and is evaluated numerically. The
use of Gaussian quadrature leads to the very high order of convergence,
but only when the integrand is evaluated exactly on the path of steepest
descent. A generally applicable iterative method can be used to find the
necessary points on the path to high precision with few iterations.

B.2 An asymptotic expansion for I[f ]

We will show how the steepest descent method can be used to obtain the
coefficients of an asymptotic expansion of the form (6.4) for the oscillatory
integral I[f ] in the presence of stationary points. Note that it is sufficient to
consider the expansion of the generalised moments µj(ω; ξ) defined by (6.5),

µj(ω; ξ) = I[(x− ξ)j ] =

∫ b

a

(x− ξ)jeiωg(x) dx. (B.1)

The full expansion can be obtained from the uniform expansion (6.6), that
was constructed by Iserles and Nørsett in [129].

Consider an oscillator g with one stationary point ξ = 0 of order r = 1
in the interval [−1, 1]. The required moment µ0(ω; ξ) can be written as

µ0(ω; 0) = F1(−1) − F1(0) + F2(0) − F2(1), (B.2)

where the functions Fj have the form

Fj(x) =

∫ ∞

0

e−ωph′x,j(p) dp, (B.3)

and the functions hx,j(p) satisfy g(hx,j(p)) = g(x) + ip on [−1, 0] and [0, 1]
respectively. Justified by Watson’s Lemma, the asymptotic expansion of
Fj(x) is obtained by the term-by-term integration of the series representa-
tion of h′x,j(p), for p→ 0.
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B.2.1 An asymptotic expansion for Fj(x)

Away from the stationary point ξ = 0, hx,j(p) can be developed into a
regular Taylor series: hx,j(p) ∼ ∑∞

k=0 aj,kp
k, p → 0. By construction, we

have aj,0 = x. The derivatives of hx,j(p) are found by taking the derivatives
of g(hx,j(p)) = g(x) + ip with respect to p. The first order derivative was
already given by (6.41). It is straightforward to derive expressions for the
higher order derivatives using the product and chain rules. Then, we have

Fj(x) =

∫ ∞

0

e−ωp
∞∑

k=0

aj,kp
k dp ∼

∞∑

k=0

bj,k ω
−k−1, k → ∞,

for x 6= ξ, and with bj,k = Γ(k + 1)aj,k.
The difficulty lies in the expansions of Fj(0), j = 1, 2, because h′ξ,j(p)

is singular at p = 0. The singularity is known however, and we can find a
series of the form

hξ,j(p) =

∞∑

k=0

cj,k p
k/2, p→ 0. (B.4)

By construction we know that cj,0 = ξ = 0. The remaining coefficients cj,k
can be obtained via a series expansion of the equation g(hξ,j(p)) = g(ξ)+ip.
Assume without loss of generality that g(ξ) = 0, such that we can write
g(x) =

∑∞
k=2 gkx

k. This leads to

∞∑

k=2

gk

( ∞∑

l=1

cj,l p
l/2

)k

= ip. (B.5)

Even though (B.5) is a highly nonlinear problem, it is straightforward to
obtain the values cj,k. Equating the coefficient in p of both the left and
right hand side immediately yields

g2c
2
j,1 = i.

The correct choices of the root, for a2 > 0, are

c1,1 = −
√

i/a2, (B.6)

c2,1 =
√

i/a2. (B.7)

Rewriting (B.5) using the Cauchy product repeatedly leads to

∞∑

k=2

gk

k∑

i1=0

k−i1∑

i2=0

k−i1−i2∑

i3=0

· · ·
(
k

i1

)(
k − i1
i2

)(
k − i1 − i2

i3

)

· · ·

ci1j,1 p
i1/2 ci2j,2 p

2i2/2 ci3j,3 p
3i3/2, · · · . (B.8)
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with the added condition
∑

l il = k to avoid spurious terms (consider for
example il = 0, l = 1, . . . ,∞). Equating the total coefficient of increasing
powers of p1/2 to zero leads to a recursive scheme for cj,k. Specifically, the
coefficient in pN/2 is given by

N∑

k=2

∑

(
P

l il=k)&(
P

l lil=N)

(
k

i1

)(
k − i1
i2

)(
k − i1 − i2

i3

)

· · ·
∏

l

cilj,l. (B.9)

The second summation in (B.9) is a sum over all sets of indices (i1, i2, . . .)
that satisfy the conditions

∑

l

il = k, (B.10)

∑

l

l il = N. (B.11)

These conditions state that the indices sum to k, a necessary condition that
was present already in (B.8), and that the total exponent should be N/2.
The coefficient cL with L > N cannot occur in this expression due to con-
dition (B.11). The coefficient cN does not occur because conditions (B.10)
and (B.11) cannot both be satisfied. Finally, for N > 2, the expression
is linear in cN−1. The term corresponds to the only possible combination
k = 2, i1 = 1 and iN−1 = 1, and it is given by 2g2c1cN−1. Thus, each
value of N > 2 leads to an explicit expression for cj,N−1 in terms of ak,
k = 1, . . . , N , and in terms of products of powers of cj,l, l = 1, . . . , N − 2.

The total expansion of Fj(0) is obtained by starting the recursion with
c1,1 given by (B.6) or c2,1 given by (B.7) respectively. We have

Fj(ξ) =

∫ ∞

0

e−ωph′ξ,j(p) dp =

∫ ∞

0

e−ωp
∞∑

k=1

cj,k
k

2
pk/2−1 dp

∼
∞∑

k=1

Γ(k/2 + 1)cj,k ω
−k/2 ∼

∞∑

k=1

dj,k ω
−k/2, k → ∞.

The expansion for F2[1](0) − F1[1](0) has terms in ω−j−1/2 only, with j
integer, because the coefficients c1,2j and c2,2j are equal.

Finally, note that higher order stationary points can be treated similarly.
We have g(x) =

∑∞
k=r+1 akx

k, and hj,k(p) =
∑∞
k=1 ckp

k/(r+1). The recur-

sion is started by selecting the two correct roots of the equation a1c
r+1
1 = i.

B.2.2 Computational issues

Expression (B.9) is not entirely explicit. Indeed, the conditions (B.10)
and (B.11) correspond to solving a knapsack-type problem. As a result,
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the number of operations required to obtain the next coefficient using (B.9)
increases exponentially with N . However, the explicit expressions for cj,k
have to be found only once, and they can then be programmed. Although
the number of terms in the expressions also increases exponentially with N
for general oscillators g, an implementation for the first fixed N terms can
be very rapid.

For completeness, we list the first four explicit expressions for cj,k:

cj,1 = (−1)j
√

i/g2,

cj,2 = (−g3c2j,1)/(2g2),
cj,3 = −(g4c

4
j,1 + 3g3c

2
j,1cj,2 + g2c

2
j,2)/(2g2cj,1),

cj,4 = −(4g4c
3
j,1cj,2 + 3g3c

2
j,1cj,3 + 2g2cj,2cj,3 + 3g3cj,1c

2
j,2)/(2g2cj,1).

The expression for the nineteenth coefficient consists of 624 terms.
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Appendix C

Applications in

computational science and

engineering

We point out in this section how the methods developed in this thesis can be
used for other applications in computational science and engineering. First
we consider three different physical models, in sections C.1, C.2 and C.3,
each leading to a different type of integral to be computed. Next, in sec-
tions C.4 and C.5, we consider some efforts related to different geometries:
non smooth polygonal surfaces and multiple scatterers. Some of this work
is still ongoing and preliminary, although the initial results are promising.
Most of this work is in collaboration with researchers from other depart-
ments of the K.U.Leuven, or from abroad. The model discussed in §C.1
was provided by W. Desmet, B. Pluymers and C. Vanmaele (Noise and
Vibration Research Group, PMA). The problems treated in §C.2 and §C.5
were suggested by G. Vandenbosch (Telemic, ESAT). The ideas in §C.3 are
being worked out with W. Vanroose (Dept. Computer Science). Finally,
the scattering problem for domains with corners, discussed in §C.4, is being
studied in collaboration with S. Chandler-Wilde and S. Langdon (University
of Reading).

C.1 The Wave Based method in acoustics

The Wave Based method is a method for the numerical modelling of the
propagation and scattering of acoustic waves in mechanical structures in-
volving vibrations, such as a vehicle [76]. The method uses plane wave basis
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Figure C.1: Relative error for the evaluation of an integral of the form (C.2),
using n quadrature points along each steepest descent path. The parameter
a is a linear scaling factor for the wavenumbers kx, ky and kb.

functions, possibly attenuated, that satisfy the Helmholtz equation in free
space. Any combination of these oscillatory functions therefore automati-
cally satisfies the Helmholtz equation. The solution to a specific problem
is found by enforcing the correct boundary condition on the boundaries
of the mechanical structure, which leads to a dense matrix. As such, the
Wave Based method resembles boundary element methods. A difference is
that the matrix of the Wave Based method may be rather ill conditioned,
necessitating the very accurate computation of the matrix elements.

Each element of the dense matrix is given by an oscillatory integral,
involving harmonic functions and Hankel functions (see, e.g., [168]). These
integrals have the form

I =
−i
8k2
b

∫

Γ

(c1 sin(kxx) + c2 cos(kxx))e
−iky(y−Ly)H(2)

0 (kbr)dsΓ, (C.1)

with r =
√

(x− x0)2 + (y − y0)2 the distance to an excitation point (x0, y0).
The efficient evaluation of this integral is considered one of the computa-
tional challenges in the overall acoustic simulation algorithm [189]. Writing
the factors cos(kxx) and sin(kxx) in terms of complex exponentials, the
integrand of (C.1) can be written as a sum of integrands that behave as

f(x)ei(±kxx−ky(y−Ly)+kbr), (C.2)

with f(x) a smooth function. This is a generalization of the model
form (6.1), because of the different constants kx, ky and kb, which may be
complex valued. The steepest descent path corresponding to the oscillator
in (C.2) can still be computed however.
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Table C.1: Absolute error of the approximation of IM by Filon-type quadra-
ture with (n+ 1)/2 weights, for the example function g(β) = (β + 2)−3/2.

R \ n 1 3 5

10 8.1E − 06 5.9E − 07 7.9E − 08
20 2.7E − 07 5.1E − 09 1.8E − 10
40 8.5E − 09 4.1E − 11 3.6E − 13

Numerical results are shown in Figure C.1 for a representative example
integral. The parameter a in this figure is a linear scaling factor for the
constants kx, ky and kb. The results show that a very high accuracy can be
obtained with a minimal computational effort. Moreover, the accuracy for
a fixed number of operations greatly increases with increasing frequency.

C.2 Maxwell’s equations

The Maxwell equations are a system of partial differential equations and
model electromagnetic phenomena (see §2.2.3). A linear system of inte-
gral equations corresponding to the Maxwell equations can be derived in
terms of a scalar kernel function. Numerical simulation using this system of
boundary integral equations is practical only if the Green’s function can be
evaluated efficiently [198]. For planar, multi-layered structures, this requires
the evaluation of integrals of the form

IM =

∫ ∞

0

βg(β)J0(βR) dβ, (C.3)

with R a constant, and with g a smooth function [72]. The smooth function
g is obtained after subtracting the known branch point and pole singularities
of a non-smooth function g̃(β). The subtracted integrals can be evaluated
analytically.

The Bessel function of the first kind J0(z) can be written as J0(z) =

<H(1)
0 (z). Integral (C.3) with J0(βR) replaced by H

(1)
0 (βR) is similar to

the model form (6.1). It then becomes clear that, for R > 0, the behaviour
of g near β = 0 determines the value of the integral. A localised Filon-type
quadrature rule can be constructed that uses the function values g(j)(0),

IM ≈
n∑

j=0

wjg
(j)(0), with wj := <

∫ ∞

0

ip
(ip)j

j!
J0(ipR)idp.

It turns out that w0 = 0, and w1 = −1/R3. Hence, IM ≈ −g′(0)/R3 is
a good approximation for large R. Table C.1 shows results for different
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Figure C.2: Example integral for an element of the discretisation matrix in
the modified J-matrix method (see [194], Fig. 1).

values of R and using higher order approximations. The weights wj with
even index j are always zero.

Asymptotic expansions have been used in other applications in electro-
magnetics for a long time, based on the steepest descent method (see [83]).
The differences between the numerical approach described in Chapter 6
and the steepest descent method were summarised in §B.1. Use of the new
techniques may lead to higher accuracy in these applications, especially for
lower frequencies.

C.3 The modified J-matrix method in quan-

tum scattering

Oscillatory phenomena arise naturally in quantum physics. The wave-
like nature of small particles is reflected in their mathematical descrip-
tion by wave functions. These wave functions are found as the solu-
tion to Schrödingers’ equation. The J-matrix method can be used to
solve Schrödingers’ equation for a given positive energy E and a poten-
tial V (r) [110]. The solution in the free field, away from the influence of
the potential V (r), is qualitatively known. It needs to be matched quanti-
tavely to the near field, the field that is in the range of the potential. In the
J-matrix method, the solution is expanded into an oscillatory basis in the
near field, which is then matched to the parameterised asymptotic form of
the free-space solution. This results in a dense matrix.

A modification of the J-matrix method was proposed in [194]. There,
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Figure C.3: Real part of the solution to the scattering problem for the case
of a square scattering obstacle. The sides of the square have unit length.
Two sides are in shadow, two sides are lit by the incoming plane wave.

the size of the matrix was reduced by using an approximation for the matrix
elements in the so-called far interaction region, that lies in the range of the
potential V (r) between the near field and the free field. The method of
stationary phase was applied to the oscillatory integrals that determine the
matrix elements. As shown in Appendix B, the method of steepest descent
allows the computation of additional coefficients of the asymptotic expan-
sion. This may lead to more accurate computations, or to an even smaller
dense matrix. An example integral is shown in Figure C.2. Contributions
come from the boundary point r = 0, and from the stationary point at the
so-called turning point, here at r ≈ 9.11.

C.4 High frequency scattering by convex

polygons

The hybrid method that was presented in Chapter 7 is specific for smooth
and convex obstacles. An extension of the method to domains with cor-
ners would already greatly enhance the application possibilities. Corners
in the obstacles introduce a singularity in the solution of the integral equa-
tion. Moreover, the diffraction of waves at the corner points introduces
additional oscillatory behaviour of the solution. For the case of convex
polygons, this oscillatory behaviour was determined as a function of the
wavenumber in [36]. These authors formulate a Galerkin method that has a
non-oscillatory solution. The elements of the Galerkin discretisation matrix
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Figure C.4: Convergence of the multivariate numerical steepest descent
method for integral (C.4), corresponding to one element of the Galerkin
discretisation matrix. Paramter n is the number of quadrature points per
dimension.

are given by integrals of the form

∫

Ωm

∫

Ωn

(

eik(σm(s+xm)+σn(t+xn))ηH
(1)
0 (kR) + ik [(albj − blaj)(t+ xn)

+bl(cl − cj) − al(dl − dj)]H
(1)
1 (kR)/R

)

dtds, (C.4)

with parameters that depend on the shape of the polygon. A collocation
scheme can also be applied, leading to integrals of the form

∫

Ωn

(

eik(σm(sm+xm)+σn(t+xn))ηH
(1)
0 (kR) + ik [(albj − blaj)(t+ xn)

+bl(cl − cj) − al(dl − dj)]H
(1)
1 (kR)/R

)

dt,

with sm the collocation point [10].
An efficient evaluation method for these integrals would lead to a solution

method for scattering problems involving convex polygonal scatterers that
is independent of the wavenumber. The evaluation method may be based
on the results for multivariate oscillatory integrals in Chapter 6. Figure C.4
shows the result of applying the multivariate numerical steepest descent
method to an integral of the form (C.4). The example integral corresponds
to two basis functions defined on adjacent sides of a square. The figure
shows the absolute error as a function of the number of quadrature points
per dimension. High accuracy is obtained at a very low computational cost.
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Γ1
Γ2 Γ3

Figure C.5: Example of a multiple scattering configuration.

The solution of the scattering problem is illustrated for the case of a
square in Figure C.3. The solution was computed with 500 piecewise lin-
ear basis functions. The figure illustrates the oscillatory behaviour of the
solution, and the spikes at the corner points.

C.5 Multiple scattering

The results and the theory of this thesis were formulated for scattering
problems involving a single scattering obstacle. The integral equation for-
mulations can also be extended to cover multiple scattering configurations.
In that case, the integral operator has the form

(Au)(x) =

L∑

i=1

∫

Γi

G(x, y)ui(y) dsy, (C.5)

with u = (u1, u2, . . . , uL) consisting of L density functions corresponding to
L distinct obstacles. For the example configuration shown in Figure C.5,
we have L = 3 obstacles with a circular shape.

The boundary element method can be used to solve integral equations
involving operators of the form (C.5). The solution has the form

ui(x) =

Ni∑

j=1

cijφij(x), i = 1, . . . , L, (C.6)

with basis functions φij that are defined on Γi. We applied the boundary
element method using wavelet packet basis functions on each boundary Γi,
i = 1, . . . , L [122]. The results are shown in Figure C.6, in the same way
as the numerical results of the wavelet packet method were presented in
§3.8.2. The figure shows the number of nonzero matrix elements for in-
creasing wavenumbers after compression of the transformed discretisation
matrix, divided by the total number of basis functions N :=

∑L
i=1Ni. The
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Figure C.6: Comparison of the sparsity of the discretisation matrix after
a number of wavelet and wavelet packets transforms, for the scattering
configuration shown in Figure C.5.

figure is similar to Figures 3.9 and 3.10. This result for multiple scat-
tering confirms the earlier findings. The best result is obtained with the
two-dimensional best basis algorithm (BB2). The other wavelet packets
transforms (NearBB1,RhsBB1,NearBB2), that have a lower total compu-
tational cost, still outperform the regular wavelet method (W) for higher
frequencies.

The ability to model multiple scattering increases the applicability of
the boundary element method. For example, when the distance between
the circular obstacles in Figure C.5 has the same order as the wavelength,
this scattering problem models the typical interference pattern of waves.
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