Zürich Summer School Lectures

Prof. Ralf Hiptmair

August 2006

(C) Seminar für Angewandte Mathematik, ETH Zürich

Contents

1	Bou	ndary	Integral Equations	5
	1.1	Helmh	noltz equation	7
		1.1.1	Fundamental solutions	7
		1.1.2	Boundary potentials	9
		1.1.3	Boundary integral operators	13
		1.1.4	Boundary integral equations	18
			1.1.4.1 Direct BIE	20
			1.1.4.2 Transmission BIE	28
			1.1.4.3 Indirect BIE	29
		1.1.5	Symmetric Coupling	31
	1.2	Time-	narmonic Maxwell's equations	33
		1.2.1	Traces	33
		1.2.2	Representation formula	33
		1.2.3	Boundary integral operators	33

р. 2

2	Clas	assical Boundary Element Methods 3			
	2.1	Meshes	34		
	2.2	Standard boundary element spaces	37		
	2.3	A priori error analysis	42		
	2.4	Aspects of implementation	45		
		2.4.1 Assembly of Galerkin matrix	45		
		2.4.2 Boundary approximation	48		
	2.5	Spectral Galerkin methods	49		
	2.6	Boundary elements for electromagnetics	50		
0	Faat	t Multipolo Mothodo	E1		
ა	rasi		51		
	3.1	Challenge and model problems	51		
	3.2	Abstract approximation error estimates	55		
	3.3	Hierarchical clustering for low frequencies	57		
		3.3.1 Idea: separable kernel approximation	57		
		3.3.2 Separable polynomial approximation	69		
		3.3.3 Clustering	76		
		3.3.4 Matrix×vector algorithm	83		
		3.3.5 Interpolation techniques	87		
	3.4	Hierarchical clustering for high frequencies	90		
		3.4.1 Failure of low rank approximation	91		
		3.4.2 Cylindrical wave approximation	94		
		3.4.3 Plane wave approximation	101		
		3.4.4 Kernel approximation error estimates	109		
		3.4.5 Plane wave FMM: Algorithm	115		

0.0

р. з

4	Pred	conditioning Techniques	119
	4.1	The rationale	119
	4.2	Operator preconditioning	123
		4.2.1 Abstract framework	123
		4.2.2 Boundary element application	124
	4.3	Asymptotic preconditioning	128

Boundary Integral Equations

McLean, W. (2000), *Strongly Elliptic Systems and Boundary Integral Equations*, Cambridge University Press, Cambridge, UK, Chapter 6-9.

Sauter, S. & Schwab, C. (2004), *Randelementmethoden*, BG Teubner, Stuttgart, Chapter 3.

Hackbusch, W. (1995), *Integral equations. Theory and numerical treatment.*, Vol. 120 of *International Series of Numerical Mathematics*, Birkhäuser, Basel, Chapter 7-8.

We generally assume

 \succ

 Ω^- has Lipschitz boundary $\Gamma := \partial \Omega^-$

PSfrag replacements existence of exterior unit normal vector field $\boldsymbol{n} \in L^{\infty}(\Gamma)$

- $\,\,$ "smooth" C^1 -boundary Γ Special cases:
 - piecewise smooth boundary

 Ω^{-}

1.1

 \boldsymbol{n}

 Ω^+

1.1 Helmholtz equation

Focus on Helmholtz equation:

$$-\Delta u - \kappa^2 u = 0, \quad \kappa \ge 0$$

Definition 1.1.1 (Radiating Helmholtz solution).

A distribution $u \in \mathcal{D}'(\Omega)$ is a radiating Helmholtz solution, if

- it satisfies the Helmholtz equation $-\Delta u \kappa^2 u = 0$ in Ω ,
- (for unbounded Ω) it complies with the Sommerfeld radiation conditions

$$\left| rac{\partial u}{\partial r}({m x}) - i\kappa u({m x})
ight| = o(|x|^{(1-d)/2}) \quad \textit{uniformly for } |{m x}| o \infty \; .$$

PDE theory:

radiating Helmholtz solutions are analytic inside Ω

1.1.1 Fundamental solutions

fundamental solution $G \in \mathcal{D}'(\mathbb{R}^d)$ = distributional solution in \mathbb{R}^d for point source " δ ":

• $-\Delta G - \kappa^2 G = \delta$ in the sense of distributions, $(\delta(\psi) = \psi(0) \quad \forall \psi \in \mathcal{D}(\mathbb{R}^d))$

• u is radiating Helmholtz solution on $\mathbb{R}^d \setminus \{0\}$

"Convolution with fundamental solution provides solution operator":

For $f \in \mathcal{D}(\mathbb{R}^d)$: $u(\boldsymbol{x}) := \int_{\mathbb{R}^d} G(\boldsymbol{x} - \boldsymbol{y}) f(\boldsymbol{y}) \, \mathrm{d}\boldsymbol{y}$ solves $-\Delta u - \kappa^2 u = f$ (and complies with Sommerfeld radiation conditions)

Newton potential operator:
$$(N_{\kappa}f)(\boldsymbol{x}) := \int_{\mathbb{R}^d} G(\boldsymbol{x} - \boldsymbol{y}) f(\boldsymbol{y}) \, \mathrm{d}\boldsymbol{y}$$
. (1.1.1)

Lemma 1.1.3 (Newton potential). N_{κ} can be extended to an injective operator N_{κ} : $H_{\text{comp}}^{-1}(\mathbb{R}^d) \mapsto H_{\text{loc}}^1(\mathbb{R}^d).$

 N_{κ} is "smoothing operator" of order -2 (inverse of 2nd-order differential operator)

1.1.2 Boundary potentials

Notation: $\gamma_D \doteq \text{``Dirichlet trace''}, (\gamma_D u)(\boldsymbol{x}) = u(\boldsymbol{x}), \quad \boldsymbol{x} \in \Gamma, u \in C^0(\overline{\Omega})$

Theorem 1.1.4 (Trace theorem for $H^1(\Omega)$). \rightarrow (McLean 2000, Thm. 3.38) For any Lipschitz domain $\gamma_D : C^0(\overline{\Omega}) \mapsto C^0(\Gamma)$ can be extended to a **continuous** and **surjective** operator $\gamma_1 : H^1_{\text{loc}}(\Omega) \mapsto H^{\frac{1}{2}}(\Gamma)$.

Recall Green's formula ("integration by parts"):

$$\int_{\Omega} u \Delta v - v \Delta u \, \mathrm{d}\boldsymbol{x} = \int_{\Gamma} u \operatorname{\mathbf{grad}} v \cdot \mathbf{n} - v \operatorname{\mathbf{grad}} u \cdot \mathbf{n} \, \mathrm{d}S \quad \forall u, v \in H^{1}_{\mathsf{loc}}(\Delta; \Omega) , \qquad (1.1.2)$$

with
$$H^{1}_{\mathsf{loc}}(\Delta; \Omega) := \{ u \in H^{1}_{\mathsf{loc}}(\Omega) : \Delta u \in L^{2}_{\mathsf{loc}}(\Omega) \}.$$

Notation: $\gamma_N \doteq$ "Neumann trace", $(\gamma_N u)(\boldsymbol{x}) = \operatorname{grad} u(\boldsymbol{x}) \cdot \boldsymbol{n}(\boldsymbol{x}), \, \boldsymbol{x} \in \Gamma, \, u \in C^1(\bar{\Omega})$

 $\begin{array}{ll} (1.1.2) \Rightarrow & \gamma_N : C^1(\bar{\Omega}) \mapsto C^0(\Gamma) \text{ can be extended to a continuous and surjective trace operator} \\ & \gamma_N : H^1_{\mathsf{loc}}(\Delta; \Omega) \mapsto H^{-\frac{1}{2}}(\Gamma), \ \underline{H^{-\frac{1}{2}}(\Gamma)} \doteq \mathsf{dual of } H^{\frac{1}{2}}(\Gamma) \text{ w.r.t. } L^2(\Gamma) \text{ pivot space.} \end{array}$

Theorem 1.1.5 (Representation formula for Helmholtz solutions). A radiating Helmholtz solution $u \in H^1_{loc}(\Omega^- \cup \Omega^+)$ (\rightarrow Def. 1.1.1) on $\Omega^- \cup \Omega^+$ has the integral representation (in the sense of distributions)

$$u(\boldsymbol{x}) = -\int_{\Gamma} G(\boldsymbol{x}, \boldsymbol{y}) [\gamma_{N} u(\boldsymbol{y})]_{\Gamma} dS(\boldsymbol{y}) + \int_{\Gamma} \gamma_{N, \boldsymbol{y}} G(\boldsymbol{x}, \boldsymbol{y}) [\gamma_{D} u(\boldsymbol{y})]_{\Gamma} dS(\boldsymbol{y})$$

single layer potential operator Ψ_{SL} double layer potential operator Ψ_{DL}
Notation: jump $[\gamma \cdot]_{\Gamma} := \gamma^{+} \cdot -\gamma^{-} \cdot, \quad \gamma^{+} \doteq$ trace from $\Omega^{+}, \gamma^{-} \doteq$ trace from Ω^{-}

 $\begin{array}{ll} \text{Cauchy data } (\gamma_D u, \gamma_N u) \text{ of Helmholtz} & \text{repesentation} \\ \text{solution } u \in H^1_{\text{loc}}(\Delta; \Omega) & \text{formula, Thm. 1.1.5} & \text{formula, Thm. 1.1.5} \\ \end{array} \qquad \begin{array}{l} \text{pointwise recovery of } u \\ \text{in } \Omega^- \cup \Omega^+ \end{array}$

Formal definitions:

single layer potential operator:
$$\Psi_{SL}(\varphi)(\boldsymbol{x}) := \int_{\Gamma} G(\boldsymbol{x}, \boldsymbol{y})\varphi(\boldsymbol{y}) \, \mathrm{d}S(\boldsymbol{y}) \,, \qquad (1.1.3)$$

double layer potential operator: $\Psi_{\mathsf{DL}}(u)(\boldsymbol{x}) := \int_{\Gamma} \gamma_{N,\boldsymbol{y}} G(\boldsymbol{x},\boldsymbol{y}) u(\boldsymbol{y}) \, \mathrm{d}S(\boldsymbol{y})$.

1.1 p. 11

(1.1.4)

Classical formula for
$$d = 3$$
: $\Psi_{\text{DL}}(u)(\boldsymbol{x}) = \int_{\Gamma} \frac{e^{i|\boldsymbol{x}-\boldsymbol{y}|}(1-i|\boldsymbol{x}-\boldsymbol{y}|)}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \frac{(\boldsymbol{x}-\boldsymbol{y})\cdot\boldsymbol{n}(\boldsymbol{y})}{|\boldsymbol{x}-\boldsymbol{y}|^2} u(\boldsymbol{y}) \,\mathrm{d}S(\boldsymbol{y})$.

"Functional analytic" definition: (* tags adjoint w.r.t. pivot space $L^2(\Omega)$, $L^2(\Gamma)$, resp.)

$$\Psi_{\mathsf{SL}} = \mathsf{N}^*_\kappa \circ \gamma^*_D \qquad,\qquad \Psi_{\mathsf{DL}} = \mathsf{N}^*_\kappa \circ \gamma^*_N \;.$$

$$\begin{split} \Psi_{\mathsf{SL}} &: H^{-\frac{1}{2}}(\Gamma) \mapsto H^{1}_{\mathrm{loc}}(\mathbb{R}^{d}) \cap H^{1}_{\mathrm{loc}}(\Delta, \Omega^{-} \cup \Omega^{+}) , \\ \Psi_{\mathsf{DL}} &: H^{\frac{1}{2}}(\Gamma) \mapsto H^{1}_{\mathrm{loc}}(\Delta, \Omega^{-} \cup \Omega^{+}) \end{split} \quad \text{are continuous !} \quad (1.1.5)$$

radiating Helmholtz solutions in $\Omega^- \cup \Omega^+$.

 $\begin{array}{ll} \text{Moreover:} & \forall \varphi \in H^{-\frac{1}{2}}(\Gamma) \\ \forall u \in H^{\frac{1}{2}}(\Gamma) \end{array} \quad \text{provide} \quad \begin{array}{l} \Psi_{\mathsf{SL}}(\varphi) \\ \Psi_{\mathsf{DL}}(u) \end{array}$

Theorem 1.1.6 (Jump relations). \rightarrow (*McLean 2000, Thm. 6.11*) For all $\varphi \in H^{\frac{1}{2}}(\Gamma)$, $u \in H^{\frac{1}{2}}(\Gamma)$ hold the jump relations:

$$\begin{split} & [\gamma_D \Psi_{\textit{SL}}(\varphi)]_{\Gamma} = 0 \quad , \quad [\gamma_D \Psi_{\textit{DL}}(u)]_{\Gamma} = u \quad \textit{in} \; H^{\frac{1}{2}}(\Gamma) \; , \\ & [\gamma_N \Psi_{\textit{SL}}(\varphi)]_{\Gamma} = -\varphi \quad , \quad [\gamma_N \Psi_{\textit{DL}}(u)]_{\Gamma} = 0 \quad \textit{in} \; H^{-\frac{1}{2}}(\Gamma) \; . \end{split}$$

1.1.3 Boundary integral operators

Boundary potentials + trace operators → boundary integral operators

Definition 1.1.7 (Boundary integral operators).

Single layer boundary integral operator:

Double layer boundary integral operators:

Hypersingular boundary integral operator:

$$\begin{split} \mathsf{V}_{\kappa} &:= \gamma_{D} \Psi_{\mathcal{SL}} \; : \; H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma) \; , \\ \mathsf{K}_{\kappa} &:= \{\gamma_{D} \Psi_{\mathcal{DL}}\}_{\Gamma} \; : \; H^{\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma) \; , \\ \mathsf{K}'_{\kappa} &:= \{\gamma_{N} \Psi_{\mathcal{SL}}\}_{\Gamma} \; : \; H^{-\frac{1}{2}}(\Gamma) \mapsto H^{-\frac{1}{2}}(\Gamma) \; , \\ \mathsf{W}_{\kappa} &:= -\gamma_{N} \Psi_{\mathcal{DL}} \; : \; H^{\frac{1}{2}}(\Gamma) \mapsto H^{-\frac{1}{2}}(\Gamma) \; . \end{split}$$

Notation: average $\{\gamma \cdot\}_{\Gamma} := \frac{1}{2}(\gamma^+ + \gamma^-), \quad \gamma^+ \doteq \text{trace from } \Omega^+, \gamma^- \doteq \text{trace from } \Omega^-$

Corollary 1.1.8 (Continuity of boundary integral operators in trace norms). *All boundary integral operators of Def. 1.1.7 are continuous*

A more refined result:

Theorem 1.1.9 (Continuity of boundary integral operators). \rightarrow (*McLean 2000, Thm. 7.1*) *The boundary integral operators* (\rightarrow *Def. 1.1.7*)

 $V_{\kappa}: H^{s-\frac{1}{2}}(\Gamma) \mapsto H^{s+\frac{1}{2}}(\Gamma)$ $\mathsf{K}'_{\kappa}: H^{s-\frac{1}{2}}(\Gamma) \mapsto H^{s-\frac{1}{2}}(\Gamma)$

$$, \quad \mathsf{K}_{\kappa} : H^{s + \frac{1}{2}}(\Gamma) \mapsto H^{s + \frac{1}{2}}(\Gamma) ,$$
$$, \quad \mathsf{W}_{\kappa} : H^{s + \frac{1}{2}}(\Gamma) \mapsto H^{s - \frac{1}{2}}(\Gamma) ,$$

are continuous for any $s \in [-\frac{1}{2}, \frac{1}{2}]$.

Are the operators from Def. 1.1.7 really boundary integral operators ?

(asks for a *boundary integral representation*)

Assumption: Γ is piecewise smooth (boundary of a curvilinear polygon/polyhedron)

•
$$\forall \varphi \in L^{\infty}(\Gamma)$$
: $V_{\kappa}\varphi = \int_{\Gamma} G(\cdot, \boldsymbol{y})\varphi(\boldsymbol{y}) dS(\boldsymbol{y})$ in $C^{0}(\Gamma)$.
• for u p.w. C^{1} : $K_{\kappa}u = \int_{\Gamma} \gamma_{N,\boldsymbol{y}}G(\cdot, \boldsymbol{y})u(\boldsymbol{y}) dS(\boldsymbol{y})$ a.e. on Γ ,

where

Some *compactness results*:

• For a C^2 -boundary: $\mathsf{K}_{\kappa}, \mathsf{K}'_{\kappa} : L^2(\Gamma) \mapsto H^1(\Gamma)$ continuous \rightarrow (Hackbusch 1995, Sect. 8.2)

The following differences of boundary integral operators are compact

$$\mathbf{V}_{\kappa} - \mathbf{V}_{0} : H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma) \quad , \quad \mathbf{K}_{\kappa} - \mathbf{K}_{0} : H^{\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma) \quad ,$$

$$\mathbf{K}_{\kappa}' - \mathbf{K}_{0}' : H^{-\frac{1}{2}}(\Gamma) \mapsto H^{-\frac{1}{2}}(\Gamma) \quad , \quad \mathbf{W}_{\kappa} - \mathbf{W}_{0} : H^{\frac{1}{2}}(\Gamma) \mapsto H^{-\frac{1}{2}}(\Gamma)$$

 \triangleright $\mathbf{K}^*_{\kappa} = \mathbf{K}'_{\kappa} (L^2(\Gamma) \text{-adjoints})$ up to compact perturbations

Boundary integral operators and sesqui-linear forms: by duality of $H^{\frac{1}{2}}(\Gamma) - H^{-\frac{1}{2}}(\Gamma)$

$$\begin{split} \mathsf{V}_{\kappa} &: H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma) \quad \vartriangleright \quad (\varphi, \psi) \mapsto \langle \mathsf{V}_{\kappa} \varphi, \psi \rangle \in L(H^{-\frac{1}{2}}(\Gamma) \times H^{-\frac{1}{2}}(\Gamma), \mathbb{C}) \\ \mathsf{W}_{\kappa} &: H^{\frac{1}{2}}(\Gamma) \mapsto H^{-\frac{1}{2}}(\Gamma) \quad \vartriangleright \quad (u, v) \mapsto \langle \mathsf{W}_{\kappa} u, v \rangle \in L(H^{\frac{1}{2}}(\Gamma) \times H^{\frac{1}{2}}(\Gamma), \mathbb{C}) \;. \end{split}$$

For p.w. smooth Γ : straightforward from integral representation

$$\langle \mathsf{V}_{\kappa}\varphi,\psi\rangle = \int_{\Gamma} \int_{\Gamma} G(\boldsymbol{x},\boldsymbol{y})\varphi(\boldsymbol{y})\overline{\psi}(\boldsymbol{x})\,\mathrm{d}S(\boldsymbol{y})\mathrm{d}S(\boldsymbol{x}) \quad \forall\varphi,\psi\in L^{\infty}(\Gamma) \;. \tag{1.1.7}$$

For hypersingular sesqui-linear form: regularization (\leftarrow integration by parts on Γ):

Lemma 1.1.10 (Expression for hypersingular sesqui-linear form). (McLean 2000, Thm. 9.15) For piecewise smooth Γ and $u, v \in W^{1,\infty}(\Gamma)$ and

$$d = 2: \qquad \langle \mathsf{W}_{\kappa} u, v \rangle = \left\langle \mathsf{V}_{\kappa} \frac{\partial u}{\partial s}, \frac{\partial v}{\partial s} \right\rangle - \kappa^2 \left\langle \mathsf{V}_{\kappa}(u\boldsymbol{n}), v\boldsymbol{n} \right\rangle , \qquad (1.1.8)$$

where $\frac{\partial}{\partial s}$ is the derivative along Γ w.r.t. arc length, and

 $d = 3: \qquad \langle \mathsf{W}_{\kappa} u, v \rangle = \langle \mathsf{V}_{\kappa} \mathbf{curl}_{\Gamma} u, \mathbf{curl}_{\Gamma} v \rangle - \kappa^2 \langle \mathsf{V}_{\kappa} (u\boldsymbol{n}), v\boldsymbol{n} \rangle \quad , \qquad (1.1.9)$

where $\operatorname{curl}_{\Gamma}$ is the surface rotation (= rotated surface gradient).

Ellipticity of sesqui-linear forms associated with boundary integral operators: \rightarrow (McLean 2000, Cor. 8.13)

Theorem 1.1.11 (Ellipticity of single layer/hypersingular boundary integral operators). For d = 3 and d = 2 in the case of diam $\Omega < 1$:

$$\begin{split} \exists C &= C(\Gamma) \colon \quad \langle \mathsf{V}_{\mathbf{0}} \varphi, \varphi \rangle \geq C \, \|\varphi\|^2_{H^{-\frac{1}{2}}(\Gamma)} \quad \forall \varphi \in H^{-\frac{1}{2}}(\Gamma) \ , \\ \exists C &= C(\Gamma) \colon \quad \langle \mathsf{W}_{\mathbf{0}} v, v \rangle \geq C \, \|v\|^2_{H^{\frac{1}{2}}(\Gamma)} \quad \forall u \in H^{\frac{1}{2}}(\Gamma) / \mathbb{R} \ . \end{split}$$

the sesqui-linear forms associated with V_{κ} , W_{κ} are $H^{-\frac{1}{2}}(\Gamma)/H^{\frac{1}{2}}(\Gamma)$ -coercive !

BIG ISSUE: κ -dependence of operator norms/coercivity constants (\rightarrow Simon's lecture)

1.1.4 Boundary integral equations

Relevant boundary value problems (BVPs) for Helmholtz equation:

• Exterior Dirichlet problem:

$$\begin{aligned} -\Delta u - \kappa^2 u &= 0 & \text{in } \Omega^+ , \\ \gamma_D u &= g \in H^{\frac{1}{2}}(\Gamma) \text{ on } \Gamma , \end{aligned} + \begin{aligned} \text{Sommerfeld} \\ \text{radiation b.c. at } \infty . \end{aligned} \tag{1.1.10}$$

• Exterior Neumann problem:

$$\begin{aligned} -\Delta u - \kappa^2 u &= 0 & \text{in } \Omega^+ , \\ \gamma_N u &= \psi \in H^{-\frac{1}{2}}(\Gamma) \text{ on } \Gamma , \end{aligned} + \begin{aligned} & \text{Sommerfeld} \\ & \text{radiation b.c. at } \infty . \end{aligned}$$
(1.1.11)

Extension: mixed BVP $\stackrel{}{=}$ Dirichlet/Neumann b.c. on different parts Γ_D / Γ_N of Γ

• Transmission problem:

$$\begin{aligned} -\Delta u - \kappa_{+}^{2} u &= 0 & \text{in } \Omega^{+} ,\\ -\Delta u - \kappa_{-}^{2} u &= 0 & \text{in } \Omega^{-} ,\\ [\gamma_{D} u]_{\Gamma} &= g \in H^{-\frac{1}{2}}(\Gamma) \text{ on } \Gamma , \\ [\gamma_{N} u]_{\Gamma} &= \psi \in H^{-\frac{1}{2}}(\Gamma) \text{ on } \Gamma , \end{aligned} \qquad + \qquad \begin{aligned} \text{Sommerfeld} \\ \text{radiation b.c. at } \infty . \end{aligned} \qquad (1.1.12)$$

Representation formula + trace operators → boundary integral equations

1.1.4.1 Direct BIE

Given: $u \in H^1_{\text{loc}}(\Delta; \Omega^- \cup \Omega^+) = \text{Helmholtz solution in } \Omega^- \cup \Omega^+$

Thm. 1.1.5
$$\Rightarrow \begin{pmatrix} \gamma_D^- u \\ \gamma_N^- u \end{pmatrix} = \underbrace{\begin{pmatrix} \frac{1}{2} \mathsf{Id} - \mathsf{K}_\kappa & \mathsf{V}_\kappa \\ \mathsf{W}_\kappa & \frac{1}{2} \mathsf{Id} + \mathsf{K}'_\kappa \end{pmatrix}}_{\text{interior Calderón projector } \mathsf{P}^-$$
(1.1.13)
Thm. 1.1.5
$$\Rightarrow \begin{pmatrix} \gamma_D^+ u \\ \gamma_N^+ u \end{pmatrix} = \underbrace{\begin{pmatrix} \frac{1}{2} \mathsf{Id} + \mathsf{K}_\kappa & -\mathsf{V}_\kappa \\ -\mathsf{W}_\kappa & \frac{1}{2} \mathsf{Id} - \mathsf{K}'_\kappa \end{pmatrix}}_{\text{exterior Calderón projector } \mathsf{P}^+$$
(1.1.14)

Lemma 1.1.12 (Calderón projectors). (Sauter & Schwab 2004, Sect. 3.6) $\mathsf{P}^{-}, \mathsf{P}^{+}: H^{\frac{1}{2}}(\Gamma) \times H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma) \times H^{-\frac{1}{2}}(\Gamma) \text{ are continous projectors with } \mathsf{P}^{-} + \mathsf{P}^{+} = \mathsf{Id}.$

$$\begin{array}{ll} & \begin{tabular}{ll} & \begin{tabular}{ll} & \end{tabular} & \end$$

 $\begin{array}{ll} \triangleright \quad \text{direct boundary integral equations for exterior Neumann problem (1.1.10)} \\ & u \in H^{\frac{1}{2}}(\Gamma): \quad (\frac{1}{2}\mathsf{Id} + \mathsf{K}_{\kappa})u = \mathsf{V}_{\kappa}(\psi) \quad \text{in } H^{-\frac{1}{2}}(\Gamma) \;, \\ & \varphi \in H^{-\frac{1}{2}}(\Gamma): \quad -\mathsf{W}_{\kappa}(u) = (\frac{1}{2}\mathsf{Id} + \mathsf{K}'_{\kappa})\psi \quad \text{in } H^{-\frac{1}{2}}(\Gamma) \;. \end{array} \tag{1.1.18} \\ & \text{Unknown:} \quad \text{Dirichlet data } u = \gamma_D^+ u \quad (\text{``physical unknowns''}) \end{array}$

Terminology:

 $(1.1.15),(1.1.18) \stackrel{\circ}{=}$ first kind boundary integral equations $(1.1.16),(1.1.17) \stackrel{\circ}{=}$ second kind boundary integral equations

Issue: Existence and uniqueness of solutions of direct boundary integral equations

Theorem 1.1.13 (Characterization of Cauchy data). For $(u, \varphi) \in H^{\frac{1}{2}}(\Gamma) \times H^{-\frac{1}{2}}(\Gamma)$

 $\begin{pmatrix} (u,\varphi) \in \operatorname{Im}(\mathsf{P}^{-}) \Leftrightarrow (u,\varphi) \in \operatorname{Ker}(\mathsf{P}^{+}) \end{pmatrix} \iff (u,\varphi) \text{ Cauchy data for Helmholtz sol. in } \Omega^{-}, \\ \begin{pmatrix} (u,\varphi) \in \operatorname{Im}(\mathsf{P}^{+}) \Leftrightarrow (u,\varphi) \in \operatorname{Ker}(\mathsf{P}^{-}) \end{pmatrix} \iff (u,\varphi) \text{ Cauchy data for Helmholtz sol. in } \Omega^{+}.$

Known from PDE theory: \rightarrow Simon's lecture

existence & uniqueness of solutions of exterior Neumann/Dirichlet and transmission boundary value problems for all $\kappa \ge 0$

BUT direct boundary integral equations have a resonance problem:

Definition 1.1.14 (Interior resonant frequencies).

 $\kappa \text{ interior Dirichlet eigenvalue } :\Leftrightarrow \exists u \in H_0^1(\Omega^-) \setminus \{0\}: -\Delta u = \kappa^2 u \text{ in } \Omega^- ,$ $\kappa \text{ interior Neumann eigenvalue } :\Leftrightarrow \exists u \in H_{\textit{loc}}^1(\Delta; \Omega^-) \setminus \{0\}: \begin{cases} -\Delta u = \kappa^2 u \text{ in } \Omega^- , \\ \gamma_N^- u = 0 \text{ on } \Gamma . \end{cases}$

Interior Dirichlet/Neumann eigenvalues are also called interior resonant frequencies.

Note: (both types of) interior resonant frequencies form an discrete sets $\subset \mathbb{R}_0^+$ with no accumulation point

 κ interior Dirichlet eigenvalue $\Rightarrow \exists u \neq 0, -\Delta u - \kappa^2 u = 0 \land \gamma_D^- u = 0$

$$\begin{array}{c} \text{Thm. 1.1.13} \\ \Longrightarrow \end{array} \quad \mathsf{V}_{\kappa}(\varphi) = 0 \quad \wedge \quad (\frac{1}{2}\mathsf{Id} - \mathsf{K}'_{\kappa})\varphi = 0 \quad \text{for } \varphi := \gamma_{N}^{-}u \neq 0 \ . \\ \text{Ker}(\mathsf{V}_{\kappa}) \neq \{0\}, \quad \text{Ker}(\frac{1}{2}\mathsf{Id} - \mathsf{K}'_{\kappa}) \neq \{0\} \ ! \end{array}$$

 κ interior Neumann eigenvalue $\Rightarrow \exists u \neq 0, -\Delta u - \kappa^2 u = 0 \land \gamma_N^- u = 0$

$$\begin{array}{l} \text{Thm. 1.1.13} \\ \Longrightarrow \end{array} \quad (\frac{1}{2}\mathsf{Id} + \mathsf{K}_{\kappa})v = 0 \quad \wedge \quad \mathsf{W}_{\kappa}v = 0 \quad \text{for } v := \gamma_{D}^{-}u \neq 0 \ . \\ \text{Ker}(\mathsf{W}_{\kappa}) \neq \{0\}, \quad \text{Ker}(\frac{1}{2}\mathsf{Id} + \mathsf{K}_{\kappa}) \neq \{0\} \ ! \end{array}$$

No uniqueness of solutions of direct BIE for κ = interior Dirichlet (1.1.15), (1.1.16) or Neumann (1.1.18), (1.1.17) resonant frequency.

(Nevertheless: solutions exists and, in Ω^+ can be recovered by representation formula)

Theorem 1.1.15 (Existence & uniqueness of solutions of direct BIE). $\kappa \neq interior$ Dirichlet
Neumann(1.1.15), (1.1.16)
(1.1.18), (1.1.17)have unique solutions.

Remedy for resonance problem: combined field integral equations (CFIE) (Burton & Miller 1971)

- Uniqueness of solutions of interior BVP for impedance boundary conditions
- Idea: complex linear combination of boundary integral equations of Calderón identities from (1.1.14)
- For exterior Helmholtz solution with $\eta > 0$

$$\gamma_{D}^{+}u = (\mathsf{K}_{\kappa} + \frac{1}{2}\mathsf{Id})(\gamma_{D}^{+}u) - \mathsf{V}_{\kappa}(\gamma_{N}^{+}u) , \qquad (1.1.19)$$

$$\gamma_N^+ u = -\mathsf{W}_{\kappa}(\gamma_D^+ u) - (\mathsf{K}'_{\kappa} - \frac{1}{2}\mathsf{Id})(\gamma_N^+ u) .$$
(1.1.20)

$$(i\eta(\mathsf{K}_{\kappa}+\tfrac{1}{2}\mathsf{Id})-\mathsf{W}_{\kappa})(\gamma_{D}^{+}u)-(i\eta\mathsf{V}_{\kappa}+\tfrac{1}{2}\mathsf{Id}+\mathsf{K}_{\kappa}')(\gamma_{N}^{+}u)=0\;.$$

▷ 2nd-kind integral equation for exterior Dirichlet problem (1.1.10)

$$\varphi \in H^{-\frac{1}{2}}(\Gamma): \quad (i\eta \mathsf{V}_{\kappa} + \frac{1}{2}\mathsf{Id} + \mathsf{K}'_{\kappa})(\varphi) = (i\eta (\mathsf{K}_{\kappa} + \frac{1}{2}\mathsf{Id}) - \mathsf{W}_{\kappa})(g) . \tag{1.1.21}$$

Theorem 1.1.16 (Uniqueness of solutions of CFIE).

 $i\eta V_{\kappa} + \frac{1}{2} \mathrm{Id} + \mathrm{K}'_{\kappa} : H^{-\frac{1}{2}}(\Gamma) \mapsto H^{-\frac{1}{2}}(\Gamma) \text{ is injective}$

p. 24

Variational formulations of direct BIE (\geq linear variational problems):

• No problem for *1st-kind boundary integral equations*: (duality !)

(1.1.15)
$$\Leftrightarrow \varphi \in H^{-\frac{1}{2}}(\Gamma): -\langle \mathsf{V}_{\kappa}\varphi,\psi\rangle = \left\langle (\frac{1}{2}\mathsf{Id}-\mathsf{K}_{\kappa})g,\psi\right\rangle \quad \forall\psi \in H^{-\frac{1}{2}}(\Gamma) , \quad (1.1.22)$$
(1.1.18)
$$\Leftrightarrow u \in H^{\frac{1}{2}}(\Gamma): -\langle \mathsf{W}_{\kappa}u,v\rangle = \left\langle (\frac{1}{2}\mathsf{Id}+\mathsf{K}_{\kappa}')\psi,v\right\rangle \quad \forall v \in H^{\frac{1}{2}}(\Gamma) . \quad (1.1.23)$$
hm. 1.1.11
$$\Rightarrow \quad (1.1.22), (1.1.23) \text{coercive variational problems !}$$

- 2nd-kind boundary integral equations: no duality \rightarrow no natural variational formulation • variational formulations based on inner products (notation: $(\cdot, \cdot)_X$)
- option: inner products of trace spaces

Т

$$(1.1.16) \Leftrightarrow \varphi \in H^{-\frac{1}{2}}(\Gamma): \quad \left(\left(\frac{1}{2} \mathsf{Id} - \mathsf{K}'_{\kappa} \right) \varphi, \psi \right)_{H^{-\frac{1}{2}}(\Gamma)} = \left(\mathsf{W}_{\kappa}(g), \psi \right)_{H^{-\frac{1}{2}}(\Gamma)} \quad \forall \psi \in H^{-\frac{1}{2}}(\Gamma) ,$$

$$(1.1.24)$$

$$(1.1.17) \Leftrightarrow u \in H^{\frac{1}{2}}(\Gamma): \quad \left(\left(\frac{1}{2} \mathsf{Id} + \mathsf{K}_{\kappa} \right) u, v \right)_{H^{\frac{1}{2}}(\Gamma)} = \left(\mathsf{V}_{\kappa} \psi, v \right)_{H^{\frac{1}{2}}(\Gamma)} \quad \forall v \in H^{\frac{1}{2}}(\Gamma) . \quad (1.1.25)$$

$$(1.1.25) \qquad 1.1$$

$$p. 25$$

$$\begin{array}{ll} \mbox{Lemma 1.1.17 (Coercivity of operators of 2nd-kind BIE).} & (Sauter \& Schwab 2004, Sect. 3.8) \\ & (\varphi, \psi) \mapsto \left(\left(\frac{1}{2} \mathsf{Id} - \mathsf{K}'_{\kappa} \right) \varphi, \psi \right)_{H^{-\frac{1}{2}}(\Gamma)} & is \ coercive \ in \quad H^{-\frac{1}{2}}(\Gamma) \ , \\ & (u, v) \mapsto \left(\left(\frac{1}{2} \mathsf{Id} + \mathsf{K}_{\kappa} \right) u, v \right)_{H^{\frac{1}{2}}(\Gamma)} & is \ coercive \ in \quad H^{\frac{1}{2}}(\Gamma) \ . \end{array}$$

BUT, (1.1.24), (1.1.25) involve **non-local** inner products ➤ not useful for discretization !

• option: inner product of
$$L^{2}(\Gamma)$$

(1.1.16) $\Leftrightarrow \varphi \in L^{2}(\Gamma)$: $\left(\left(\frac{1}{2} \mathsf{Id} - \mathsf{K}_{\kappa}' \right) \varphi, \psi \right)_{L^{2}(\Gamma)} = (\mathsf{W}_{\kappa}(g), \psi)_{L^{2}(\Gamma)} \quad \forall \psi \in L^{2}(\Gamma) , \quad (1.1.26)$
(1.1.17) $\Leftrightarrow u \in L^{2}(\Gamma)$: $\left(\left(\frac{1}{2} \mathsf{Id} + \mathsf{K}_{\kappa} \right) u, v \right)_{L^{2}(\Gamma)} = (\mathsf{V}_{\kappa}\psi, v)_{L^{2}(\Gamma)} \quad \forall v \in L^{2}(\Gamma) . \quad (1.1.27)$

••

variational formulations not set in *natural trace spaces*

Lemma 1.1.18 (L^2 -coercivity of operators of 2nd-kind BIE). If d = 2 or d = 3 and Γ is C^2 -smooth, then the sesqui-linear forms of (1.1.26) and (1.1.26) are coercive.

Also for CFIE (1.1.21): variational formulation in $L^2(\Gamma)$ -framework > same problems.

Remark 2. Theoretical problems with CFIEs do not seem to translate into practical difficulties. *Remark* 3 (Regularized CFIE).

"mathematically unsettling": CFIE arising from adding equations set in different trace spaces

▷ lift equations into the same space by use of regularizing operator $M : H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma)$

$$\varphi \in H^{-\frac{1}{2}}(\Gamma): \quad (i\eta \mathsf{V}_{\kappa} + \mathsf{M} \circ (\frac{1}{2}\mathsf{Id} + \mathsf{K}'_{\kappa}))(\varphi) = (i\eta (\mathsf{K}_{\kappa} + \frac{1}{2}\mathsf{Id}) - \mathsf{M} \circ \mathsf{W}_{\kappa})(g) \quad \text{in} \ H^{\frac{1}{2}}(\Gamma) .$$
(1.1.28)

Theoretically pleasing, numerically feasible ... , but really necessary ?

regularized CFIE

Buffa, A. & Hiptmair, R. (2005), 'Regularized combined field integral equations', *Numer. Math.* **100**(1), 1–19.

1.1.4.2 Transmission BIE

Thm. 1.1.13 \Rightarrow for solution *u* of transmission problem (1.1.12):

$$\mathsf{P}_{\kappa^{-}}^{+} \begin{pmatrix} \gamma_{D}^{-} u \\ \gamma_{N}^{-} u \end{pmatrix} = 0 \quad \wedge \quad \mathsf{P}_{\kappa^{+}}^{-} \begin{pmatrix} \gamma_{D}^{+} u \\ \gamma_{N}^{+} u \end{pmatrix} = 0 ,$$

+ transmission conditions $\gamma_D^+ u - \gamma_D^- = g$, $\gamma_N^+ u - \gamma_N^- = \psi$:

$$\begin{array}{ll} \langle (\mathsf{W}_{\kappa^{-}} + \mathsf{W}_{\kappa^{+}})u, v \rangle &+ \left\langle (\mathsf{K}_{\kappa^{-}}' + \mathsf{K}_{\kappa^{+}}')\varphi, v \right\rangle = \dots & \forall v \in H^{\frac{1}{2}}(\Gamma) , \\ - \left\langle (\mathsf{K}_{\kappa^{-}} + \mathsf{K}_{\kappa^{+}})u, \mu \right\rangle &+ \left\langle (\mathsf{V}_{\kappa^{-}} + \mathsf{V}_{\kappa^{+}})\varphi, \mu \right\rangle = \dots & \forall \mu \in H^{-\frac{1}{2}}(\Gamma) . \end{array}$$

$$\begin{array}{ll} \text{(1.1.30)} & \text{(1$$

Theorem 1.1.19 (Existence & uniqueness of solutions of transmission BIE). For any $\kappa \ge 0$ and all data (1.1.30) has a unique solution.

1.1.4.3 Indirect BIE

Fact: potentials Ψ_{SL} , Ψ_{DL} provide Helmholtz solutions

 $\begin{array}{ll} \text{single layer ansatz:} \quad u=\Psi_{\mathsf{SL}}(\varphi) \ , \quad \varphi\in H^{-\frac{1}{2}}(\Gamma) \ , \\ \text{double layer ansatz:} \quad u=\Psi_{\mathsf{DL}}(u) \ , \quad u\in H^{\frac{1}{2}}(\Gamma) \ . \end{array}$

$$(1.1.10) \Rightarrow \begin{cases} \gamma_D^+ \Psi_{\mathsf{SL}}(\varphi) = \mathsf{V}_{\kappa}\varphi = g & \text{in } H^{\frac{1}{2}}(\Gamma) , \\ \gamma_D^+ \Psi_{\mathsf{DL}}(u) = (\mathsf{K}_{\kappa} + \frac{1}{2}\mathsf{Id})u = g & \text{in } H^{\frac{1}{2}}(\Gamma) . \end{cases}$$

$$(1.1.11) \Rightarrow \begin{cases} \gamma_N^+ \Psi_{\mathsf{SL}}(\varphi) = (\mathsf{K}'_\kappa - \frac{1}{2}\mathsf{Id})\varphi = \psi & \text{ in } H^{-\frac{1}{2}}(\Gamma) ,\\ \gamma_N^+ \Psi_{\mathsf{DL}}(u) = \mathsf{W}_\kappa(u) = \psi & \text{ in } H^{-\frac{1}{2}}(\Gamma) . \end{cases}$$

first kind & second kind indirect BIE for unknown densities

 \square analysis and variational formulations as for direct BIEs \rightarrow Sect. 1.1.4.1

Advantage: economical ↔ no boundary integral operators on the right hand side

Remark 4 (Interpretation of densities in indirect BIE).

- φ : jump of Neumann data for solutions of interior/exterior Dirichlet BVPs
- u : jump of Drichlet data for solutions of interior/exterior Neumann BVPs

Indirect CFIE:

trial expression $u = \imath \eta \Psi_{SL}(\varphi) + \Psi_{DL}(\varphi)$

➤ indirect CFIE for exterior Dirichlet problem (1.1.10)

$$i\eta \mathsf{V}_{\kappa}(\varphi) + (\frac{1}{2}\mathsf{Id} + \mathsf{K}_{\kappa})(\varphi) = g$$
 . (1.1.31)

uniqueness of solutions & variational formulation in $L^2(\Gamma)$ as above

1.1.5 Symmetric Coupling

Boundary value problem, volume source f supported in Ω^-

 $-\Delta u - \kappa^2 u = f$ in Ω^- , Sommerfeld radiation b.c. at ∞ .

Goal: couple domain variational formulation in Ω^- (\rightarrow FEM) boundary integral equation for exterior domain Ω^+ (\rightarrow BEM) (couple in a variational context)

$$\begin{array}{l} -\Delta u - \kappa^2 u = f \\ \text{in } \Omega^- \end{array} \Leftrightarrow \int_{\Omega^-} \mathbf{grad} \, u \cdot \mathbf{grad} \, v - \kappa^2 u v \, \mathrm{d} \boldsymbol{x} - \int_{\Gamma} \gamma_N u \gamma_D u \, \mathrm{d} S = \int_{\Omega^-} f v \, \mathrm{d} \boldsymbol{x} \\ \int_{\Omega^-} f v \, \mathrm{d} \boldsymbol{x} = \int_{\Omega^-} f v \, \mathrm{d} \boldsymbol{x} + \int_{\Omega^-} f v \, \mathrm{d} \boldsymbol$$

lea: • use transmission condition
$$[\gamma_D u]_{\Gamma} = 0$$
, $[\gamma_N D u]_{\Gamma} = 0$,

- replacement $\gamma_N^+ u = -\mathsf{W}_{\kappa}(\gamma_D^+ u) (\mathsf{K}'_{\kappa} \frac{1}{2}\mathsf{Id})(\gamma_N^+ u), cf. (1.1.20),$ extra equation $\gamma_D^+ u = (\mathsf{K}_{\kappa} + \frac{1}{2}\mathsf{Id})(\gamma_D^+ u) \mathsf{V}_{\kappa}(\gamma_N^+ u), cf. (1.1.19).$

Costabel, M. (1987), Symmetric methods for the coupling of finite elements and boundary elements, in C. Brebbia, W. Wendland & G. Kuhn, eds, 'Boundary Elements' IX', Springer-Verlag, Berlin, pp. 411–420.

coupled variational problem: seek $u \in H^1(\Omega^-)$, $\varphi \in H^{-\frac{1}{2}}(\Gamma)$

$$\begin{split} \int_{\Omega^{-}} \mathbf{grad} \, u \cdot \mathbf{grad} \, v - \kappa^{2} u v \, \mathrm{d}\boldsymbol{x} + \left\langle \mathsf{W}_{\kappa}(\gamma_{D}^{-}u), \gamma_{D}^{-}v \right\rangle \, - \, \left\langle (\mathsf{K}_{\kappa}' - \frac{1}{2}\mathsf{Id})(\varphi), \gamma_{D}^{-}v \right\rangle \, = \, \int_{\Omega^{-}} f v \, \mathrm{d}\boldsymbol{x} \, , \\ \left\langle -(\mathsf{K}_{\kappa} - \frac{1}{2}\mathsf{Id})\gamma_{D}^{-}u, \mu \right\rangle & + \quad \left\langle \mathsf{V}_{\kappa}\varphi, \mu \right\rangle & = 0 \, , \end{split}$$
for all $v \in H^{1}(\Omega^{-}), \mu \in H^{-\frac{1}{2}}(\Gamma)$

coercive variational problem in natural energy/trace spaces

Note: $\kappa =$ interior Dirichlet resonant frequency \Rightarrow non-uniqueness of solution for φ

"CFIE-type" symmetric coupling necessary ?

 \blacktriangleright

Hiptmair, R. & Meury, P. (2005), Stable FEM-BEM coupling for helmholtz transmission problems, Technical Report 2005-06, SAM, ETH Zürich, Zürich, Switzerland (To appear in SIAM J. Numer. Anal.) http://www.sam.math.ethz.ch/reports/2005/06

1.2 Time-harmonic Maxwell's equations

Topic skipped due to lack of time

1.2.1 Traces

Topic skipped due to lack of time

1.2.2 Representation formula

Topic skipped due to lack of time

1.2.3 Boundary integral operators

Topic skipped due to lack of time

Classical Boundary Element Methods

From the perspective of Galerkin discretization:

boundary elements (BEM) $\hat{=}$ finite elements (FEM) for boundary integral equations

Sauter, S. & Schwab, C. (2004), *Randelementmethoden*, BG Teubner, Stuttgart, Chapter 4.

2.1 Meshes

Assume:
$$\Gamma$$
 = boundary of curvilinear polygon (d = 2) or Lipschitz polyhedron (d = 3) 2.1
("CAD geometry") P. 3

4

 Γ = image of parameter domains $D_i \subset \mathbb{R}^{d-1}$ under (one or several) piecewise smooth charts \boldsymbol{n} $\Psi_i : D_i \mapsto \Psi(D_i) \subset \Gamma$ (parameterizations)

d = 2: $\Gamma = \Psi([0, 2\pi[)]$

 \triangleright

Assume lower and upper bounds (≈ 1) on Gram determinant (limited distortion under Ψ_i)

Definition 2.1.1 (Boundary element mesh).

Parameter domains D_i equipped with $\{\Psi_i\}_i$ -compatible finite element triangulations (triangular/quadrilateral for d = 2). A (boundary) mesh on Γ is their image under the Ψ_i .

Notions inherited from FEM:

- ${\scriptstyle ullet}$ meshwidth h of a boundary mesh ${\cal M}_{\Gamma}$
- shape-regular families of boundary meshes
- quasi-uniformity of families of boundary meshes

Geometric objects: cells/panels, vertices/nodes, edges of a boundary mesh

Assume: all boundary meshes aligned with corners/edges of Γ
2.2 Standard boundary element spaces

 $H^{s}(D_{i})$ -conforming finite element spaces on triangulations of parameter domains $H^s(\Gamma)\text{-conforming boundary element}$ spaces on \mathcal{M}_Γ

Note: only holds for -3/2 < s < 3/2 in general, for other *s* smooth Γ required

▷ boundary element spaces ⊂ trace space $H^{\frac{1}{2}}(\Gamma)$:

Lemma 2.2.1 (Compatibility condition for $H^{\frac{1}{2}}(\Gamma)$). A p.w. C^1 -function u (on closed cells of \mathcal{M}_{Γ}) belongs to $H^{\frac{1}{2}}(\Gamma) \iff u \in C^0(\Gamma)$

Notions inherited from FEM:

locally supported nodal basis functions/shape functions

 $\bullet \text{ degrees of freedom } \leftrightarrow \text{ local nodal interpolation operators}$

2.2 p. 38 Recall: asymptotic best approximation estimates in standard finite element spaces

- For finite element spaces $X_h = S_p^0, S_p^{-1}$ on triangular/quadrilateral mesh of $\Omega \subset \mathbb{R}^{d-1}$, -3/2 < s < 3/2 in the case $X_h = S_p^0 \subset C^0(\overline{\Omega})$ -1/2 < s < 1/2 in the case $X_h = S_p^{-1}$
 - $\max\{s, 0\} \le r \le p + 1$:

 $\exists C = C(s, r, p, \text{shape regularity}): \quad \inf_{v_h \in X_h} \|u - v_h\|_{H^s(\Omega)} \le Ch^{r-s} \|u\|_{H^r(\Omega)} \quad \forall u \in H^r(\Omega) .$ (2.2.1)

carries over to boundary element spaces derived from S_p^0 , S_p^{-1} (smoothness of Γ may restrict range of valid r)

Similar: interpolation error estimates for $S_p^0(\mathcal{M}_{\Gamma})$ (\rightarrow edge-by-edge/face-by-face estimates) *Remark* 5. (Almost all) other estimates for finite element spaces (e.g., inverse estimate) have analogues for derived boundary element spaces.

Example 6 (Approximation estimates for oscillatory functions).

Equidistant linear interpolation of $x \mapsto \sin(2\pi kx)$, k > 0 on [0, 1].

minimal resolution required (\rightarrow Nyquist sampling rate) before asymptotic algebraic convergence (2.2.1) sets in.

Meshwidth of \mathcal{M}_{Γ} at least proportional to wavelength $\lambda := \frac{2\pi}{\kappa}$ ("Famous" rule: 5-10 points per wavelenght, sampling condition)

2.3 A priori error analysis

Abstract: Linear variational problem posed on Hilbert space V,

$$u \in V: \quad \mathsf{a}(u, w) = \langle f, w \rangle_V \quad \forall w \in W ,$$
(2.3.1)

- $a \in L(V \times W, \mathbb{K})$ continuous sesqui-linear form,
- $f \in W'$ continuous linear form.

Galerkin discretization based on $V_N \subset V$ > Discrete variational problem

$$u_N \in V_N: \quad \mathbf{a}(u_N, w_N) = f(w_N) \quad \forall w_N \in W_N . \tag{2.3.2}$$

Theorem 2.3.1 (Abstract a priori error estimate for Galerkin discretization). Let the sesqui-linear form $a \in L(V \times W, \mathbb{K})$, V, W Hilbert spaces, give rise to an isomorphism $A: V \mapsto W'$. If the discrete inf-sup conditions

$$\exists \gamma_N > 0: \quad \inf_{v_N \in V_N \setminus \{0\}} \sup_{w_N \in W_N \setminus \{0\}} \frac{|\mathsf{a}(v_N, w_N)|}{\|v_N\|_V \|w_N\|_W} \ge \gamma_N , \tag{2.3.3}$$

$$\sup_{v_N \in V_N} |\mathsf{a}(v_N, w_N)| > 0 \quad \forall w_N \in W_N \setminus \{0\} , \tag{2.3.4}$$

hold, then (2.3.2) has a unique solution $u_N \in V_N$ that satisfies

$$\|u - u_N\|_V \le \left(1 + \frac{\|\mathbf{a}\|_{V \times W \mapsto \mathbb{K}}}{\gamma_N}\right) \inf_{v_N \in V_N} \|u - v_N\|_V .$$
(2.3.5)

Proof. \rightarrow lecture by M. Melenk

Consider sequence of finite dimensional subspaces $(V_N)_N$, $V_N \subset V$ that is asymptotically dense

$$\forall u \in V: \quad \lim_{N \to \infty} \inf_{v_N \in V_N} \|u - v_N\|_V = 0 .$$
 (2.3.6)

2.3 p. 43

Theorem 2.3.2 (Asymptotic convergence estimate for coercive variational problems). a $\in L(V \times V, \mathbb{K})$ coercive and injective ($a(u, v) = 0 \forall v \in V \Rightarrow u = 0$) $\implies \exists N_0 \in \mathbb{N} \text{ and } C > 0$:

$$\begin{aligned} \forall N \geq N_0: \quad \forall u \in V: \quad \exists_1 u_N \in V_N: \quad & \wedge \\ \|u - u_N\|_V \leq C \inf_{v_N \in V_N} \|u - v_N\|_V \end{aligned}$$

Parlance: Galerkin solution u_N is asymptotically quasi-optimal.

quasi-optimality hinges on minimal resolution of trial space

Observation, cf. Ex. 6:

For boundary integral equations related to BVPs for Helmholtz equation convergence requires "sampling condition" for boundary element space

2.4 Aspects of implementation

2.4.1 Assembly of Galerkin matrix

Entry of single layer Galerkin matrix $\mathbf{A} = \mathbb{C}^{N,N}$, N = dimension of boundary element space with nodal basis $\{b_i\}_{i=1,...,N}$,

$$\mathbf{A}_{ij} = \int_{\Gamma} \int_{\Gamma} G(\boldsymbol{x}, \boldsymbol{y}) \, b_i(\boldsymbol{x}) \, b_j(\boldsymbol{y}) \, \mathrm{S}(\boldsymbol{x}) \mathrm{d}S(\boldsymbol{y}) \quad i, j \in \{1, \dots, N\} \;. \tag{2.4.1}$$

to be evaluated: double surface integrals over pairs of panels:

 $\int_{K_1} \int_{K_2} G(\boldsymbol{x}, \boldsymbol{y}) \, b_i(\boldsymbol{x}) \, b_j(\boldsymbol{y}) \, \mathrm{S}(\boldsymbol{x}) \mathrm{d}S(\boldsymbol{y}) \quad i, j \in \{1, \dots, N\} \,, \quad K_1, k_2 \text{ panels of } \mathcal{M}_{\Gamma} \,. \quad \text{(2.4.2)}$

kernel $G(\boldsymbol{x}, \boldsymbol{y})$ oscillates on scale $\lambda = \frac{2\pi}{\kappa}$, which has to be *resolved by* \mathcal{M}_{Γ} , *cf.* Ex. 6.

on the scale of a single panel is **not oscillatory** !

Challenge:

kernel $G(\boldsymbol{x}, B\boldsymbol{y})$ has singularity for $\boldsymbol{x} = \boldsymbol{y}$

Semi-analytic evaluations

Trick: extract singularity (\leftrightarrow subtract off kernel for $\kappa = 0$), e.g., for d = 3

Numerical quadrature

Distinguish two cases in (2.4.2)

1 K_1, K_2 adjacent ($\overline{K}_1 \cap \overline{K}_2 \neq 0$) or near **2** K_1, K_2 well separated

- Case $\mathbf{0}$: \rightarrow singularity encountered
 - use regularizing transformation (Duffy trick) to obtain smooth integrand
 - apply Gaussian quadrature rule to regularized integrals

Case ➡: use low order Gaussion quadrature rules for outer and inner integrals in (2.4.2)

balance: discretization error \longleftrightarrow consistency error due to quadrature (Strang's lemma) (\rightarrow "near field" quadrature order = $O(|\log h|)$)

Detailed recipes:

Sauter, S. & Schwab, C. (2004), *Randelementmethoden*, BG Teubner, Stuttgart, Chapter 5.

2.4.2 Boundary approximation

balance: discretization error $\leftrightarrow \rightarrow$ error due to surface approximation (Strang's lemma)

Rule of thumb (p.w. smooth Γ): polynomial degree p + 1 for surface approximation, if boundary element space derived from p.w. polynomials of degree p

Detailed analysis in forthcoming English edition (chapter 9) of

Sauter, S. & Schwab, C. (2004), Randelementmethoden, BG Teubner, Stuttgart.

2.5 Spectral Galerkin methods

Assumptions: Γ smooth & with *analytic* parameterization $\Psi : [0, 2\pi[\mapsto \Gamma]$ (d = 2),with *analytic* parameterization via the 2-sphere $\Psi : \mathbb{S} \mapsto \Gamma$ (d = 3).(restrictive assumption on geometry)

• analytic data \Rightarrow analytic Cauchy data of solutions of Helmholtz BVPs

Trial anso test spaces (for any function space $H^{\frac{1}{2}}(\Gamma)$, $L^{2}(\Gamma)$, $H^{-\frac{1}{2}}(\Gamma)$):

d = 2: use first N (N odd) harmonics $V_N := \operatorname{Span} \left\{ \boldsymbol{x} \mapsto \exp(\imath k \boldsymbol{\Psi}^{-1}(\boldsymbol{x})) : k = -\frac{N-1}{2}, \dots, \frac{N-1}{2}, \boldsymbol{x} \in \Gamma \right\}$.

 $d = 3: \text{ use first } L^2 \text{ spherical harmonics up to order } L \to (\text{Colton \& Kress 1998, Sect. 2.3})$ $V_{L^2} := \text{Span} \left\{ \boldsymbol{x} \mapsto Y_n^{m-1}(\boldsymbol{\Psi}^{-1}(\boldsymbol{x})): m = -n, \dots, n, m = 1, \dots, L, \, \boldsymbol{x} \in \Gamma \right\} \right\} .$

exponential convergence w.r.t. N (d = 2), L (d = 3), resp.

2.5 p. 49 **BUT** minimal resolution requirement entails $N \sim \kappa \operatorname{diam}(\Gamma)$ $(d = 2), L \sim \kappa \operatorname{diam}(\Gamma)$ (d = 3).

Important: efficient implementation (using suitable quadrature rules, fast transformations)

Ganesh, M. & Graham, I. (2003), 'A high-order algorithm for obstacle scattering in three dimensions', *J. Comp. Phys.* **198**(1), 211–242.

2.6 Boundary elements for electromagnetics

This subject was skipped due to lack of time.

Fast Multipole Methods

3.1 Challenge and model problems

Galerkin matrix \leftrightarrow boundary integral operator

$$\mathbf{A}_{ij} = \int_{\Gamma} \int_{\Gamma} G(\boldsymbol{x}, \boldsymbol{y}) \, b_i(\boldsymbol{x}) \, b_j(\boldsymbol{y}) \, \mathrm{S}(\boldsymbol{x}) \mathrm{d}S(\boldsymbol{y}) \quad i, j \in \mathcal{I} := \{1, \dots, N\} , \qquad (3.1.1)$$

- $\Gamma \doteq$ compact closed curved (d = 2)/surface (d = 3), usually the boundary $\Gamma := \partial \Omega^{-}$,
- $\{b_i\}_{i=1}^N \doteq (\text{locally supported})$ basis functions of boundary element space $V_N \subset V$, $\dim V_N = N \rightarrow \text{Sect. 2.2}$,
- $G(\boldsymbol{x}, \boldsymbol{y}) \doteq$ non-local kernel function (G9for single layer boundary integral operators)

"Helmholtz kernels":
$$G(\boldsymbol{x}, \boldsymbol{y}) = \begin{cases} i/4H_0^{(1)}(\kappa|\boldsymbol{x} - \boldsymbol{y}|) & \text{, for } d = 2, \ \kappa \neq 0 \\ \frac{\exp(i\kappa|\boldsymbol{x} - \boldsymbol{y}|)}{4\pi|\boldsymbol{x} - \boldsymbol{y}} & \text{, for } d = 3 \end{cases},$$

with $\kappa > 0 =$ wave number.

3.1

Model problem: kernel collocation matrix:

$$\mathbf{A}_{ij} = \begin{cases} G(\boldsymbol{x}_i, \boldsymbol{x}_j) & \text{, if } i \neq j \\ 0 & \text{else} \end{cases} \in \mathbb{C}^{N,N} , \qquad (3.1.2)$$

 $\boldsymbol{x}_i, i = 1, \ldots, N, =$ collocation points on Γ .

Example 7 (Helmholtz collocation matrix on simple curve).

 $\Omega \subset \mathbb{R}^2$ half disk (diameter 1), $\Gamma := \partial \Omega$ Evenly spaced collocation points \boldsymbol{x}_i , $i = 1, \ldots, N$

▶ kernel collocation matrix ($\kappa \neq 0$)

$$\mathbf{A}_{ij} = \begin{cases} i/4H_0^{(1)}(\kappa|\boldsymbol{x}_i-\boldsymbol{x}_j|) & \text{, if } i\neq j \ , \\ 0 & \text{, if } i=j \ . \end{cases}$$

- 1 modulus of entries of A:
 - 40 collocation points
 - wave number $\kappa = 8\pi$

Geometric assumptions for the study of N-asymptotics:

 $\begin{aligned} & \quad Curve/surface \ \Gamma \ not \ too \ much \ "crumpled" \ (Sauter \ \& \ Schwab \ 2004, \ Ass. \ 7.3.17)] \\ & \quad \exists C > 0: \quad \mathrm{vol}(\Gamma \cap B_{r,R}(\boldsymbol{x})) \leq C(R^{d-1} - r^{d-1}) \quad \forall \boldsymbol{x} \in \Gamma, \ \forall 0 \leq r < R < \infty \ , \\ & \quad B_{r,R}(\boldsymbol{x}) := \{ \boldsymbol{y} \in \mathbb{R}^d: r < |\boldsymbol{x} - \boldsymbol{y}| < R \}. \end{aligned}$

Collocation points "evenly distributed":

the points x_i are vertices of a surface mesh belonging to uniformly shape-regular and quasiuniform family.

(\Rightarrow will be taken for granted in the sequel)

3.2 Abstract approximation error estimates

All "fast" methods employ *approximations of the integral kernel*:

$$\mathbf{A} \longrightarrow \widetilde{\mathbf{A}}_{ij} := \int_{\Gamma} \int_{\Gamma} \widetilde{G}(\boldsymbol{x}, \boldsymbol{y}) \, b_i(\boldsymbol{x}) b_j(\boldsymbol{y}) \, \mathrm{d}S(\boldsymbol{y}) \, \mathrm{d}S(\boldsymbol{x}) \; . \tag{3.2.1}$$

(in framework of Galerkin boundary element methods)

Impact of kernal approximation analyzed by means of Strang's lemma

$$\|\mathbf{a} - \widetilde{\mathbf{a}}\|_{V \times V \mapsto \mathbb{C}} := \sup_{u_N \in V_N} \sup_{v_N \in V_N} \frac{|\mathbf{a}(u_N, v_N) - \widetilde{\mathbf{a}}(u_N, v_N)|}{\|u_N\|_V \|v_N\|_V} .$$
(3.2.2)

Special case: variational problem in $V = L^2(\Gamma)$: a crude estimate

To gauge effect of kernel approximation: study

$$\left\| G - \widetilde{G} \right\|_{L^{\infty}(\Gamma \times \mathbb{C})}$$

 Γ)

Remark 8. Impact of kernel approximation on kernel collocation matrix (3.1.2):

 $\left\|\mathbf{A} - \widetilde{\mathbf{A}}\right\| \le N \cdot \max_{i,j} |G(\boldsymbol{x}_i, \boldsymbol{x}_j) - \widetilde{G}(\boldsymbol{x}_i, \boldsymbol{x}_j)| , \quad \|\cdot\| \doteq \mathsf{Euklidean} \text{ matrix norm } .$

3.3 Hierarchical clustering for low frequencies

Sauter, S. & Schwab, C. (2004), *Randelementmethoden*, BG Teubner, Stuttgart, Chapter 7.

Study asymptotics:

$$\kappa$$
 fixed & $(N \rightarrow \infty \Leftrightarrow h \rightarrow 0)$

Focus: $\kappa \approx 0$ ("Laplacian") \leftrightarrow "small objects \leftrightarrow large wavelength"

Notation: $Q_0 \subset \mathbb{R}^d =$ bounding box for Γ ($\Gamma \subset Q_0, Q_0 = \prod_{i=1}^d [\alpha_i, \beta_i]$)

3.3.1 Idea: separable kernel approximation

3.3 p. 57

3.3

p. 58

Note: $P < N > \operatorname{rank}(\mathbf{A}) \le P$: $P \ll N \rightarrow \mathbf{A} =$ "low rank matrix".

Storage required for A: $2PN + P^2$ complex numbers $Cost(A \times vector) = 2NP + P^2$ multiplications $+ 2(N-1)P - (P-1)^2$ additions

PM/WWW

Idea:

(semi-)separable kernel approximation

$$G(\boldsymbol{x}, \boldsymbol{y}) \approx \sum_{i=1}^{P} \sum_{j=1}^{P} \gamma_{ij} g_i(\boldsymbol{x}) \overline{h}_j(\boldsymbol{y}) , \qquad (3.3.4)$$

 $g_i, h_j : Q_0 \mapsto \mathbb{C}$ continuous, $\gamma_{ij} \in \mathbb{C}$.

3.3 p. 59 Example 9 (Global separable approximation of kernel collocation matrix).

Definition 3.3.1 (Singular value decomposition). \rightarrow (Golub & Van Loan 1989) $\mathbf{A} = \mathbf{U} \operatorname{diag}(\sigma_1, \dots, \sigma_N) \mathbf{V}^H$ is the singular value decomposition of $\mathbf{A} \in \mathbb{C}^{N,N}$, if $\mathbf{U}, \mathbf{V} \in \mathbb{C}^{N,N}$ are unitary matrices and $\sigma_i \geq 0$. The σ_i are the singular values of \mathbf{A} .

Convention: singular values sorted $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_N \ge 0$

Singular values \leftrightarrow approximability of A by low rank matrices:

Theorem 3.3.2 (Low rank best approximation).

 $\mathbf{A} \in \mathbb{C}^{N,N}: \quad \inf\{\|\mathbf{A} - \mathbf{F}\|: \operatorname{rank}(\mathbf{F}) \le k\} = \sigma_{k+1}, \quad k = 1, \dots, N-1,$

where $\|\cdot\| = Euklidean$ matrix norm or Frobenius norm.

How to avoid the singularities ?

3.3 p. 61

Remark 10 (Separable approximation of other kernels).

3.3

If $\widehat{G}(\boldsymbol{x}, \boldsymbol{y}) = \partial_{\boldsymbol{y}} G(\boldsymbol{x}, \boldsymbol{y}), \ \partial_{\boldsymbol{y}} = differential operator acting on \boldsymbol{y}, e.g. double layer kernel,$

$$\widehat{G}(\boldsymbol{x},\boldsymbol{y}) \approx \sum_{i=1}^{P} \sum_{j=1}^{P} \gamma_{ij}^{k} g_{i}^{k}(\boldsymbol{x}) (\boldsymbol{\partial_{\boldsymbol{y}}} h_{j}^{k})(\boldsymbol{y}) \quad \text{for} \quad \boldsymbol{x} \in Q_{k}^{x}, \, \boldsymbol{y} \in Q_{k}^{y} \, .$$

Example 11 ("Off diagonal" separable approximation).

Setting of Ex. 7, 400 collocation points, *Laplacian case* $\kappa = 0$

Monitored: singular values of sub-blocks of Helmholtz kernel collocation matrix (corresponding to rectangles Q^x , Q^y)

3.3 p. 64

- \lhd Observation:
 - In the case of constant distance: faster exponential decay of singular values for smaller boxes

Example 12 (Low rank approximation and admissibility condition).

Setting of Ex. 7, 400 collocation points, *Laplacian case* $\kappa = 0$

Ex. 11 🖒 try to balance

distance of boxes \iff size of boxes

Monitored: σ_i , i = 5, 6, 7 for $Q^x = [0, 0.3] \times [0, 0.3]$, $\eta = \frac{1}{4}\sqrt{2}$,

$$Q^{y} = \{ \boldsymbol{x} \in \mathbb{R}^{2} \colon \| \boldsymbol{x} - \boldsymbol{c} \|_{\infty} \leq \eta \operatorname{dist}(\boldsymbol{c}; Q^{x}) \} ,$$
$$\boldsymbol{c} \in \left\{ \begin{pmatrix} \frac{1}{2} + \frac{1}{2} \cos(\varphi) \\ \frac{1}{2} \sin(\varphi) \end{pmatrix} \colon \varphi \in \{ 0.3\pi, 0.325\pi, \dots, 0.7\pi \} \right\}$$

Fixed ratio of (size of Q^y) : (distance of Q^x, Q^y).

Definition 3.3.3 (Admissibility of blocks). A tensor product domain $Q^x \times Q^y$, $Q^x, Q^y \subset Q_0$ is called η -admissible, $\eta > 0$, if $\eta \operatorname{dist}(Q^x; Q^y) \ge \max{\operatorname{diam} Q^x, \operatorname{diam} Q^y}$.

Ex. 12 \square "uniform" accuracy of rank-k-approximation on admissible blocks

Another perspective: tiling induces *block partitioning* of matrix A:

Visualization (for kernel collocation matrix):

р. 68

3.3

Parlance: tensor product subset of $\mathcal{I} \times \mathcal{I} \stackrel{\circ}{=} \text{block cluster}$

block cluster partitioning $\{S_k^x \times S_k^y\}_k$ of $\mathcal{I} \times \mathcal{I} \implies d$ tensor product tiling $\{Q_k^x \times Q_k^y\}_k$ of neighborhood of $\Gamma \times \Gamma$ by means of bounding boxes

$$S_k^z \longrightarrow Q_k^z = \text{Box}(S_k^z) := \prod_{j=1}^u [\min\{(\boldsymbol{x}_i)_j : i \in S_k^z\}, \max\{(\boldsymbol{x}_i)_j : i \in S_k^z\}], \quad z = x, y.$$

Extension of Def. 3.3.3 block cluster $I^x \times I^y$, I^x , $I^y \subset I$, admissible, if tensor product of bounding boxes admissible

3.3.2 Separable polynomial approximation

For $\kappa = 0$: kernel function $G(\boldsymbol{x}, \boldsymbol{y})$ asymptotically smooth: for all multi-indices $\boldsymbol{\alpha} \in \mathbb{N}_0^d$, $|\boldsymbol{\alpha}| > 0$

$$\exists C = C(|\boldsymbol{\alpha}|) > 0: \quad |D^{\boldsymbol{\alpha}}G(\boldsymbol{x}, \boldsymbol{y})| \le C|\boldsymbol{x} - \boldsymbol{y}|^{2-d-|\boldsymbol{\alpha}|} \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d, \, \boldsymbol{x} \neq \boldsymbol{y} \;. \tag{3.3.5}$$

3.3 p. 69 Multi-dimensional Taylor expansion

Note: $f^{(j)}(0)(\underbrace{d, \dots, d}_{j \text{ times}}) = g(\mathbf{x})h(\mathbf{y}), \quad g, h =$ multivariate polynomials of (separate) degree $\leq j$ in components of \mathbf{x}, \mathbf{y} , resp.

Asymptotic smoothness (3.3.5) & Admissibility condition, Def. 3.3.3 Exponential decay (w.r.t. expansion order P) of remainder of Taylor expansion of G(x, y) on admissible block.

Crucial: exponential $L^{\infty}(Q^x \times Q^y)$ convergence of local separable kernel approximation w.r.t. *P*

Hackbusch, W. & Nowak, Z. (1989), 'On the fast matrix multiplication in the boundary element method by panel clustering', *Numer. Math.* **54**, 463–491.

Alternative to Taylor expansion: *tensor product polynomial interpolation*

Börm, S. & Grasedyck, L. (2004), 'Low-rank approximation of integral operators by interpolation', *Computing* **72**(3-4), 325–332. *Sect. 7.1.3* of Sauter, S. & Schwab, C. (2004), *Randelementmethoden*, BG Teubner, Stuttgart.

• Pick block $Q^x \times Q^y$, where $Q^x, Q^y \subset \mathbb{R}^d$, $Q^x \cap Q^y = \emptyset$ are "bricks"

$$\exists \alpha_i < \beta_i: \quad Q^z = \prod_{i=1}^d [\alpha_i, \beta_i] \subset \mathbb{R}^d , \quad z = \boldsymbol{x}, \boldsymbol{y} .$$
(3.3.6)

2 Given polynomial degree $p \in \mathbb{N}$, choose interpolation nodes

$$\alpha_i \le \xi_1^i < \xi_1^i < \dots < \xi_p^i \le \beta_i , \qquad 3.3$$

 $(\alpha_i, \beta_i \text{ from (3.3.6)}) \geq (\xi_l^1, \xi_m^2)^T, 1 \leq l, m \leq p \geq \text{interpolation nodes in } Q^z \ (d = 2).$ P. 71

3 $\mathcal{P}_{p-1}(\mathbb{R}) :=$ (univariate) polynomials of degree $< p, L_l^i := l$ -th Lagrange polynomial, l = 1, ..., p, for nodes $\{\xi_j^i\}_{j=1}^p$:

 $L_l^i \in \mathcal{P}_{p-1}$: $L_l^i(\xi_j) = \delta_{lj}$ (Kronecker symbol), $i, j = 1, \dots, p$. (3.3.7)

separable approximation for d = 2 on block $Q^x \times Q^y$: $(P = p^4)$

$$\widetilde{G}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{l=1}^{p} \sum_{j=1}^{p} \sum_{m=1}^{p} \sum_{n=1}^{p} \sum_{m=1}^{p} \underbrace{G(\xi_{l}^{1, x} \xi_{j}^{2, x}, \xi_{m}^{1, y} \xi_{n}^{2, y})}_{\gamma_{(lj), (mn)}} \underbrace{L_{l}^{1, x}(x_{1}) L_{j}^{2, x}(x_{2})}_{g_{lj}(\boldsymbol{x})} \underbrace{L_{m}^{1, y}(y_{1}) L_{n}^{2, y}(y_{2})}_{h_{mn}(\boldsymbol{y})} .$$
(3.3.8)

for tensor product polynomial interpolation: expansion functions $g_i(x)/h_i(y)$ on block $Q^x \times Q^y$ only depend on Q^x/Q^y , resp. !
Recall: special choice of interpolation nodes on $[\alpha_i, \beta_i]$ (for stability reasons): Chebychev nodes: $\xi_l^i = \alpha_i + \frac{\beta_i - \alpha_i}{2} \left(\cos\left(\frac{2l-1}{2p} \text{Sfrag} \text{ replacements}}{l=1, \dots, p} \right)$

Remark 13 (Separable approximation by harmonic polynomials).

Rokhlin, V. (1985), 'Rapid solution of integral equations of classical potential theory', *J. Comp. Phys.* **60**(2), 187–207.

Idea: for $\kappa = 0 \rightarrow \mathbf{x} \mapsto G(\mathbf{x}, \mathbf{y})$ and $\mathbf{y} \mapsto G(\mathbf{x}, \mathbf{y})$ are harmonic

Choose harmonic expansion functions $g(\mathbf{x})$, $h(\mathbf{y})$!

For $\kappa = 0$, d = 2 with indentification $\mathbb{R}^2 \cong \mathbb{C}$ ($\boldsymbol{x} \leftrightarrow \boldsymbol{x} \in \mathbb{C}$, $\boldsymbol{y} \leftrightarrow \boldsymbol{y} \in \mathbb{C}$):

$$\log(|\boldsymbol{x} - \boldsymbol{y}|) = \operatorname{Re}(\log(x - y)) = \operatorname{Re}\left\{\sum_{l=1}^{\infty} \frac{(-1)^{l-1}}{l} \left(\frac{y}{x}\right)^{l}\right\} , \text{ for } |y| < |x| .$$

for $\boldsymbol{x} \in Q^x$, $\boldsymbol{y} \in Q^y$, $Q^x \times Q^y$ admissible block (\rightarrow Def. 3.3.3)

$$G(\boldsymbol{x}, \boldsymbol{y}) = \log |\boldsymbol{c}_{y} - \boldsymbol{c}_{x} - (\boldsymbol{c}_{x} - \boldsymbol{x} + \boldsymbol{y} - \boldsymbol{c}_{y})| = \operatorname{Re} \left\{ \sum_{l=1}^{\infty} \frac{(-1)^{l-1}}{l} \left(\frac{c_{x} - x + y - c_{y}}{c_{y} - c_{x}} \right)^{l} \right\}$$
$$= \operatorname{Re} \left\{ \sum_{l=1}^{\infty} (-1)^{l-1} \frac{1}{c_{y} - c_{x}} \sum_{k=0}^{l} \binom{l}{k} (c_{x} - x)^{k} (y - c_{y})^{l-k} \right\}.$$

Approximation by truncation of the series:

$$G(\boldsymbol{x}, \boldsymbol{y}) \approx \operatorname{Re}\left\{\sum_{l=1}^{P} \frac{(-1)^{l-1}}{l} \frac{1}{c_y - c_x} \sum_{k=0}^{l} \binom{l}{k} \underbrace{(c_x - x)^k}_{\leftrightarrow g_{kl}(\boldsymbol{x})} \underbrace{(y - c_y)^{l-k}}_{\leftrightarrow h_{kl}(\boldsymbol{x})}\right\}.$$
(3.3.10)

more economical than tensor product interpolation (fewer expansion functions)

Note: expansion functions $g_{kl}(\boldsymbol{x})/h_{kl}(\boldsymbol{y})$ only depend on $Q^{\boldsymbol{x}}/Q^{\boldsymbol{y}}$ (as in the case of tensor product polynomial interpolation)

p. 74

3.3

Local error estimates

Focus: case of Laplacian $\kappa = 0$, local separable kernel approximation through tensor product Chebychev interpolation, see (3.3.9)

Asymptotic smoothness (3.3.5) & Admissibility condition, Def. 3.3.3 Uniform local exponential convergence (w.r.t. expansion order P) of tensor product Chebychev interpolants on *admissible block*.

Theorem 3.3.4 (Kernel approximation error estimate for tensor product Chebychev interpolation). \rightarrow (Sauter & Schwab 2004, Thm. 7.3.12) There are $\eta_0 > 0$, C_0 , $C_1 > 0$ such that

$$\left\| G - \widetilde{G} \right\|_{L^{\infty}(Q^x \times Q^y)} \le C_0 \left(\frac{C_1 \eta}{2 + C_1 \eta} \right)^P \frac{1}{\operatorname{dist}(Q^x; Q^y)} ,$$

with G obtained by tensor product Chebychev interpolation (3.3.8).

Goal:(asymptotically)kernel approximation error \approx discretization error $= O(h^q) = O(N^{-dq}), q \in \mathbb{N}$, for q-th order scheme \checkmark choose $P = O(\log N)$, if Galerkin discretization converges algebraically

3.3.3 Clustering

- Goal: find block partitioning $\mathcal{B} := \{S_k^x \times S_k^y\}_k$ of $\mathcal{I} \times \mathcal{I}$ such that
- $\sharp \left((\mathcal{I} \times \mathcal{I}) \setminus \{ S_k^x \times S_k^y : S_k^x \times S_k^y \in \mathcal{B} \text{ admissible} \} \right) = O(N)$

Börm, S., Grasedyk, L. & Hackbusch, W. (2003), Hierarchical matrices, Lecture note 21/2003, Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany. http://www.mis.mpg.de/preprints/ln/lecturenote-2103.pdf.

Terminology: sets $S_k \subset \mathcal{I}$ are called clusters

Summary: local separable kernel approximation on far field blocks

How to construct the clusters ?

Image: Tree techniques

Definition 3.3.6 (Cluster tree). \rightarrow (Sauter & Schwab 2004, Def. 7.1.4) The cluster tree T is a tree (\rightarrow graph theory) such that 1. the nodes are clusters (subsets of I), 2. the root root(T) is I, 3. the set of leaves is leaves(T) = {{i}: $i \in I$ }, 4. the set of sons sons(S) of $S \in T$ is $\Sigma(S) := {S' \in T: S' \subset S}$.

$$S \in \mathcal{T}: \quad \operatorname{level}(S) := \begin{cases} 0 & \text{, if } S = \operatorname{root}(\mathcal{T}) \\ \operatorname{level}(S') + 1 & \text{, if } S \in \operatorname{sons}(S'), S' \in \mathcal{T} \end{cases} \xrightarrow{} \mathcal{T}_l := \{S \in \mathcal{T}: \operatorname{level}(S) = l\}$$

Note: $\sum_{S \in \mathcal{T}_l} \sharp S \le N$

Algorithm: Quadtree/Octree based generation of cluster tree (shown for d = 2)

invoke genctree $(Q_0, \{x_1, \dots, x_N\})$ > cluster tree T

 Remark 14 (Minimal number of sons).

 Postprocessing of \mathcal{T} :
 balancing

 Ensure:
 $\forall S \in \mathcal{T} \setminus \text{leaves}(\mathcal{T})$:
 $\ddagger \text{sons}(S) \ge 4$.

Under the geometric assumptions of Sect. 3.1: (Sauter & Schwab 2004, Sect. 7.4.1)

computational effort (smart implementation !):

 $O(N \log N)$ comparisons

 \square number of clusters $\ddagger T = O(N)$

(Constants depend on Γ , η , and $\boldsymbol{x}_i \leftrightarrow$ shape-regularity of underlying mesh)

costs(generation of cluster tree): $= O(N \log N)$ (comparisons)

How to construct near field and far field (\rightarrow Def. 3.3.5) ?

Algorithm: (based on given cluster tree $T \rightarrow$ Def. 3.3.6)

function $[\mathcal{B}_{near}, \mathcal{B}_{far}] = divide((S, S'), \mathcal{B}_{near}, \mathcal{B}_{far})$ % (S, S') = pair of clusters % $\mathcal{B}_{near} =$ variable storing near field % $\mathcal{B}_{far} =$ variable storing far field if ((S, S') admissible) then $\mathcal{B}_{far} := \mathcal{B}_{far} \cup \{(S, S')\};$ end elseif $(S, S') \in \text{leaves}(\mathcal{T}) \times \text{leaves}(\mathcal{T})$ then $\mathcal{B}_{\text{near}} := \mathcal{B}_{\text{near}} \cup \{(S, S')\};$ end else if $S \in \text{leaves}(\mathcal{T})$ then $\mathcal{S}^x := \{S\}$; else $\mathcal{S}^x := \text{sons}(S)$; end if $S' \in \text{leaves}(\mathcal{T})$ then $\mathcal{S}^y := \{S'\}$; else $\mathcal{S}^y := \text{sons}(S')$; end for all $(s, s') \in \mathcal{S}^x \times \mathcal{S}^y$ do divide $((s, s'), \mathcal{B}_{\text{near}}, \mathcal{B}_{\text{far}})$; end end end

Computational effort = O(N) (checking admissibility)

Analysis: under the geometric assumptions of Sect. 3.1 and

assume: $\forall (S, R) \in \mathcal{B} := \mathcal{B}_{near} \cup \mathcal{B}_{far}$: level(S) = level(R). (3.3.11) p. 82

3.3

 \exists constants $C = C(\Gamma, \eta, distribution of collocation points) > 0$ such that

- $\#\mathcal{B}_{near} \leq CN$ (only O(N) pairs of collocation points in near field)
- $\sharp \mathcal{B}_{far} \leq CN$ (separable approximation on only O(N) blocks)
- O(1) occurrences of each cluster $\in \mathcal{T}$ in the far field:

$$\forall S \in \mathcal{T}: \quad \sharp\{S' \in \mathcal{T}: (S, S') \in \mathcal{B}_{\text{far}}\} \le C.$$
(3.3.12)

3.3.4 Matrix×vector algorithm

Given: • cluster tree $\mathcal{T} \subset 2^{\mathcal{I}} \to \text{Def. 3.3.6}$ • $\forall S \in \mathcal{T}$: expansion functions $g_i^S(\boldsymbol{x}), h_i^S(\boldsymbol{y}), i = 1, \dots, P_S, P_S \in \mathbb{N}$ (for single layer kernels usually $g_i^S = h_i^S \leftrightarrow \text{symmetry}$)

3.3 p. 83 kernel approximation

$$\widetilde{G}(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}) = \begin{cases} 0 & , \text{ if } i = j , \\ G(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) & , \text{ if } \{i\} \times \{j\} \in \boldsymbol{\mathcal{B}}_{\text{near}} , \\ \sum_{k=1}^{P_{S}} \sum_{l=1}^{P_{R}} \gamma_{kl}^{S,R} g_{k}^{S}(\boldsymbol{x}_{i}) h_{l}^{R}(\boldsymbol{x}_{j}) & , \text{ if } i \in S, j \in R: \quad (S, R) \in \boldsymbol{\mathcal{B}}_{\text{far}} . \end{cases}$$
approximate kernel collocation matrix
$$\widetilde{\mathbf{A}} = \left(\widetilde{G}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j})\right)_{i, j=1}^{N}$$

Algorithm: evaluation of $\vec{\varphi} = \widetilde{\mathbf{A}} \vec{\xi}$

$$\varphi_{i} = \sum_{j=1}^{N} \widetilde{G}(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}) \xi_{j} = \sum_{\substack{j = \mathcal{B}_{\text{near}}(i) \\ \uparrow}} \widetilde{A}_{ij} \xi_{j}} + \sum_{\substack{S \in \mathcal{T} \\ i \in S}} \sum_{\substack{R \in \mathcal{T} \\ (S,R) \in \mathcal{B}_{\text{far}}}} \sum_{j \in R} \widetilde{A}_{ij} \xi_{j}}, \quad i = 1, \dots, N,$$
near field contributions far field contributions

where

 \Rightarrow

 $\mathcal{B}_{\text{near}}(i) := \{ j \in \mathcal{I} : \{i\} \times \{j\} \in \mathcal{B}_{\text{near}} \}$

3.3 p. 84

$$\begin{aligned} \text{With} \quad (\mathbf{A}_{\text{near}})_{ij} &\coloneqq \begin{cases} G(\boldsymbol{x}_i, \boldsymbol{x}_j) &, \text{if } \{i\} \times \{j\} \in \boldsymbol{\mathcal{B}}_{\text{near}} \quad \land \quad i \neq j \ , \\ 0 &, \text{else.} \end{cases} \\ \varphi_i &= (\mathbf{A}_{\text{near}} \vec{\xi})_i + \sum_{\substack{S \in \mathcal{T} \\ i \in S}} \sum_{\substack{R \in \mathcal{T} \\ (S,R) \in \boldsymbol{\mathcal{B}}_{\text{far}}} \sum_{j \in R} \sum_{k=1}^{P_S} \sum_{l=1}^{P_R} \gamma_{kl}^{S,R} g_k^S(\boldsymbol{x}_l) \overline{h}_l^R(\boldsymbol{x}_j) \xi_j \\ &= (\mathbf{A}_{\text{near}} \vec{\xi})_i + \sum_{\substack{S \in \mathcal{T} \\ i \in S}} \sum_{\substack{R \in \mathcal{T} \\ (S,R) \in \boldsymbol{\mathcal{B}}_{\text{far}}} \left(\mathbf{U}_S \mathbf{C}_{S,R} \mathbf{V}_R^H \vec{\xi}_{|R} \right)_i \ , \end{aligned}$$

where

$$\mathbf{U}_{S} := \left(g_{k}^{S}(\boldsymbol{x}_{i})\right)_{\substack{i \in S\\l=1,\dots,P^{S}}} \in \mathbb{C}^{\sharp S,P_{S}}, \qquad (3.3.14)$$

$$\mathbf{V}_R := \left(h_l^R(\boldsymbol{y}_j) \right)_{\substack{j \in R \\ l=1,\dots,P^R}} \in \mathbb{C}^{\sharp R, P_R} , \qquad (3.3.15)$$

$$\mathbf{C}_{S,R} := \left(\gamma_{kl}^{S,R}\right)_{\substack{k=1,\dots,P_S\\l=1,\dots,P_R}} \in \mathbb{C}^{P_S,P_R} .$$
(3.3.16)

Note: symmetric local expansion $g_k^S = h_k^S \quad \forall S \in \mathcal{T} \rightarrow \mathbf{U}_S = \mathbf{V}_S \quad \forall S \in \mathcal{T}$

Steps of the algorithm:

• ("setup"): Computation of \mathcal{B}_{near} , \mathcal{B}_{far} : costs = $O(N \log N)$ Assembly of \mathbf{U}_S , \mathbf{V}_R : costs $\stackrel{(*)}{=} O(PN \log N)$ Assembly of $\mathbf{C}_{S,R}$, $(S,R) \in \mathcal{B}_{\mathrm{far}}$: costs $\stackrel{(*)}{=} O(P^2N)$ (*) if $P^R \leq P$ for all clusters R (\leftrightarrow uniform expansion order) $\boldsymbol{Q}: \forall R \in \mathcal{T} \setminus \text{leaves}(\mathcal{T}): \text{ compute } \vec{\mu}_R := \mathbf{V}_R^H \vec{\xi}_{|R} \rightarrow \text{ costs } \leq \sharp R \cdot P^R$ ► total costs $\lesssim \sum_{R \in \mathcal{T}} \sharp R \cdot P^R \stackrel{(*)}{\lesssim} P \cdot N \log N$, ► total costs $\lesssim \sum_{(S,R)\in \mathcal{B}_{far}} P_S P_R \stackrel{(*)}{\lesssim} NP^2$, ► total costs $\leq \sum_{S \in \mathcal{T}} \sharp S \cdot P^S \overset{(*)}{\leq} P \cdot N \log N$,

Special case: kernel approximation by tensor product Chebychev interpolation with polynomials of degree $O(\log N)$

total computational costs = $O(N \log^{2d} N)$

Remark 15 (Variable order interpolation).

Polynomial kernel approximation: we can "afford" low polynomial degrees on high levels:

 $\forall S \in \mathcal{T}: p_S \sim \operatorname{depth}(\mathcal{T}) - \operatorname{level}(S)$.

Sauter, S. (2000), 'Variable order panel clustering', *Computing* **64**, 223–261. Krzebeck, N. & Sauter, S. (2003), 'Fast cluster techniques for BEM', *Engineering Analysis with Boundary Elements* **27**, 455–467.

3.3.5 Interpolation techniques

 \succ

Consider: kernel approximation by polynomials of uniform degree $\leq p$, symmetric expansion

 $\forall S \in \mathcal{T}: \ g_k^S \in \mathcal{P}_p(\mathbb{R}^d)$, $k = 1, \dots, P$

$$\begin{array}{l} \forall S \in \mathcal{T} \colon \ \forall \overset{s \in \operatorname{sons}(S)}{s \notin \operatorname{leaves}(\mathcal{T})} \colon \ \exists \tau_{kl}^{S,s}, 1 \leq k, l \leq P \colon \ g_k^S = \sum_{l=1}^P \tau_{kl}^{S,s} g_l^s \quad \forall k = 1, \dots, P \ . \end{array} \\ \tau_{kl}^{S,s} \stackrel{\circ}{=} \operatorname{shift coefficients} \end{array}$$

If $s \in \operatorname{sons}(S) \cap \operatorname{leaves}(\mathcal{T})$: $\tau_{kl}^{S,s} = \begin{cases} g_k^S(\boldsymbol{x}_i) & \text{, if } l = 1 \\ 0 & \text{else.} \end{cases}$

interlevel transfer matrix:
$$\mathbf{T}^{S,s} := \left(\tau_{kl}^{S,s}\right)_{k,l=1,\dots,P} \in \mathbb{C}^{P,P}, s \in \operatorname{sons}(S)$$

"upward" (from leaves to root) computation of $\vec{\mu}_R$, $R \in \mathcal{T} \setminus \text{leaves}(\mathcal{T})$, in step 2 of algorithm:

$$\begin{aligned} (\vec{\mu}_S)_k &= \sum_{j \in S} g_k^S(\boldsymbol{x}_j) \xi_j = \sum_{s \in \text{sons}(S)} \sum_{j \in s} g_k^S(\boldsymbol{x}_j) \xi_j = \sum_{s \in \text{sons}(S)} \sum_{j \in s} \sum_{l=1}^P \tau_{kl}^{S,s} g_l^s(\boldsymbol{x}_j) \xi_j \\ &= \sum_{s \in \text{sons}(S)} \sum_{l=1}^P \tau_{kl}^{S,s} (\vec{\mu}_s)_l = \sum_{s \in \text{sons}(S)} \left(\mathbf{T}^{S,s} \vec{\mu}_s \right)_k. \end{aligned}$$

3.3 p. 88

$$\begin{array}{ll} \text{function} & \vec{\mu} = \text{setmu}(\text{cluster } S) \\ & \text{if } S \in \text{leaves}(\mathcal{T}) \quad \text{then } \vec{\mu}_S := (\xi_i, 0, \dots, 0)^T, S = \{i\}; \quad \text{end} \\ & \text{else} \\ & \vec{\mu}_S = 0; \\ & \text{foreach } s \in \text{sons}(S) \quad \text{do } \vec{\mu}_S := \vec{\mu}_S + \mathbf{T}^{S,s} \cdot \text{setmu}(s); \\ & \text{end} \\ & \text{end} \end{array}$$

(If) Transfer matrices have special structure (e.g., Kronecker products !)

Recursive (multilevel) computation of $\vec{\mu}_S$ more efficient than direct computation !

Related: \mathcal{H}^2 -matrices Hackbusch, W. & Börm, S. (2002), ' \mathcal{H}^2 -matrix approximation of integral operators by interpolation', *Appl. Numer. Math.* **43**(1-2), 129–143. In the case of variable order interpolation: no nesting $g_k^S \in \text{span}\{g_l^s: l = 1, ..., P_s\}$ not guaranteed for $s \in \text{sons}(S)$!

Idea: approximation

$$g_{k\mid \operatorname{Box}(s)}^{S} \approx \sum_{l=1}^{P_{s}} \tau_{kl}^{S,s} g_{l}^{s}$$

(will introduce new source of error !)

(Krzebeck & Sauter 2003): O(N)-effort for (sufficiently accurate !) matrix×vector operations for discrete boundary integral operators (for Laplacian, $\kappa = 0$)

3.4 Hierarchical clustering for high frequencies

Sect. 2.2: necessary for accuracy of standard Galerkin BEM solution for (high frequency) scattering problems:

surface mesh resolves waves: $N = \langle$

$$\begin{cases} O(\kappa) & \text{for } d = 2 \\ O(\kappa^2) & \text{for } d = 3 \end{cases} \Leftrightarrow \kappa = \begin{cases} O(N) & \text{for } d = 2 \\ O(N^{1/2}) & \text{for } d = 3 \end{cases}$$

$$3.4$$

$$p. 90$$

- the "curse of high wave numbers" (\rightarrow lectures by S. Chendler-Wilde)
- Asymptotics: minimal resolution $\kappa = O(N^{1/d})$ for $N \to \infty$
- Focus: Efficient matrix×vector operation for kernel collocation matrix (3.1.2) and $\kappa = O(N^{1/d-1})$ → Sect. 3.1
- ("nice" geometry of Γ , uniform distribution of collocation points x_i may be assumed)

3.4.1 Failure of low rank approximation

At the heart of *p*-uniform exponentially convergent polynomial kernel approximation on *admissible blocks*: asymptotic smoothness (3.3.5) !

BUT . . . $G(\boldsymbol{x}, \boldsymbol{y})$ **not** asymptotically smooth for $\kappa > 0$!

Example 17 (Required block ranks for admissible clusters).

Monitored: minimal rank of low rank approximation $\widetilde{\mathbf{B}}$ of sub-block $\mathbf{B} \iff (S_m^x, S_m^y)$) of Helmholtz kernel collocation matrix for $\|\widetilde{\mathbf{B}} - \mathbf{B}\| \le \tau, \tau > 0$

 $\kappa h \approx 1 \quad \triangleright \quad \text{required rank increases linearly with } \dim(\operatorname{Box}(S_m^x))!$

3.4 p. 93 How to salvage the clustering based kernel approximation ?

Obtain efficient algorithm despite large $P_S = P_S(\operatorname{diam} \operatorname{Box}(S))$ by

- reduced costs for coupling matrix $\mathbf{C} \times \text{vector}$:
 - \rightarrow achieve: C diagonal, Toeplitz, circulant, etc.
- inexpensive computation of $\vec{\mu}_R$ by efficient interpolation \rightarrow Sect. 3.3.5

3.4.2 Cylindrical wave approximation

Fcous: $d = 2, \Gamma = \text{curve}, \quad G(x, y) = i/4H_0^{(1)}(\kappa |x - y|)$

 $\texttt{\textbf{(polar coordinates)}} \ \textbf{\textbf{x}} \in \mathbb{R}^2 \setminus \{0\}; \quad (|\textbf{\textbf{x}}|, \varphi_{\textbf{\textbf{x}}}) \in \mathbb{R}^+ \times [0, 2\pi[, x_1 = |\textbf{\textbf{x}}| \cos \varphi_{\textbf{\textbf{x}}}, x_2 = |\textbf{\textbf{x}}| \sin \varphi_{\textbf{\textbf{x}}}$

Theorem 3.4.1 (Graf's addition theorem). \rightarrow (Abramowitz & Stegun 1970, (9.1.79)) For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$, $|\mathbf{y}| < |\mathbf{x}|$, we have the convergent series expansion

$$H_n^{(1)}(|\boldsymbol{x} - \boldsymbol{y}|) = \sum_{m=-\infty}^{\infty} H_{m+n}^{(1)}(|\boldsymbol{x}|) J_m(|\boldsymbol{y}|) \exp(im(\varphi_{\boldsymbol{x}} - \varphi_{\boldsymbol{y}})) e^{-in(\varphi_{\boldsymbol{x} - \boldsymbol{y}} - \varphi_{\boldsymbol{x}})}, \quad (3.4.1)$$

and for all $oldsymbol{x},oldsymbol{y}\in\mathbb{R}^2$

$$J_n(|\boldsymbol{x} - \boldsymbol{y}|)e^{\pm in\varphi_{[\boldsymbol{x} - \boldsymbol{y}]}} = \sum_{m = -\infty}^{\infty} J_{n+m}(|\boldsymbol{x}|)J_m(|\boldsymbol{y}|)e^{\pm im(\varphi_{\boldsymbol{x}} - \varphi_{\boldsymbol{y}})}, \quad (3.4.2)$$

where $H_n^{(1)} =$ Hankel functions, $J_n =$ Bessel functions of the first kind.

Example 18 (Spectral content of far field).

Modulus of terms in (3.4.1) for different |x|, |y|:

Study of convergence of series (3.4.1) for $\boldsymbol{x} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $\boldsymbol{y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$:

3.4 p. 97

Observed: ("precarious") exponential convergence

Thm. 3.4.1 \blacktriangleright (infinite) "separable" expansion of $G(\mathbf{x}, \mathbf{y})$ on admissible (\rightarrow Def. 3.3.3) block $Q^x \times Q^y$:

Geometric situation (d = 2)

 c^x/c^y = "centers" of Q^x/Q^y :

Combined translation formulas of Thm. 3.4.1 (double series expansion):

$$\begin{split} H_0^{(1)}(\kappa | \boldsymbol{x} - \boldsymbol{y} |) &= H_0^{(1)}(|\boldsymbol{d} - \boldsymbol{q} |) = \sum_{m = -\infty}^{\infty} H_m^{(1)}(|\boldsymbol{d}|) J_m(|\boldsymbol{q}|) e^{im(\varphi \boldsymbol{d} - \varphi \boldsymbol{q})} \\ &= \sum_{m = -\infty}^{\infty} H_m^{(1)}(|\boldsymbol{d}|) e^{im\varphi \boldsymbol{d}} \sum_{l = -\infty}^{\infty} J_{m+l}(\kappa | \boldsymbol{y} - \boldsymbol{c}^{\boldsymbol{y}} |) e^{-i(m+l)\varphi [\boldsymbol{y} - \boldsymbol{c}^{\boldsymbol{y}}]} J_l(\kappa | \boldsymbol{x} - \boldsymbol{c}^{\boldsymbol{x}} |) e^{il\varphi [\boldsymbol{x} - \boldsymbol{c}^{\boldsymbol{x}}]} \\ &= \sum_{l = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} J_l(\kappa | \boldsymbol{x} - \boldsymbol{c}^{\boldsymbol{x}} |) e^{il\varphi [\boldsymbol{x} - \boldsymbol{c}^{\boldsymbol{x}}]} H_{m-l}^{(1)}(|\boldsymbol{d}|) e^{i(m-l)\varphi \boldsymbol{d}} J_m(\kappa | \boldsymbol{y} - \boldsymbol{c}^{\boldsymbol{y}} |) e^{-im\varphi [\boldsymbol{y} - \boldsymbol{c}^{\boldsymbol{y}}]} . \quad (3.4.3) \\ \text{Next:} \quad \text{Truncation of series} \quad \leftrightarrow \text{ kernel approximation} \quad \blacktriangleright \text{ separable approximation} \\ G(\boldsymbol{x}, \boldsymbol{y}) \approx_{\frac{q}{4}}^{\frac{q}{4}} \sum_{l = -M}^{M} \sum_{m = -M}^{M} \underbrace{J_l(\kappa | \boldsymbol{x} - \boldsymbol{c}^{\boldsymbol{x}} |) e^{il\varphi [\boldsymbol{x} - \boldsymbol{c}^{\boldsymbol{x}}]}_{\leftrightarrow \boldsymbol{g}_l(\boldsymbol{x})} \underbrace{H_{m-l}^{(1)}(|\boldsymbol{d}|) e^{i(m-l)\varphi \boldsymbol{d}}}_{\leftrightarrow \boldsymbol{\gamma}_{lm}} \underbrace{J_m(\kappa | \boldsymbol{y} - \boldsymbol{c}^{\boldsymbol{y}} |) e^{-im\varphi [\boldsymbol{y} - \boldsymbol{c}^{\boldsymbol{y}}]}_{\leftrightarrow \boldsymbol{\overline{g}}_m(\boldsymbol{y})}, \\ (3.4.4) \\ \text{with "suitable"} \quad M \in \mathbb{N} \quad \vartriangleright \text{ expansion order} \quad P = (2M+1)^2. \end{split}$$

Note:

Coupling matrix $\mathbf{C} := (\gamma_{lm})$ is Toeplitz matrix $^{(*)}$

(*):
$$cost(matrix \times vector) = O(n \log n)$$
 for $n \times n$ Toeplitz matrix !

3.4 p. 100 How to choose M (depending on block cluster) ?

Drawback of cylindrical wave expansion:

Efficient interpolation not available !

3.4.3 Plane wave approximation

An alternative separable expansion on admissible (\rightarrow Def. 3.3.3) block $Q^x \times Q^y$:

Derivation in 2D

Goemetric situation/notations as in Fig. 4

 $\mathsf{Pick}\; \boldsymbol{x} \in Q^x \text{, } \boldsymbol{y} \in Q^y \quad (\boldsymbol{d} := \kappa(\boldsymbol{c}^x - \boldsymbol{c}^y) \text{, } \boldsymbol{q} := -\kappa(\boldsymbol{x} - \boldsymbol{c}^x + \boldsymbol{c}^y - \boldsymbol{y})) \quad \succ \quad \kappa(\boldsymbol{x} - \boldsymbol{y}) = \boldsymbol{d} - \boldsymbol{q})$

$$(3.4.1) \Rightarrow H_0^{(1)}(\kappa |\boldsymbol{x} - \boldsymbol{y}|) = H_0^{(1)}(|\boldsymbol{d} - \boldsymbol{q}|) = \sum_{m = -\infty}^{\infty} H_m^{(1)}(|\boldsymbol{d}|) J_m(|\boldsymbol{q}|) e^{im(\varphi_{\boldsymbol{d}} - \varphi_{\boldsymbol{q}})} . \quad (3.4.5)$$

+ Bessel function values as Fourier coefficients (Abramowitz & Stegun 1970, (9.1.79))

$$J_m(x) = \frac{1}{2\pi i^m} \int_0^{2\pi} e^{ix \cos t} e^{-imt} \,\mathrm{d}t \;. \tag{3.4.6}$$

$$\blacktriangleright \qquad J_m(|\boldsymbol{q}|)e^{-\imath m\varphi_{\boldsymbol{q}}} = \frac{1}{2\pi\imath^m} \int_0^{2\pi} e^{\imath|\boldsymbol{q}|\cos(t-\varphi_{\boldsymbol{q}})} e^{-\imath mt} \,\mathrm{d}t = \frac{1}{2\pi\imath^m} \int_0^{2\pi} e^{\imath \boldsymbol{q}\cdot\boldsymbol{\hat{s}}(t)} e^{-\imath mt} \,\mathrm{d}t \;, \quad (3.4.7)$$

with $\widehat{\boldsymbol{s}}(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$, $\boldsymbol{q} \cdot \widehat{\boldsymbol{s}} = \text{Euklidean scalar product of vectors in } \mathbb{R}^2$.

Use $q = -\kappa(x - c^x + c^y - y))$ \triangleright "integrand separates":

$$J_m(|\boldsymbol{q}|)e^{-\imath m\varphi_{\boldsymbol{q}}} = \frac{1}{2\pi\imath^m} \int_0^{2\pi} e^{-\imath\kappa(\boldsymbol{x}-\boldsymbol{c}^x)\cdot\widehat{\boldsymbol{s}}(t)} \cdot e^{\imath\kappa(\boldsymbol{y}-\boldsymbol{c}^y)\cdot\widehat{\boldsymbol{s}}(t)} \cdot e^{-\imath mt} \,\mathrm{d}t$$

$$H_{0}^{(1)}(\kappa |\boldsymbol{x} - \boldsymbol{y}|) = \sum_{m=-\infty}^{\infty} \frac{1}{2\pi i^{m}} \int_{0}^{2\pi} \underbrace{H_{m}^{(1)}(\kappa |\boldsymbol{c}^{x} - \boldsymbol{c}^{y}|) e^{im\varphi[\boldsymbol{c}^{x} - \boldsymbol{c}^{y}]}}_{\leftrightarrow \gamma_{mt}} \underbrace{e^{i\kappa(\boldsymbol{c}^{x} - \boldsymbol{x}) \cdot \widehat{\boldsymbol{s}}(t)}}_{\leftrightarrow g_{m,t}(\boldsymbol{x})} \cdot \underbrace{e^{i\kappa(\boldsymbol{y} - \boldsymbol{c}^{y}) \cdot \widehat{\boldsymbol{s}}(t)}}_{\leftrightarrow h_{m,t}(\boldsymbol{y})} \cdot e^{-imt} dt . \quad (3.4.8)$$

integration and summation may not be exchanged ! \rightarrow Ex. 19

"Discretizing" (3.4.8): two steps of approximation

① Truncation of Hankel function series (3.4.5): with $M \in \mathbb{N}$

$$\begin{split} H_0^{(1)}(\kappa \left| \boldsymbol{x} - \boldsymbol{y} \right|) &\approx \sum_{m=-M}^M \frac{1}{2\pi \imath^m} \int_0^{2\pi} H_m^{(1)}(\kappa \left| \boldsymbol{c}^{\boldsymbol{x}} - \boldsymbol{c}^{\boldsymbol{y}} \right|) e^{\imath m \varphi_{[\boldsymbol{c}^{\boldsymbol{x}} - \boldsymbol{c}^{\boldsymbol{y}}]}} \cdot \\ &e^{\imath \kappa (\boldsymbol{c}^{\boldsymbol{x}} - \boldsymbol{x}) \cdot \widehat{\boldsymbol{s}}(t)} \cdot e^{\imath \kappa (\boldsymbol{y} - \boldsymbol{c}^{\boldsymbol{y}}) \cdot \widehat{\boldsymbol{s}}(t)} \cdot e^{-\imath m t} \mathrm{d}t \; . \end{split}$$

Numerical quadrature: trapezoidal rule

$$\frac{1}{2\pi} \int_0^{2\pi} f(t) \,\mathrm{d}t \approx \frac{1}{L} \sum_{l=0}^{L-1} f(\frac{2\pi}{L}l)$$
3.4
p. 103

"Magic" of trapezoidal rule:

Exact integration of trigonometric polynomials of degree $\leq L!$

$$\begin{split} H_{0}^{(1)}(\kappa \left| \boldsymbol{x} - \boldsymbol{y} \right|) &\approx \sum_{l=0}^{L-1} \sum_{\substack{m=-M}}^{M} \frac{1}{L \imath^{m}} H_{m}^{(1)}(\kappa \left| \boldsymbol{c}^{x} - \boldsymbol{c}^{y} \right|) e^{\imath m \varphi [\boldsymbol{c}^{x} - \boldsymbol{c}^{y}]} \cdot e^{-\imath m \frac{2\pi l}{L}} \cdot \\ & \stackrel{\leftrightarrow \gamma_{l}}{\underset{\leftarrow g_{l}(\boldsymbol{x})}{\overset{\leftarrow \gamma_{l}}{\overset{\leftarrow \gamma_{$$

$$H_{0}^{(1)}(\kappa |\boldsymbol{x} - \boldsymbol{y}|) \approx \sum_{l=0}^{L-1} \underbrace{e^{\imath\kappa(\boldsymbol{c}^{x} - \boldsymbol{c}^{y}) \cdot \widehat{\boldsymbol{s}}(\frac{2\pi l}{L})}_{m=-M} \cdot \sum_{m=-M}^{M} \frac{1}{L\imath^{m}} H_{m}^{(1)}(\kappa |\boldsymbol{c}^{x} - \boldsymbol{c}^{y}|) e^{\imath m\varphi[\boldsymbol{c}^{x} - \boldsymbol{c}^{y}]} \cdot e^{-\imath m \frac{2\pi l}{L}}}_{\leftrightarrow \gamma_{l}} \cdot \underbrace{e^{-\imath\kappa \boldsymbol{x} \cdot \widehat{\boldsymbol{s}}(\frac{2\pi l}{L})}_{\leftrightarrow g_{l}(\boldsymbol{x})} \cdot \underbrace{e^{\imath\kappa \boldsymbol{y} \cdot \widehat{\boldsymbol{s}}(\frac{2\pi l}{L})}_{\leftrightarrow \overline{g}_{l}(\boldsymbol{y})}}_{\leftrightarrow \overline{g}_{l}(\boldsymbol{y})} \cdot \underbrace{e^{\imath\kappa \boldsymbol{y} \cdot \widehat{\boldsymbol{s}}(\frac{2\pi l}{L})}_{\leftrightarrow \overline{g}_{l}(\boldsymbol{y})}}_{(2.4.6)}$$

(3.4.9) 3.4

р. 104

 \square local separable kernel approximation with P = L and plane wave expansion functions

Derivation in 3D

Rahola, J. (1996), 'Diagonal form of the translation operators in the fast multipole algorithm for scattering problems', *BIT* **36**(2), 333–358. Darve, E. (2000*a*), 'The fast multipole method i: Error analysis and asymptotic com-

plexity', SIAM J. Numer. Anal. 38(1), 98-128.

Tool: another addition theorem (translation formula) for special functions

Theorem 3.4.2 (Gegenbauer's addition theorem). *(Abramowitz & Stegun 1970, (10.1.45) & (10.1.46))*

For $\boldsymbol{x}, \boldsymbol{q} \in \mathbb{R}^3$, $|\boldsymbol{x}| > |\boldsymbol{q}|$, we have the convergent series expansion

$$\frac{e^{i|\boldsymbol{d}+\boldsymbol{q}|}}{|\boldsymbol{d}+\boldsymbol{q}|} = i \sum_{m=0}^{\infty} (2m+1)(-1)^m h_m^{(1)}(|\boldsymbol{d}|) j_m(|\boldsymbol{q}|) P_m(\widehat{\boldsymbol{d}} \cdot \widehat{\boldsymbol{q}}) , \qquad (3.4.10)$$

 $h_m^{(1)} =$ spherical Hankel functions of the first kind, $j_m =$ spherical Bessel functions, $P_l =$ Legendre polynomials, $\hat{x} := x/|x|$.

+ spherical integral representation formula, *cf.* (3.4.7)

$$j_m(|\boldsymbol{q}|)P_m(\widehat{\boldsymbol{d}}\cdot\widehat{\boldsymbol{q}}) = \frac{1}{4\pi\imath^m} \int_{\mathbb{S}} e^{\imath\boldsymbol{q}\cdot\widehat{\boldsymbol{s}}(\boldsymbol{\omega})} P_m(\widehat{\boldsymbol{d}}\cdot\widehat{\boldsymbol{s}}(\boldsymbol{\omega})) \,\mathrm{d}S(\boldsymbol{\omega}) , \qquad (3.4.11)$$

where $\mathbb{S} \doteq$ unit sphere in \mathbb{R}^3 , $\widehat{s}(\omega) \doteq$ unit vector in direction ω .

as before apply (3.4.10) & (3.4.11) to $d := \kappa(c^x - c^y), q := \kappa(x - c^x + c^y - y)) > \kappa(x - y) = d - q)$ for $x \in Q^x, y \in Q^y, Q^x \times Q^y$ = admissible block.

• choose quadrature rule that is exact for spherical harmonics up to a certain order n (Requires $O(n^2)$ quadrature points)

McLaren, A. (1963), 'Optimal numerical integration on a sphere', *Math. Comp.* **17**(84), 361–383.

Remark 20 (Drawbacks of plane wave expansion).

- approximation of Bessel function term in (3.4.1), (3.4.10), whose rapid decay is crucial for convergence, *cf.* Ex. 19
 - \rightarrow numerical instability for large M
- for small κ : plane waves become (almost) linearly dependent
 - + numerical instability for small κ
 - Potential remedy: inhomogeneous plane wave expansions

Darve, E. & Havé, P. (2004), 'A fast multipole method for maxwell equations stable at all frequencies', *Phil. Trans. R. Soc. London A* **362**(1816), 603–628.
3.4.4 Kernel approximation error estimates

combined analysis of truncation error and quadrature error

Error estimates in two dimensions

1	\sum

Amini, S. & Profit, A. (1999), 'Analysis of a diagonal form of the fast multipole algorithm for scattering theory', *BIT* **39**, 585–602. Labreuche, C. (1998), 'A convergence theorem for the fast multipole method for two-

dimensional scattering problems', Math. Comp. 67(222), 553–591.

Error in kernel approximation ($x \in Q^x$, $y \in Q^y$, $Q^x \times Q^y$ admissible block, see Fig. 4):

$$\begin{split} G(\boldsymbol{x}, \boldsymbol{y}) &= \sum_{m=-\infty}^{\infty} \frac{\imath/4}{2\pi \imath^m} \int_{0}^{2\pi} H_m^{(1)}(|\boldsymbol{d}|) e^{\imath m \varphi_{\boldsymbol{d}}} e^{\imath \kappa (\boldsymbol{c}^x - \boldsymbol{x}) \cdot \widehat{\boldsymbol{s}}(t)} e^{\imath \kappa (\boldsymbol{y} - \boldsymbol{c}^y) \cdot \widehat{\boldsymbol{s}}(t)} e^{-\imath m t} \mathrm{d}t \;, \\ \uparrow \\ \widetilde{G}(\boldsymbol{x}, \boldsymbol{y}) &= \sum_{m=-M}^{M} \sum_{l=0}^{L-1} \frac{\imath/4}{L \imath^m} H_m^{(1)}(|\boldsymbol{d}|) e^{\imath m \varphi_{\boldsymbol{d}} + \imath \boldsymbol{d} \cdot \widehat{\boldsymbol{s}}(\frac{2\pi l}{L})} e^{-\imath \kappa \boldsymbol{x} \cdot \widehat{\boldsymbol{s}}(\frac{2\pi l}{L})} e^{\imath \kappa \boldsymbol{y} \cdot \widehat{\boldsymbol{s}}(\frac{2\pi l}{L})} e^{-\imath m \frac{2\pi l}{L}} \;. \end{split}$$

• Separating quadrature error from truncation error

$$\delta G(\boldsymbol{x}, \boldsymbol{y}) = \frac{i}{4} \sum_{\substack{m = -\infty \\ |m| > M}}^{\infty} H_m^{(1)}(|\boldsymbol{d}|) J_m(|\boldsymbol{q}|) e^{im(\varphi_{\boldsymbol{d}} - \varphi_{\boldsymbol{q}})} +$$

$$\frac{i}{4} \sum_{m=-M}^{M} H_m^{(1)}(|\boldsymbol{d}|) e^{i m \varphi_{\boldsymbol{d}}} \left(J_m(|\boldsymbol{q}|) - \widetilde{J}_m(|\boldsymbol{q}|) \right) e^{i m \varphi_{\boldsymbol{q}}} ,$$

with quadrature approximation

$$\widetilde{J}_m(|\boldsymbol{q}|)e^{-\imath m\varphi_{\boldsymbol{q}}} := \frac{1}{\imath^m L} \sum_{l=0}^{L-1} e^{\imath \boldsymbol{q} \cdot \widehat{\boldsymbol{s}}(\frac{2\pi}{L}l)} \cdot e^{-\imath m\frac{2\pi}{L}l}$$

Tool: Jacobi-Anger expansion: \rightarrow (Abramowitz & Stegun 1970, (9.1.41))

$$e^{ix\cos\psi} = \sum_{k=-\infty}^{\infty} i^k J_k(x) e^{ik\psi} , \quad x \in \mathbb{R}, \, \psi \in [0, 2\pi[.$$
(3.4.12)

$$\sum_{m=-M}^{M} H_m^{(1)}(|\boldsymbol{d}|) e^{im\varphi_{\boldsymbol{d}}} \left(J_m(|\boldsymbol{q}|) - \widetilde{J}_m(|\boldsymbol{q}|) \right) e^{im\varphi_{\boldsymbol{q}}} = \sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} \sum_{m=-M}^{M} i^{kL} J_{kL+m}(|\boldsymbol{q}|) e^{-i(kL+m)\varphi_{\boldsymbol{q}}} H_m^{(1)}(|\boldsymbol{d}|) e^{im\varphi_{\boldsymbol{d}}} .$$

Heuristics: L such that quadrature error terms only contain Bessel functions have have also been discarded when truncating the series

$$L = 2M + 1$$

$$\left[\delta G(\boldsymbol{x},\boldsymbol{y}) = \frac{i}{4} \sum_{\substack{m=-\infty\\|m|>M}}^{\infty} J_m(|\boldsymbol{q}|) e^{-i\varphi \boldsymbol{q}} \left(H_m^{(1)}(|\boldsymbol{d}|) e^{im\varphi \boldsymbol{d}} + i^{m-r} H_r^{(1)}(|\boldsymbol{d}|) e^{ir\varphi \boldsymbol{d}} \right) \right], \quad (3.4.13)$$

where $r \in \{-M, \ldots, M\}, r \equiv m \mod L$.

Lemma 3.4.3 (Behavior of Hankel and Bessel functions). \rightarrow (Amini & Profit 2000, Lemma 2) • For fixed m > 0: $x \mapsto \left| H_m^{(1)}(x) \right|$ strictly decreasing

- $x \mapsto J_m(x)$, $m \in \mathbb{N}$, is positive and increasing in $x \in [0, m]$.
- For fixed x > 0: $m \mapsto |H_m^{(1)}|$ is strictly increasing.

Require $L > \frac{1}{2}\kappa \max\{\operatorname{diam} Q^x, \operatorname{diam} Q^y\}$

$$|\delta G(\boldsymbol{x}, \boldsymbol{y})| \leq \frac{1}{4} \sum_{\substack{m=-\infty\\|m|>M}}^{\infty} |J_m(2\kappa \max\{\operatorname{diam} Q^x, \operatorname{diam} Q^y\})| \cdot \left(|H_m^{(1)}(\kappa \operatorname{dist}(Q^x; Q^y))| + |H_M^{(1)}(\kappa \operatorname{dist}(Q^x; Q^y))| \right) \\ \leq \frac{1}{2} \sum_{\substack{m=-\infty\\|m|>M}}^{\infty} |J_m(2\kappa \max\{\operatorname{diam} Q^x, \operatorname{diam} Q^y\})| \cdot |H_m^{(1)}(\eta^{-1}\kappa \max\{\operatorname{diam} Q^x, \operatorname{diam} Q^y\})| ,$$

in the case of an η -admissible block $Q^x \times Q^y$.

- \succ η < 1: $|\delta G(x, y)|$ < remainder term for series (3.4.1) !
- For the integral integra

Rigorous estimate from (Labreuche 1998, Thm. 2): uniform exponential convergence $|\delta G(\boldsymbol{x}, \boldsymbol{y})| \rightarrow 0$ w.r.t L on $Q^x \times Q^y$, for $L \ge C\kappa$ (for some C > 0), $\eta > 0$ sufficiently large.

Error estimates in three dimensions

Quentin, C. & Collino, F. (2005), 'Error estimates in the fast multipole method for scattering problems. ii. truncation of the Gegenbauer series', *ESAIM, Math. Model. Numer. Anal.* **39**(1), 183–221.

Koc, S., Song, J.-M. & Chew, W. (1999), 'Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem', *SIAM J. Numer. Anal.* **36**(3), 906–921.

Darve, E. (2000*a*), 'The fast multipole method I: Error analysis and asymptotic complexity', *SIAM J. Numer. Anal.* **38**(1), 98–128.

Bound for number *M* of terms in Gegenbauer expansion (3.4.10) for η -admissible block ($\eta < 1$) and (relative !) error threshold $\epsilon > 0 \rightarrow$ (Quentin & Collino 2005):

$$M \simeq \kappa d + (\frac{1}{2})^{5/3} W^{2/3} \left(\left(\frac{1+\eta}{1-\eta} \right)^{3/2} \frac{\kappa d}{4\epsilon^6} \right) \sqrt[3]{d\kappa} - \frac{1}{2} ,$$

where • $W \doteq Lambert$ function: $W(\xi)e^{W(\xi)} = \xi, \xi > 0, W(\xi) \asymp \log(\frac{\xi}{\log \xi})$ for $\xi \to \infty$

• $d = \max\{\operatorname{diam} Q^x, \operatorname{diam} Q^y\} \stackrel{\scriptscriptstyle\frown}{=} \mathsf{size} \mathsf{ of block}$

Choice of quadrature rule on S: integrate spherical harmonics up to order 2M exactly \rightarrow (Darve 3.4 2000*a*).

3.4.5 Plane wave FMM: Algorithm

Implementation in 2D

- Multilevel clustering algorithm (\rightarrow Sects. 3.3.4, 3.3.5) based on (3.4.9)
- Recall: for cluster $S \in \mathcal{T} \triangleright$ truncation parameter $L_S = O(\kappa \cdot \operatorname{diam}(\operatorname{Box}(S)))$! (variable expansion length)
- Main issue: efficient evaluation of (necessarily inexact) transfers ($\hat{=}$ fast products with transfer matricces $\mathbf{T}^{S,s}$)
- $s \in \operatorname{sons}(S) \Rightarrow \operatorname{diam}(\operatorname{Box}(s)) < \operatorname{diam}(\operatorname{Box}(S))$ (usually $\operatorname{diam}(\operatorname{Box}(s)) \approx \frac{1}{2} \operatorname{diam}(\operatorname{Box}(S))$) $L_s < L_S$ (smaller expansion system on smaller clusters)
- Task: Given: $S \in T$, $s \in \text{sons}(S)$ with centers (of bounding boxes) c and b, w.l.o.g. b = 0. Expansion lengths on S/s: L,l, resp.: L > l

Find
$$\mathbf{T}^{S,s} = (\tau_{kj}^{S,s})_{\substack{k=1,...,L\\ j=1,...,l}}$$
 such that

$$\int_{j=1}^{l} \tau_{kj}^{S,s} e^{i\kappa x \cdot \widehat{\mathbf{s}}(\frac{2\pi}{L}j)} \approx e^{i\kappa (x-c) \cdot \widehat{\mathbf{s}}(\frac{2\pi}{L}k)}, \quad k = 1, ..., L.$$
expansion functions on s
How to approximate a plane wave in a set of plane
waves with other directions ?
Idea: use Jacobi-Anger expansion (3.4.12)
plane wave (father)
 \downarrow
(truncation)
 \downarrow
plane wave (son)

$$\sum_{k=1}^{L} \alpha_{k} e^{i\kappa(\boldsymbol{x}-\boldsymbol{c})\cdot\widehat{\boldsymbol{s}}(\frac{2\pi}{L}k)} = \sum_{k=1}^{L} \left(\underbrace{\alpha_{k} e^{-i\boldsymbol{c}\cdot\widehat{\boldsymbol{s}}(\frac{2\pi}{L}k)}}_{=:\alpha_{k}'} \right) e^{i\kappa\boldsymbol{x}\cdot\widehat{\boldsymbol{s}}(\frac{2\pi}{L}k)} \\ = \sum_{m=-\infty}^{\infty} \left(\sum_{k=1}^{L} \alpha_{k}' e^{-im\frac{2\pi}{L}k} \right) J_{m}(\kappa |\boldsymbol{x}|) e^{im\varphi_{\boldsymbol{x}}} \\ \approx \sum_{m=-\infty}^{\infty} \left(\sum_{k=1}^{l} \beta_{j} e^{-im\frac{2\pi}{L}j} \right) J_{m}(\kappa |\boldsymbol{x}|) e^{im\varphi_{\boldsymbol{x}}} = \sum_{j=1}^{l} \beta_{j} e^{i\kappa\boldsymbol{x}\cdot\widehat{\boldsymbol{s}}(\frac{2\pi}{L}k)} ,$$

$$\sum_{k=1}^{L} \alpha'_k e^{-\imath m \frac{2\pi}{L}k} \approx \sum_{k=1}^{l} \beta_j e^{-\imath m \frac{2\pi}{l}j} \quad \forall m \in \mathbb{Z} .$$
(3.4.14)

In (3.4.14): demand equality for $m = 0, \dots, l-1$: $\vec{\beta}$ from $\vec{\alpha'}$ by 2 FFTs

$$\beta$$
 in β in α

► Costs for transfers $S \leftrightarrow$ four sons $= O(L \log L))$

Total costs for transfers:

assume $L_S = C2^{\text{level}_{\max} - \text{level}(S)} \approx \sharp S$ & "nice" geometry, point distribution

$$\begin{split} \operatorname{Costs} &\lesssim \sum_{S \in \mathcal{T} \setminus \operatorname{leaves}(\mathcal{T})} L_S \log L_S \lesssim \sum_{S \in \mathcal{T} \setminus \operatorname{leaves}(\mathcal{T})} \sharp S(\operatorname{level}_{\max} - \operatorname{level}(S)) \\ &\lesssim \log N \sum_{S \in \mathcal{T} \setminus \operatorname{leaves}(\mathcal{T})} \sharp S = O(N \log^2 N) \;. \end{split}$$

Computational costs of plane wave $FMM = O(N \log^2 N)$

Implementation in 3D

Darve, E. (2000*b*), 'The fast multipole method: Numerical implementation', *J. Comp. Phys.* **160**(1), 195–240.

Preconditioning Techniques

4.1 The rationale

- → Matrix compression by Fast Multipole Methods (Ch. 3) > no matrix available !
 - \triangleright cannot use direct solvers (also ruled out for $N \gg 1$)
 - only matrix × vector at one's disposal

iterative solution techniques for discrete boundary integral equations (usually: Krylov method)

→ Speed of convergence of iterative solvers for $\mathbf{A}\vec{\xi} = \vec{\varphi}$ "linked to"

- Euklidean norms of \mathbf{A} , \mathbf{A}^{-1}
- distribution of eigenvalues of $\mathbf{A}^{(*)}$

4.1 p. 119 "Simple theory" only for Hermitian matrices (\leftrightarrow CG, MINRES), convergence theory available for GMRES (without restart).

A preconditioner **B** for **A** is a "matrix" (\leftrightarrow linear operator in \mathbb{R}^N),

- so that Krylov subspace solvers applied to **BA** converge much faster than for **A** ("approximate inverse")
- for which $costs(\mathbf{B} \times vector) \approx costs(\mathbf{A} \times vector)$

Consider: shape-regular, quasi-uniform family of meshes of Γ , Sect. 2.1, meshwidth h, standard boundary element space (\rightarrow Sect. 2.2) with $L^2(\Gamma)$ -stable nodal basis

• First-kind integral equations (1.1.15), (1.1.18) (assume: no resonance problem)

$$\begin{split} \varphi &\in H^{-\frac{1}{2}}(\Gamma) \colon \quad -\mathsf{V}_{\kappa}(\varphi) = (\frac{1}{2}\mathsf{Id} - \mathsf{K}_{\kappa})g \quad \text{in} \ H^{\frac{1}{2}}(\Gamma) \ ,\\ \varphi &\in H^{-\frac{1}{2}}(\Gamma) \colon \quad -\mathsf{W}_{\kappa}(u) = (\frac{1}{2}\mathsf{Id} + \mathsf{K}'_{\kappa})\psi \quad \text{in} \ H^{-\frac{1}{2}}(\Gamma) \ . \end{split}$$

BEM Galerkin matrices: $\mathbf{A}_V \longleftrightarrow \langle \mathbf{V}_{\kappa} \varphi, \psi \rangle, \quad \mathbf{A}_W \longleftrightarrow \langle \mathbf{W}_{\kappa} u, v \rangle$

 \Rightarrow **sharp** estimates

$$h \lesssim \frac{|\vec{\varphi}^H \mathbf{A}_V \vec{\psi}|}{|\vec{\varphi}| |\vec{\psi}|} \lesssim 1 \quad , \quad 1 \lesssim \frac{|\vec{\mu}^H \mathbf{A}_W \vec{\nu}|}{|\vec{\mu}| |\vec{\nu}|} \lesssim h \quad \forall \vec{\varphi}, \vec{\psi}, \ldots \in \mathbb{C}^N ,$$
(4.1.1)

asymptotically for fixed κ , $h \rightarrow 0$, constants depend on κ .

(Possible) clustering of eigenvalues at 0, ∞

Second-kind integral equations (1.1.16), (1.1.17)

$$\begin{split} \varphi \in H^{-\frac{1}{2}}(\Gamma): & (\frac{1}{2}\mathsf{Id} - \mathsf{K}'_{\kappa})\varphi = \mathsf{W}_{\kappa}(g) \quad \text{in } H^{-\frac{1}{2}}(\Gamma) , \\ & u \in H^{\frac{1}{2}}(\Gamma): & (\frac{1}{2}\mathsf{Id} + \mathsf{K}_{\kappa})u = \mathsf{V}_{\kappa}(\psi) \quad \text{in } H^{\frac{1}{2}}(\Gamma) . \end{split}$$

$$\begin{aligned} & 4.1 \\ & p. 121 \end{aligned}$$

$$\mathsf{EM} \text{ Galerkin matrices:} \qquad \mathbf{A}_K \longleftrightarrow \left((\frac{1}{2}\mathsf{Id} + \mathsf{K}_\kappa)u, v \right)_{L^2(\Gamma)}, \quad \mathbf{A}_{K'} \longleftrightarrow \left((\frac{1}{2}\mathsf{Id} - \mathsf{K}'_\kappa)\varphi, \psi \right)_{L^2(\Gamma)}$$

Assume: uniform discrete inf-sup condition w.r.t. $L^2(\Gamma)$ -norm

$$> 1 \lesssim \frac{|\vec{\varphi}^H \mathbf{A}_K \vec{\psi}|}{|\vec{\varphi}| |\vec{\psi}|} \lesssim 1 \quad , \quad 1 \lesssim \frac{|\vec{\mu}^H \mathbf{A}_{K'} \vec{\nu}|}{|\vec{\mu}| |\vec{\nu}|} \lesssim 1 \quad \forall \vec{\varphi}, \vec{\psi}, \ldots \in \mathbb{C}^N ,$$
 (4.1.2)

Spectrum uniformly bounded away from $0, \infty$

$$(u,v)\mapsto ((\mathsf{Id}+\mathsf{K})u,v)_{L^2(\Gamma)}\ ,\ \ u,v\in L^2(\Gamma)\ ,$$

with $\mathsf{K}: L^2(\Gamma) \mapsto L^2(\Gamma)$ compact

В

Spectrum of Galerkin matrix clustered around 1

Preconditioning required for 1st-kind discrete BIE on fine meshes

4.2 Operator preconditioning

Idea:

Operator of "opposite order" provide good approximate inverses

(typical "Elliptic", "low frequency" reasoning)

4.2.1 Abstract framework

- V, W refl. Banach spaces, $A \in L(V, V')$, $B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
 - $A_h := A_{|V_h} : V_h \mapsto V'_h, B_h := B_{|W_h} : W_h \mapsto W'_h$ (*h*-uniformly) stable • $\dim V_h = \dim W_h$
- Stable discrete duality pairing: sesqui-linear form $d \in L(V \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in V_h} \frac{|d(v_h, w_h)|}{\|v_h\|_V} \ge c_D \|w_h\|_W \quad \forall w_h \in W_h \; .$$

Theorem 4.2.1 (Operator preconditioning).

Spectral condition number satisfies:

$$\kappa(\mathbf{D}^{-1}\mathbf{B}\mathbf{D}^{-T}\mathbf{A}) \le \|\mathbf{A}_h\| \|\mathbf{A}_h^{-1}\| \|\mathbf{B}_h\| \|\mathbf{B}_h^{-1}\| \frac{\|d\|^2}{c_D^2}$$

Galerkin matrices

S. CHRISTIANSEN AND J.-C. NÉDÉLEC, *Des préconditionneurs pour la résolution numérique des équations intégrales de frontiére de l'acoustique*, C.R. Acad. Sci. Paris, Ser. I Math, 330 (2000), pp. 617–622.

4.2.2 Boundary element application

First-kind integral equations (1.1.22) (assume: no resonance problem)

(1.1.15) $\Leftrightarrow \varphi \in H^{-\frac{1}{2}}(\Gamma): \langle \mathsf{V}_{\kappa}\varphi, \psi \rangle = -\left\langle (\frac{1}{2}\mathsf{Id} - \mathsf{K}_{\kappa})g, \psi \right\rangle \quad \forall \psi \in H^{-\frac{1}{2}}(\Gamma) .$ (1.1.22) 4.2

p. 124

 ${}_{m \bullet}$ Galerkin discretization by means of ${\cal M}_{\Gamma}$ -p.w. constant boundary element functions $ightarrow V_h$

(1.1.22) \leftrightarrow single layer BI-Op. $V_{\kappa} : H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma)$

Thm. 4.2.1: natural candidates

$$W = H^{\frac{1}{2}}(\Gamma)$$
, $\mathsf{B} = \mathsf{W}_{\kappa}$

Duality pairing between $V = H^{-\frac{1}{2}}(\Gamma)$ and $W = H^{\frac{1}{2}}(\Gamma)$:

 $V_h \not\subset W \gg W_h = V_h$ not an option: What is W_h ?

mesh $\mathcal{M} \leftrightarrow$ dual mesh $\widetilde{\mathcal{M}}$				
nodes	\leftrightarrow	cells		
edges	\leftrightarrow	edges		
cells	\leftrightarrow	nodes		

(Incidence matrices of $\widetilde{\mathcal{M}}$ = transposed incidence matrices of \mathcal{M})

For $V = H^{-\frac{1}{2}}(\Gamma)$:

in Sobolev spaces, Numer. Math., 90 (2002), pp. 775–786.

Remark 21 (Operator preconditioning based on Calderon projectors).

By derivation: operator preconditioning controls spectrum for $h \rightarrow 0$

Can it be more powerful ?

By projector property of Calderón projectors (\rightarrow Sect. 1.1.4.1): $P^{\pm}P^{\pm} = P^{\pm}$:

$$\begin{split} \mathsf{K}_{\kappa}\mathsf{V}_{\kappa} &= \mathsf{V}_{\kappa}\mathsf{K}_{\kappa}' &, \quad \mathsf{W}_{\kappa}\mathsf{K}_{\kappa} &= \mathsf{K}_{\kappa}'\mathsf{W}_{\kappa} , \\ \mathsf{V}_{\kappa}\mathsf{W}_{\kappa} &= \frac{1}{4}\mathsf{Id} - \mathsf{K}_{\kappa}^{2} &, \quad \mathsf{W}_{\kappa}\mathsf{V}_{\kappa} &= \frac{1}{4}\mathsf{Id} - \mathsf{K}_{\kappa}'^{2} \end{split}$$

 Γ smooth \succ K_{κ} , K'_{κ} compact \succ operator preconditioning achieves clustering of spectrum ?

Issue: impact of κ on quality of operator preconditioning ?

4.3 Asymptotic preconditioning

Neumann-to-Dirichlet operator $S: H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma)$ for exterior Helmholtz BVP:

$$\begin{split} \mathbf{S}\varphi &:= \gamma_D u, \quad \text{where } u \text{ solves } \quad \begin{array}{l} -\Delta u - \kappa^2 u \ = \ 0 \quad \text{in } \Omega^+ \ , \\ \gamma_N^+ u \ = \ \varphi \ \text{ on } \Gamma \end{array} , \quad +r.c. \end{split}$$

4.3 p. 128

$$(1.1.14) \quad \Rightarrow \quad -\mathsf{W}_{\kappa} \circ \mathsf{S} + \left(\frac{1}{2}\mathsf{Id} - \mathsf{K}'_{\kappa}\right) = \mathsf{Id} \;. \tag{4.3.1}$$

BVP: exterior Neumann problem for Helmholtz equation (1.1.11)

Idea: exploit (4.3.1) in context of *indirect BIE* \rightarrow Sect. 1.1.4.3 trial expression: $u = \Psi_{SL}(\varphi) + \Psi_{DL}(\widetilde{S}\varphi)$, where $\widetilde{S} \approx S$. BIE: $(-W_{\kappa} \circ \widetilde{S} + (\frac{1}{2}Id - K'_{\kappa}))\varphi = \psi$ (4.3.1) \checkmark if $\widetilde{S} \approx S \Rightarrow -W_{\kappa} \circ \widetilde{S} + (\frac{1}{2}Id - K'_{\kappa}) \approx Id$ How to find suitable \widetilde{S} ?

For large frequencies: (plane wave scattering)

use Kirchhoff approximation (half-space approximation (local approximation of S)

Antoine, X. & Darbas, M. (2005), 'Alternative integral equations for the iterative solution of acoustic scattering problems', *Quaterly Journal of Mechanics and Applied Mathematics* **58**(1), 107–128.

Bibliography

- Abramowitz, M. & Stegun, I. (1970), *Handbook of Mathematical Functions*, Dover Publications, New York.
- Amini, S. & Profit, A. (2000), 'Analysis of the truncation errors in the fast multipole method for scattering problems', *Journal of Computational and Applied Mathematics* **115**(1-2), 23–33.
- Antoine, X. & Darbas, M. (2005), 'Alternative integral equations for the iterative solution of acoustic scattering problems', *Quaterly Journal of Mechanics and Applied Mathematics* **58**(1), 107–128.
- Buffa, A. & Hiptmair, R. (2005), 'Regularized combined field integral equations', *Numer. Math.* **100**(1), 1–19.
- Burton, A. & Miller, G. (1971), 'The application of integral methods for the numerical solution of boundary value problems', *Proc. R. Soc. London, Ser. A* 232, 201–210.

4.3

- Colton, D. & Kress, R. (1998), *Inverse Acoustic and Electromagnetic Scattering Theory*, Vol. 93 of *Applied Mathematical Sciences*, 2nd edn, Springer, Heidelberg.
- Costabel, M. (1987), Symmetric methods for the coupling of finite elements and boundary elements, *in* C. Brebbia, W. Wendland & G. Kuhn, eds, 'Boundary Elements IX', Springer-Verlag, Berlin, pp. 411–420.
- Darve, E. (2000*a*), 'The fast multipole method i: Error analysis and asymptotic complexity', *SIAM J. Numer. Anal.* **38**(1), 98–128.
- Darve, E. (2000b), 'The fast multipole method: Numerical implementation', J. Comp. Phys. **160**(1), 195–240.
- Ganesh, M. & Graham, I. (2003), 'A high-order algorithm for obstacle scattering in three dimensions', *J. Comp. Phys.* **198**(1), 211–242.
- Golub, G. & Van Loan, C. (1989), *Matrix computations*, 2nd edn, John Hopkins University Press, Baltimore, London.
- Hackbusch, W. (1995), Integral equations. Theory and numerical treatment., Vol. 120 of International Series of Numerical Mathematics, Birkhäuser, Basel.
- Krzebeck, N. & Sauter, S. (2003), 'Fast cluster techniques for BEM', *Engineering Analysis with Bound-ary Elements* **27**, 455–467.
- Labreuche, C. (1998), 'A convergence theorem for the fast multipole method for two-dimensional 4.3 scattering problems', *Math. Comp.* **67**(222), 553–591. p. 132

- McLean, W. (2000), *Strongly Elliptic Systems and Boundary Integral Equations*, Cambridge University Press, Cambridge, UK.
- Quentin, C. & Collino, F. (2005), 'Error estimates in the fast multipole method for scattering problems. ii. truncation of the Gegenbauer series', *ESAIM, Math. Model. Numer. Anal.* **39**(1), 183–221.
- Rahola, J. (1996), 'Diagonal form of the translation operators in the fast multipole algorithm for scattering problems', *BIT* **36**(2), 333–358.
- Sauter, S. & Schwab, C. (2004), Randelementmethoden, BG Teubner, Stuttgart.
- Steinbach, O. (2000), OSTBEM-a boundary element software package, Technical report, University of Stuttgart, Stuttgart, Germany.