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Abstract

One of the main difficulties in high-frequency electromagnetic and acoustic scat-

tering simulations is that any numerical scheme based on the full-wave model entails

the resolution of wavelength. It is due to this challenge that simulations involving even

very simple geometries are beyond the reach of classical numerical schemes. In this

thesis, we present an analysis of a recently proposed integral equation method that

bypasses the need for the resolution of wavelength, and thereby delivers solutions in

frequency-independent computational times. Within single scattering configurations,

the method is based on the use of an appropriate ansatz for the unknown surface

densities and on suitable extensions of the method of stationary phase. The exten-

sion to multiple-scattering configurations, in turn, is attained through consideration

of an iterative (Neumann) series that successively accounts for multiple reflections.

We show that the convergence properties of this series in the high-frequency regime

depends solely on geometrical characteristics. Moreover, for periodic orbits, we ex-

plicitly determine the convergence rate for two- and three-dimensional configurations.

Finally, we show that this insight suggests the use of alternative summation mech-

anisms that can greatly accelerate the convergence of the series, and that it also

provides connection to classical scattering theory.
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Chapter 1

Introduction

Today, it is virtually impossible to find an area in technology that does not utilize the

principles of electromagnetics and acoustics. Indeed, electromagnetism and acoustics

find applications in a wide spectrum of areas in engineering and industry, including

communications, material science, plasma physics, biology, radar and remote sensing

to name but just a few. Advances in computer hardware and numerical algorithms

during the last twenty years have made it possible to rely on computer simulations to

guide the development of a variety of electromagnetic and acoustic devices. Conse-

quently, computational electromagnetics and acoustics have claimed a central position

in the mainstream of contemporary computational science [63].

Over the last two decades, accurate and efficient direct numerical schemes have

been developed and successfully applied to the simulation of electromagnetic and

acoustic wave propagation [4, 11, 20, 39, 71]. However, all of these methods require

the resolution of wavelength, and this restricts their applicability to moderately low

frequencies. For higher frequencies, accordingly, the only practical recourse is to resort

to asymptotic methods (e.g. ray tracing) as these by-pass the need for frequency-

dependent discretizations [3, 13, 46, 55]. These methods, on the other hand, are

not error-controllable since they solve an approximate model instead of the original

equations (e.g. the eikonal equation instead of the Helmholtz equation or the Maxwell
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system). Ideally, then, it would be desirable to design a numerical scheme that

combines the advantages of rigorous solvers (error-controllability) with those of the

asymptotic methods (frequency-independent discretization), and that will therefore

allow for efficient and accurate simulations throughout the frequency spectrum.

Recently, an integral equation method that displays these capabilities has been

proposed for the solution of surface-scattering problems [15, 16, 17, 18]. In single scat-

tering configurations, the method is based on a combination of three main elements:

1) A high-frequency ansatz that captures, with coarse discretizations, the rapidly os-

cillatory progression of the surface currents; 2) A novel numerical integration method

based on localization principle and extensions of the stationary phase method; and

3) A change of variables around shadow boundaries, that produces needed corrections

of the phase extraction ansatz in these regions, and thus allows the method to ac-

count accurately for diffraction effects and creeping waves. The extension to multiple

scattering configurations, in turn, are based on an iteratively computable (Neumann)

series for the currents induced on the scattering surfaces, which accounts rigorously

for multiple scattering; and reduces its treatment to a succession of single-scattering

events.

This thesis is devoted to the analysis of these multiple-scattering iterations, their

convergence properties, possible acceleration strategies and the connection of these

with classical scattering theory.

The main part of the thesis relates to the determination of the rate of convergence

of the iterated series for configurations that consist of several interacting convex struc-

tures. In this regard, we establish that, when a collection of obstacles are transversed

periodically, the ratios of the (asymptotic representations of) iterated currents that

differ by one period converge uniformly to a certain complex number. This number

is independent of incidence, and in the limit of infinite frequency it depends solely on

the geometrical arrangement. To derive these results, our mathematical strategy is

based on the following three steps:
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1. Derivation of a high-frequency asymptotic recurrence for the terms of

the series, in terms of the geometrical quantities determined by optical

ray paths. Specifically, we show that if a ray arrives at a point on the

boundary of a scatterer after n-bounces, then (asymptotically) the current

at that point equals the current at the (n-1)-th reflection-point of the

ray times a continued fraction determined by geometric properties of the

corresponding ray path.

2. Analysis of ray paths. Here we establish that if a group of rays traverse

the objects periodically for a large number of reflections, then -except

for the first and last few reflections- their reflection points accumulate on

certain specific regions of the boundaries of the scatterers.

3. Analysis of the recurrence on the iterated currents. Here we use 2)

to derive a rate from 1). More precisely, we demonstrate that, when a

p-periodic orbit is traversed indefinitely, the ratio of iterated currents dif-

fering by one period converges uniformly to the product of a number p

of “limit p-periodic continued fractions”; the convergence rate is then de-

duced appealing to the theory of limit p-periodic continued fractions [44].

As we said, this result shows, for instance, that in the high-frequency

regime the convergence properties of the iterated series depend solely on

the geometrical characteristics of the scatterers. For example, for a con-

figuration consisting of two convex cylindrical bodies K1 and K2, the rate

is

r =

(1 + κ1d)(1 + κ2d)

[
1 +

√
1− 1

(1 + κ1d)(1 + κ2d)

]2
−1/2

where κi are the curvatures at the uniquely determined points a1 and a2

that minimize the distance between K1 and K2, and d = |a1 − a2|. We

note that, while for practical purposes the analysis of the periodic orbits
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will generically yield a good estimate of the overall convergence rate, a full

demonstration will necessitate an analogous study of non-periodic orbits.

Although, as our work has shown, the series converges spectrally, it is clearly

desirable to design mechanisms to accelerate its convergence. The second part of the

thesis provides an explanation for the enhanced convergence properties of one such

procedure, namely Pade approximation [6] in this context. Indeed, appealing to our

analysis of optical ray paths, we show that the ratio of iterated currents differing by

one period stabilizes after a certain number of reflections. As we demonstrate, once

stabilized, the behavior of the series resembles that of a geometric series which, in

turn, can be exactly represented as a rational function. This observation suggests

that beyond the point where currents become stationary, Pade approximation will

deliver significantly more accurate solutions than those provided by the summation

of the series.

The final part of the thesis relates to consequences of our work on the analysis of

a fundamental operator in classical scattering theory, namely the scattering operator

[75]. As it turns out, in the high-frequency regime, the rate of convergence of the Neu-

mann series is directly linked to the location of the poles of the scattering operator.

As we shall explain, our work on the rate of convergence of multiple-scattering iter-

ations provides a simple method for the determination of the poles of the scattering

operator for two strictly convex obstacles.
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Chapter 2

Preliminaries

In this Chapter, we have collected the preliminaries for the thesis. In §2.1, we review

the partial differential equations modelling the propagation of electromagnetic and

acoustic waves. An overview of the state-of-the-art methods relating to the numerical

treatment of these partial differential equations is provided in §2.2. Scattering prob-

lems, which constitute the main topic of this thesis, are discussed in §2.3. Finally,

in regards to our integral equation approach to scattering problems, we display the

classical integral equations for the solution of scattering problems.

2.1 Governing Equations

In this section, we briefly review the mathematical models relating to the propagation

of electromagnetic and acoustic waves. In particular, we explain the fundamental role

played by the Helmholtz equation, upon which we base our further developments.

2.1.1 Electromagnetic Waves

Electromagnetic wave propagation in a medium in R3 is governed by the equations

5



∇× E +
∂B

∂t
= 0 (Faraday’s law)

∇×H− ∂D

∂t
= J (Ampere-Maxwell law)

∇ ·B = 0 (absence of free magnetic poles)

∇ ·D = ρ (Coulomb’s law)

known as Maxwell equations [43]. The scalar field ρ is the electric charge density,

and the vector fields E, H, D, B, and J are, respectively, the electric field, magnetic

field, electric displacement, magnetic induction, and conduction current density. In

addition, there are the constitutive relations that express D, B and J in terms of E

and H. In the case of an isotropic medium (i.e. when its physical properties at each

point are independent of direction of propagation), they take on the relatively simple

form

D = εE,

B = µH,

J = σE. (Ohm’s law)

The scalar fields ε, µ, and σ are, respectively, the electric permittivity, magnetic

permeability, and electric conductivity.

For time-harmonic electromagnetic waves of the form

E(x, t) = Re

((
ε +

iσ

ω

)−1/2

e−iωtE(x)

)
,

H(x, t) = Re
(
µ−1/2e−iωtH(x)

)
with frequency ω > 0, we deduce that the complex-valued space-dependent parts

6



satisfy the time-harmonic Maxwell equations

∇× E − ikH = 0, (2.1.1a)

∇×H + ikE = 0, (2.1.1b)

∇ · (εE) = ρ, (2.1.1c)

∇ · (µH) = 0 (2.1.1d)

where the wave number k satisfies

k2 =

(
ε +

iσ

ω

)
µω2

with k chosen such that Im k ≥ 0.

Typically, equations (2.1.1) must be supplemented with appropriate boundary

conditions. For instance, at the interface between two different medium, the tangen-

tial component of the electric field E is ought to be continuous, while the tangential

component of the magnetic field H must be discontinuous by an amount proportional

to the magnitude of the surface current density. In particular, if the second medium

is a perfect conductor, the tangential component of the total electric field E as well

as the normal component of the total magnetic field H must vanish at the interface.

This gives rise to the perfect conductor boundary condition

ν × E = 0, ν ·H = 0 on ∂K

where ν denotes the unit exterior normal vector to the interface ∂K. More general

boundary conditions can also be considered. For example, when the second interface

is not perfectly conducting but does not allow the electromagnetic wave to penetrate

deeply into the medium, then an impedance boundary condition of the form

ν × (∇× E)− iλ(ν × E)× ν = 0
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must be imposed at the interface ∂K with an appropriately chosen positive constant

λ.

Naturally, studying Maxwell equations with constant coefficients is a prerequisite

for studying them in general. In the case that the medium is homogeneous (i.e. ε, µ,

and σ are constant) and free of charges (i.e. ρ = 0 ), the time-harmonic equations

reduce to

∇× E − ikH = 0,

∇×H + ikE = 0.

In this case, E and H are divergence-free and satisfy the vector Helmholtz equation

∆E + k2E = 0,

∆H + k2H = 0.

Conversely, if E (or H) is a solution to the vector Helmholtz equation satisfying

∇·E = 0 (or ∇·H = 0), then E and H = (1/ik)∇×E (or H and E = (−1/ik)∇×H)

satisfy the time-harmonic Maxwell equations [25].

2.1.2 Acoustic Waves

Consider the propagation of sound waves of small amplitude in a homogeneous isotropic

medium in R3 viewed as an inviscid fluid. Let v = v(x, t) be the velocity field and

let p = p(x, t), ρ = ρ(x, t) and S = S(x, t) denote the pressure, density and specific

entropy, respectively, of the fluid. The motion is then governed by the Euler equations

[25]:
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∂v

∂t
+ (v · ∇)v +

1

ρ
∇p = 0 (equation of conservation of momentum)

∂ρ

∂t
+∇ · (ρv) = 0 (equation of continuity)

p = f(ρ, S) (state equation)

∂S

∂t
+ v · ∇S = 0 (adiabatic hypothesis)

where f is a function depending on the nature of the fluid. We assume that v, p, ρ

and S are small perturbations of the static state v0 = 0, p0 = constant, ρ0 = constant

and S0 = constant and linearize to obtain the linearized Euler equations :

∂v

∂t
+

1

ρ0

∇p = 0,

∂ρ

∂t
+ ρ0∇ · v = 0,

∂p

∂t
=

∂f

∂ρ
(ρ0, S0)

∂ρ

∂t
.

From this we obtain the wave equation

1

c2

∂2p

∂t2
= ∆p

where the speed of sound, c, is given by

c2 =
∂f

∂ρ
(ρ0, S0).

From the linearized Euler equations, we observe that there exists a velocity potential

U = U(x, t) such that

v =
1

ρ0

∇U and p = −∂U

∂t
.
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Clearly, the velocity potential also satisfies the wave equation

1

c2

∂2U

∂t2
= ∆U.

For time-harmonic acoustic waves of the form

U(x, t) = Re
(
e−iωtu(x)

)
with frequency ω > 0, we deduce that the complex-valued, space-dependent part u

satisfies the Helmholtz equation

∆u + k2u = 0 (2.1.2)

where the wave number k is given by the positive constant

k = ω/c.

As with the electromagnetic waves, equation (2.1.2) must be coupled with suitable

boundary conditions. For instance, when the pressure of the total wave u vanishes

on the interface ∂K between two different medium, the Dirichlet boundary condition

u = 0 on ∂K

must be imposed. Similarly, if the normal velocity of the acoustic wave vanishes on

the interface ∂K, then the appropriate boundary condition is the Neumann boundary

condition:

∂u/∂ν = 0 on ∂K.

More generally, allowing interfaces on which the normal velocity is proportional to
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the excess pressure leads to an impedance boundary condition of the form

∂u

∂ν
+ iλu = 0 on ∂K

where, again, λ is a positive constant.

2.2 Computational Electromagnetics/Acoustics

Although the principles of electromagnetics and acoustics are well understood (cf.

§2.1), their application to practical configurations of current interest is significantly

complicated and far beyond manual calculation in all but the simplest aspects. The

significant advances in computer modelling of electromagnetic and acoustic interac-

tions that have taken place over the last two decades have made it possible to shift the

classical “trial and error” design paradigm for electromagnetic and acoustic devices

to one that heavily relies on computer simulation. Computational Electromagnetics

(CEM) and Computational Acoustics (CA) have thus taken on great technological im-

portance and, largely due to this, they have become a central problem in present-day

computational science [63].

The continuously increasing industrial and engineering demands for sophisticated

electromagnetic and acoustic modelling, have made CEM and CA into industries

of their own, involving a large number of researchers in academic, government and

industrial laboratories. Not surprisingly then, the number of methods, or variations

thereof, is almost as large. Still, the most successful methodologies can be broadly

categorized as belonging to one of the following classes:

1. Differential (DE) equation methods: These algorithms are based on direct dis-

cretization of differential formulations of electromagnetic and acoustic equa-

tions, e.g. finite difference time-domain method (FDTD) etc.

2. Variational formulation (VF) methods: These methods are based on the solution
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of weak formulations of the equations. Examples of VF methods include method

of moments (MoM), finite element methods (FEM), and finite volume methods

(FVM).

3. Integral equation (IE) methods: These schemes are based on the discretization

of integral equation formulations of the problems, e.g. the boundary integral

equation method (BIEM), the boundary element method (BEM), etc.

4. Asymptotic Methods (AM): In contrast with the methods above, these do not

solve the full Maxwell or acoustic equations, but rather an approximation of

them (e.g. the eikonal equation instead of the Helmholtz equation). Examples of

AM algorithms include ray-tracing methods, shooting-and-bouncing-ray method

(SBR), etc.

Each of these display advantages and shortcomings. DE methods, for instance,

are easy to implement and they are, therefore, extensively used for computing elec-

tromagnetic/acoustic scattering by general objects [50]. However, they typically re-

quire 10-20 grid points per wavelength to obtain sufficiently accurate solutions of

the scattered fields [74]. Such requirements inhibit the use of the DE methods for

accurately computing electromagnetic/acoustic scattering by large objects. In addi-

tion, DE methods are not very versatile as they are constrained to use structured

grids [61]. Variational formulation methods, on the other hand, are better adapted

to simulations involving complicated geometries [41, 45].

When using DE or VF methods in scattering simulations, an artificial surface must

be introduced at a finite distance from the scatterers in order to limit the computa-

tional domain. As a result, proper boundary conditions, known as artificial boundary

conditions (ABC), enforcing the condition that the scattered field be outgoing, must

be introduced on this surface. In fact, the imposition of exact ABC’s is possible via

Dirichlet-to-Neumann (DtN) maps [37, 41]. However, the resulting boundary condi-

tions are non-local, since they are expressed as surface integrals, and consequently,
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the linear systems that arise upon discretization are partially dense. This, in turn,

can significantly add to the computational cost for DE and VF methods.

The design of efficient and accurate local ABC’s is a complex exercise, that still

attracts significant attention as it constitutes one of the main challenges in the im-

plementation of DE and VF algorithms. A characteristic type ABC, requiring the

scattered field to vanish at the artificial surface, has often been used (see [38] and

the references therein). However, this causes significant reflections from the artificial

boundary that pollute the computational results unless the surface is placed very far

away from the scatterer (i.e., at a distance of 10-20 wavelengths). To alleviate this

problem, a number of high-order local ABC’s have been proposed [36, 37, 56]. With

the same objective, a different approach was introduced by Berenger [8, 9] which by-

passes the need for ABC, replacing them by a suitably constructed absorbing medium

known as a perfectly matched layer (PML). In its initial form, Berenger’s PML uti-

lized a non-physical splitting of the electromagnetic field which led to instability [1];

stable versions of the PML approach have since been proposed [26, 31, 32, 38].

It is partly due to these difficulties in enforcing the radiation condition that IE

methods constitute an advantageous approach for scattering simulations. Indeed, in

integral equation formulations, the radiation condition is explicitly enforced by simply

choosing an appropriate (“outgoing”) fundamental solution [24, 25]. Moreover, the

solution space is confined to the scattering obstacles and the number of unknowns

arising when discretizing such equations is relatively small compared to those of DE

and VF methods, especially in surface scattering applications. However, in general,

the discretization of integral equation formulations leads to dense matrices [57]. As

is well known, inversion of a dense n × n matrix with a direct solver, such as the

LU decomposition, is an O(n3) operation [60]; an iterative method can decrease

this to O(n2) [34]. Still this, however, can quickly become prohibitive in scattering

applications. In fact, a significant part of all recent efforts relating to the numerical

solution of integral equations in this context has focused on the design of fast methods,
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i.e. methods that perform the matrix-vector multiplications in O(nr) operations, with

r less than 2.

Indeed, a number of fast methods for IE simulations have been proposed in the

past. These include the wavelet expansion method (WEM) [72, 77], the impedance

matrix localization scheme (IML) [21], the adaptive integral method (AIM) [11], and

fast multiple methods (FMM) [64]. The basic idea behind these methods is to obtain

a sparse matrix starting with the classical method of moments (MoM) solution pro-

cedure. In WEM and IML, the generation of a sparse matrix is achieved by utilizing

a special set of basis functions to represent the unknown quantity, while in AIM and

FMM, this is achieved by handling the influence of the kernel function in a novel

way. The use of wavelet basis functions in WEM reduces the solution time by a

constant factor but not the computational complexity. The IML technique, on the

other hand, allows the MoM matrix to be replaced by a matrix with localized clumps

of large elements, but it achieves modest sparsity and only for simple geometries.

The AIM, in turn, utilizes fast Fourier transforms (FFT) to reduce the computa-

tional cost to O(n3/2 log n) and O(n log n) complexities for surface and volumetric

scattering problems, respectively. The FMM algorithm was originally proposed by

Rokhlin for solving static problems [64] and then for particle simulations [35]. Its

use can dramatically reduce the time and memory required to compute interactions.

The method was extended again by Rokhlin [65] to solve acoustic wave scattering

problems in 2-dimensions and then to solve electromagnetic scattering problems by

a number of researchers in both 2-dimensions [23, 53] and 3-dimensions [22, 70]. A

two-level FMM algorithm reduces both the complexity of a matrix multiplication and

memory requirement from O(n2) to O(n3/2) [66], while multilevel FMM algorithm re-

quire O(n log n) operations [71]. However, as has been shown [29, 51], while FMM is

well adapted to the solution of low-frequency problems, it becomes unstable at higher

frequencies.

Even with the present day super-computers, DE, VF and IE methods can reach
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their limits of capabilities at modest frequencies. For example, the most advanced

implementations of these methods can compute radar cross section (RCS) of fighter

aircraft up to only a few GHz. For higher frequencies, the state-of-the-art relies on

AM methods.

2.3 Scattering Problems

One of the basic problems in electromagnetics/acoustics is the scattering of time-

harmonic waves by impenetrable obstacles [25]. To formulate the problem, let K ⊂ R3

be a compact set with smooth boundary, and consider an incoming wave impinging

on the obstacle K.

In electromagnetics, the incoming wave (Einc, H inc) corresponds to a free space

solution to the time-harmonic Maxwell equations

∇× Einc − ikH inc = 0, ∇×H inc + ikEinc = 0 in R3, (2.3.1)

which generates a scattered field (Es, Hs) in a manner so that the total electromag-

netic field

(E, H) = (Einc, H inc) + (Es, Hs) (2.3.2)

satisfies the time-harmonic Maxwell equations

∇× E − ikH = 0, ∇×H + ikE = 0 (2.3.3)

in the exterior domain Ω = R3\K.

As with any exterior problem, the solution of the problem (2.3.1)-(2.3.3) is not

unique unless a condition at infinity is imposed [25]; here the relevant condition is

the Silver-Muller radiation condition

lim
r→∞

(Hs × x− rEs) = 0
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or equivalently

lim
r→∞

(Es × x + rHs) = 0

where r = |x| and where the limit is assumed to hold uniformly in all directions x/|x|.

In the acoustic counterpart of the problem (2.3.1)-(2.3.3), the incident filed uinc

is a free space solution to the Helmholtz equation

(
∆ + k2

)
uinc = 0, (2.3.4)

while the total field

u = uinc + us (2.3.5)

must satisfy the Helmholtz equation

(
∆ + k2

)
u = 0 in Ω. (2.3.6)

The physical condition ensuring the uniqueness of solutions to the acoustic prob-

lem (2.3.4)-(2.3.6) is the Sommerfeld radiation condition

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0

where, again, r = |x| and the limit is assumed to hold uniformly in all directions

x/|x|. In fact, for solutions to the time-harmonic Maxwell equations in a homogeneous

medium with no charges, the Silver-Muller radiation condition is equivalent to the

Sommerfeld radiation condition for the Cartesian components (see [25] Theorem 6.7).

For the existence and uniqueness of solutions to the electromagnetic scattering

problem (2.3.1)-(2.3.3) as well as that of the acoustic scattering problem (2.3.4)-

(2.3.6), we refer to [25] and the references therein.

Finally, we note that mathematical treatment of the scattering of time-harmonic

electromagnetic and acoustic waves by infinitely long cylindrical obstacles with a
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bounded cross-section K ⊂ R2 also leads to exterior value problems for the Helmholtz

equation in Ω = R2\K with wave number k > 0 [12, 43]. So, the problem (2.3.4)-

(2.3.6) is also relevant to electromagnetic scattering problems in two-dimensions.

However, in two dimensional problems, the Sommerfeld radiation condition must

be modified to

lim
r→∞

r1/2(
∂us

∂r
− ikus) = 0

where r = |x| and the limit is assumed to hold uniformly in all directions x/|x|.

2.4 Integral Equations

A potential theoretic approach to scattering problems begins with a representation

of the field in the form of a double- or single-layer potential [25]. For instance,

considering the acoustic scattering problems (2.3.4)-(2.3.6), when the scattered field

us is represented as a double-layer potential

us(x) = −
∫

∂K

∂Φ(x, y)

∂ν(y)
µ(y)ds(y), x ∈ Ω, (2.4.1)

where

Φ(x, y) =


i

4
H

(1)
0 (k|x− y|) in R2,

1

4π

eik|x−y|

|x− y|
in R3,

(2.4.2)

is the free-space outgoing Green’s function for the Helmholtz equation (here, H
(1)
0 is

the Hankel function of the first kind and of order zero [24, 25]), the density µ must

be south to satisfy the integral equation of the second kind

1

2
µ(x) +

∫
∂K

∂Φ(x, y)

∂ν(y)
µ(y)ds(y) = uinc(x), x ∈ ∂K. (2.4.3)

17



On the other hand, if us is represented as a single-layer potential

us(x) = −
∫

∂K

Φ(x, y)η(y)ds(y), x ∈ Ω, (2.4.4)

then η must satisfy the integral equation of the first kind

∫
∂K

Φ(x, y)η(y)ds(y) = uinc(x), x ∈ ∂K. (2.4.5)

As it turns out, the density η is a physical quantity. For instance, when the Dirich-

let boundary condition u = 0 is imposed on ∂K, η coincides with the normal velocity

of the total field ∂u/∂ν which is known as the surface current in electromagnetics.

Indeed, for x ∈ Ω, taking advantage of the fact that uinc is a free space solution to the

Helmholtz equation (so, in particular, in K) yields via an appeal to Green’s second

theorem that

∫
∂K

(
uinc(y)

∂Φ(x, y)

∂ν(y)
− ∂uinc

∂ν
(y)Φ(x, y)

)
ds(y)

=

∫
K

(
uinc∆Φ− Φ∆uinc

)
dx =

∫
K

uinc
(
∆Φ + k2Φ

)
dx = 0. (2.4.6)

On the other hand, since Φ is radiating, we also have

us(x) =

∫
∂K

(
us(y)

∂Φ(x, y)

∂ν(y)
− ∂us

∂ν
(y)Φ(x, y)

)
ds(y), x ∈ Ω. (2.4.7)

Therefore, when the Dirichlet boundary condition is imposed, equations (2.4.6) and

(2.4.7) give

us(x) =

∫
∂K

(
u(y)

∂Φ(x, y)

∂ν(y)
− ∂u

∂ν
(y)Φ(x, y)

)
ds(y)

= −
∫

∂K

∂u

∂ν
(y)Φ(x, y)ds(y), x ∈ Ω. (2.4.8)
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Comparing (2.4.4) with (2.4.8), we conclude via uniqueness of solutions that

η =
∂u

∂ν
on ∂Ω,

that is, the density η in the single-layer representation of the scattered field us is the

physical surface current.

Although it differs significantly from that in (2.4.3), an integral equation of the

second kind can also be derived for the current. Indeed, taking the exterior normal

derivative in (2.4.8) using the jump relation for the derivatives of the single-layer

potential (cf. [25] Theorem 3.1) yields

∂us

∂ν
(x) =

1

2

∂u

∂ν
(x)−

∫
∂K

∂Φ(x, y)

∂ν(x)

∂u

∂ν
(y)ds(y), x ∈ ∂K

or equivalently

1

2

∂u

∂ν
(x) +

∫
∂K

∂Φ(x, y)

∂ν(x)

∂u

∂ν
(y)ds(y) =

∂uinc

∂ν
(x), x ∈ ∂K (2.4.9)

which is an integral equation of the second kind. Yet, the solution of the integral

equation (2.4.9) is not unique if k is a so-called irregular wave number or internal

resonance, i.e., if there exist non-trivial solutions u to the Helmholtz equation in the

interior domain K satisfying homogeneous Neumann boundary conditions ∂u/∂ν = 0

on ∂Ω [25]. This non-uniqueness problem can be avoided by combining the integral

equations (2.4.5) and (2.4.9) with a real coupling parameter β 6= 0 yielding a uniquely

solvable integral equation of the second kind for the surface current on ∂K (see [47]

for an investigation on the proper choice of the coupling parameter β):

1

2

∂u

∂ν
(x) +

∫
∂K

(
∂Φ(x, y)

∂ν(x)
+ iβΦ(x, y)

)
∂u

∂ν
(y)ds(y) =

∂uinc

∂ν
(x) + iβuinc(x). (2.4.10)
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Chapter 3

A High-frequency Integral

Equation Method (HF-IEM)

Although the problems (2.3.1)-(2.3.3) and (2.3.4)-(2.3.6) are perhaps the simplest

examples of physically realistic problems in scattering theory, they still cannot be

considered completely solved, particularly in the high-frequency regime, and remain

the subject matter of copious ongoing research [25, 63]. A major advance in this

direction was recently attained in [15, 16, 17, 18] where a novel integral equation

method for high-frequency scattering was developed. A central characteristic of this

scheme is that it allows for the evaluation of solutions within any prescribed accuracy

to be obtained in frequency-independent computational times. In this Chapter, we

review the basic ideas behind this approach, whose analysis is the subject of this

thesis. The details of this procedure in single-scattering configurations is provided

in §3.1. As we show in §3.2, the extension to multiple-scattering configurations is

naturally attained through an iteratively computable series. As will be clear from the

discussion, the basic ideas naturally extend to other types of boundary conditions.

20



3.1 Single-scattering Configurations

As was mentioned in Chapter 1, the algorithm proposed in [15, 16] in connection with

the single-scattering configurations is based on three main elements.

The first main element provides the correct choice between the integral equations

utilizing the physical intuition that the density used to represent the scattered field

as a layer potential should oscillate along with the incident field. Accordingly, the

density must allow an ansatz in the form of a slowly varying envelope modulated by

a highly-oscillatory phase term provided by the geometrical optics solution [46]. The

slowly varying amplitude can then be represented by a number of degrees of freedom

independent of the frequency. Moreover, the algorithm presented in [15, 16] accounts

rigorously for the fact that the ansatz is only valid in certain regions of the scattering

surface.

The second main element of the algorithm is a localized integration method re-

lated to the method of stationary phase [10]. This localized integration scheme, which

reduces the support of integration to a small subset of the scattering surface, can be

seen as a natural link between high-frequency approximate, nonconvergent methods

such as the Kirchhoff approximation, and a direct integral equation method. As dis-

cussed below, the size of the reduced integration support is related to the wavelength,

leading to a number of integration points independent of frequency, and thus, to a

frequency-independent overall computational complexity.

The third main element is a change of variables around shadow boundaries in order

to represent the slowly varying envelopes within a fixed error tolerance by means of a

frequency-independent discretization density. Indeed, these slowly varying envelopes

possess boundary layers of cubic order in wavelength around shadow boundaries, and

the change of variables is based on the asymptotic expansions provided in [55].
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Figure 3.1: Real (top left) and Imaginary (top right) parts of µ/kuinc; Real (bottom
left) and Imaginary (bottom right) parts of η/kuinc.

3.1.1 High-frequency Ansatz

As we said, based on the physical intuition, one expects the unknown densities µ and

η in (2.4.1) and (2.4.4) to oscillate along with the incident field. This gives rise to

the ansatz

µ(x) = µslow(x)eikα·x,

and

η(x) = ηslow(x)eikα·x, (3.1.1)

when the incident field is given by the plane wave

uinc(x) = eikα·x, x ∈ Rn (3.1.2)

with direction α, |α| = 1. We display the graphs of these functions in Figure 3.1.
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Interestingly, only the normalized density of η in (2.4.4) oscillates slowly, indicating

that the function µ in (2.4.1) does not oscillate like the incoming field. These results

can be easily explained. Indeed, as we showed in §2.4, the density η represents a

physical quantity, namely the surface current; on the other hand, it was shown in [15]

that the double-layer density µ has no such physical meaning. The advantage, then,

that η delivers is that the slowly varying envelope

ρ := ηslow,

can be represented by a number of degrees of freedom independent of frequency.

As will be explained in §3.2, the convergence analysis of our multiple scattering

approach for the calculation of the surface current will be based on integral equations

of the second kind. As we mentioned in §2.4, when the wave number k is an internal

resonance, the solution η = ∂u/∂ν of the integral equation (2.4.9) is not unique, and

equation (2.4.10) must therefore be used. On the other hand, the ideas in what follows

do not depend on the particular integral equation utilized. Therefore, for simplicity of

our presentation, we will assume that the wave number k is not an internal resonance

and work with the integral equation (2.4.9). Note that, with

G(x, y) := −2Φ(x, y), x 6= y in Rn,

the equation (2.4.9) can be written for η as

η(x)−
∫

∂K

∂G(x, y)

∂ν(x)
η(y)ds(y) = 2

∂uinc

∂ν
(x), x ∈ ∂K; (3.1.3)

and this, in turn, gives rise to the integral equation

ρ(x)−
∫

∂K

∂G(x, y)

∂ν(x)
eikα·(y−x)ρ(y)ds(y) = 2ikα · ν(x), x ∈ ∂K (3.1.4)

for the slowly oscillating density ρ when the incidence is given by (3.1.2).
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3.1.2 Localization Principle

Despite the fact that the unknown in the modified boundary integral formulation

(3.1.4) is a slowly oscillating function, a direct numerical evaluation of the integral

in (3.1.4) would still require a number of quadrature points proportional to the wave

number k. The method developed in [15, 16] reduces this requirement to a number in-

dependent of frequency by introducing an error-controllable extension of the classical

method of stationary phase [10].

To this end, the approach begins evaluation of the critical points of the integral

in (3.1.4) for each target point x. Clearly, the critical points are

1. the target (observation) point x itself, where the kernel is singular; and

2. the stationary points of the phase

ϕ(y) = α · (y − x) + |y − x|. (3.1.5)

These stationary points, which are given by the solution of a nonlinear sys-

tem of equations, can be evaluated easily by means of Newton’s method.

In view of the method of stationary phase, we know that, asymptotically, the only

significant contributions to the integral in (3.1.4) arise from values of the slow in-

tegrands and their derivatives at the critical points. To derive an error-controllable

(rather than asymptotic) integration strategy with a frequency-independent compu-

tational cost, the authors of [15, 16] introduce an approach based on localization

around these critical points. Physically, for an observation point located away from

the scatterer’s surface, the critical points correspond to the points of specular reflec-

tion: there is only one such critical point on the surface of a convex scatterer. The

critical points mentioned above constitute a generalization of this concept to the case

in which the observation point lies on the scatterer’s surface.

The concept of localized integration can be understood by considering the problem

of integration of the one-dimensional smooth function fA(x)eikxp
depicted in Figure
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Figure 3.2: Real parts of functions fA(x)eikxp
and fε(x)eikxp

with upper envelopes
fA(x) and fε(x), respectively; p = 2 [15].

3.2. This discussion applies to the integral in (3.1.4) rather directly, since, via expan-

sion of the phase ϕ in Taylor series, the oscillatory behavior of the integration kernels

around their critical points is well captured by an exponential of the form eikxp
with

p = 1 (around the kernel singularity), p = 2 (around the stationary points other than

the shadow boundaries), or p = 3 (around the shadow boundary stationary points,

provided the curvature does not vanish). The basic result is the following.

Lemma 3.1.1 [15] Given positive real numbers A, ε, c and p with ε < A and c <

1 ≤ p, denote by fA(x) and fε(x) the upper enveloping curves in Figure 3.2. Then

∫ A

−A

fA(x)eikxp

dx =

∫ ε

−ε

fε(x)eikxp

dx +O
(
(kεp)−n

)
, ∀n ≥ 1.

That is, under certain conditions on the product kεp, the integral between −ε and ε of

fε(x)eikxp
is a good approximation of the integral of fA(x)eikxp

between −A and A.

Error estimates for the integral (3.1.4), similar to that of Lemma 3.1.1, which can

be obtained by Taylor-expanding the phase ϕ in (3.1.5) around the critical points,

provide the criteria for the localized integration. For each target point the correspond-
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ing set of distinguished points is covered by a number of small regions, as indicated

in what follows:

1. the target point is covered by a region Ut of radius proportional to the

wavelength λ (p = 1);

2. the l-th stationary point is covered by a region U l
s of radius proportional

to
√

λ (p = 2) or 3
√

λ (p = 3, at the shadow boundaries).

A partition of unity [19, 20] is used to smoothly split the integral over ∂K into

a number of integrals over subsets of ∂K. This partition of unity is taken to be

subordinated to the covering by open sets Ut and U l
s and the complement V of a

closed set which is contained in and closely approximates the union of the set Ut

⋃
U l

s

(in other words, the set where each of the functions making up the partition of unity

is not zero is contained in one of the sets U or V ). The integral over all of ∂K is then

split as a sum of integrals over V and each one of the U sets, with integrands which

include the corresponding partitions of unity. The integral in the outside region V is

neglected. Note that, for sufficiently small wave numbers, the U intervals cover the

scatterer completely, and this high-frequency integral formulation reduces seamlessly

to the original integral equation.

This localized integration scheme is exemplified in [16] by computing the following

integral on a circle of unit radius, centered at the origin:

I(θ0) =

∫ 2π

0

[
H1

0 (k|r(θ)− r(θ0)|) eikα·(r(θ)−r(θ0))
]
cos(θ)dθ, (3.1.6)

with r(θ) = (cos θ, sin θ). Equation (3.1.6) corresponds to the two-dimensional single

layer potential in the integral equation (3.1.3), with the unknown density substituted

by cos(θ). Table 3.1 demonstrates the fixed accuracy of the integrator for θ0 = 0 and

α = (1, 0) throughout the frequency spectrum, using a fixed number of integration

points for all values of k.
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k N ε Error

1000 2100 1 1.5e-6
2000 2100 0.5 4.8e-8
4000 2100 0.25 1.2e-7
8000 2100 0.125 9.8e-7
16000 2100 0.0625 1.5e-6

Table 3.1: Localized integrator, sinusoidal slow density. Error on I(θ0 = 0) using N
integration points [15].
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Figure 3.3: Real (left) and Imaginary (right) parts of ρ/k2/3 for k = 600, 1500 and
3000.

3.1.3 Change of Variables around Shadow Boundaries

While the illuminated region (where α · ν << 0) can be treated as explained above,

shadow boundaries (where α · ν = 0) require special consideration (cf. Figure 3.3).

Indeed, in order to represent ρ within a fixed error tolerance by means of a frequency-

independent discretization density, a cubic root singularity inherent in the slow den-

sity around such boundaries needs to be accounted for appropriately. This can be

done by means of changes of variables which compensate for the k1/3 increase of the

slopes of the slow density phases ϕ = ϕk(θ) around the shadow boundaries as k

increases (cf. Figure 3.4); see [15] for details.
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Figure 3.4: A convex obstacle illuminated by a plane wave (top); change of variables
around shadow boundaries (bottom).

In view of the above discussions, ρ in (3.1.4) can be obtained, within a prescribed

error tolerance, through interpolation from a fixed (independent of frequency) number

of discretization points. In implementations, these points are associated with the

nodes of Cartesian grids discretizing one or more (overlapping) patches covering the

scatterer surface, as proposed by [19, 20]. Fast interpolations of very high order can

then be obtained using refined FFTs and polynomial off-grid interpolation [14].

The integral in the region Ut, which contains the kernel singularity, is evaluated

by means of a discretization with a mesh-size proportional to λ; the choice of singular

integrator is that described by [25] in the two-dimensional case and by [19, 20] in the
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three-dimensional case. These methods provide high-order quadrature for the singular

integrands arising in the integral equations under consideration. The integral in the

region U l
s , in turn, is evaluated by means of the trapezoidal rule with a discretization

mesh-size proportional to
√

λ or 3
√

λ. In all cases, the values of the slow densities at

the integration points are obtained through interpolation from the fixed discretization

mesh mentioned above. Note that, because of the smooth cut-offs used, all integrands

are smooth periodic functions for which the trapezoidal rule gives rise to high-order

convergence. Also note that a special procedure is necessary to guarantee that the

nonempty intersections occurring between the various U sets defined above do not

cause difficulties: if the sets have identical discretizations, they are simply merged

and the corresponding elements of the partition of unity are summed; otherwise, in a

recursive manner, the integral on the set having the finer discretization is computed

completely, and its partition of unity subtracted from the other sets.

3.1.4 Numerical Tests

In [16], a matrix free iterative solver was implemented by utilizing the two-dimensional

version of the high-frequency integrator described above in conjunction with the

GMRES algorithm [68]. Table 3.2 shows results produced by means of this two-

dimensional solver on a 1.5GHz PC, applied to a circular cylinder of radius a. Errors

are computed by comparison with an exact solution for the integral equation, and

defined as (∫
∂K
| ρexact(x)− ρ(x) |2 ds(x)∫
∂K
| ρexact(x) |2 ds(x)

)1/2

.

This example illustrates the asymptotically bounded complexity of the approach: the

error for k = 1000 is almost identical to that for k = 100000, using the same number

of unknowns and the same number of integration points. The high-frequency solver

is well conditioned and requires a small number of GMRES iterations for arbitrarily

large wave numbers, leading to nearly identical computation times for all values of
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25 unknowns, ε = εref

ka GMRES Iteration Error CPU Time

1 9 1.0e-12 < 1s
10 11 1.6e-4 < 1s
100 13 9.3e-4 3s
1000 13 8.3e-3 5s
10000 15 1.0e-2 6s
100000 14 1.1e-2 6s

100 unknowns, ε = 5εref

ka GMRES Iteration Error CPU Time

1 9 1.0e-12 < 1s
10 17 3.0e-11 5s
100 22 1.5e-5 11s
1000 25 3.1e-5 2m30s
10000 27 8.4e-5 3m12s
100000 30 8.8e-5 3m43s

Table 3.2: Scattering of an incident plane wave on a circular cylinder of radius a [15].

k > 1000. The results given in the upper half of Table 3.2 are obtained using 25

discretization points for the slow density ρ and a local integration interval size εref =

600(ka)−1, with 800 integration points.

3.2 Multiple-scattering Configurations

In this section, we review the basic ideas introduced in [17, 18] that allow for the

extension of the approach explained in §3.1 to multiple-scattering configurations.

3.2.1 Multiple-scattering Formulation

Mathematically, the observations that enable the extension of the HF-IEM approach

of [15, 16] to multiple-scattering configurations begins by noting that if the obstacle
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K is decomposed into a collection of disjoint sets K =
⋃N

i=1 Ki, then (3.1.3) can be

written as

ηi −Riiηi −
∑
j 6=i

Rijηj = fi, on ∂Ki, 1 ≤ i ≤ N (3.2.1)

where, for 1 ≤ i ≤ N , and x ∈ ∂Ki

ηi(x) = η(x),

fi(x) = 2
∂uinc(x)

∂ν(x)

Rijηj(x) =

∫
∂Kj

∂G(x, y)

∂ν(x)
ηj(y)ds(y).

The diagonal operators Rii correspond precisely to the scattering problems for each

isolated sub-surface ∂Ki and are therefore invertible (away from internal resonances).

Accordingly, (3.2.1) can be written for 1 ≤ i ≤ N on ∂Ki as

ηi −
∑
j 6=i

(I −Rii)
−1Rijηj = (I −Rii)

−1fi (3.2.2)

or equivalently

ηi −
∑
j 6=i

Aijηj = gi. (3.2.3)

For 1 ≤ i ≤ N , the operators Aij are defined on ∂Ki by the identities

Aij =

 (I −Rii)
−1Rij if 1 ≤ i 6= j ≤ N

0 if 1 ≤ i = j ≤ N

and the functions gi are the unique solutions to (I −Rii)gi = fi on ∂Ki, that is

gi = (I −Rii)
−1fi.
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Alternatively, (3.2.3) can be written as

(I − A)η = g on ∂K (3.2.4)

with η = [η1 η2 ... ηN ]T , A = [Aij] and g = [g1 g2 ... gN ]T . The series solution to

(3.2.4) is given by the Neumann series

η =
∞∑

n=0

[ηn
1 ηn

2 ... ηn
N ]T on ∂K (3.2.5)

where the terms are inductively defined as

[
η0

1 η0
2 ... η0

N

]T
= [g1 g2 ... gN ]T (3.2.6)

and

[ηn
1 ηn

2 ... ηn
N ]T = A

[
ηn−1

1 ηn−1
2 ... ηn−1

N

]T
. (3.2.7)

More explicitly, relations (3.2.6) and (3.2.7) can be written in the form

η0
i (x)−

∫
∂Ki

∂G(x, y)

∂ν(x)
η0

i (y)ds(y) = 2
∂uinc(x)

∂ν(x)
(3.2.8)

and

ηn
i (x)−

∫
∂Ki

∂G(x, y)

∂ν(x)
ηn

i (y)ds(y) =
∑
j 6=i

∫
∂Kj

∂G(x, y)

∂ν(x)
ηn−1

j (y)ds(y) (3.2.9)

respectively, for i = 1, . . . , N . At this stage, and using (3.2.8)-(3.2.9), it can be readily

verified that, the n-th order correction [ηn
1 ηn

2 ... ηn
N ]T in (3.2.5) corresponds precisely

to the current generated on each structure by the n-th order reflection, that is, by the

field generated after the incidence uinc has undergone n bounces. Indeed, on the one

hand, equations (3.2.8) correspond to the solution of the scattering problems for each

isolated sub-surface in response to the incoming radiation, ignoring interactions. And,
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on the other hand, the right-hand sides of (3.2.9) are precisely the fields scattered by

each sub-surface at the (n - 1)-st stage, evaluated on the complementary part of the

structure. Thus the n-th order correction corresponds to the current generated by

this latter incidence and this, in turn, can be used to inductively show that it also

corresponds to the n-th order reflection.

Evidently then, for a fixed surface ∂Ki, the n-th correction ηn
i is the sum of

(N − 1)n corrections corresponding to each obstacle path of length n terminating

precisely at ∂Ki. Accordingly, the total surface current η is the sum over all infinite

sequences of obstacle paths (Km)m≥0 (i.e. each Km is one of the objects in consider-

ation, and no two consecutive objects are the same) of the solutions of the integral

equations

η0(x)−
∫

∂K0

∂G(x, y)

∂ν(x)
η0(y)ds(y) = 2

∂uinc(x)

∂ν(x)
= 2ikeikα·xα·ν(x), x ∈ ∂K0 (3.2.10)

and for m = 1, 2, . . .

ηm(x)−
∫

∂Km

∂G(x, y)

∂ν(x)
ηm(y)ds(y)

=

∫
∂Km−1

∂G(x, y)

∂ν(x)
ηm−1(y)ds(y), x ∈ ∂Km. (3.2.11)

3.2.2 Generalized High-frequency Ansatz

The significance of the formulation in §3.2.1 stems from the fact that it guarantees that

each of the problems in (3.2.10)-(3.2.11) entails the solution of problems within single

scattering configurations for which the methods described in §3.1 provide an error-

controllable scheme with fixed computational complexity. To apply this procedure,

however, we must first identify the phase of each correction ηm to the current, to

derive a representation analogous to (3.1.1). But this, once again, is facilitated by

the interpretation of these corrections as corresponding to successive wave reflections,

which suggests that the highly-oscillatory part of their phases must coincide with that
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provided by a geometrical optics solution.

For instance, when the obstacles are convex and “visible” (in the sense that none

of them meets the convex hull generated by any other pair of objects), the geometrical

optics solution provides a sequence of phase functions {ϕm}m≥0 measuring the optical

distance travelled by a ray arriving at xm ∈ ∂Km after m reflections. More precisely,

depending on xm ∈ ∂Km, the geometrical optics solution provides uniquely deter-

mined points (x0, x1, · · · , xm−1) ∈ ∂K0 × ∂K1 × · · · × ∂Km−1 on the optical ray path

arriving at xm after m reflections. The m-tuple (x0, x1, · · · , xm−1) is characterized,

for m ≥ 1, by the following principles:

1. Rays bounce off illuminated regions :

α · ν0 < 0, and (xi+1 − xi) · νi > 0, i = 1, . . . ,m− 1

2. Law of reflection:
x1 − x0

|x1 − x0|
= α− 2(α · ν0)ν0,

and

xi+1 − xi

|xi+1 − xi|
=

xi − xi−1

|xi − xi−1|
− 2

(
xi − xi−1

|xi − xi−1|
· νi

)
νi, i = 1, . . . ,m− 1.

Here, we have chosen νi = νi(xi) to denote the outward unit normal to the surface

∂Ki at the point xi. In this case, the phase at the point xm is defined to be

ϕm = ϕm(xm) =


α · x0 if m = 0,

α · x0 +
∑m−1

i=0 |xi+1 − xi| if m ≥ 1;

(3.2.12)

see Figures 3.5 and 3.8 for examples. Using (3.2.12) and similar to (3.1.1), we write

ηm(x) = ρm(x)eikϕm(x), (3.2.13)
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and equations (3.2.10)-(3.2.11) read:

ρ0(x)−
∫

∂K0

∂G(x, y)

∂ν(x)
eik(ϕ0(y)−ϕ0(x))ρ0(y)ds(y) = 2ikα · ν(x), x ∈ ∂K0 (3.2.14)

and for m = 1, 2, . . .

ρm(x)−
∫

∂Km

∂G(x, y)

∂ν(x)
eik(ϕm(y)−ϕm(x))ρm(y)ds(y)

=

∫
∂Km−1

∂G(x, y)

∂ν(x)
eik(ϕm−1(y)−ϕm(x))ρm−1(y)ds(y), x ∈ ∂Km. (3.2.15)

3.2.3 Extension of the Single-scattering Algorithm

As we said, the slowly oscillatory character of the quantities ρm follows from the

interpretation of the right-hand side of (3.2.11) as the normal derivative of the field

scattered by ∂Km−1 after (m − 1) reflections, so that its phase is precisely given by

ϕm. Equation (3.2.15) is then amenable to the treatment described in §3.2 the only

difference being that the evaluation of the right hand side of (3.2.15), for m ≥ 1,

entails an integral of a highly oscillatory function. This, however, can again be

treated with the aforementioned strategies of localized integration. In fact, in this

case the integrand is regular and only integrations around stationary points of the

overall phase must be performed. Moreover, as is to be expected from the asymptotic

limit, for any given target point xm ∈ ∂Km there will be exactly one stationary point

xm−1 ∈ ∂Km−1 of the corresponding integral. Indeed, this point will coincide with the

point in ∂Km−1 from which a geometrical ray that has experienced (m−1) reflections

goes through xm upon an additional reflection at xm−1.

3.2.4 Numerical Tests

In Figures 3.6 and 3.7 (taken from [62]), we exemplify this procedure in the specific

instance of Figure 3.5 for the wave number k = 40. In Figure 3.6, we display the
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graphs of the functions ηm(x), ρm(x) and ϕm(x) on the obstacle K1, namely the ellipse

located on top, (left, middle and right panels, respectively) for different values of m

(m = 0, 10, 20, 40 in the first, second and third rows, respectively). In particular, the

figure demonstrates the slowly oscillatory character of the envelopes that result from

the generalized phase extraction described above. Indeed, the figure shows that the

functions ρm(x) are slowly oscillatory throughout the region of K1 that is illuminated

after m reflections, that they vanish in the corresponding deep shadow zones, and

that they exhibit sharp transitions (of the order of k−1/3) about shadow boundaries,

exactly as in the single scattering case. Finally, Figure 3.7 illustrates the convergence

properties of the series (3.2.5). More precisely, there we display the values of truncated

approximations ηapprox, and of the error

Max. Error =
1

k
max | η(x)− ηapprox(x) |,

where η is the solution (converged to machine precision) obtained by means of the

algorithm proposed in [25], and where the error is normalized by the wave number

since the solution η grows linearly with k. In addition, Figure 3.7 demonstrates the

spectral rate of convergence of the series which, in this case, translates in an error of

less than 1% in less than 15 iterations.

A similar example is provided in Figures 3.8, 3.9 and 3.10.
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Configuration First reflections
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−15

−10

−5

0
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−5

0

5

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

Figure 3.5: A configuration consisting of two ellipses, and the corresponding geomet-
rical rays.
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Figure 3.6: Corrections ηm(left), slow envelopes ρm (middle), and phases ϕm (right)
corresponding to reflections m = 0, 10, 20, 40 for the configuration in Figure 3.5
(data corresponds to the ellipse on top).
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Figure 3.7: Top and middle rows: Approximate current ηm for reflections m = 0, 10,
20, 30, 40; middle right is the exact current; Bottom: Number of reflections versus
the L∞ error (data corresponds to the upper ellipse in Figure 3.5).

39



Configuration First reflections
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Figure 3.8: A configuration consisting of two circles, and the corresponding geomet-
rical rays.
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Figure 3.9: Corrections ηm(left), slow envelopes ρm (middle), and phases ϕm (right)
corresponding to reflections m = 0, 5, 10, 20 for the configuration in Figure 3.8 (data
corresponds to the upper circle).
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Figure 3.10: Top and middle rows: Approximate current ηm for reflections m = 0, 5,
10, 15, 20; middle right is the exact current; Bottom: Number of reflections versus
the L∞ error (data corresponds to the upper circle in Figure 3.8).
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Chapter 4

Asymptotic Expansions of the

Two-dimensional Multiple

Scattering Iterations in HF-IEM

In this Chapter, we derive the asymptotic expansions of the solutions ηm of the

integral equations (3.2.10)-(3.2.11) in a two-dimensional setting for a finite collection

of convex obstacles. In order to simplify the calculations, we assume the visibility

condition, that is, no obstacle meets with the closed convex hull generated by any

other pair of objects. Under these assumptions, and utilizing the notation set in

§3.2.2, the main result of this chapter reads as follows:

Theorem 4.0.1 (Asymptotic Expansions of Iterated Currents) At each reflec-

tion, the asymptotic expansions of iterated currents ηm = ηm(xm) are given on the

m-th illuminated regions (off the O(k−1/3) shadow boundaries) by

η0 = 2ikeikα · x0 α · ν0

(
1 +O

(
k−1
))

,
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and for m = 1, 2, . . .

ηm = eik|xm − xm−1| Qm Rm ηm−1

(
1 +O

(
k−1
))

where

Qm =
xm − xm−1

|xm − xm−1|
· νm

(
xm − xm−1

|xm − xm−1|
· νm−1

)−1

,

and Ri’s are defined recursively as

R1 = 1 + 2κ0|x1 − x0|
(

x1 − x0

|x1 − x0|
· ν0

)−1

,

and, for 1 ≤ i ≤ m− 1,

Ri+1 = 1 + 2κi|xi+1 − xi|
(

xi+1 − xi

|xi+1 − xi|
· νi

)−1

+
|xi+1 − xi|
|xi − xi−1|

(
1− 1

Ri

)
.

On the other hand, the iterated current ηm vanishes to first order in wavelength on

the m-th shadow region (off the O(k−1/3) shadow boundaries).

The proof of Theorem 4.0.1 is based on an analysis of the integral equations

(3.2.14) and (3.2.15). Indeed, the integrals contained in these equations are general-

ized Fourier integrals. Accordingly, their asymptotic evaluations in the high-frequency

regime require the determination of the corresponding critical points (where the kernel

is singular or the phase is stationary); once these points are found, the integrals can

be evaluated appealing to classical techniques relating to the treatment of oscillatory

integrals [10].

One of the key points in determining the critical points is the behavior of creeping

waves as given by the classical geometrical theory of diffraction (GTD): “creeping

waves travel along geodesics into the shadow region” [46]. In particular, then, the

phase functions ϕm must be redefined on the shadow regions of ∂Km as follows:

the phase at a point xm ∈ ∂Km in the shadow region is the phase at the shadow

boundary plus the geodesic distance in between. Using this new definition, in §4.1.2,
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Figure 4.1: Stationary points.

we characterize the stationary points. As it turns out, for a target point xm ∈ ∂Km,

the phase is stationary at a point xm−1 ∈ ∂Km−1 if the ray that bounces off xm−1 at

the (m - 1 )-th reflection arrives xm in one of the following ways (cf. Figure 4.1):

1) the ray bounces off the point xm−1 in accordance with the law of reflection;

2) the ray passes through xm−1 without altering its direction;

3) the point xm−1 is in the (m - 1 )-th shadow region, and the ray is a creeping ray

that leaves ∂Km−1 at xm−1 making a tangential contact with the corresponding

geodesic.

These classify all the stationary points of the right-hand side (RHS) integrals in

(3.2.14)-(3.2.15).

The characterization of the stationary points for the left-hand side (LHS) integrals,

on the other hand, is more complicated. Indeed, appealing to the rules above, we see

that the LHS integral has no stationary point when the target point xm is located in

the m-th illuminated region, and has only one stationary point when the target point

is in the m-th shadow region (cf. Figure 4.1). As we show in §4.3, however, for a

target point xm ∈ ∂Km in the m-th shadow region, the contribution coming from the

stationary point xm−1 of the RHS integral cancels to first order in wavelength that of

the stationary point (located in the m-th illuminated region) of the LHS integral.
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Kernel singularities are characterized easily appealing to (2.4.2) and (3.2.13): both

the kernels of RHS and LHS integrals in (3.2.14)-(3.2.15) are singular at the shadow

boundaries on account of a discontinuity in the third derivative of the phases; and the

LHS integrals are singular at the corresponding target point xm. However, as we show

in §4.2, the integrals in a neighborhood of the singular points behave asymptotically

as ηmO(k−1), and therefore their contributions can be neglected.

As a consequence, at each reflection, the only important contributions to the

asymptotic expansions come from the stationary points of the phases. In §4.3, we use

the method of stationary phase [10] to evaluate the integrals around stationary points

which require the calculation of the second derivatives of phase functions. These

calculations are performed in §4.1.3.

4.1 Properties of Phase Functions

The aim of this section is two fold. First, in §4.1.2 we characterize the stationary

points of the phase functions. Then, we use this characterization to calculate the

second derivatives of these functions explicitly.

To begin, suppose that we are given a sequence of obstacles {Km}m≥0. We assume

that the boundary curves ∂Km possess regular analytic and 2π-periodic parametric

representations of the form

xm(tm) = (x1
m(tm), x2

m(tm)), 0 ≤ t ≤ 2π

in counterclockwise orientation. For a fixed xm+1 = xm+1(tm+1) ∈ ∂Km+1, with

m ≥ 0, consider the phase functions

ϕtm+1(tm) = α · x0 +
m∑

i=0

|xi+1 − xi|, (4.1.1)

of the RHS integrals in (3.2.15) where the points x0, . . . , xm are assumed to be on the

46



same optical ray path and belong to the illuminated regions of their corresponding

boundary curves; and

ϕs
tm+1

(tm) = ϕm(xsb
m) +

∫ tm

tsb
m

| ·xm(ξ)|dξ + |xm+1 − xm|, (4.1.2)

where we assume that xsb
m = xm(tsbm) ∈ ∂Km is at the m-th shadow boundary, and

the points xm ∈ ∂Km belong to the m-th shadow region. The functions ϕs
tm+1

(tm)

correspond to the creeping rays, and are utilized in §4.1.2 to deduce that creeping rays

diffract tangentially while travelling along the geodesics. An immediate consequence of

this result is that, the visibility condition ensures that, in the high-frequency regime,

contributions to asymptotic expansions coming from creeping rays are negligible.

4.1.1 First Derivatives

In the rest of the Chapter, we use the notation:

·
xi =

d

dti
xi(ti).

Lemma 4.1.1 Derivatives of the phase functions (4.1.1) are given by

d

dt0
ϕt1(t0) =

(
α− x1 − x0

|x1 − x0|

)
· ·x0, (4.1.3)

and

d

dtm
ϕtm+1(tm) =

(
xm − xm−1

|xm − xm−1|
− xm+1 − xm

|xm+1 − xm|

)
· ·xm, m ≥ 1. (4.1.4)

On the other hand, the derivatives of the phase functions (4.1.2) are

d

dtm
ϕs

tm+1
(tm) =

( ·
xm

| ·xm|
− xm+1 − xm

|xm+1 − xm|

)
· ·xm, m ≥ 0. (4.1.5)
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Proof. The proofs of (4.1.3) and (4.1.5) are straightforward. To obtain (4.1.4), we

differentiate (4.1.1) with respect to tm:

d

dtm
ϕtm+1(tm) =

(
α− x1 − x0

|x1 − x0|

)
· ·x0

dt0
dtm

+
m−2∑
i=0

(
xi+1 − xi

|xi+1 − xi|
− xi+2 − xi+1

|xi+2 − xi+1|

)
· ·xi+1

dti+1

dtm

+

(
xm − xm−1

|xm − xm−1|
− xm+1 − xm

|xm+1 − xm|

)
· ·xm.

Since the points x0, . . . , xm are assumed to be on the same optical ray path, this

equation reduces to (4.1.4). �

4.1.2 Characterization of Stationary Points

The first result of this section states that the phase function ϕtm+1(tm) is stationary

at a point xm if and only if the points x0, . . . , xm, xm+1 are on the same optical ray

path.

Lemma 4.1.2 i) (First Reflections) For m = 0, the phase given by (4.1.1) is

stationary at a point x0 with x0 = x0(t0) if and only if

x1 − x0

|x1 − x0|
= α + 2

x1 − x0

|x1 − x0|
· ν0 ν0 (4.1.6)

or
x1 − x0

|x1 − x0|
= α. (4.1.7)

ii) (Further Reflections) For m ≥ 1, the phase given by (4.1.1) is stationary at a

point xm with xm = xm(tm) if and only if

xm+1 − xm

|xm+1 − xm|
=

xm − xm−1

|xm − xm−1|
+ 2

xm+1 − xm

|xm+1 − xm|
· νm νm (4.1.8)
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or
xm+1 − xm

|xm+1 − xm|
=

xm − xm−1

|xm − xm−1|
. (4.1.9)

Proof. Equation (4.1.3) implies

d

dt0
ϕt1(t0) = 0 ⇔ α = λ0ν0 +

x1 − x0

|x1 − x0|

for some λ0. Also, since |α| = 1, we have

1 = α · α = λ2
0 + 2λ0

x1 − x0

|x1 − x0|
· ν0 + 1

so that

λ0 = −2
x1 − x0

|x1 − x0|
· ν0 or λ0 = 0.

Similarly, for m ≥ 1, equation (4.1.4) gives

d

dtm
ϕtm+1(tm) = 0 ⇔ xm − xm−1

|xm − xm−1|
= λmνm +

xm+1 − xm

|xm+1 − xm|

for some λm. Since

1 =
xm − xm−1

|xm − xm−1|
· xm − xm−1

|xm − xm−1|
= λ2

m + 2λm
xm+1 − xm

|xm+1 − xm|
· νm + 1,

we get

λm = −2
xm+1 − xm

|xm+1 − xm|
· νm or λm = 0,

completing the proof. �

The next result states that a ray incident precisely on the shadow boundary (as-

suming that it travels along the geodesics into the shadow region as in GTD) diffracts

tangentially along its path.

Lemma 4.1.3 (Creeping Rays Diffract Tangentially) For m ≥ 0, the phase
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given by (4.1.2) is stationary at a point xm with xm = xm(tm) if and only if

·
xm

| ·xm|
− xm+1 − xm

|xm+1 − xm|
= 0.

Proof. Immediate from (4.1.5). �

4.1.3 Second Derivatives at Stationary Points

In this section, we derive explicit formulas for the second derivatives of phase func-

tions given by (4.1.1). These formulas will be used in §4.3 to obtain the asymptotic

expansions of iterated currents appealing to the method of stationary phase. The

formulas will be stated in terms of the quantities Sm defined by the identities

d2

dt2m
ϕtm+1(tm) =

| ·xm|2

|xm+1 − xm|

(
xm+1 − xm

|xm+1 − xm|
· νm

)2

Sm,

for m = 0, 1, . . .. With this notation, our main result reads:

Theorem 4.1.4 i) (Second Derivatives in First Reflections) For m = 0, if

(4.1.6) holds, then

S0 = 1 + 2κ0|x1 − x0|
(

x1 − x0

|x1 − x0|
· ν0

)−1

, (4.1.10)

while if (4.1.7) holds, then

S0 = 1. (4.1.11)

ii) (Second Derivatives in Further Reflections) For m ≥ 1, if (4.1.8) holds,

then

Sm = 2κm|xm+1 − xm|
(

xm+1 − xm

|xm+1 − xm|
· νm

)−1

+ Tm, (4.1.12)

while if (4.1.9) holds, then

Sm = Tm, (4.1.13)
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where

Tm = 1 +
|xm+1 − xm|
|xm − xm−1|

(
1− 1

Sm−1

)
. (4.1.14)

Proof. Differentiating (4.1.3) yields

d2

dt20
ϕt1(t0) =

(
α− x1 − x0

|x1 − x0|

)
· ··x0 +

| ·x0|2

|x1 − x0|

1−

(
x1 − x0

|x1 − x0|
·

·
x0

| ·x0|

)2


=

(
α− x1 − x0

|x1 − x0|

)
· ··x0 +

| ·x0|2

|x1 − x0|

(
x1 − x0

|x1 − x0|
· ν0

)2

from which (4.1.11) is immediate in case (4.1.7) holds. On the other hand, if (4.1.6)

holds, then

d2

dt20
ϕt1(t0) = λ0ν0 ·

··
x0 +

| ·x0|2

|x1 − x0|

(
x1 − x0

|x1 − x0|
· ν0

)2

= 2
x1 − x0

|x1 − x0|
· ν0κ0|

·
x0|2 +

| ·x0|2

|x1 − x0|

(
x1 − x0

|x1 − x0|
· ν0

)2

,

from which (4.1.10) follows at once. �

To prove the result for further reflections we need several additional lemmas. We

begin by proving a simple geometrical identity which will be very useful in the sequel.

Lemma 4.1.5 Let u, v and w be three unit vectors, and let Θ be the matrix of

rotation by π/2 radians in the counterclockwise direction. Then

Θu ·Θv − (w ·Θu) (w ·Θv) = (w · u) (w · v) . (4.1.15)

Proof. Let α1 = cos−1(w · u) and α2 = cos−1(w · v). Then, (4.1.15) is equivalent to

the trigonometric difference formula

cos(α1 − α2)− sin α1 sin α2 = cos α1 cos α2.

�
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The next result provides a representation for the second derivatives of phase func-

tions in further reflections in terms of the relative coordinate derivatives dtm−1/dtm.

To this end, for m ≥ 1, we denote by Vm the quantities defined by the identities

dtm−1

dtm
=

| ·xm|
| ·xm−1|

xm − xm−1

|xm − xm−1|
· νm

(
xm − xm−1

|xm − xm−1|
· νm−1

)−1

Vm.

Lemma 4.1.6 (Second Derivatives in terms of Coordinate Derivatives) For

m ≥ 1, if (4.1.8) holds, then

Sm = 2κm|xm+1 − xm|
(

xm+1 − xm

|xm+1 − xm|
· νm

)−1

+ Um, (4.1.16)

while if (4.1.9) holds, then

Sm = Um,

where

Um = 1 +
|xm+1 − xm|
|xm − xm−1|

(1− Vm) . (4.1.17)

Proof. Differentiating (4.1.4) yields

d2

dt2m
ϕtm+1(tm) =

(
xm − xm−1

|xm − xm−1|
− xm+1 − xm

|xm+1 − xm|

)
· ··xm

+
| ·xm|2

|xm − xm−1|

1−

(
xm − xm−1

|xm − xm−1|
·

·
xm

| ·xm|

)2


+
| ·xm|2

|xm+1 − xm|

1−

(
xm+1 − xm

|xm+1 − xm|
·

·
xm

| ·xm|

)2


− | ·xm−1||
·
xm|

|xm − xm−1|
dtm−1

dtm

×

( ·
xm−1

| ·xm−1|
·

·
xm

| ·xm|
− xm − xm−1

|xm − xm−1|
·

·
xm−1

| ·xm−1|
xm − xm−1

|xm − xm−1|
·

·
xm

| ·xm|

)
.
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Appealing to Lemma 4.1.5 for the last term, we obtain

d2

dt2m
ϕtm+1(tm) =

(
xm − xm−1

|xm − xm−1|
− xm+1 − xm

|xm+1 − xm|

)
· ··xm

+
| ·xm|2

|xm − xm−1|

(
xm − xm−1

|xm − xm−1|
· νm

)2

+
| ·xm|2

|xm+1 − xm|

(
xm+1 − xm

|xm+1 − xm|
· νm

)2

− | ·xm−1||
·
xm|

|xm − xm−1|
xm − xm−1

|xm − xm−1|
· νm−1

xm − xm−1

|xm − xm−1|
· νm

dtm−1

dtm
.

Now, if (4.1.8) holds, then

d2

dt2m
ϕtm+1(tm) = 2

xm+1 − xm

|xm+1 − xm|
· νmκm|

·
xm|2

+
| ·xm|2

|xm − xm−1|

(
xm − xm−1

|xm − xm−1|
· νm

)2

+
| ·xm|2

|xm+1 − xm|

(
xm+1 − xm

|xm+1 − xm|
· νm

)2

− | ·xm−1||
·
xm|

|xm − xm−1|
xm − xm−1

|xm − xm−1|
· νm−1

xm − xm−1

|xm − xm−1|
· νm

dtm−1

dtm

= 2
xm+1 − xm

|xm+1 − xm|
· νmκm|

·
xm|2

+ | ·xm|2
(

1

|xm − xm−1|
+

1

|xm+1 − xm|

)(
xm+1 − xm

|xm+1 − xm|
· νm

)2

− | ·xm−1||
·
xm|

|xm − xm−1|
xm − xm−1

|xm − xm−1|
· νm−1

xm − xm−1

|xm − xm−1|
· νm

dtm−1

dtm

=
| ·xm|2

|xm+1 − xm|

(
xm+1 − xm

|xm+1 − xm|
· νm

)2

 2κm|xm+1 − xm|
xm+1 − xm

|xm+1 − xm|
· νm

+ Um

 .

Note that the term next to Um vanishes in case (4.1.9) holds. This completes the

proof. �

Finally, on account of the previous lemma, to obtain the explicit expressions in

(4.1.12) and (4.1.13), we need only determine the coefficients Vm in (4.1.17). This is
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provided by the next two lemmas.

Lemma 4.1.7 (Time Derivatives in First Reflections) For m = 1, if (4.1.6)

holds, then

V1 =

(
1 + 2κ0|x1 − x0|

(
x1 − x0

|x1 − x0|
· ν0

)−1
)−1

, (4.1.18)

while if (4.1.7) holds, then

V1 = 1. (4.1.19)

Proof. Differentiating the identity

(
α− x1 − x0

|x1 − x0|

)
· ·x0 = 0

with respect to t1 yields

0 =

((
α− x1 − x0

|x1 − x0|

)
· ··x0 +

| ·x0|2

|x1 − x0|

(
x1 − x0

|x1 − x0|
· ν0

)2
)

dt0
dt1

− | ·x0||
·
x1|

|x1 − x0|

( ·
x0

| ·x0|
·

·
x1

| ·x1|
− x1 − x0

|x1 − x0|
·

·
x0

| ·x0|
x1 − x0

|x1 − x0|
·

·
x1

| ·x1|

)

=

((
α− x1 − x0

|x1 − x0|

)
· ··x0 +

| ·x0|2

|x1 − x0|

(
x1 − x0

|x1 − x0|
· ν0

)2
)

dt0
dt1

− | ·x0||
·
x1|

|x1 − x0|
x1 − x0

|x1 − x0|
· ν0

x1 − x0

|x1 − x0|
· ν1

where we made use of Lemma 4.1.5 in the last identity. Therefore

dt0
dt1

=
| ·x0||

·
x1|

|x1 − x0|
x1 − x0

|x1 − x0|
· ν0

x1 − x0

|x1 − x0|
· ν1((

α− x1 − x0

|x1 − x0|

)
· ··x0 +

| ·x0|2

|x1 − x0|

(
x1 − x0

|x1 − x0|
· ν0

)2
)−1
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Now, if (4.1.6) holds, then

dt0
dt1

=
| ·x0||

·
x1|

|x1 − x0|
x1 − x0

|x1 − x0|
· ν0

x1 − x0

|x1 − x0|
· ν1(

2
x1 − x0

|x1 − x0|
· ν0κ0|

·
x0|2 +

| ·x0|2

|x1 − x0|

(
x1 − x0

|x1 − x0|
· ν0

)2
)−1

.

Rearranging the terms in this identity yields (4.1.18). On the other hand, if (4.1.7)

holds, then

dt0
dt1

=
| ·x0||

·
x1|

|x1 − x0|
x1 − x0

|x1 − x0|
· ν0

x1 − x0

|x1 − x0|
· ν1

(
| ·x0|2

|x1 − x0|

(
x1 − x0

|x1 − x0|
· ν0

)2
)−1

=
| ·x1|
| ·x0|

x1 − x0

|x1 − x0|
· ν1

(
x1 − x0

|x1 − x0|
· ν0

)−1

completing the proof. �

Lemma 4.1.8 (Time Derivatives in Further Reflections) For m > 1, if (4.1.8)

holds, then

Vm =

(
2κm−1|xm − xm−1|

(
xm − xm−1

|xm − xm−1|
· νm−1

)−1

+ Um−1

)−1

(4.1.20)

while if (4.1.9) holds, then

Vm = U−1
m−1, (4.1.21)

where Um is as given in Lemma 4.1.6.

Proof. Differentiating the identity

(
xm−1 − xm−2

|xm−1 − xm−2|
− xm − xm−1

|xm − xm−1|

)
· ·xm−1 = 0
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with respect to tm yields

0 =

·
xm−1

|xm−1 − xm−2|
· ·xm−1

dtm−1

dtm
−

·
xm−2

|xm−1 − xm−2|
· ·xm−1

dtm−2

dtm−1

dtm−1

dtm

+
xm−1 − xm−2

|xm−1 − xm−2|
· ··xm−1

dtm−1

dtm

− xm−1 − xm−2

|xm−1 − xm−2|
· ·xm−1

·
xm−1

|xm−1 − xm−2|
· xm−1 − xm−2

|xm−1 − xm−2|
dtm−1

dtm

+
xm−1 − xm−2

|xm−1 − xm−2|
· ·xm−1

·
xm−2

|xm−1 − xm−2|
· xm−1 − xm−2

|xm−1 − xm−2|
dtm−2

dtm−1

dtm−1

dtm

+

·
xm−1

|xm − xm−1|
· ·xm−1

dtm−1

dtm
−

·
xm

|xm − xm−1|
· ·xm−1 −

xm − xm−1

|xm − xm−1|
· ··xm−1

dtm−1

dtm

− xm − xm−1

|xm − xm−1|
· ·xm−1

·
xm−1

|xm − xm−1|
· xm − xm−1

|xm − xm−1|
dtm−1

dtm

+
xm − xm−1

|xm − xm−1|
· ·xm−1

·
xm

|xm − xm−1|
· xm − xm−1

|xm − xm−1|
.

Rearranging the terms gives

0 =

(
xm−1 − xm−2

|xm−1 − xm−2|
− xm − xm−1

|xm − xm−1|

)
· ··xm−1

dtm−1

dtm

+
1

|xm−1 − xm−2|

(
| ·xm−1|2 −

(
xm−1 − xm−2

|xm−1 − xm−2|
· ·xm−1

)2
)

dtm−1

dtm

+
1

|xm − xm−1|

(
| ·xm−1|2 −

(
xm − xm−1

|xm − xm−1|
· ·xm−1

)2
)

dtm−1

dtm

− 1

|xm−1 − xm−2|
dtm−2

dtm−1

dtm−1

dtm

×
(

·
xm−2 ·

·
xm−1 −

xm−1 − xm−2

|xm−1 − xm−2|
· ·xm−2

xm−1 − xm−2

|xm−1 − xm−2|
· ·xm−1

)
− 1

|xm − xm−1|

(
·
xm−1 ·

·
xm −

xm − xm−1

|xm − xm−1|
· ·xm−1

xm − xm−1

|xm − xm−1|
· ·xm

)
,
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or equivalently

0 =

(
xm−1 − xm−2

|xm−1 − xm−2|
− xm − xm−1

|xm − xm−1|

)
· ··xm−1

dtm−1

dtm

+ | ·xm−1|2
(

1

|xm−1 − xm−2|
+

1

|xm − xm−1|

)(
xm − xm−1

|xm − xm−1|
· νm−1

)2
dtm−1

dtm

− | ·xm−2||
·
xm−1|

|xm−1 − xm−2|
dtm−2

dtm−1

dtm−1

dtm

×

( ·
xm−2

| ·xm−2|
·

·
xm−1

| ·xm−1|
− xm−1 − xm−2

|xm−1 − xm−2|
·

·
xm−2

| ·xm−2|
xm−1 − xm−2

|xm−1 − xm−2|
·

·
xm−1

| ·xm−1|

)

− | ·xm−1||
·
xm|

|xm − xm−1|

( ·
xm−1

| ·xm−1|
·

·
xm

| ·xm|
− xm − xm−1

|xm − xm−1|
·

·
xm−1

| ·xm−1|
xm − xm−1

|xm − xm−1|
·

·
xm

| ·xm|

)
.

Appealing to Lemma 4.1.5 once more yields

0 =

(
xm−1 − xm−2

|xm−1 − xm−2|
− xm − xm−1

|xm − xm−1|

)
· ··xm−1

dtm−1

dtm

+ | ·xm−1|2
(

1

|xm−1 − xm−2|
+

1

|xm − xm−1|

)(
xm − xm−1

|xm − xm−1|
· νm−1

)2
dtm−1

dtm

− | ·xm−2||
·
xm−1|

|xm−1 − xm−2|
xm−1 − xm−2

|xm−1 − xm−2|
· νm−2

xm−1 − xm−2

|xm−1 − xm−2|
· νm−1

dtm−2

dtm−1

dtm−1

dtm

− | ·xm−1||
·
xm|

|xm − xm−1|
xm − xm−1

|xm − xm−1|
· νm−1

xm − xm−1

|xm − xm−1|
· νm

Therefore, if (4.1.8) holds, then

0 = 2
xm − xm−1

|xm − xm−1|
· νm−1κm−1|

·
xm−1|2

dtm−1

dtm

+ | ·xm−1|2
(

1

|xm−1 − xm−2|
+

1

|xm − xm−1|

)(
xm − xm−1

|xm − xm−1|
· νm−1

)2
dtm−1

dtm

− | ·xm−2||
·
xm−1|

|xm−1 − xm−2|
xm−1 − xm−2

|xm−1 − xm−2|
· νm−2

xm−1 − xm−2

|xm−1 − xm−2|
· νm−1

dtm−2

dtm−1

dtm−1

dtm

− | ·xm−1||
·
xm|

|xm − xm−1|
xm − xm−1

|xm − xm−1|
· νm−1

xm − xm−1

|xm − xm−1|
· νm
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which is equivalent to

0 =
| ·xm−1|2

|xm − xm−1|

(
xm − xm−1

|xm − xm−1|
· νm−1

)2

 2κm−1|xm − xm−1|
xm − xm−1

|xm − xm−1|
· νm−1

+ Um−1

 dtm−1

dtm

− | ·xm−1||
·
xm|

|xm − xm−1|
xm − xm−1

|xm − xm−1|
· νm−1

xm − xm−1

|xm − xm−1|
· νm

Simplifying this last expression yields (4.1.20). In this last identity, in case (4.1.9)

holds, the curvature term should be dropped from which we get (4.1.21). This com-

pletes the proof. �

Finally, combining Lemmas 4.1.6, 4.1.7 and 4.1.8, we deduce that, in each case,

Vm = S−1
m−1 , m ≥ 1. (4.1.22)

Therefore, using (4.1.22) in (4.1.17), we obtain the equations (4.1.12) and (4.1.13).

This completes the proof of Theorem 4.1.4.

4.2 Integration around Kernel Singularities

As was mentioned above, the kernels of RHS integrals in (3.2.15) are singular only

at the shadow boundary of ∂Km−1, and these singularities are due to a discontinu-

ity in the third derivative of the phases. However, the visibility assumption ensures

that, in sufficiently high frequencies, the rays bouncing off O(k−1/3) neighborhoods of

the shadow boundary of ∂Km−1 at the m-th reflection never reaches ∂Km. Accord-

ingly, the contributions of the RHS integrals around shadow boundaries of ∂Km−1

to the asymptotic expansions of ρm in (3.2.15) are negligible. Indeed, smoothing the

phase functions around shadow boundaries if necessary, and utilizing the method of

stationary phase, it can be easily verified that these contributions are of the form

ρm−1(xm−1)O(k−1).
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Note that the asymptotic expansion proposed in Theorem 4.0.1 relates to target

points xm ∈ ∂Km off the corresponding O(k−1/3) shadow boundaries. As with the

RHS integrals, then, the contributions of LHS integrals (in equations (3.2.14)-(3.2.15))

coming from O(k−1/3) neighborhoods of the m-th shadow boundaries for such target

points are of the form ρm(xm)O(k−1), and are therefore negligible.

All of the kernel singularities discussed so far relate to singularities of phase func-

tions. In addition to these, the kernels of LHS integrals are singular at the target

points xm ∈ ∂Km. When the target point xm is located away from shadow bound-

aries, one can choose a small enough neighborhood ∂Kε
m (of the order O(1) with

respect to k as k → ∞) around xm containing no stationary points and no other

kernel singularities. More precisely, we choose ∂KA
m to be a subset of ∂Km in which

k|xm − y| � 1, and let

∂Kε
m = ∂Km − ∂KA

m.

As we show next, the LHS integrals on ∂Kε
m are negligible too.

Lemma 4.2.1 For a target point xm ∈ ∂Km located off the m-th shadow bound-

aries (that are of order O(k−1/3)), the LHS integrals in equations (3.2.14)-(3.2.15)

restricted to ∂Kε
m are of the from ρm(xm)O(k−1) .

Proof. We will present the proof for target points located in illuminated regions as

the proof for points in shadow regions follow the same lines.

Suppose now that the boundary ∂Km is parametrized by x = x(τ), that xm = x(t),

and write the integral in parametric form:

∫
∂Kε

m

∂G(xm, y)

∂ν(xm)
eik(ϕm(y)−ϕm(xm))ρm(y)ds(y) =

∫ t+ε

t−ε

F (t, τ)ρm(τ)dτ (4.2.1)

where we used the notation

F (t, τ) =
ik

2
H

(1)
1 (k|x(τ)− x(t)|) x(τ)− x(t)

|x(τ)− x(t)|
· ν(t)eik(ϕm(x(τ))−ϕm(x(t)))| ·x(τ)| . (4.2.2)
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We will consider the integral on [t, t + ε] as its analysis is the same as that of the

integral on [t− ε, t].

To this end, first we introduce the change of variables

u = k|x(τ)− x(t)|;

we shall expand x(τ) in a Taylor series around x(t), and use this expansion to ap-

proximate function F given by (4.2.2). To complete the proof, we shall calculate the

exact integral of this approximate quantity, and appeal to the asymptotic expansions

of generalized hypergeometric series [69] to obtain the desired result.

Indeed, the Taylor expansion of x(τ) around x(t) reads

x(τ)− x(t) = (τ − t)
·
x(t) + (τ − t)2

··
x(t)

2
+ · · · ,

so that, near u = 0, we have

τ − t ∼ u

k| ·x(t)|
.

It follows that

x(τ)− x(t)

|x(τ)− x(t)|
· ν(t) =

k

u
(x(τ)− x(t)) · ν(t)

∼ k

u
(τ − t)2

··
x(t) · ν(t)

2
∼ k

u

u2

k2

··
x(t) · ν(t)

2| ·x(t)|2
= − κm(t)

2

u

k
.

The term | ·x(τ)| is simply approximated as | ·x(τ)| ∼ | ·x(t)|. It remains to approximate

the exponential term in (4.2.2). Indeed,

ϕm(x(τ))− ϕm(x(t)) = o(α · (x(τ)− x(t)))

where we have set

α =
xm−1(t)− xm(t)

|xm−1(t)− xm(t)|
,
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and where xm−1(t) ∈ ∂Km−1 is on the geometrical optics path arriving at xm = x(t)

after (m - 1 ) reflections. Consequently, we have

ik (ϕm(x(τ))− ϕm(x(t))) ∼ ik α · (x(τ)− x(t))

∼ ik

(
α · ·x(t) + α ·

··
x(t)

2
(τ − t)

)
(τ − t) ∼ i

(
α ·

·
x(t)

| ·x(t)|
+ α ·

··
x(t)

2| ·x(t)|2
u

k

)
u .

These calculations complete the approximation of the function F in (4.2.2) yielding

F (t, τ) ∼ κm(t) | ·x(t)|
4i

H
(1)
1 (u) u exp

[
i

(
α ·

·
x(t)

| ·x(t)|
+ α ·

··
x(t)

2| ·x(t)|2
u

k

)
u

]
. (4.2.3)

On the other hand, as we did for | ·x(τ)|, the last term in the integral (4.2.1),

namely ρm(τ), is approximated as ρm(τ) ∼ ρm(t). Finally, the approximation of dτ/

du is found as follows:

du

dτ
= k

x(τ)− x(t)

|x(τ)− x(t)|
· ·x(τ) =

k2

u
(x(τ)− x(t)) · ·x(τ)

∼ k2

u

·
x(t) · ·x(τ)(τ − t) ∼ k2

u
| ·x(t)|2(τ − t) ∼ k2

u
| ·x(t)|2 u

k| ·x(t)|
= k| ·x(t)| . (4.2.4)

We conclude appealing to (4.2.3) and (4.2.4) that the integrals (4.2.1) are approx-

imately equal to

1

4ik
κm(t)ρm(t)

∫ εk| ·x(t)|

0

H
(1)
1 (u) u exp

[
i

(
α ·

·
x(t)

| ·x(t)|
+ α ·

··
x(t)

2| ·x(t)|2
u

k

)
u

]
du . (4.2.5)

Therefore, it remains to prove that the integral in (4.2.5) is of O(1). To this end, we

write this integral as ∫ εk| ·x(t)|

0

=

∫ C

0

+

∫ εk| ·x(t)|

C

(4.2.6)

where the constant C is chosen so that 1 � C and is independent of k. In partic-

ular, asymptotically, we may assume that C � εk| ·x(t)|. The integrand in (4.2.6) is
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asymptotically independent of k on the interval [0, C], and accordingly the integral

on [0, C] is of O(1).

Concerning the integral on the interval [C, εk| ·x(t)| ], we recall that [10] the Hankel

function H
(1)
1 (z) possesses the asymptotic expansion

H
(1)
1 (z) =

(
2

πz

)1/2

ei(z−3π/4) +O(z−3/2) (4.2.7)

as z →∞ with | arg z| < π. Therefore, the integral on [C, εk| ·x(t)| ] is approximately

equal to the integral

e−i3π/4

(
2

π

)1/2 ∫ εk| ·x(t)|

C

u1/2 exp

[
i

(
1 + α ·

·
x(t)

| ·x(t)|
+ α ·

··
x(t)

2| ·x(t)|2
u

k

)
u

]
du . (4.2.8)

On the other hand, as x(t) is away from the shadow boundaries, and u/k ≤ ε| ·x(t)|

on [C, εk| ·x(t)| ], the exponential in (4.2.8) behaves like exp(iωu) for some positive ω

(independent of k). Since we have

∫ a

0

u1/2eiωudu = a1/2

∫ 1

0

u1/2eiaωudu = a1/2
1F1(3/2, 3/2 + 1, iaω)

=
2a1/2

3

∞∑
n=0

Γ(3/2 + n)/Γ(3/2)

Γ(3/2 + 1 + n)/Γ(3/2 + 1)

(iaω)n

n!

=
2a1/2

3

∞∑
n=0

3/2

3/2 + n

(iaω)n

n!
= a1/2

∞∑
n=0

1

3/2 + n

(iaω)n

n!

= a1/2 O
(

eiaω − 1

iaω

)
= O

(
eiaω − 1

iω
√

a

)
,

where 1F1 is a generalized hypergeometric series [69], we conclude that the integral

on the interval [C, εk| ·x(t)|] is of O(1). �
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4.3 Integration around Stationary Points

In this section, applying the method of stationary phase to the integrals in equations

(3.2.14) and (3.2.15), we obtain the asymptotic expansions of the LHS and RHS

integrals in equations (3.2.10) and (3.2.11).

As we explained above, the integrals in (3.2.14) and (3.2.15) being generalized

Fourier integrals, the only important contribution to their asymptotic expansions

come from the critical points of the corresponding integration kernels. As was proved

in §4.2, however, among these critical points the only points that contribute to the

asymptotic expansions are precisely the points where the phases ϕm are stationary.

These stationary points were characterized in Lemma 4.1.2.

As we explained, when the LHS integrals are considered, whether there is a station-

ary point or not depends on where the target point is located. More precisely, if the

target point xm ∈ ∂Km is located in the m-th illuminated region, then the correspond-

ing LHS integral has no stationary point. On account of the method of stationary

phase and of Lemma 4.2.1, then, the LHS integral is of the form ηm(xm)O(k−1).

On the other hand, when the target point xs
m ∈ ∂Km is located in the m-th shadow

region, the corresponding LHS integral has a point xm ∈ ∂Km located in the m-th

illuminated region as its only stationary point. Moreover, for these two points, the

corresponding RHS integrals have the same stationary points, say xm−1 ∈ ∂Km−1.

Interestingly, as we shall see next, for the target point xs
m, the contribution of the

RHS integral coming from the stationary point xm−1 cancels the contribution of the

LHS integral coming from the stationary point xm. It follows that the iterated current

ηm vanishes to first order in k on the m-th shadow region (off the O(k−1/3) shadow

boundaries).

Let us consider the RHS integral in equation (3.2.15) for an arbitrary target point

xm ∈ ∂Km. On account of the asymptotic expansion (4.2.7) of the Hankel function
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H
(1)
1 (z), equation (2.4.2) yields

∫
∂Km−1

∂G(xm, y)

∂ν(xm)
ρm−1(y)eik(ϕm−1(y)−ϕm(xm))ds(y)

∼
√

k

2π
e−i(kϕm(xm)+π/4)

∫
∂Km−1

Z(xm, y)ρm−1(y)eik(|xm−y|+ϕm−1(y))ds(y)

where we have set

Z(xm, y) =
1√

|xm − y|
xm − y

|xm − y|
· ν(xm), y ∈ ∂Km−1.

By Lemma 4.1.2, the only stationary point of the combined phase function ϕtm(tm−1) =

|xm− y(tm−1)|+ϕm−1(y(tm−1)) is xm−1. Thus, utilizing the stationary phase method

gives

∫
∂Km−1

Z(xm, y)ρm−1(y)eik(|xm−y|+ϕm−1(y))ds(y)

∼ Z(xm, xm−1)ρm−1(xm−1)|
·
xm−1|eikϕm(xm)eiπ/4

[
k

2π

∣∣∣∣d2ϕtm(tm−1)

dt2m−1

∣∣∣∣]−1/2

,

on account of the fact that ϕm(xm) = |xm−xm−1|+ϕm−1(xm−1). Thus, using Theorem

4.1.4 together with the relation (3.2.13) completes proof of the part of Theorem 4.0.1

concerning illuminated regions.

For the second part, we begin with proving that ρ0 in (3.2.14) vanishes to first order

in k in the shadow region. To this end, for a target point xs
0 ∈ ∂K0 in the shadow

region, we shall denote the corresponding stationary point of the LHS integral in

(3.2.14) by x0. By what we have shown above, we have

ρ0(x0)(1 +O(k−1)) = 2ikα · ν0.

Therefore, using the method of stationary phase, we see that the LHS integral in
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(3.2.14) satisfies

∫
∂K0

∂G(xs
0, y)

∂ν(xs
0)

eik(ϕ0(y)−ϕ0(xs
0))ρ0(y)ds(y)

=
xs

0 − x0

|xs
0 − x0|

· ν(xs
0)|

·
x0|
∣∣∣∣d2ϕts0

(t0)

dt20
|xs

0 − x0|
∣∣∣∣−1/2

ρ0(x0) +O(k−1)

=
xs

0 − x0

|xs
0 − x0|

· ν(xs
0)|

·
x0|
∣∣∣∣d2ϕts0

(t0)

dt20
|xs

0 − x0|
∣∣∣∣−1/2

2ikα · ν0 +O(k−1)

=
xs

0 − x0

|xs
0 − x0|

· ν(xs
0)|

·
x0|

∣∣∣∣∣| ·x0|2
(

xs
0 − x0

|xs
0 − x0|

· ν0

)2
∣∣∣∣∣
−1/2

2ikα · ν0 +O(k−1)

= −α · ν(xs
0)(α · ν0)

−12ikα · ν0 +O(k−1)

= −2ikα · ν(xs
0) +O(k−1).

Thus equation (3.2.14) implies

ρ0(x
s
0) = O(k−1),

and thereby proves the second part of Theorem 4.0.1 for m = 0.

Let us now consider the evaluation of the integrals in (3.2.15) in the first reflection

and for a target point xs
1 ∈ ∂K in the shadow region. Let x0 and x1 be the stationary

points of the RHS and LHS integrals. Then the RHS integral is given up to an error

of magnitude ρ0(x0)O(k−1) by

xs
1 − x0

|xs
1 − x0|

· ν(xs
1)|

·
x0|
∣∣∣∣d2ϕts1

(t0)

dt20
|xs

1 − x0|
∣∣∣∣−1/2

ρ0(x0)

=
xs

1 − x0

|xs
1 − x0|

· ν(xs
1)|

·
x0|

∣∣∣∣∣∣∣∣|
·
x0|2

(
xs

1 − x0

|xs
1 − x0|

· ν0

)2

1 +
2κ0|xs

1 − x0|
xs

1 − x0

|xs
1 − x0|

· ν0


∣∣∣∣∣∣∣∣
−1/2

ρ0(x0)

=

xs
1 − x0

|xs
1 − x0|

· ν(xs
1)

xs
1 − x0

|xs
1 − x0|

· ν0

1 +
2κ0|xs

1 − x0|
xs

1 − x0

|xs
1 − x0|

· ν0


−1/2

ρ0(x0)
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On the other hand, the LHS integral is given up to an error of magnitude ρ1(x
s
1)O(k−1)

(and up to a phase term) by

xs
1 − x1

|xs
1 − x1|

· ν(xs
1)|

·
x1|

∣∣∣∣∣d2ϕts1
(t1)

dt21
|xs

1 − x1|

∣∣∣∣∣
−1/2

ρ1(x1)

∼ xs
1 − x1

|xs
1 − x1|

· ν(xs
1)|

·
x1|

∣∣∣∣∣d2ϕts1
(t1)

dt21
|xs

1 − x1|

∣∣∣∣∣
−1/2

x1 − x0

|x1 − x0|
· ν1

x1 − x0

|x1 − x0|
· ν0

1 +
2κ0|x1 − x0|
x1 − x0

|x1 − x0|
· ν0


−1/2

ρ0(x0)

=
xs

1 − x1

|xs
1 − x1|

· ν(xs
1)|

·
x1|

(
xs

1 − x1

|xs
1 − x1|

· ν1

)2

| ·x1|2

1 +
|xs

1 − x1|
|x1 − x0|

1−

 2κ0|x1 − x0|
x1 − x0

|x1 − x0|
· ν0


−1



−1/2

x1 − x0

|x1 − x0|
· ν1

x1 − x0

|x1 − x0|
· ν0

1 +
2κ0|x1 − x0|
x1 − x0

|x1 − x0|
· ν0


−1/2

ρ0(x0)

= −

xs
1 − x1

|xs
1 − x1|

· ν(xs
1)

x1 − x0

|x1 − x0|
· ν01 +

|xs
1 − x1|

|x1 − x0|

1−

 2κ0|x1 − x0|
x1 − x0

|x1 − x0|
· ν0


−1


−1/21 +

2κ0|x1 − x0|
x1 − x0

|x1 − x0|
· ν0


−1/2

ρ0(x0)

= −

xs
1 − x1

|xs
1 − x1|

· ν(xs
1)

x1 − x0

|x1 − x0|
· ν0

1 +
2κ0|x1 − x0|
x1 − x0

|x1 − x0|
· ν0

+
2κ0|xs

1 − x1|
x1 − x0

|x1 − x0|
· ν0


−1/2

ρ0(x0)

= −

xs
1 − x1

|xs
1 − x1|

· ν(xs
1)

xs
1 − x0

|xs
1 − x0|

· ν0

1 +
2κ0|xs

1 − x0|
xs

1 − x0

|xs
1 − x0|

· ν0


−1/2

ρ0(x0).

Therefore, taking into account of the phase terms, we see that the RHS and LHS

integrals cancel each other up to an error of magnitude ρ1(x
s
1)O(k−1). The proof for

further reflections follows the same lines.
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Chapter 5

Asymptotic Expansions of the

Three-dimensional Multiple

Scattering Iterations in HF-IEM

In this Chapter, we derive the asymptotic expansions of the solutions ηm of the

integral equations (3.2.10)-(3.2.11) in a three-dimensional setting. As in the previous

Chapter, we will consider a finite collection of convex obstacles satisfying the visibility

condition. We utilize a slightly different notation: indices of the points will be super-

indices instead of sub-indices. The main result of this Chapter reads as follows:

Theorem 5.0.1 (Asymptotic Expansions of Iterated Currents) At each reflec-

tion, the asymptotic expansions of iterated currents ηm = ηm(xm) are given on the

m-th illuminated regions (off the O(k−1/3) shadow boundaries) by

η0 = 2ikeikα · x0
α · ν0

(
1 +O

(
k−1
))

,

and for m = 1, 2, . . .

ηm = eik|x
m − xm−1| xm − xm−1

|xm − xm−1|
· νm | det Hm|−1/2 ηm−1

(
1 +O

(
k−1
))
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where Hi’s are defined recursively as

H1 = 2 |x1 − x0| x1 − x0

|x1 − x0|
· ν0

 κ1
0 0

0 κ2
0

+ E1

and, for 1 < i ≤ m,

Hi = 2 |xi − xi−1| xi − xi−1

|xi − xi−1|
· νi−1

 κ1
i−1 0

0 κ2
i−1


+

(
1 +

|xi − xi−1|
|xi−1 − xi−2|

)
Ei −

|xi − xi−1|
|xi−1 − xi−2|

F T
i Hi−1Fi .

Here we used κ1
i and κ2

i to denote the principal curvatures at the point xi, and set

Ei =


1−

(
xi − xi−1

|xi − xi−1|
·

xi−1
ti−1

|xi−1
ti−1
|

)2

F (ti−1, τi−1; i− 1, i)

F (ti−1, τi−1; i− 1, i) 1−

(
xi − xi−1

|xi − xi−1|
·

xi−1
τi−1

|xi−1
τi−1
|

)2

 ,

and

Fi =

 F (ti−2, ti−1; i− 2, i− 1) F (ti−2, τi−1; i− 2, i− 1)

F (τi−2, ti−1; i− 2, i− 1) F (τi−2, τi−1; i− 2, i− 1)

 ,

where

F (ti, tj; k, l) =
xi

ti

|xi
ti|
·

xj
tj

|xj
tj |
− xk − xl

|xk − xl|
·

xi
ti

|xi
ti|

xk − xl

|xk − xl|
·

xj
tj

|xj
tj |

.

On the other hand, the iterated current ηm vanishes to first order in wavelength on

the m-th shadow region (off the O(k−1/3) shadow boundaries).

The proof of Theorem 5.0.1 is parallel to that of Theorem 4.0.1, and we shall

skip most of the details in order to prevent repetition. In particular, as in previous

Chapter, it can be shown that the contributions to the integrals in (3.2.10) and

(3.2.11) coming from the critical points other than the stationary points of phases

are of the form ηmO(k−1), and are therefore negligible. Consequently, the derivation
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of the expansions in Theorem 5.0.1 require only the application of the method of

stationary phase for the evaluation of the integrals in (3.2.10) and (3.2.11), and this,

in turn, entails the characterization of the stationary points and Hessians at these

stationary points of the phases.

5.1 Properties of Phase Functions

This section provides the three dimensional versions of the computations carried in

§4.1. As the ideas behind these calculations is the same in all dimensions, we shall

only state the results, and provide minor explanations so that, if desired, one can fill

in the details.

Now, as in the two-dimensional case, suppose that we are given a sequence of

obstacles {Km}m≥0. We assume that the boundary surfaces ∂Km possess regular

analytic local parametric representations of the form

xi = xi(ti, τi),

where ti and τi are principle directions. For a fixed xm+1 = xm+1(tm+1, τm+1) ∈

∂Km+1, with m ≥ 0, consider the phase functions

ϕtm+1,τm+1(tm, τm) = α · x0 +
m∑

i=0

|xi+1 − xi|, (5.1.1)

of the RHS integrals in (3.2.15) where the points x0, . . . , xm are assumed to be on the

same optical ray path and belong to the illuminated regions of their corresponding

boundary surfaces.

As in the two dimensional case, phase functions corresponding to the creeping

waves can also be considered; these phases must be defined as integrals on the

geodesics along which the creeping rays travel. Calculating the derivatives of these

phases with respect to the geodesic coordinates, it can be easily deduced that these
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phases are stationary at a point if and only if the creeping ray diffracts tangentially

at this point. Consequently, as in the previous Chapter, we shall concentrate on the

phases (5.1.1).

5.1.1 First Order Partial Derivatives

The next result should be compared with Lemma 4.1.1.

Lemma 5.1.1 For m = 0, we have

∂

∂t0
ϕt1,τ1(t0, τ0) =

(
α− x1 − x0

|x1 − x0|

)
· x0

t0
(5.1.2)

∂

∂τ0

Φt1,τ1(t0, τ0) =

(
α− x1 − x0

|x1 − x0|

)
· x0

τ0
, (5.1.3)

and, for m ≥ 1, we have

∂

∂tm
ϕtm+1,τm+1(tm, τm) =

(
xm − xm−1

|xm − xm−1|
− xm+1 − xm

|xm+1 − xm|

)
· xm

tm (5.1.4)

∂

∂τm

ϕtm+1,τm+1(tm, τm) =

(
xm − xm−1

|xm − xm−1|
− xm+1 − xm

|xm+1 − xm|

)
· xm

τm
. (5.1.5)

Proof. The proofs of (5.1.2) and (5.1.3) are trivial. To prove (5.1.4), first we differ-

entiate (5.1.1):

∂

∂tm
ϕtm+1,τm+1(tm, τm) = α ·

(
x0

t0

∂t0
∂tm

+ x0
τ0

∂τ0

∂tm

)
+

m−1∑
i=0

xi+1 − xi

|xi+1 − xi|
·
(

xi+1
ti+1

∂ti+1

∂tm
+ xi+1

τi+1

∂τi+1

∂tm
− xi

ti

∂ti
∂tm

− xi
τi

∂τi

∂tm

)
− xm+1 − xm

|xm+1 − xm|
·
(

xm
tm

∂tm
∂tm

+ xm
τm

∂τm

∂tm

)
.
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We then rearrange the terms to obtain

∂

∂tm
ϕtm+1,τm+1(tm, τm) = α ·

(
x0

t0

∂t0
∂tm

+ x0
τ0

∂τ0

∂tm

)
−

m−1∑
i=0

xi+1 − xi

|xi+1 − xi|
·
(

xi
ti

∂ti
∂tm

+ xi
τi

∂τi

∂tm

)

+
m−1∑
i=0

xi+1 − xi

|xi+1 − xi|
·
(

xi+1
ti+1

∂ti+1

∂tm
+ xi+1

τi+1

∂τi+1

∂tm

)
− xm+1 − xm

|xm+1 − xm|
·
(

xm
tm

∂tm
∂tm

+ xm
τm

∂τm

∂tm

)
,

and a further rearrangement gives

∂

∂tm
ϕtm+1,τm+1(tm, τm) =

(
α− x1 − x0

|x1 − x0|

)
·
(

x0
t0

∂t0
∂tm

+ x0
τ0

∂τ0

∂tm

)
+

m−2∑
i=0

(
xi+1 − xi

|xi+1 − xi|
− xi+2 − xi+1

|xi+2 − xi+1|

)
·
(

xi+1
ti+1

∂ti+1

∂tm
+ xi+1

τi+1

∂τi+1

∂tm

)
+
(

xm − xm−1

|xm − xm−1|
− xm+1 − xm

|xm+1 − xm|

)
·
(

xm
tm

∂tm
∂tm

+ xm
τm

∂τm

∂tm

)
.

Therefore, since the points x0, . . . , xm are assumed to be on the same optical ray

path, we obtain (5.1.4). The proof of (5.1.5) follows the same lines. �

5.1.2 Characterization of Stationary Points

The following Lemma shows that the characterization of the stationary points in

three dimensions is the same as in two dimensions (see Lemma 4.1.2); that is, the

phase function ϕtm+1,τm+1(tm, τm) is stationary at a point xm if and only if the points

x0, . . . , xm, xm+1 are on the same optical ray path.

Corollary 5.1.2 i) (First Reflections) For m = 0, the phase given by (5.1.1) is

stationary at a point x0 with x0 = x0(t0, τ0) if and only if

x1 − x0

|x1 − x0|
= α + 2

x1 − x0

|x1 − x0|
· ν0 ν0 (5.1.6)
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or
x1 − x0

|x1 − x0|
= α. (5.1.7)

ii) (Further Reflections) For m ≥ 1, the phase given by (5.1.1) is stationary at a

point xm with xm = xm(tm, τm) if and only if

xm+1 − xm

|xm+1 − xm|
=

xm − xm−1

|xm − xm−1|
+ 2

xm+1 − xm

|xm+1 − xm|
· νm νm (5.1.8)

or
xm+1 − xm

|xm+1 − xm|
=

xm − xm−1

|xm − xm−1|
. (5.1.9)

Proof. Using Lemma 5.1.1, we obtain

(
∂

∂t0
ϕt1,τ1(t0, τ0),

∂

∂τ0

ϕt1,τ1(t0, τ0)

)
= 0

if and only if

α− x1 − x0

|x1 − x0|
= λ0ν0

for some λ0; and

(
∂

∂tm
ϕtm+1,τm+1(tm, τm),

∂

∂τm

ϕtm+1,τm+1(tm, τm)

)
= 0

if and only if
xm − xm−1

|xm − xm−1|
− xm+1 − xm

|xm+1 − xm|
= λmνm

for some λm. The rest of the proof follows the same lines with the proof of Lemma

4.1.2. �
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5.1.3 Hessians at Stationary Points

For i ≥ 0, we define

Hi+1 = |xi+1 − xi|



∂2

∂t2i
ϕti+1,τi+1

(ti, τi)

|xi
ti|2

∂2

∂ti∂τi

ϕti+1,τi+1
(ti, τi)

|xi
ti||xi

τi
|

∂2

∂ti∂τi

ϕti+1,τi+1
(ti, τi)

|xi
ti||xi

τi
|

∂2

∂τ 2
i

ϕti+1,τi+1
(ti, τi)

|xi
τi
|2


.

In stating the next result, we use the notation in Theorem 5.0.1.

Theorem 5.1.3 i) (Hessian in First Reflections) For m = 0, if (5.1.6) holds,

then

H1 = H1 = 2 |x1 − x0| x1 − x0

|x1 − x0|
· ν0

 κ1
0 0

0 κ2
0

+ E1 , (5.1.10)

while if (5.1.7) holds, then

H1 = E1 . (5.1.11)

ii) (Hessian in Further Reflections) For m ≥ 1, if (5.1.8) holds, then

Hm = Hm = 2 |xm − xm−1| xm − xm−1

|xm − xm−1|
· νm−1

 κ1
m−1 0

0 κ2
m−1


+

(
1 +

|xm − xm−1|
|xm−1 − xm−2|

)
Em −

|xm − xm−1|
|xm−1 − xm−2|

F T
mHm−1Fm , (5.1.12)

while if (5.1.9) holds, then

Hm =

(
1 +

|xm − xm−1|
|xm−1 − xm−2|

)
Em −

|xm − xm−1|
|xm−1 − xm−2|

F T
mHm−1Fm . (5.1.13)

We skip the proof of Theorem 5.1.3 as it is parallel to that of Theorem 4.1.4.
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5.2 Integration around Stationary Points

In this section, we describe the main ideas in applying Theorem 5.1.3 in conjunction

with the stationary phase method to obtain the asymptotic expansions provided in

Theorem 5.0.1. To begin, we note that, in three-dimensions, the integral equations

(3.2.14) and (3.2.15) take on the form

ρ0(x)− 1

2π
e−ikα·x

∫
∂K0

eik(α·y+|x−y|) 1− ik|x− y|
|x− y|2

x− y

|x− y|
·ν(x)ρ0(y)dS(y) = 2ikα ·ν(x),

and, for m ≥ 1,

ρm(x)− 1

2π
e−ikϕm(x)

∫
∂Km

eik(ϕm(y)+|x−y|) 1− ik|x− y|
|x− y|2

x− y

|x− y|
· ν(x)ρm(y)dS(y)

=
1

2π
e−ikϕm(x)

∫
∂Km−1

eik(ϕm−1(y)+|x−y|) 1− ik|x− y|
|x− y|2

x− y

|x− y|
· ν(x)ρm−1(y)dS(y),

respectively. Asymptotically, these equations can be written as

ρ0(x) +
1

2π
e−ikα·x

∫
∂K0

eik(α·y+|x−y|) ik

|x− y|
x− y

|x− y|
· ν(x)ρ0(y)dS(y)

∼ 2ikα · ν(x) (5.2.1)

and, for m ≥ 1,

ρm(x) +
1

2π
e−ikϕm(x)

∫
∂Km

eik(ϕm(y)+|x−y|) ik

|x− y|
x− y

|x− y|
· ν(x)ρm(y)dS(y)

∼ − 1

2π
e−ikϕm(x)

∫
∂Km−1

eik(ϕm−1(y)+|x−y|) ik

|x− y|
x− y

|x− y|
· ν(x)ρm−1(y)dS(y). (5.2.2)

Accordingly, as we explained in Chapter 4, if the target point x = xm ∈ ∂Km,

m ≥ 0, is in the m-th illuminated region off the O(k−1/3) shadow boundary, then
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equations (5.2.1) and (5.2.2) reduce to

ρ0(x
0)(1 +O(k−1)) = 2ikα · ν(x0),

and, for m ≥ 1,

ρm(xm)(1 +O(k−1)) = − 1

2π
e−ikϕm(xm)∫

∂Km−1(xm−1)

eik(ϕm−1(y)+|xm−y|) ik

|xm − y|
xm − y

|xm − y|
· ν(xm)ρm−1(y)dS(y),

where, for m ≥ 1, the neighborhood ∂Km−1(x
m−1) of the stationary point xm−1 is

chosen so that, except for xm−1, it contains no critical points of the integration kernel.

On the other hand, for a target point x = xm
s ∈ ∂Km, m ≥ 0, in the m-th

shadow region off the O(k−1/3) shadow boundary, in addition to the stationary point

xm−1 ∈ ∂Km−1 of the RHS integral, the LHS integral possesses a stationary point

xm ∈ ∂Km that belongs to the m-th illuminated region. Consequently, for the target

point xm
s , equations (5.2.1) and (5.2.2) reduce to

ρ0(x
0
s) +

1

2π
e−ikα·x0

s

∫
∂K0(x0)

eik(α·y+|x0
s−y|) ik|x0

s − y|
|x0

s − y|2
x0

s − y

|x0
s − y|

· ν(x0
s)ρ0(y)dS(y)

∼ 2ikα · ν(x0
s),

and, for m ≥ 1,

ρm(xm
s ) +

1
2π

e−ikϕm(xm
s )

∫
∂Km(xm)

eik(ϕm(y)+|xm
s −y|) ik

|xm
s − y|

xm
s − y

|xm
s − y|

· ν(xm
s )ρm(y)dS(y)

∼ − 1
2π

e−ikϕm(xm
s )

∫
∂Km−1(xm−1)

eik(ϕm−1(y)+|xm
s −y|) ik

|xm
s − y|

xm
s − y

|xm
s − y|

·ν(xm
s )ρm−1(y)dS(y).

where, as with ∂Km−1(x
m−1), the neighborhood ∂Km(xm) is chosen so that it contains

no critical points of the kernel of the LHS integral other than xm.

We derive the asymptotic expansions of these integrals utilizing the method of
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stationary phase and appealing to Theorem 5.1.3. More precisely, in evaluating the

RHS integrals, equations (5.1.10) and (5.1.12) must be used. On the other hand,

LHS integrals must be evaluated using equations (5.1.11) and (5.1.13). To exemplify

this procedure, let us consider the evaluation of the RHS integral for a target point

xm ∈ ∂Km, m ≥ 1. Then, writing this integral in parametric form, and applying the

method of stationary phase yields

1
2π

∫
∂Km−1(xm−1)

eik(ϕm−1(y)+|xm−y|) ik

|xm − y|
xm − y

|xm − y|
· ν(xm)ρm−1(y)|yu × yv|dudv

∼ i

k

eikϕm(xm)√
|det Hess [ϕtm,τm(tm−1, τm−1)] |

ik

|xm − xm−1|
xm − xm−1

|xm − xm−1|
· ν(xm)|xm−1

tm−1
× xm−1

τm−1
|ρm−1(xm−1).

Therefore, choosing the directions tm−1 and τm−1 to be the principal directions at

the point xm−1 gives

1

2π

∫
∂Km−1(xm−1)

eik(ϕm−1(y)+|xm−y|) ik

|xm − y|
xm − y

|xm − y|
· ν(xm)ρm−1(y)|yu × yv|dudv

∼ − eikϕm(xm)√
| det Hess [ϕtm,τm(tm−1, τm−1)] |

1

|xm − xm−1|
xm − xm−1

|xm − xm−1|
· ν(xm)|xm−1

tm−1
||xm−1

τm−1
|ρm−1(x

m−1)

= − eikϕm(xm)√
| det Hm|

xm − xm−1

|xm − xm−1|
· ν(xm)ρm−1(x

m−1).

The LHS integrals corresponding to target points at the shadow regions are evaluated

in a similar manner. As we did in §4.3, it can then be verified that the currents vanish

to first order in wavelength in the shadow regions.
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Chapter 6

Convergence of Multiple Scattering

Iterations in HF-IEM

As is apparent from the asymptotic expansions developed in Chapters 4 and 5, in the

high-frequency regime, the convergence of the Neumann series (3.2.5) depends solely

on the geometrical characteristics of the scatterers. Moreover, appealing to Theorems

4.0.1 and 5.0.1, one can easily find sufficient conditions, in terms of the distances

between scatterers and curvatures of the objects, guaranteeing the convergence of

the series. The natural question that arises is whether one can find a condition that

is both necessary and sufficient for convergence. In this Chapter, we consider this

question in the setting of Chapters 4 and 5. That is, we consider a finite collection

of convex obstacles satisfying the visibility condition.

In this regard, we establish that, when a collection of obstacles are transversed

periodically, the ratios of the (asymptotic expansions of) multiple scattering iterations

that differ by one period converge uniformly to a certain complex number. This

number is independent of incidence, and in the limit of infinite frequency it depends

solely on the geometrical arrangement.

To derive these results, our strategy begins with the use of Theorems 4.0.1 and

5.0.1 to deduce that if a ray arrives at a point on the boundary of a scatterer after n-
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bounces, then (asymptotically) the iterated current at that point equals the current at

the (n - 1 )-th reflection-point of the ray times a continued fraction (of 2×2 matrices in

three-dimensional case) determined by geometric properties of the corresponding ray

path. Then we analyze optical ray paths to deduce that if a group of rays transverse

the objects periodically for a large number of reflections, then -except for the first and

last few reflections- their reflection points accumulate on certain specific regions of the

boundaries of the scatterers. Finally, we demonstrate that, when a p-periodic orbit is

transversed indefinitely, the ratio of iterated currents differing by one period converges

uniformly to the product of a number p of limit p-periodic continued fractions; the

convergence rate is then deduced utilizing the theory of limit p-periodic continued

fractions [44].

6.1 Rate of Convergence on Periodic Orbits

To clarify the intuition behind these ideas, let us consider a p-periodic orbit {Km}m≥0;

that is, Ki = Ki+qp for i = 1, . . . , p and all q ≥ 0. As is apparent from Figures 3.5

and 3.8, the paths of the reflected rays start to stabilize after a few reflections for a

periodic orbit (p = 2 in these figures). As we shall explain shortly, this is an immediate

consequence of Fermat’s principle which states that “The actual path between two

points taken by a beam of light is the one which is transversed in the least time”.

Indeed, considering the phase function

ϕ(x1, . . . , xp) = |xp − x1|+
p−1∑
m=1

|xm+1 − xm| (6.1.1)

defined for (x1, . . . , xp) ∈ ∂K = ∂K1 × . . .× ∂Kp, we have:

Lemma 6.1.1 The tuple (a1, . . . , ap) ∈ ∂K1× . . .×∂Kp minimizing the phase (6.1.1)

78



is uniquely determined, and it satisfies

ai+1 − ai

|ai+1 − ai|
=

ai − ai−1

|ai − ai−1|
− 2

(
ai − ai−1

|ai − ai−1|
· νi

)
νi , i = 1, . . . , p.

That is, a ray starting from ai and arriving at ai+1 traverses the path formed by the

points (a1, . . . , ap) indefinitely.

Proof. Suppose that the boundaries ∂Ki are parametrized by xi = xi(ti). Then

dϕ

dti
=

d

dti
(|xi+1 − xi|+ |xi − xi−1|) =

(
xi − xi−1

|xi − xi−1|
− xi+1 − xi

|xi+1 − xi|

)
· ·xi

so that dϕ/dti = 0 if and only if

xi+1 − xi

|xi+1 − xi|
=

xi − xi−1

|xi − xi−1|
or

xi+1 − xi

|xi+1 − xi|
= λiνi +

xi − xi−1

|xi − xi−1|

for some λi. The first case is not possible by the visibility assumption. In the second

case,

1 =
xi+1 − xi

|xi+1 − xi|
· xi+1 − xi

|xi+1 − xi|
= λ2

i + 2

(
xi − xi−1

|xi − xi−1|
· νi

)
λi + 1

so that

λi = −2
xi − xi−1

|xi − xi−1|
· νi or λi = 0 .

The visibility assumption prevents the case λi = 0. The proof in three-dimensions

follows the same lines. �

Intuitively then, this result combined with Fermat’s principle tells us that, as the

number of reflections m grows, the paths of the rays arriving at any point x ∈ ∂K at

the m-th reflection have the property that (except for the first and last few reflections)

they are almost identical with (a1, . . . , ap); and to a good approximation, the only

difference between the optical path arriving at a point x ∈ ∂K at the m-th reflection

and (m+p)-th reflection is the addition of the path formed by the points (a1, . . . , ap)

somewhere in the sequence of points.
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Now, for xm ∈ ∂Km, let (x0, . . . , xm−1) ∈ ∂K0 × . . . × ∂Km−1 be the uniquely

determined tuple on the optical ray path arriving at x = xm after m− 1 reflections.

Concentrating, for instance, on a two-dimensional setting, we see that

ηm(xm) ∼ 2ik(−1)m xm − xm−1

|xm − xm−1|
· νmeikϕm(xm)

(
m−1∏
i=0

Rm
i (xm)

)−1/2

, m ≥ 1

on account of Theorem 4.0.1. Here, we set

Rm
0 (xm) = 1 +

2κ0|x1 − x0|
cos α0

Rm
i (xm) = 1 +

2κi|xi+1 − xi|
cos αi

+
|xi+1 − xi|
|xi − xi−1|

(
1− 1

Rm
i−1(xm)

)
, 1 ≤ i ≤ m− 1

where

αi := cos−1

(
xi+1 − xi

|xi+1 − xi|
· νi

)
.

Therefore, appealing to the explanations above, for a fixed j with 1 ≤ j ≤ p (assuming

without loss of generality that j is the smallest index such that Kj = Km for some

obstacle in the p-periodic orbit {Km}m≥0), and for a fixed point x ∈ ∂Kj, we obtain

ηm+p(x)

ηm(x)
∼ (−1)peikϕ(a1,...,ap)

(
m+p−1∏

i=0

Rm+p
i (x)

)−1/2(m−1∏
i=0

Rm
i (x)

)1/2

(6.1.2)

as m = j+qp grows. Accordingly, it is necessary to study the convergence of the ratio∏m+p−1
i=0 Rm+p

i (x)/
∏m−1

i=0 Rm
i (x) as m →∞. To this end, we choose n with n ≈ m/2,

write it as

∏m+p−1
i=0 Rm+p

i (x)∏m−1
i=0 Rm

i (x)
=

(
1 +

(
n∏

i=0

Rm+p
i (x)

Rm
i (x)

− 1

))
(

1 +

(
m−1∏

i=n+1

Rm+p
i+p (x)

Rm
i (x)

− 1

))
n+p∏

i=n+1

Rm+p
i (x) .

80



Thus, we need to study the convergence properties of the quantities

n∏
i=0

Rm+p
i (x)

Rm
i (x)

− 1,
m−1∏

i=n+1

Rm+p
i+p (x)

Rm
i (x)

− 1, and

n+p∏
i=n+1

Rm+p
i (x) (6.1.3)

as m = j + qp goes to infinity. Indeed, when the sets of points xm
0 , . . . , xm

m (with

x = xm
m and m = j + qp) forming the continued fractions Rm

i (x) are considered, it

holds that each of the sequences xj
i , x

j+p
i+p , xj+2p

i+2p , . . . converge. Moreover, since n ≈

m/2, the points forming the continued fractions in the third term of (6.1.3) form

p sequences converging to the points a1, . . . , ap. Accordingly, the analysis of the

quantities in (6.1.3) can be based on an extension of the theory of limit periodic

p-periodic continued fractions.

As is to be expected then, an analysis of the optical ray paths combined with

the techniques of the theory of limit p-periodic continued fractions can be used to

show that the first and second terms in (6.1.3) do converge to zero uniformly for

x ∈ ∂K. In the same way, the product of the p (almost) limit p-periodic continued

fractions forming the third term in (6.1.3) can be shown to converge to a limit s.

Note that, however, the behavior of this third term is independent of the direction

of the incidence and of the point x ∈ ∂K. Consequently, the limit s is uniform and

is independent of the direction of incidence. In fact, as we shall explain shortly, s

depends only and explicitly on the distances |ai+1 − ai|, the curvatures κi at the

points ai of the surfaces ∂Ki and the scalar products ai+1−ai

|ai+1−ai| · νi (i = 1, . . . , p) where

(a1, . . . , ap) ∈ ∂K1 × . . . × ∂Kp are the unique points minimizing the phase (6.1.1).

Indeed, dropping the upper indices in the representations of Rm
i , and concentrating

on the set of points x0, . . . , xn where n ≈ m/2, we see that the sequences {xi+qp}q≥0

converge to the points ai, i = 1, . . . , p. Therefore, replacing xi’s with their limiting

values yields the p equations

Li = di −
ci

Li−1

, 1 ≤ i ≤ p (6.1.4)
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where we have set, for 1 ≤ i ≤ p,

Li = lim
m→∞

Rm
n+i, bi = 1 +

2κi|ai+1 − ai|
cos αi

, ci =
|ai+1 − ai|
|ai − ai−1|

, and di = bi + ci.

Equivalently, equations (6.1.4) can be written, for i = 1, . . . , p, as

Li = Li+p = di+p −
ci+p

di+p−1 −
ci+p−1

. . .

di+1 −
ci+1

Li

(6.1.5)

and equations (6.1.5), in turn, can be used to obtain quadratic equations in Li,

i = 1, . . . , p.

Using the fact that each of the terms Ri satisfy Ri > 1, it can be easily shown

that Li ≥ 1 for i = 1, . . . , p, and that this is possible only if Li’s are taken to be the

larger roots of the corresponding quadratic equations.

For instance, when the period is p = 2, solutions of these quadratic equations

yield

L1 = (1 + dκ1)

[
1±

√
1− 1

(1 + dκ1)(1 + dκ2)

]
and

L2 = (1 + dκ2)

[
1±

√
1− 1

(1 + dκ1)(1 + dκ2)

]
.

When the signs in these formulas are taken to be negative, the conditions Li ≥ 1 are

easily seen to imply

(1 + dκ1)
−1 + (1 + dκ2)

−1 ≥ 2
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which is not possible due to the convexity assumption. It follows that, for p = 2,

s =

p∏
i=1

Li =
(√

γ +
√

γ − 1
)2

(6.1.6)

where γ = (1 + dκ1)(1 + dκ2).

Using the asymptotic expansions given in Theorem 5.0.1, which is the three-

dimensional analog of Theorem 4.0.1, convergence factors similar to (6.1.6) can be

derived for any periodic orbit in three-dimensions. As is to be expected, the formu-

las for these convergence factors are significantly complicated. Even for a 2-periodic

orbit, they depend on the angle of rotation between the axes determined by prin-

cipal directions at the points ai minimizing the distance between the two obstacles.

Nevertheless, for a two-periodic orbit, when these axes are parallel to each other, the

convergence factor takes on the relatively simple form

s =
(√

γ1 +
√

γ1 − 1
)2 (√

γ2 +
√

γ2 − 1
)2

where γi = (1 + dκ1
i )(1 + dκ2

i ), κ1
i and κ2

i are the principal curvatures at the points

ai, and d = |a1 − a2|.

6.2 Analysis of Products of Continued Fractions

The starting point in the analysis of the first and second quantities in (6.1.3) is the

next recursion.

Lemma 6.2.1 For m ≥ 1, we have:

Am
0 · · ·Am

m = Am
0 · · ·Am

m−1

+ |xm+1 − xm|
(

2κm

cos αm

Am
0 · · ·Am

m−1 + · · ·+ 2κ1

cos α1

Am
0 +

2κ0

cos α0

)
.
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Proof. For m ≥ 0, let

dm = |xm+1 − xm|, γm =
2κm

cos αm

, βm =
2κm|xm+1 − xm|

cos αm

= γmdm,

and, for m ≥ 1, let

rm =
|xm+1 − xm|
|xm − xm−1|

=
dm

dm−1

.

With this notation, we have

A0 = 1 + γ0d0 = 1 + β0

Am = 1 + γmdm + rm

(
1− 1

Am−1

)
= 1 + βm + rm

(
1− 1

Am−1

)
, m ≥ 1.

Now, a direct calculation yields

A0A1 = (1 + β1) A0 + β0r1 = A0 + β1A0 + β0r1 = A0 + γ1d1A0 + γ0d0r1

= A0 + γ1d1A0 + γ0d1 = A0 + d1 (γ1A0 + γ0) .

Then, by induction,

A0 · · ·Am+1

=

(
1 + βm+1 + rm+1

(
1− 1

Am

))
A0 · · ·Am

= A0 · · ·Am + βm+1A0 · · ·Am + rm+1 (Am − 1) A0 · · ·Am−1

= A0 · · ·Am + (βm+1 + rm+1) A0 · · ·Am − rm+1A0 · · ·Am−1

= A0 · · ·Am +

(
γm+1dm+1 +

dm+1

dm

)
A0 · · ·Am −

dm+1

dm

A0 · · ·Am−1

= A0 · · ·Am + γm+1dm+1A0 · · ·Am +
dm+1

dm

(A0 · · ·Am − A0 · · ·Am−1)

= A0 · · ·Am + γm+1dm+1A0 · · ·Am +
dm+1

dm

dm (γmA0 · · ·Am−1 + · · ·+ γ1A0 + γ0)

= A0 · · ·Am + dm+1 (γm+1A0 · · ·Am + γmA0 · · ·Am−1 + · · ·+ γ1A0 + γ0)
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finishing the proof. �

Now, fix a point x ∈ ∂K, and denote by xi and x̃i the points in the respective

optical paths used to define

Ai = Am+p
i (x) and Bi = Am

i (x)

respectively, and utilize the notation

αi := cos−1

(
xi+1 − xi

|xi+1 − xi|
· νi

)
, α̃i := cos−1

(
x̃i+1 − x̃i

|x̃i+1 − x̃i|
· ν̃i

)
, θi − θ̃i := cos−1 (νi · ν̃i)

where νi and ν̃i denote the outward unit normal to ∂Ω at the points xi and x̃i respec-

tively. Note that then

A0 · · ·An −B0 · · ·Bn = A0 · · ·An−1 −B0 · · ·Bn−1

+ 2|xn+1 − xn|
(

κn

cos αn
A0 · · ·An−1 −

κ̃n

cos α̃n
B0 · · ·Bn−1+

· · · + κ1

cos α1
A0 −

κ̃1

cos α̃1
B0 +

κ0

cos α0
− κ̃0

cos α̃0

)
+ (|xn+1 − xn| − |x̃n+1 − x̃n|)

(
2κ̃n

cos α̃n
B0 · · ·Bn−1 + · · ·+ 2κ̃1

cos α̃1
B0 +

2κ̃0

cos α̃0

)
,

and this yields

A0 · · ·An −B0 · · ·Bn = A0 · · ·An−1 −B0 · · ·Bn−1

+ 2|xn+1 − xn|
(

κn

cos αn
(A0 · · ·An−1 −B0 · · ·Bn−1) + · · ·+ κ1

cos α1
(A0 −B0)

)
+ 2|xn+1 − xn|

((
κn

cos αn
− κ̃n

cos α̃n

)
B0 · · ·Bn−1+

· · ·+
(

κ1

cos α1
− κ̃1

cos α̃1

)
B0 +

(
κ0

cos α0
− κ̃0

cos α̃0

))
+ (|xn+1 − xn| − |x̃n+1 − x̃n|)

(
2κ̃n

cos α̃n
B0 · · ·Bn−1 + · · ·+ 2κ̃1

cos α̃1
B0 +

2κ̃0

cos α̃0

)
,
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or equivalently

A0 · · ·An −B0 · · ·Bn = A0 · · ·An−1 −B0 · · ·Bn−1

+ 2|xn+1 − xn|
(

κn

cos αn
(A0 · · ·An−1 −B0 · · ·Bn−1) + · · ·+ κ1

cos α1
(A0 −B0)

)
+ 2|xn+1 − xn|

(
κn

cos α̃n − cos αn

cos α̃n cos αn
B0 · · ·Bn−1+

· · ·+ κ1
cos α̃1 − cos α1

cos α̃1 cos α1
B0 + κ0

cos α̃0 − cos α0

cos α̃0 cos α0

)
+ 2|xn+1 − xn|

(
κn − κ̃n

cos α̃n
B0 · · ·Bn−1 + · · ·+ κ1 − κ̃1

cos α̃1
B0 +

κ0 − κ̃0

cos α̃0

)
+ (|xn+1 − xn| − |x̃n+1 − x̃n|)

(
2κ̃n

cos α̃n
B0 · · ·Bn−1 + · · ·+ 2κ̃1

cos α̃1
B0 +

2κ̃0

cos α̃0

)
.

Therefore, in this last identity, utilizing the approximations

cos α̃i − cos αi

cos αi
= (αi − α̃i) tan αi +O(αi − α̃i)2,

κ̃i − κi =
(
θ̃i − θi

)
κ′i +O

(
θ̃i − θi

)2
,

and appealing to Lemma 6.2.1 yields

A0 · · ·An −B0 · · ·Bn ∼ A0 · · ·An−1 −B0 · · ·Bn−1

+ 2|xn+1 − xn|
(

κn

cos αn
(A0 · · ·An−1 −B0 · · ·Bn−1) + · · ·+ κ1

cos α1
(A0 −B0)

)
+ 2|xn+1 − xn|

(
κn tanαn

cos α̃n
(αn − α̃n)B0 · · ·Bn−1+

· · ·+ κ1 tanα1

cos α̃1
(α1 − α̃1)B0 +

κ0 tanα0

cos α̃0
(α0 − α̃0)

)
+ 2|xn+1 − xn|

(
κ′n

cos α̃n

(
θn − θ̃n

)
B0 · · ·Bn−1+

· · ·+ κ′1
cos α̃1

(
θ1 − θ̃1

)
B0 +

κ′0
cos α̃0

(
θ0 − θ̃0

))
+
|xn+1 − xn| − |x̃n+1 − x̃n|

|x̃n+1 − x̃n|
(B0 · · ·Bn −B0 · · ·Bn−1) .

Dividing through by B0 · · ·Bn gives :

86



t 

g(t) 

θ(t) 

θ(t) 

Figure 6.1: Local parametrization of a convex curve.

Lemma 6.2.2 We have

A0 · · ·An

B0 · · ·Bn
− 1 ∼ 1

Bn

(
A0 · · ·An−1

B0 · · ·Bn−1
− 1
)

+
2|xn+1 − xn|

Bn

(
κn

cos αn

(
A0 · · ·An−1

B0 · · ·Bn−1
− 1
)

+ · · ·+ κ1

cos α1

1
B1 · · ·Bn−1

(
A0

B0
− 1)

)
+

2|xn+1 − xn|
Bn

(
κn tanαn

cos α̃n
(αn − α̃n) + · · ·+ 1

B0 · · ·Bn−1

κ0 tanα0

cos α̃0
(α0 − α̃0)

)
+

2|xn+1 − xn|
Bn

(
κ′n

cos α̃n

(
θn − θ̃n

)
+ · · ·+ 1

B0 · · ·Bn−1

κ′0
cos α̃0

(
θ0 − θ̃0

))
+
|xn+1 − xn| − |x̃n+1 − x̃n|

|x̃n+1 − x̃n|

(
1− 1

Bn

)
.

Therefore, one needs to find relations among the angles αn, α̃n, θn and θ̃n. We do

this analysis next.

6.3 Analysis of Reflected Rays

For simplicity of presentation, we shall concentrate on the case p = 2, however, the

techniques and approximations we shall present can be easily carried over to calcula-

tions for larger periods. We begin with a simple lemma concerning local parametriza-

tions of a convex curve.
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Lemma 6.3.1 In Figure 6.1, if g is convex near t = 0, then as t → 0

t =
θ(t)

κ(0)
+O(θ(t))2 and g(t) = O(θ(t))2.

Proof. Noting that g(0) = g′(0) = 0, for a convex object, we have

κ(0) =
g′′(t)

(1 + g′(t)2)3/2

∣∣∣∣
t=0

= g′′(0).

Therefore,

θ(t) = arctan g′(t) = tg′′(0) +O(t2) = κ(0)t +O(t2)

so that

t =
θ(t)

κ(0)
+O(θ(t))2.

That g(t) = O(θ(t))2 is immediate from this and the Taylor expansion of g. �

We shall concentrate on the rays moving towards the line determined by a1 and

a2 (see Figure 6.2); analysis for rays moving away from this line is very similar. The

next lemma will be used without any further reference in what follows.

Lemma 6.3.2 In Figure 6.2, the following identities hold:

αi = αi+1 + θi+1 + θi , for i ≥ 0, (6.3.1a)

αi = α0 − θ0 − 2
i−1∑
j=1

θj − θi , for i ≥ 1, (6.3.1b)

and

α0 − α̃0 = θ̃0 − θ0 ,

αi − α̃i = 2
i−1∑
j=0

(
θ̃j − θj

)
+
(
θ̃i − θi

)
, for i ≥ 1.
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Proof. Equation (6.3.1a) is just a simple geometrical identity concerning triangles.

Adding these up yields (6.3.1b). Utilizing the second identity, we obtain

αi − α̃i = (α0 − α̃0) +
(
θ̃0 − θ0

)
+ 2

i−1∑
j=1

(
θ̃j − θj

)
+
(
θ̃i − θi

)
, i ≥ 1.

That α0 − α̃0 = θ̃0 − θ0 is an immediate consequence of the fact that the incoming

field is a plane wave. �

Lemma 6.3.3 In Figure 6.2, the following identity holds :

{|xi+1− xi| sin αi + ti} cos(α̃i + θi− θ̃i)−{|xi+1− xi| cos αi + gi(ti)} sin(α̃i + θi− θ̃i)

= ti+1 cos(α̃i+1 + θ̃i+1 − θi+1) + gi+1(ti+1) sin(α̃i+1 + θ̃i+1 − θi+1).

Proof. Using the identity

tan(α̃i + θi − θ̃i) =
ti

|axi|+ |xib|
=

ti
gi(ti) + |xib|

,

we obtain

|xib| =
ti

tan(α̃i + θi − θ̃i)
− gi(ti).

Therefore, on account of the equation

|xib|+ |bc|
|xi+1 − xi|

= cos αi ,

we get

|bc| = |xi+1 − xi| cos αi − |xib| = |xi+1 − xi| cos αi + gi(ti)−
ti

tan(α̃i + θi − θ̃i)
.
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On the other hand, we have

tan(α̃i+1 + θ̃i+1 − θi+1) =
ti+1

|ef |

so that

|xi+1g| = {gi+1(ti+1) + |ef |} sin(α̃i+1 + θ̃i+1 − θi+1)

= gi+1(ti+1) sin(α̃i+1 + θ̃i+1 − θi+1) + ti+1 cos(α̃i+1 + θ̃i+1 − θi+1).

This gives

|dxi+1| =
|xi+1g|

sin[
π

2
− (α̃i + θi − θ̃i)]

=
|xi+1g|

cos(α̃i + θi − θ̃i)

=
gi+1(ti+1) sin(α̃i+1 + θ̃i+1 − θi+1) + ti+1 cos(α̃i+1 + θ̃i+1 − θi+1)

cos(α̃i + θi − θ̃i)
,

so that the identity
|cd|+ |dxi+1|
|xi+1 − xi|

= sin αi

implies

|cd| = |xi+1 − xi| sin αi − |dxi+1|

=
|xi+1 − xi| sin αi cos(α̃i + θi − θ̃i)− gi+1(ti+1) sin(α̃i+1 + θ̃i+1 − θi+1)

cos(α̃i + θi − θ̃i)

− ti+1 cos(α̃i+1 + θ̃i+1 − θi+1)

cos(α̃i + θi − θ̃i)
.

Finally, utilizing the identity

|cd| = |bc| tan(α̃i + θi − θ̃i) ,
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we obtain

|xi+1 − xi| sin αi cos(α̃i + θi − θ̃i)

− gi+1(ti+1) sin(α̃i+1 + θ̃i+1 − θi+1)− ti+1 cos(α̃i+1 + θ̃i+1 − θi+1)

= sin(α̃i + θi − θ̃i)

(
|xi+1 − xi| cos αi + gi(ti)−

ti

tan(α̃i + θi − θ̃i)

)
.

Rearranging the terms after cancellations delivers the lemma. �

In what follows, we use the notation

ri =
1

κi

where κi is the curvature at the point xi.

Corollary 6.3.4 In Figure 6.2, we have :

θ̃i+1 − θi+1 =
ri cos αi

|xi+1 − xi|+ ri+1 cos αi+1

(θ̃i − θi)

− |xi+1 − xi|
|xi+1 − xi|+ ri+1 cos αi+1

(α̃i+1 − αi+1)

+O(θi − θ̃i)
2 +O(θi+1 − θ̃i+1)

2.

Proof. First we use trigonometric addition formulas to obtain

cos(α̃i + θi − θ̃i) = cos α̃i cos(θi − θ̃i)− sin α̃i sin(θi − θ̃i)

= cos α̃i − (θi − θ̃i) sin α̃i +O(θi − θ̃i)
2 ,

and

sin(α̃i + θi − θ̃i) = sin α̃i cos(θi − θ̃i)− cos α̃i sin(θi − θ̃i)

= sin α̃i + (θi − θ̃i) cos α̃i +O(θi − θ̃i)
2.
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Also, by Lemma 6.3.1, we have

ti = ri(θ̃i − θi) +O(θi − θ̃i)
2 and gi(ti) = O(θi − θ̃i)

2.

Therefore, utilizing Lemma 6.3.3 yields

(|xi+1 − xi| sin αi + ri(θ̃i − θi))(cos α̃i − (θi − θ̃i) sin α̃i)

− |xi+1 − xi| cos αi(sin α̃i + (θi − θ̃i) cos α̃i)

= ri+1(θ̃i+1 − θi+1)(cos α̃i+1 − (θ̃i+1 − θi+1) sin α̃i+1)

+O(θi − θ̃i)
2 +O(θi+1 − θ̃i+1)

2

so that

|xi+1 − xi|(sin αi cos α̃i − cos αi sin α̃i)

+ (|xi+1 − xi|(sin αi sin α̃i + cos αi cos α̃i) + ri cos α̃i)(θ̃i − θi)

= ri+1 cos α̃i+1(θ̃i+1 − θi+1) +O(θi − θ̃i)
2 +O(θi+1 − θ̃i+1)

2.

This gives

|xi+1 − xi| sin(αi − α̃i) + (|xi+1 − xi| cos(αi − α̃i) + ri cos α̃i)(θ̃i − θi)

= ri+1 cos α̃i+1(θ̃i+1 − θi+1) +O(θi − θ̃i)
2 +O(θi+1 − θ̃i+1)

2 ,

so that, in particular,

αi − α̃i = O(θi − θ̃i) +O(θi+1 − θ̃i+1) .
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Therefore

|xi+1 − xi|(αi − α̃i) + (|xi+1 − xi|+ ri cos α̃i)(θ̃i − θi)

= ri+1 cos α̃i+1(θ̃i+1 − θi+1) +O(θi − θ̃i)
2 +O(θi+1 − θ̃i+1)

2.

On the other hand, appealing to the fact that

cos α̃i = cos(αi + α̃i − αi) = cos αi cos(α̃i − αi)− sin αi sin(α̃i − αi)

= cos αi − (α̃i − αi) sin αi +O(α̃i − αi)
2 ,

this identity can be written as

|xi+1 − xi|(αi − α̃i) + (|xi+1 − xi|+ ri cos αi)(θ̃i − θi)

= ri+1 cos αi+1(θ̃i+1 − θi+1) +O(θi − θ̃i)
2 +O(θi+1 − θ̃i+1)

2.

Since

αi = αi+1 + θi+1 + θi and α̃i = α̃i+1 + θ̃i+1 + θ̃i ,

we obtain

θ̃i+1 − θi+1 =
ri cos αi

|xi+1 − xi|+ ri+1 cos αi+1

(θ̃i − θi)

− |xi+1 − xi|
|xi+1 − xi|+ ri+1 cos αi+1

(α̃i+1 − αi+1)

+O(θi − θ̃i)
2 +O(θi+1 − θ̃i+1)

2 ,

completing the proof. �

Now, we find a relation between the distances |xi+1 − xi| and |x̃i+1 − x̃i|.
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Lemma 6.3.5 In Figure 6.2, the following identity holds :

|x̃i+1 − x̃i| cos(α̃i + θi − θ̃i) = |xi+1 − xi| cos αi + gi(ti)

+ ti+1 sin(θi + θi+1) + gi+1(ti+1) cos(θi + θi+1).

Proof. It follows from Figure 6.2 that

|x̃i+1 − x̃i| =
|xi+1 − xi| cos αi + gi(ti)

cos(α̃i + θi − θ̃i)
+ |xi+1g| tan(α̃i + θi − θ̃i)

−

(
ti+1

sin(α̃i+1 + θ̃i+1 − θi+1)
− |xi+1g|

tan(α̃i+1 + θ̃i+1 − θi+1)

)
.

Equivalently, this equation can be written as

|x̃i+1 − x̃i| =
|xi+1 − xi| cos αi + gi(ti)

cos(α̃i + θi − θ̃i)
− ti+1

sin(α̃i+1 + θ̃i+1 − θi+1)

+
(
gi+1(ti+1) sin(α̃i+1 + θ̃i+1 − θi+1) + ti+1 cos(α̃i+1 + θ̃i+1 − θi+1)

)
×

(
tan(α̃i + θi − θ̃i) +

1

tan(α̃i+1 + θ̃i+1 − θi+1)

)

=
|xi+1 − xi| cos αi + gi(ti)

cos(α̃i + θi − θ̃i)

− ti+1

sin(α̃i+1 + θ̃i+1 − θi+1)

(
1− cos2(α̃i+1 + θ̃i+1 − θi+1)

)
+ ti+1 cos(α̃i+1 + θ̃i+1 − θi+1) tan(α̃i + θi − θ̃i)

+ gi+1(ti+1) sin(α̃i+1 + θ̃i+1 − θi+1) tan(α̃i + θi − θ̃i)

+ gi+1(ti+1) cos(α̃i+1 + θ̃i+1 − θ)

=
|xi+1 − xi| cos αi + gi(ti)

cos(α̃i + θi − θ̃i)

+ ti+1

(
tan(α̃i + θi − θ̃i) cos(α̃i+1 + θ̃i+1 − θ)− sin(α̃i+1 + θ̃i+1 − θ)

)
+ gi+1(ti+1)

(
tan(α̃i + θi − θ̃i) sin(α̃i+1 + θ̃i+1 − θ)

+ cos(α̃i+1 + θ̃i+1 − θ)
)

.
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Therefore

|x̃i+1 − x̃i| cos(α̃i + θi − θ̃i)

= |xi+1 − xi| cos αi + gi(ti)

+ ti+1

(
sin(α̃i + θi − θ̃i) cos(α̃i+1 + θ̃i+1 − θi+1)

− cos(α̃i + θi − θ̃i) sin(α̃i+1 + θ̃i+1 − θi+1)
)

+ gi+1(ti+1)
(
sin(α̃i+1 + θ̃i+1 − θi+1) sin(α̃i + θi − θ̃i)

+ cos(α̃i+1 + θ̃i+1 − θi+1) cos(α̃i + θi − θ̃i)
)

,

so that, on account of the trigonometric difference formulas, we obtain

|x̃i+1 − x̃i| cos(α̃i + θi − θ̃i)

= |xi+1 − xi| cos αi + gi(ti)

+ ti+1 sin
(
(α̃i + θi − θ̃i)− (α̃i+1 + θ̃i+1 − θi+1)

)
+ gi+1(ti+1) cos

(
(α̃i + θi − θ̃i)− (α̃i+1 + θ̃i+1 − θi+1)

)
.

Since

α̃i = α̃i+1 + θ̃i+1 + θ̃i ,

we get

|x̃i+1 − x̃i| cos(α̃i + θi − θ̃i) = |xi+1 − xi| cos αi + gi(ti)

+ ti+1 sin(θi + θi+1) + gi+1(ti+1) cos(θi + θi+1).

completing the proof. �
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Corollary 6.3.6 In Figure 6.2, we have

(
1− (α̃i − αi + θi − θ̃i) tan αi

)
|x̃i+1 − x̃i|

= |xi+1 − xi|+ ri+1(θ̃i+1 − θi+1)
sin(θi + θi+1)

cos αi

+O(θi − θ̃i)
2 +O(θi+1 − θ̃i+1)

2 ,

and

|x̃i+1 − x̃i| =
(
1 + (α̃i − αi + θi − θ̃i) tan αi

)
|xi+1 − xi|

+ ri+1(θ̃i+1 − θi+1)
sin(θi + θi+1)

cos αi

+O(θi − θ̃i)
2 +O(θi+1 − θ̃i+1)

2.

Proof. Simply note that

cos(α̃i + θi − θ̃i) = cos(αi + α̃i − αi + θi − θ̃i)

= cos αi cos(α̃i − αi + θi − θ̃i)− sin αi sin(α̃i − αi + θi − θ̃i)

= cos αi − (α̃i − αi + θi − θ̃i) sin αi +O(θi − θ̃i)
2

and

ti = ri(θ̃i − θi) +O(θi − θ̃i)
2 and gi(ti) = O(θi − θ̃i)

2.

Therefore, utilizing Lemma 6.3.5 finishes the proof. �

Corollary 6.3.7 For i ≥ 0, we have

θ̃i+1 − θi+1 ∼
2|xi+1 − xi|+ ri cos αi

ri+1 cos αi+1

(θ̃i − θi) +
2|xi+1 − xi|
ri+1 cos αi+1

i−1∑
j=0

(
θ̃j − θj

)

and

αi+1 − α̃i+1 ∼
(

1 +
ri+1 cos αi+1

|xi+1 − xi|

)
(θ̃i+1 − θi+1)−

ri cos αi

|xi+1 − xi|
(θ̃i − θi)

97



Proof. Utilizing Lemma 6.3.4, we get

θ̃i+1 − θi+1 ∼
ri cos αi

|xi+1 − xi|+ ri+1 cos αi+1

(θ̃i − θi)

− |xi+1 − xi|
|xi+1 − xi|+ ri+1 cos αi+1

(α̃i+1 − αi+1)

so that, using

αi+1 − α̃i+1 = 2
i∑

j=0

(
θ̃j − θj

)
+
(
θ̃i+1 − θi+1

)
,

we obtain

θ̃i+1 − θi+1 ∼
ri cos αi

|xi+1 − xi|+ ri+1 cos αi+1

(θ̃i − θi)

+
|xi+1 − xi|

|xi+1 − xi|+ ri+1 cos αi+1

(
2

i∑
j=0

(
θ̃j − θj

)
+
(
θ̃i+1 − θi+1

))

=
2|xi+1 − xi|+ ri cos αi

|xi+1 − xi|+ ri+1 cos αi+1

(θ̃i − θi)

+
2|xi+1 − xi|

|xi+1 − xi|+ ri+1 cos αi+1

i−1∑
j=0

(
θ̃j − θj

)
+

|xi+1 − xi|
|xi+1 − xi|+ ri+1 cos αi+1

(
θ̃i+1 − θi+1

)
.

Rearranging the terms gives the first result. Note that then

αi+1 − α̃i+1 = 2
i∑

j=0

(
θ̃j − θj

)
+
(
θ̃i+1 − θi+1

)

∼
ri+1 cos αi+1

(
θ̃i+1 − θi+1

)
− ri cos αi

(
θ̃i − θi

)
|xi+1 − xi|

+
(
θ̃i+1 − θi+1

)
=

(
1 +

ri+1 cos αi+1

|xi+1 − xi|

)
(θ̃i+1 − θi+1)−

ri cos αi

|xi+1 − xi|
(θ̃i − θi) ,

finishing the proof. �

98



Now, let d = |a1 − a2|, and let r1 and r2 denote the radius of curvature at the

points a1 and a2 for the remaining part of this section. Then, Corollary 6.3.7 can be

used to show that:

Corollary 6.3.8 For large values of i, we have:

θ̃i+1 − θi+1 ∼
2d + ri

ri+1

(
θ̃i − θi

)
+

2d

ri+1

i−1∑
j=0

(
θ̃j − θj

)
,

and an equivalent form of this approximation is provided by

θ̃i − θi ∼
(
θ̃0 − θ0

) i∏
j=1

ξj (6.3.2)

where

ξ1 =
r0

r1

+
2d

r1

ξi = 2
d + ri−1

ri

− 1

ξi−1

, i = 2, 3, . . .

We also have

αi+1 − α̃i+1 ∼
(
θ̃0 − θ0

)((
1 +

ri+1

d

)
ξi+1 −

ri

d

) i∏
j=1

ξj.

Lemmas and Corollaries in this section provide a complete analysis of each one of

the terms involved in Lemma 6.2.2. On account of these results, although we do not

provide the details, we conjecture that

A0 · · ·An

B0 · · ·Bn

− 1 = O
(

1

sn/2

)

uniformly for x ∈ ∂Ω. On the other hand, the approximations required for the

analysis of the rays moving away from the line determined by the points a1 and

99



a2 (minimizing the distance between K1 and K2) can be obtained by switching the

indices in the approximations obtained above. Consequently, we conjecture that the

approximation ∏m+p
i=n+p+1 Am+p

i (x)∏m
i=n+1 Am

i (x)
− 1 = O

(
1

sm−n/2

)
holds uniformly for x ∈ ∂Ω. Finally, an extension of the theory of limit p-periodic

continued fractions [44] is needed in order to conclude, as we did in §6.1, that

lim
m→∞

n+p∏
i=n+1

Am+p
i (x) = s

uniformly for x ∈ ∂Ω. We expect that a combination of these will yield a complete

proof that

lim
m→∞

∏m+p−1
i=0 Am+p

i (x)∏m−1
i=0 Am

i (x)
= lim

m→∞

n+p∏
i=n+1

Am+p
i (x) = s (6.3.3)

uniformly for x ∈ ∂Ω. We numerically verify (6.3.3) in §7.1.
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Chapter 7

Numerical Experiments,

Acceleration of Convergence and

Connections with the Classical

Scattering Theory

7.1 Numerical Experiments

In this section, we exemplify our theoretical developments in Chapter 6. To this end,

we have arranged four examples concerning two-periodic orbits (see Figures 7.1, 7.2,

7.3, 7.4), and one concerning three-periodic orbits (see Figure 7.5).

In Figures 7.1, 7.2, 7.3, 7.4, top rows provide the corresponding geometrical config-

urations; middle rows display the ratios max |ηm|/ max |ηm+2| on a logarithmic scale of

the iterated currents on the obstacle located on the top left or top of the upper rows;

note that the bottom rows show that these ratios differ from the infinite frequency

limit by an error of O(k−2).

We also note that the configurations in Figures 7.1 and 7.2 significantly differ from

those in Figures 7.3 and 7.4: the obstacles in the former figures are not occluded with
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Figure 7.1: A two-periodic example without occlusion; Top: configuration; Middle:
logarithmic ratios of periodically iterated currents; Bottom: errors at the 50th reflec-
tion.
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Figure 7.2: A two-periodic example without occlusion; Top: configuration; Middle:
logarithmic ratios of periodically iterated currents; Bottom: errors at the 50th reflec-
tion.
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Figure 7.3: A two-periodic example with occlusion; Top: configuration; Middle: loga-
rithmic ratios of periodically iterated currents; Bottom: errors at the 50th reflection.
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Figure 7.4: A two-periodic example with occlusion; Top: configuration; Middle: loga-
rithmic ratios of periodically iterated currents; Bottom: errors at the 50th reflection.
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respect to the direction of incidence, while those in latter figures are. As a conse-

quence, the asymptotic expansions provided in Chapters 4 and 5 are not applicable

in the configurations of Figures 7.3 and 7.4. However, in these configurations, similar

asymptotic expansions can be derived appealing to the second derivatives of phase

functions (4.1.2) at the very first reflections. Consequently, our analysis of the rate of

convergence over periodic orbits can be easily extended to include the possibility of

occlusion with respect to the direction of incidence yielding the same rate as before.

Figures 7.3 and 7.4 verify this finding.

Finally, in Figure 7.5, we exemplify our rate of convergence formula on a three-

periodic orbit: we plotted the ratios max |ηm|/ max |ηm+3| of the iterated currents on

the obstacle K1 = K3m+1, m ≥ 0, on the bottom left; bottom right provides the same

plot in a logarithmic scale.

7.2 Acceleration of Convergence

Although, as our work has shown, the series converges spectrally, it is clearly desirable

to design mechanisms to accelerate its convergence. Here, we provide an explanation

for the enhanced convergence properties of one such procedure, namely Pade approx-

imation [6] in this context. Indeed, as is apparent from Figures 7.1, 7.2, 7.3, 7.4

and 7.5, the ratios of iterated currents differing by one period stabilizes after a cer-

tain number of reflections. Accordingly, once stabilized, the behavior of the series

resembles that of a geometric series which, in turn, can be exactly represented as a

rational function. This observation suggests that beyond the point where currents

become stationary, Pade approximation will deliver significantly more accurate solu-

tions than those provided by the summation of the series. Figure 7.6, which displays

the Pade algorithm applied to the configurations given in Figures 3.5 and 3.8, verify

this observation.

Indeed, on account of the approximation (6.3.2), the point where the currents sta-
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bilize can be calculated within a small error. Considering, for instance, a configura-

tion consisting two convex obstacles, denote by ri the radii of curvatures at the points

ai ∈ ∂Ki minimizing the distance between the obstacles Ki, and let d = |a1 − a2|.

Then the number n given by

n ≈ 4

log s
max
i=1,2

log
θi

θ0

,

provides a good approximation for the point of stabilization. Here θ0 is a fixed small

angle, and

θ1 = arcsin
r2

r1 + r2 + d
, and θ2 = arcsin

r1

r1 + r2 + d
.

For instance, for the configuration in Figure 3.8, the choice of θ0 = 5o gives n = 7.

This should be compared with Figure 7.1.

7.3 Poles of the Scattering Operator

As an interesting consequence of our analysis in Chapters 6 and 7, we shall show

here that Theorems 4.0.1 and 5.0.1 can be used to obtain information on the poles of

a fundamental object in scattering theory, namely the scattering operator which we

now define.

To begin with, we note that the solution v of the exterior boundary value problem

for the Helmholtz equation

(
∆ + k2

)
v = 0 in Ω (7.3.1)

v = f on ∂K (7.3.2)

lim
r→∞

r

(
∂v

∂r
− ikv

)
= 0 (7.3.3)

is uniquely determined and belongs to the spaces L2(Ω, [(1 + |x|2)1/2]−1−δdx), for all
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δ > 0, and H
s+1/2
loc (Ω) whenever f ∈ Hs(∂K) with s ≥ 3/2, and k > 0 [75]. Denoting

the solution operator by

v = B+(k)f,

we note that B+(k) admits an analytic continuation onto the upper half-plane {k :

Im k > 0}. Moreover, the use of single and double layer potentials, as was described in

§2.4 (see equations (2.4.1)-(2.4.5) and (2.4.9)), provides a meromorphic continuation

of B(k)+ to an operator-valued function on C, with some poles in {k : Im k < 0}.

These poles are known as scattering poles.

An important family of functions, called improper eigenfunctions, corresponding

to the scattering problem (7.3.1)-(7.3.3) are given by

u+(x, ξ) = eix·ξ − B+(k)eix·ξ on Ω× R3

where k2 = |ξ|2.

On the other hand, the outgoing radiation condition (7.3.3) has a counter part

lim
r→∞

r

(
∂v

∂r
+ ikv

)
= 0 (7.3.4)

known as the incoming radiation condition, and clearly there is a parallel treatment

of the scattering problem (7.3.1), (7.3.2) and (7.3.4). Denoting the corresponding

solution operator as B−(k), the related improper eigenfunctions are given by

u−(x, ξ) = eix·ξ − B−(k)eix·ξ on Ω× R3

with k2 = |ξ|2.

Corresponding to these eigenfunctions, we define the following analogues of the

Fourier transform:

(Φ±f) (ξ) =
1

(2π)3/2

∫
Ω

u±(y, ξ)f(y)dy,
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for f ∈ C∞
0 (Ω), and

(
Φ∗
±g
)
(x) =

1

(2π)3/2

∫
R3

u±(x, ξ)g(ξ)dξ,

for g ∈ L∞
comp(R3). These operators extend to surjective transformations

Φ± : L2(Ω) −→ L2(R3) and Φ∗
± : L2(R3) −→ L2(Ω)

with the property that

Φ∗
± = Φ−1

± .

From these, one constructs the unitary operator

S = Φ+Φ∗
− : L2(R3) −→ L2(R3),

called the scattering operator. This operator too can be continued analytically to

{k : Im k > 0}, and has a meromorphic continuation to an operator-valued function

on C, with poles confined to the set of scattering poles. Moreover, these poles coincide

with the poles of the meromorphic continuations of u± [42, 52, 75], and they are

precisely the poles arising in connection with the integral equation (3.1.3) for the

family of incident fields

uinc(x) = eikα·x, α ∈ S2,

which is precisely the problem we studied in this thesis.

Now, let us see how equations (6.1.2) and (6.1.3) can be used to obtain information

about poles of the scattering operator for a collection of convex obstacles satisfying the

visibility assumption. Indeed, as we observed in §7.1, when the obstacles K1, . . . , Kp

are transversed periodically, the ratios of the iterated currents stabilizes after a certain
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number of reflections. On account of (6.1.2) and (6.1.3), then, it follows that

∞∑
i=0

ηj+ip ∼ ηj + ηj+p + · · ·+ ηj+np

∞∑
i=0

ξi = ηj + ηj+p + · · ·+ ηj+np
1

1− ξ

where

ξ = (−1)peikϕps−1/2,

ϕp = min {ϕ(x1, . . . , xp) : (x1, . . . , xp) ∈ ∂K1 × · · · × ∂Kp} ,

and ϕ(x1, . . . , xp) is given by (6.1.1). Now write k = k1 + ik2, and note that 1− ξ = 0

if and only if

(−1)ps1/2ek2ϕp = eik1ϕp .

Since the left hand side of this identity is real, so must be the right hand side. But the

right hand side cannot be negative; thus, we deduce that p must be even which implies

first that k1ϕp = 2πq for some integer q, and this, in turn, gives k2ϕp = log s−1/2.

Therefore, 1− ξ = 0 if and only if

k =
1

ϕp

(
2πq − i

2
log s

)
. (7.3.5)

Note that when there are more than two convex obstacles, there are infinitely many

periodic orbits, and it is a whole different problem to show that the contributions of

the periodic or non-periodic orbits to the Neumann series (3.2.5) do not cause cancel-

lation of the contributions coming from each one of the periodic orbits. Nevertheless,

when there are only two convex obstacles, there are only two orbits both of which are

necessarily periodic. Since the asymptotic expansions provided in Chapters 4 and 5

are valid for k = k1 + ik2 ∈ C with |k1| � 1, appealing to (7.3.5), we see that the

poles of the scattering operator S are

k ∼ πq

d
− i

4d
log s, q ∈ Z
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where |q| � 1, and s is given by (6.1.6) in two-dimensions (and a similar expression

can be obtained for s in three-dimensional configurations as was explained in Chapter

6).

We note that the poles of the scattering operator are correlated with those of

the scattering matrix, a fundamental object that arises in connection with the wave

equation [52]. Indeed, as was shown by Ikawa [42], the poles of the scattering matrix

for two convex obstacles in two-dimensions are

k ∼ πq

d
− i

4d
log[(1 + κ1d)(1 + κ2d)], q ∈ Z, |q| � 1.
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Chapter 8

Conclusions and Future Directions

As we hope is clear from the discussions above, this thesis work suggests a number

of interesting and important research directions relating to integral equation formu-

lations of electromagnetic and acoustic scattering problems. More precisely, these

include:

1. Extensions to the full Maxwell system: Although our work to-date has

concentrated on the solution of Helmholtz equation in two- and three-

dimensional settings, we expect that the methodology we developed will

easily extend to the Maxwell system in three-dimensional configurations.

2. Analysis of non-periodic orbits: As was mentioned above, for a complete

derivation of the overall convergence rate in the most general geometrical

setting, an analysis over the non-periodic orbits analogous to those of the

periodic orbits is required. As it turns out, this problem has connections

with the decay of solutions of the wave equation [42], the poles of the

scattering matrix [52], and open billiard flows [73]. We therefore expect

that the study of this problem will produce significant results in connection

with these classical theories.

3. Full-error control: The details of the proof of (6.3.3), and therefore
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of the rate of convergence formula on periodic orbits, is not complete as

given in §6.3. To this end, we need to obtain the error-controlled versions

of Lemma 6.2.2, and Corollaries 6.3.7 and 6.3.8. As we mentioned in

§6.3, once these versions are derived, an extension of the theory of limit

p-periodic continued fractions is needed to finalize the proof of the rate of

convergence formula for periodic orbits.

4. A new Krylov subspace approach: As is apparent form our rate of

convergence formula, the Neumann series is ill-conditioned, for instance,

when the curvatures of the surfaces vanish at the points minimizing the

distance between two obstacles. It is therefore desirable to develop a new

method for the solution of the operator equation (3.2.4) that does not suf-

fer from geometrical constraints, and yet provides solutions in frequency-

independent computational times. As was suggested in [62], one such

approach can be based on the use of Krylov subspaces. Indeed, as we

explained in connection with the Neumann series, for a given right hand

side f in (3.2.4), each one of the scattering returns Anf can be calculated

in an asymptotically bounded computational time; and, in turn, so can

the Krylov subspace

< B0f, B1f, . . . , Bnf >

where B = I − A. We expect that this new approach will remove the

geometrical constraints arising with the use of Neumann series.
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