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Abstract

We survey functional analytic methods for studying subwavelength resonator systems. In partic-
ular, rigorous discrete approximations of Helmholtz scattering problems are derived in an asymptotic
subwavelength regime. This is achieved by re-framing the Helmholtz equation as a non-linear eigen-
value problem in terms of integral operators. In the subwavelength limit, resonant states are described
by the eigenstates of the generalized capacitance matrix, which appears by perturbing the elements
of the kernel of the limiting operator. Using this formulation, we are able to describe subwavelength
resonance and related phenomena. In particular, we demonstrate large-scale effective parameters
with exotic values. We also show that these systems can exhibit localized and guided waves on very
small length scales. Using the concept of topologically protected edge modes, such localization can
be made robust against structural imperfections.
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1 Introduction

1.1 Wave manipulation at subwavelength scales

A widespread ambition in wave physics is to be able to manipulate waves at scales that are much smaller
than their wavelengths. On the other hand, an intuitive physical paradigm is that the propagation of
a wave is not significantly affected by small objects or inhomogeneities. In particular, if an object is
much smaller than the incident wavelength, then it will typically have a negligible scattering effect. This
simplified phenomenon is closely related to Abbe’s famous diffraction limit, which describes how the
resolution of imaging systems depends on the operating wavelength. In order to overcome this limit, and
be able to manipulate waves at subwavelength scales, there is widespread interest in settings where small
objects exhibit subwavelength resonance and strongly scatter waves with comparatively large wavelengths.

The first high-profile example of subwavelength resonance came in the setting of acoustics when
Marcel Minnaert observed the resonance of small air bubbles in water [57]. The very large contrast
between the material parameters of air and water is understood to be the crucial mechanism here [13, 55].
This phenomenon has since been observed in a variety of other settings, such as Helmholtz resonators
[27], plasmonic nanoparticles [25, 26] and high-contrast dielectric particles [3, 24]. In general, bounded
material inclusions whose parameters differ greatly from the background medium and which experience
subwavelength resonance will be referred to as subwavelength resonators in this work.

The value of subwavelength resonators is that they can be used as the building blocks for large,
complex structures which can exhibit a variety of exotic and useful properties. These micro-structured
materials are examples of metamaterials: materials with a repeating micro-structure that exhibit prop-
erties surpassing those of the individual building blocks [48]. The widespread interest in metamaterials
began with the realisation that they could be designed to have effectively negative material parameters
[60] and, as a result, could be used to design perfect lenses [63, 58] as well as cloaking and shielding
devices [56, 1]. Moreover, due to the subwavelength nature of the resonance, these structures enable
wave control on very small length scales. Most notably, waves can be confined or guided using very small
devices [15, 51, 67].

More recently, the study of micro-structured resonant media has focussed on designing structures
whose properties are robust with respect to imperfections in their construction. This is important for
realising the applications of this theory, since small errors will be introduced during the manufacturing
process and many of the properties of these micro-structured media are very sensitive. Developments in
this area have been based on studying the topological properties of periodic structures to create so-called
topologically protected modes [10]. These concepts have previously been widely studied in a variety of
settings, most notably in quantum mechanics for the Schrödinger operator [40, 41, 38].

1.2 Analysis of scattering problems

There is a large body of work dedicated to studying the scattering of waves by a collection of objects
[53]. A popular simplifying assumption is to consider scattering by circular or spherical inclusions. In
the case of a single inclusion, characterisations of the scattered field can be obtained through the use
of expansions in terms of Bessel functions or spherical harmonics [33, 44]. Likewise, in the case of two
spheres a bispherical coordinate system can be used to give explicit representations of solutions [12].

In order to study scatterers with a more general class of shapes, integral equation methods are
commonly used [34]. Boundary integral formulations can be used to reduce the dimension of the scattering
problem, by rephrasing it as a problem posed on the boundaries of the scatterers [22, 13]. Similarly,
approaches that use Lippmann–Schwinger representations to express solutions in terms of volume integrals
have been used for both scalar models [55, 3] and for the Maxwell equations [35, 36]. The fundamental
idea here is that by representing solutions using appropriate integral operators a scattering problem can
be equivalently phrased as a non-linear eigenvalue problem. With this formulation, scattering resonances
can be characterised as the poles of meromorphic operator-valued functions [39]. In some settings, this
can be paired with a scattering matrix [11] or transfer matrix [52] formulation to give a concise description
of the response of the system.

Given the multi-scale nature of subwavelength metamaterials, asymptotic techniques are often used
to understand their properties. In particular, a common approach for studying subwavelength problems
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(a) A system of finitely many resonators.

· · · · · ·

.

(b) A periodic system of resonators.

Figure 1: The functional analytic method developed here is useful for studying scattering by a system of material
inclusions, which act as subwavelength resonators in an appropriate high-contrast regime. We are able to derive
concise asymptotic results in terms of the capacitance matrix for the case of either finitely many resonators or a
periodically repeating array of finitely many resonators.

is to assume that the resonator is asymptotically small while the other material parameters are fixed
[55, 3]. This is convenient because it can be implemented easily via a change of variables to give a
concise description of a structure that is significantly (in an asymptotic sense) smaller than the operating
wavelength. Related to this, homogenization techniques are often used to describe effective properties
of micro-structured media. However, standard homogenization techniques do not apply here since these
phenomena are based on local resonance of the small repeating units [28, 23].

One downside to modelling subwavelength resonators as being asymptotically small is that it can tend
to simplify the otherwise exotic behaviour as it reduces the underlying mechanism to just a rescaling of the
model. Conversely, in this work we instead fix the resonators’ size and position and consider an asymptotic
limit in the material contrast parameter (which, in the case of acoustic waves, describes the ratio of the
density inside and outside the resonators). This has the fundamental difference that the limiting problem
is not trivial and has a spectrum of eigenvalues that can be understood. The asymptotic perturbation
theory of Gohberg and Sigal [42, 16] can then be used to prove the existence of subwavelength resonant
frequencies, which are defined as resonant frequencies which satisfy a given asymptotic condition. This
approach reveals the fundamental differences between a system’s subwavelength resonant modes and the
higher-frequency resonances.

1.3 Functional analytic approach

We represent the subwavelength resonators as material inclusions Di for i ∈ I, where I ⊂ N is some
index set. The number of connected components that make up D should either be finite or the geometry
should be periodic, such that it is given by an array of finitely many resonators that repeats indefinitely,
as illustrated in Figure 1. We will study scalar wave settings where we throughout use ω to denote the
frequency of the waves. We are interested in understanding solutions to Helmholtz resonance problems
of the form 




∆u+ ω2u = 0 in R
d \ ∂D,

u|+ − u|− = 0 on ∂D,

δi
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−

= 0 on ∂Di for i ∈ I,

u(x) satisfies an outgoing radiation condition,

(1.1)

where D = ∪i∈IDi and the dimension d ∈ {2, 3}. Such Helmholtz equations, which can be used to model
acoustic and polarized electromagnetic waves, represent the simplest model for wave propagation that
still exhibits the rich phenomena associated to subwavelength physics.

We wish to characterise solutions to (1.1) in terms of the system’s subwavelength resonant modes.
The parameters δi in (1.1) are of crucial importance, and can be interpreted as the material contrast. In
order to achieve subwavelength resonance we will assume that these parameters are small, corresponding
to a large contrast between the materials. So that we can perform concise asymptotics in terms of the
material contrast, we will introduce the real-valued parameter δ := |δ1| and assume that δi = O(δ) as
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δ → 0 for all i ∈ I. We will then make a definition of a resonant mode being subwavelength as an
asymptotic property in terms of δ.

Definition 1.1 (Subwavelength resonant frequency). Given δ > 0, a subwavelength resonant frequency
ω = ω(δ) ∈ C is defined to be such that

(i) there exists a non-trivial solution to (1.1), known as an associated resonant mode;
(ii) ω depends continuously on δ and satisfies ω → 0 as δ → 0.

The starting point for using functional analytic methods to understand resonance problems is to re-
frame the problem (1.1) as an operator equation. For instance, we will show that finding a solution to
(1.1) is equivalent to finding a (non-trivial) function Φ ∈ L2(∂D) such that an integral equation of the
form

A(ω, δ)[Φ] = 0, (1.2)

is satisfied. In the example studied in this work, A(ω, δ) will be an operator L2(∂D) × L2(∂D) →
H1(∂D) × L2(∂D) and Φ an element of L2(∂D) × L2(∂D). Here, H1 is the usual Sobolev space of
square-integrable functions whose weak derivative is square integrable.

If X and Y are two Banach spaces, then we write L(X,Y ) to denote the space of bounded linear
operators from X into Y . In this work, we are interested in the case that X and Y are themselves spaces
of functions and we have the following definition to describe the zeros of an operator-valued function that
maps into L(X,Y ).

Definition 1.2 (Characteristic value). A point z0 ∈ C is said to be a characteristic value of T : C →
L(X,Y ), which is an operator-valued function of a complex variable, if there exists some φ ∈ X such that
φ(z0) 6= 0 and T (z0)φ(z0) = 0.

Comparing Definitions 1.1 and 1.2, we see that finding a subwavelength resonant frequency of the
system is equivalent to finding, for a given δ, a characteristic value ω of A(ω, δ) which is such that
ω(δ) → 0 as δ → 0. Our approach to finding such solutions is to consider perturbations of the elements of
the kernel of A(0, 0). We will see that this space has dimension equal to the number of distinct resonators
in the structure. Once we understand ker(A(0, 0)), we can characterise characteristic values of A(ω, δ)
for small ω and δ as perturbations of this space. This analysis is based on the asymptotic perturbation
theory of Gohberg and Sigal [42, 16] and allows us both to prove the existence of subwavelength resonant
modes (satisfying Definition 1.1) and to derive asymptotic formulas for their value.

This functional analytic approach has been used to describe subwavelength resonance in a variety of
different physical settings. For instance, it was used to characterise a system of subwavelength Helmholtz
resonators in [27], plasmonic particles in [25] and high-contrast dielectric resonators in [3, 24]. In this
work, we will explore its use to study scattering by a high contrast material inclusion, such as an bubble
in water for the case of acoustic waves. This approach was first developed in this setting by [13] but, as
we shall see, has since been developed to cover a variety of different settings and applications.

1.4 Capacitance coefficients

In the high-contrast Helmholtz setting that we will consider here, the functional analytic method described
above will yield an approximation in terms of capacitance coefficients. Capacitance coefficients have a
long history in electrostatics, where they govern the relationship between the distributions of potential
and charge in a system of conductors. In particular, Maxwell introduced the matrix of capacitance
coefficients C ∈ R

N×N to be such that if V ∈ R
N is the vector of potentials on a system of N conductors

then Q = CV is the vector of charges on the conductors [54, 37].
Capacitance coefficients appear in the setting of subwavelength Helmholtz problems when we describe

the principal part of the meromorphic operator (A(ω, 0))−1, which is a finite-rank operator governing
the perturbation of the kernel of A(0, 0). Using a pole-pencil decomposition, we are able to project the
problem onto ker(A(0, 0)), which gives a finite-dimensional characterization in terms of the generalized
capacitance matrix. These ideas are elaborated in Appendix A, and shows that the capacitance coefficients
appear naturally from the functional analytic approach described in Section 1.3.

In this article, we will survey how the generalized capacitance matrix offers a rigorous and intu-
itive discrete approximation to subwavelength Helmholtz scattering and resonance problems. This gives
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Figure 2: A finite collection of N resonators, with wave speeds vi for i = 1, ..., N , in a surrounding medium with
wave speed v. The contrast between the ith resonator and the background is given by δi, where a small value of δi
describes a large contrast.

leading-order asymptotic expressions for both resonant modes and scattered solutions in terms of the
eigenvalues and eigenvectors of the generalized capacitance matrix, which are accompanied by precise
error bounds. We will see that a wide variety of different applications and phenomena can be studied
using the capacitance approximation, demonstrating the power of reducing a differential problem to a
matrix approximation in this way.

2 Finite systems

In this section, we apply the functional analytic method set out in Section 1.3 to a system of finitely
many resonators. In particular, we suppose that d ∈ {2, 3}, N ∈ N and D1, D2, . . . , DN ⊂ R

d are disjoint,
connected sets with boundaries in C1,s for some 0 < s < 1. An example of the setting is sketched in
Figure 2. We use vi to denote the wave speed in resonator Di, then ki = ω/vi is the wave number in
Di, where ω is the frequency of the incoming wave. Similarly, the wave speed and wave number in the
background medium are denoted by v and k. Then, we consider a Helmholtz resonance problem for the
domain D = D1 ∪ · · · ∪DN :





∆u+ k2u = 0 in R
d \D,

∆u+ k2i u = 0 in Di, for i = 1, . . . , N,

u|+ − u|− = 0 on ∂D,

δi
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−

= 0 on ∂Di for i = 1, . . . , N,

u(x) satisfies the Sommerfeld radiation condition,

(2.1)

where the Sommerfeld radiation condition says that

lim
|x|→∞

|x| d−1

2

(
∂

∂|x| − ik

)
u = 0, uniformly in all directions x/|x|, (2.2)

and guarantees that energy is radiated outwards by the scattered solution. We assume that all contrast
parameters are small while the wave speeds have order 1. In other words, the parameter δ > 0 is such
that

δi = O(δ), v, vi = O(1) as δ → 0, for i = 1, . . . , N. (2.3)

In order to concisely represent the different δi, we introduce the function δ̃(x) ∈ L2(∂D) as

δ̃(x) = δi for x ∈ ∂Di. (2.4)
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2.1 Main results of the capacitance formulation

The main tool that allows us to reveal the resonant properties of the system D = D1 ∪ · · · ∪DN is the
Helmholtz single layer potential. This is an operator Sω

D : L2(∂D) → H1
loc(R

d) which is defined as

Sω
D[ϕ](x) =

∫

∂D

Gω(x− y)ϕ(y) dσ(y), x ∈ R
d, ϕ ∈ L2(∂D), (2.5)

where H1
loc(R

d) is the set of functions in H1(A) for all compact subsets A ⊂ R
d, while Gω is the Helmholtz

Green’s function, given by

Gω(x) =

{
− i

4H
(1)
0 (ω|x|), d = 2,

− 1
4π|x|e

iω|x|, d = 3,
x 6= 0, Re(ω) > 0. (2.6)

Here, H
(1)
0 is the Hankel function of the first kind and order zero. In the case ω = 0, G0 is the Laplace

Green’s function given by

G0(x) =

{ 1
2π ln |x|, d = 2,
− 1

4π|x| , d = 3,
x 6= 0. (2.7)

The single layer potential is useful because it allows us to seek solutions to (2.1) of the form

u(x) =

{
Sk
D[φ](x) x ∈ R

d \D,
Ski

D [ψ](x) x ∈ Di,
(2.8)

where ψ, φ ∈ L2(∂D) are density functions that need to be found. The value of this representation is
that a solution of the form (2.8) necessarily satisfies the Helmholtz equations and the radiation condition
in problem (2.1). Also, the different wave numbers ki inside Di have been taken into account by using
different single layer potentials Ski

D . We can collectively represent these single layer potentials through a

single operator S̃ω
D, defined piecewise for i = 1, ..., N as

S̃ω
D[ϕ](x) = Ski

D [ϕ](x), x ∈ Di, ϕ ∈ L2(∂D). (2.9)

We emphasize that S̃0
D = S0

D. It now remains only to find ψ and φ such that the transmission conditions
on ∂D are fulfilled. This can be achieved through the introduction of an additional integral operator, the
Neumann–Poincaré operator associated to D. This is an operator Kω,∗

D on L2(∂D) which is defined as

Kω,∗
D [ϕ](x) =

∫

∂D

∂

∂νx
Gω(x− y)ϕ(y) dσ(y), x ∈ ∂D, ϕ ∈ L2(∂D). (2.10)

We define K̃ω,∗
D in the same spirit as S̃ω

D, namely

K̃ω
D[ϕ](x) = Kki

D [ϕ](x), x ∈ ∂Di, ϕ ∈ L2(∂D). (2.11)

We are now able to describe how Sω
D and its normal derivative behave on ∂D. In particular, it holds that

for any ϕ ∈ L2(∂D) [22]
Sω
D[ϕ]

∣∣
+
= Sω

D[ϕ]
∣∣
−
, (2.12)

and
∂

∂ν
Sω
D[ϕ]

∣∣∣
±
=

(
±1

2
I +Kω,∗

D

)
, (2.13)

where the subscripts + and − denote taking the limit from outside and inside the boundary ∂D, respec-
tively. With the so-called jump conditions (2.12) and (2.13) in hand, we can derive the following lemma,
which characterises the resonance problem (2.1) as a boundary integral equation.

Lemma 2.1. The Helmholtz problem (2.1) is equivalent to finding ψ, φ ∈ L2(∂D) such that

A(ω, δ)

(
ψ
φ

)
=

(
0
0

)
, (2.14)
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where the operator A(ω, δ) : L2(∂D)× L2(∂D) → H1(∂D)× L2(∂D) is defined as

A(ω, δ) =

(
S̃ω
D −Sk

D

− 1
2I + K̃ω,∗

D −δ̃
(

1
2I +Kk,∗

D

)
)
,

where, as in (2.4), δ̃(x) = δi for x ∈ ∂Di.

The approach outlined in Section 1.3 can now be applied to Lemma 2.1 to prove the existence of
subwavelength resonances, as defined in Definition 1.1, and derive their asymptotic behaviour as δ → 0.
The idea here is to study the kernel of A(0, 0), where

A(0, 0) =

(
S0
D −S0

D

− 1
2I +K0,∗

D 0

)
, (2.15)

and then understand how kerA(0, 0) is perturbed when δ and ω are non-zero. The following lemma
describes the two operators that appear in A(0, 0), as given in (2.15).

Lemma 2.2. Consider a system of N subwavelength resonators D = D1 ∪ . . . DN in R
3. Then, it holds

that
(i) the Laplace single layer potential S0

D : L2(∂D) → H1(∂D) is invertible,

(ii) ker(− 1
2I + K0,∗

D ) = span{ψ1, ψ2, . . . , ψN} where ψi := (S0
D)−1[χ∂Di

], and χ∂Di
denotes the char-

acteristic function of ∂Di, for i = 1, . . . , N .

From Lemma 2.2 we can see that A(0, 0) has an N -dimensional kernel. Therefore, ω = 0 is a
characteristic value of A(ω, 0). Due to symmetry, the multiplicity of ω = 0 is, in fact, 2N . When the
material parameters are real, it is easy to see that A(ω, δ) = A(−ω, δ), from which we can see that
the resonant frequencies will be symmetric with respect to the imaginary axis, in the sense described in
Lemma 2.3 (cf. the analysis of [39]).

Lemma 2.3. The set of resonant frequencies is symmetric in the imaginary axis. In particular, if
δi, vi ∈ R for all i = 1, ..., N , and if ω is such that (2.14) is satisfied for some non-zero ψ, φ ∈ L2(∂D),
then it will also hold that

A(−ω, δ)
(
ψ

φ

)
=

(
0
0

)
.

With Lemma 2.3 in mind, we will subsequently state results only for the resonant frequencies with
non-negative real parts. We can now show the following two theorems, using the approach described in
Section 1.3.

Theorem 2.4. Consider a system of N subwavelength resonators in R
d for d ∈ {2, 3}. For sufficiently

small δ > 0, there exist N subwavelength resonant frequencies ω1(δ), . . . , ωN (δ) with non-negative real
parts.

Definition 2.5 (Capacitance matrix). For a system of N ∈ N resonators D1, . . . , DN in R
3 we can

define the capacitance matrix C = (Cij) ∈ R
N×N to be the square matrix given by

Cij = −
∫

∂Di

(S0
D)−1[χ∂Dj

] dσ, i, j = 1, . . . , N.

Due to the different material parameters inside each resonator we introduce the generalized capaci-
tance matrix, which is the main quantity we use in order to describe the subwavelength resonators.

Definition 2.6 (Generalized capacitance matrix). For a system of N ∈ N resonators D1, . . . , DN in R
3

we can define the generalized capacitance matrix, denoted by C = (Cij) ∈ C
N×N , to be the square matrix

given by

Cij =
δiv

2
i

|Di|
Cij , i, j = 1, . . . , N. (2.16)
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Theorem 2.7. Let d = 3. Consider a system of N subwavelength resonators in R
3. As δ → 0, the N

subwavelength resonant frequencies satisfy the asymptotic formula

ωn =
√
λn +O(δ), n = 1, . . . , N,

where {λn : n = 1, . . . , N} are the eigenvalues of the generalized capacitance matrix C ∈ C
N×N , which

satisfy λn = O(δ) as δ → 0.

Remark 2.8. The assumption that the dimension d = 3 in Definitions 2.5 and 2.6 is important as the
Laplace single layer potential S0

D is known to be invertible in this case. As we will see in Section 2.5, this
is not generally the case when d = 2 meaning that the corresponding version of Theorem 2.7 is slightly
less elegant.

Corollary 2.9. Let d = 3. Let vn be the normalized eigenvector of C associated to the eigenvalue λn.
Then the normalized resonant mode un associated to the resonant frequency ωn is given, as δ → 0, by

un(x) =

{
vn · Sk

D(x) +O(δ1/2), x ∈ R
3 \D,

vn · Ski

D (x) +O(δ1/2), x ∈ Di,

where S
k
D : R3 → C

N is the vector-valued function given by

S
k
D(x) =




Sk
D[ψ1](x)

...
Sk
D[ψN ](x)


 , x ∈ R

3 \ ∂D,

with ψi := (S0
D)−1[χ∂Di

].

Remark 2.10. The capacitance matrix is defined solely in terms of the kernel of the integral operators
A(0, 0) andA∗(0, 0). In fact, the adjoint K0

D of the Neumann–Poincaré operator satisfies ker(− 1
2I+K0

D) =
span{χ∂D1

, χ∂D2
, ..., χ∂DN

}. Then,
Cij = −〈χ∂Di

, ψj〉 ,
where, as in Lemma 2.2, {ψ1, ..., ψN} is a basis for ker(− 1

2I +K0,∗
D ). In Appendix A, we use these ideas

to define the generalized capacitance matrix purely in terms of the integral operator A, thus providing a
general method to study subwavelength resonance systems.

2.2 Properties of the capacitance matrix

Through Theorem 2.7 and Corollary 2.9, we have reduced the resonance problem (2.1) to a matrix
eigenproblem for the generalized capacitance matrix C. We now wish to understand the properties of C.
Lemma 2.11. For i = 1, . . . , N , let Vi be defined as the solution to the exterior boundary value problem





∆Vi = 0 in R
3 \D,

Vi = δij on ∂Dj , for j = 1, . . . , N,

Vi(x) = O
(
|x|−1

)
as |x| → ∞,

where δij is the Kronecker delta. Then, the capacitance coefficients, defined in Definition 2.5, are given
by

Cij =

∫

R3\D

∇Vi · ∇Vj dx, for i, j = 1, . . . , N.

From Lemma 2.11 emerges a slightly different explanation for why the capacitance matrix approxi-
mation works. In the limiting case, when δi = 0 for all i, the Helmholtz problem (2.1) is reduced to a
Neumann boundary value problem in the interior of D and a Dirichlet boundary value problem in the
exterior of D. When ω = 0, the interior Neumann problem is solved by constant functions, meaning that
the solution of the exterior Dirichlet boundary value problem is a linear combination of the functions
V1, . . . , VN . The projection onto this finite dimensional space yields a leading-order approximation of
the solution as ω, δ → 0, in the form of an eigenvalue problem for the generalized capacitance matrix.
Lemma 2.11 is also useful as it allows us to immediately see, among other things, the symmetry of the
capacitance matrix.

9



r1

r2

d

Figure 3: A system of two spherical resonators can be described using bispherical coordinates. Such a coordinate
system is convenient since the boundaries of the spheres lie on level sets and the capacitance coefficients can be
calculated explicitly.

Lemma 2.12. The capacitance matrix C is symmetric and positive definite.

The symmetry and positive definiteness of the capacitance matrix C is useful for understanding the
properties of the generalised capacitance matrix C which is the product of C with a diagonal matrix
containing the weights δiv

2
i /|Di|. In the case that δiv

2
i > 0, this diagonal matrix is positive definite so,

for example, we have the following lemma, which can be proved using the fact that C is always Hermitian.

Lemma 2.13. If δiv
2
i , for i = 1, . . . , N , are real-valued positive numbers, then the generalized capacitance

matrix C ∈ C
N×N has N linearly independent eigenvectors.

Remark 2.14. We will see, in Section 4.3, that non-zero imaginary parts of δiv
2
i can be used to model

damping and amplification in the system. In this case, we can create exceptional points where eigenvalues
and eigenvectors coincide and C is not diagonalizable.

Explicit formulas for capacitance coefficients are generally beyond reach. However, by making some
additional assumptions, we can make the capacitance matrix easier to understand. For example, spherical
resonators can be easily described using appropriate radial coordinate systems. In this way, we can see
that if D is a single sphere of radius r then its capacitance is given by CapD := −

∫
∂D

(S0
D)−1[χ∂D] dσ =

4πr. Similarly, if we consider the case of two spherical resonators, as depicted in Figure 3, then we can
use a bispherical coordinate system to derive explicit formulas for the capacitance coefficients [12].

Lemma 2.15. Suppose that D = D1 ∪ D2 consists of two spheres of radius r1 and r2 separated by a
distance d. Define the quantities α, ξ1 and ξ2 as

α =

√
d(2r1 + d)(2r2 + d)(2r1 + 2r2 + d)

2(r1 + r2 + d)
and ξi = sinh−1

(
α

ri

)
, for i = 1, 2.

Then, it holds that

C11 = 8πα
∞∑

n=0

e(2n+1)ξ2

e(2n+1)(ξ1+ξ2) − 1
, C22 = 8πα

∞∑

n=0

e(2n+1)ξ1

e(2n+1)(ξ1+ξ2) − 1
,

C12 = C21 = −8πα

∞∑

n=0

1

e(2n+1)(ξ1+ξ2) − 1
.

In the case of larger systems of resonators we cannot hope to find such concise representations for the
capacitance coefficients. However, a very useful property is that if we multiply elements in some domain
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B ⊂ R
3 by some factor a ∈ R, then a scaling argument can be used to see that CapaB = aCapB . With

this in mind, we can obtain explicit expressions in the case when the resonators are small compared to
the distance between them. The following lemma follows from appropriate scaling arguments, where we
fix the resonators and scale the distances between them [9].

Lemma 2.16. For j = 1, . . . , N , let Bj be fixed, bounded subsets of R3 with boundary in C1,s for some
0 < s < 1. Then, consider a dilute system of N subwavelength resonators with size of order ε, given by

D =

N⋃

j=1

(
Bj + ε−1zj

)
,

where 0 < ε ≪ 1 and zj ∈ R
3 are fixed vectors that describe the relative position of each resonator. In

the limit as ε→ 0 the asymptotic behaviour of the capacitance matrix is given by

Cij =





CapBi
+O(ε2), i = j,

−
εCapBi

CapBj

4π|zi − zj |
+O(ε2), i 6= j.

Remark 2.17. It is interesting to compare and contrast the capacitance formulation to the tight-binding
approximation that is commonly employed in quantum-mechanical settings [41, 65]. Both these formula-
tions construct matrix eigenvalue problems as discrete approximations to continuous differential problems.
A crucial difference, however, is that the generalized capacitance matrix accounts for strong interactions
between the resonators. The analogy with the tight-binding model is closer when the resonators are
dilute. In this case, we see from Lemma 2.16 that Cij only depends on the ith and jth resonator and is
unaffected by remaining resonators. Moreover, in the dilute regime, the eigenmodes of the system can
be approximated by a linear combination of the eigenmodes of the individual resonators. This property,
which is a key assumption in the tight-binding approximation, does not hold in the case of non-dilute
subwavelength resonators.

2.3 Modal decompositions

The solution to the resonance problem, given in Theorem 2.7 and Corollary 2.9, can be used to understand
the scattering behaviour ofD. That is, we can use an expansion in terms of the resonant modes u1, . . . , uN
(i.e. a modal decomposition) to express the scattered field when D is illuminated by some incident wave
uin. We therefore consider the problem





∆u+ k2u = 0 in R
3 \D,

∆u+ k2i u = 0 in Di, for i = 1, . . . , N,

u|+ − u|− = 0 on ∂D,

δi
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−

= 0 on ∂Di for i = 1, . . . , N,

u− uin satisfies the Sommerfeld radiation condition.

(2.17)

Here, u is the total field while u − uin is the scattered field. We assume that the incident field satisfies
∆uin + k2uin = 0 in R

d and ∇uin
∣∣
D

= O(ω). The next result, from [5], shows the modal decomposition
approximation of the scattered field.

Theorem 2.18. Let V be the matrix of eigenvectors of C. If ω = O(
√
δ) as δ → 0 and |ω − ωi| > K

√
δ

for i = 1, ..., N , for some constant K > 0, then the solution to the scattering problem (2.17) can be
written, uniformly for x in compact subsets of R3, as

u(x)− uin(x) =
N∑

n=1

anun(x)− Sk
D

[(
Sk
D

)−1
[uin]

]
(x) +O(

√
δ),

11



for coefficients an = an(ω) which satisfy the problem

V



ω2 − ω2

1

. . .

ω2 − ω2
N






a1
...
aN


 =




δ1v
2
1

|D1|

∫
∂D1

(S0
D)−1[uin] dσ
...

δNv2
N

|DN |

∫
∂DN

(S0
D)−1[uin] dσ


+O(δ3/2).

Remark 2.19. The term Sk
D

[(
Sk
D

)−1
[uin]

]
(x) in Theorem 2.18 is equal to uin(x) if x ∈ D but not for

x outside of the resonators.

2.4 Higher-order approximations

The arguments used to derive the asymptotic formula in Theorem 2.7 can be continued to higher orders.
For details, see [5]. For simplicity, we assume that the material parameters on each resonator are the
same.

Theorem 2.20. Let d = 3. Consider a system of N subwavelength resonators in R
3. Suppose that the

material parameters are the same on each resonator, i.e. v1 = v2 = · · · = vN and δ1 = δ2 = · · · = δN .
As δ → 0, the N subwavelength resonant frequencies satisfy the asymptotic formula

ωn =
√
λn − iτn +O(δ3/2), n = 1, . . . , N,

where λn for n = 1, . . . , N are the eigenvalues of the generalized capacitance matrix C and τn are given
by

τn = δ1
v21
8πv

v
⊤
nCJCvn
‖vn‖2D

,

with C being the capacitance matrix, J the N×N matrix of ones, vn the eigenvector associated to λn and

we use the norm ‖x‖D :=
(∑N

i=1 |Di|x2i
)1/2

. Further, for each n = 1, . . . , N , it holds that
√
λn = O(δ1/2)

and τn = O(δ) as δ → 0.

Remark 2.21. If the material parameters v1, . . . , vN and δ1, . . . , δN are real, then λn and τn from
Theorem 2.20 are all non-negative real numbers. This follows from the fact that the capacitance matrix C
is symmetric and positive definite. Thus, in this case the O(δ1/2)-term is the leading-order approximation
of the real part while the imaginary part appears at O(δ).

Remark 2.22. Due to the loss of energy (e.g. to the far field), the resonant frequencies will have negative
imaginary parts when the material parameters are real. In many cases it will hold that τn = 0 for some
n, meaning that the imaginary parts exhibit higher-order behaviour in δ. For example, the imaginary
part of the second (dipole) frequency for a pair of identical resonators with real parameters is known to
be O(δ2) [17].

2.5 Two-dimensional models

Throughout Section 2 we have mainly considered the problem of a resonator array in R
3. This was

convenient for two reasons. Firstly, for small frequencies the Laplace single layer potential S0
D approxi-

mates the Helmholtz single layer potential Sω
D at leading order, in the sense that Sω

D = S0
D +O(ω) in the

operator norm as ω → 0. On top of this, the fact that S0
D is invertible in three dimensions was central to

our definition of the capacitance matrix. If we consider a Helmholtz problem in two dimensions, however,
we do not have either of these helpful properties. In two dimensions, S0

D is not generally injective and
the low-frequency expansion of Sω

D is given by

Sω
D =

1

2π
log

(
1

2
ωeγ−i π

2

)
I∂D + S0

D +O(ω2 logω), as ω → 0, (2.18)

where I∂D is the map defined as I∂D[ϕ] =
∫
∂D

ϕ dσ for ϕ ∈ L2(∂D) and γ = limn→∞(
∑n

k=1
1
k − log n) ≈

0.577 . . . is the Euler–Mascheroni constant. That is, the leading-order term in the expansion of Sω
D has

a logω singularity as ω → 0.
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The invertibility of the Laplace single layer potential in two dimensions can be readily fixed. Let
L2
0(∂D) be the mean-zero subspace of L2(∂D) defined as

L2
0(∂D) =

{
f ∈ L2(∂D) :

∫

∂D

f dσ = 0

}
.

Then, we have that the Laplace single layer potential is well-behaved on L2
0(∂D) [4].

Lemma 2.23. Let d = 2. The Laplace single layer potential S0
D is invertible from L2

0(∂D) onto its image.

With this in hand, we can show that an invertible version of S0
D can be defined by adding a term

proportional to the integral operator I∂D[ϕ] =
∫
∂D

ϕ dσ. For example, we have the following lemma [4].

Lemma 2.24. Let d = 2 and I∂D be the integral map given by I∂D[ϕ] =
∫
∂D

ϕ dσ. For any ω ∈ C \ {z ∈
C : z = iy for some y ≥ 0}, the operator Ŝω

D : L2(∂D) → L2(∂D), defined as

Ŝω
D =

1

2π
log

(
1

2
ωeγ−i π

2

)
I∂D + S0

D,

is invertible.

Notice, finally, that Ŝω
D is nothing other than the leading-order approximation of Sω

D from (2.18). This
means that, up to some technical modifications, we can repeat the argument used to derive Theorem 2.7
to obtain the following analogous result.

Theorem 2.25. Let d = 2. A system of N subwavelength resonators in R
2 has N subwavelength resonant

frequencies. Further to this, if for any ω and δ we define the N ×N -matrix A(2)
ω,δ as

(A(2)
ω,δ)ij = ω2 logω +

((
1 +

c1
b1

− log vi

)
− SD[ψj ]|∂Di

4b1(
∫
∂D

ψj)

)
ω2

− v2i
4b1|Di|

( ∫
∂Di

ψj(∫
∂D

ψj

) + log(v/vi)

2π

∫

∂Di

(Ŝk
D)−1[χ∂D]

)
δi,

where b1 = − 1
8π and c1 = b1(γ − log 2 − 1 − i π2 ), then the subwavelength resonant frequencies are such

that the determinant of A(2)
ω,δ vanishes, at leading order:

det(A(2)
ω,δ) = O(ω4 logω + δω2 logω), as ω, δ → 0.

2.6 Numerical approaches

The resonant frequencies of (2.1) can be computed numerically in a variety of ways. For example, we
can make use of the boundary integral formulation (2.14) to derive a discrete version of the problem.
This can be achieved, for example, by discretizing the boundary using boundary elements or a multipole
expansion. In order to find the resonant frequencies for a given value of δ, one needs to use a numerical
root finding algorithm to find ω such that the boundary integral equation (2.14) is satisfied. The discrete
version of the boundary integral operator (which depends non-linearly on ω) will need to be recomputed
at each step in this iterative algorithm.

The generalized capacitance matrix can be used to obtain accurate numerical approximations with
a significant reduction in computational power. Provided that δ is sufficiently small, Theorem 2.7 and
Theorem 2.20 give an approximation of the resonant frequencies that is sufficiently accurate for many
purposes. In Figure 4, we show the resonant frequencies of a system of ten spherical resonators computed
using both the full multipole method and using the approximation with the capacitance matrix. The
values derived from the eigenvalues of the capacitance matrix give a good approximation and required
just 0.02 seconds of computation time, compared to the 41 seconds required for the full multipole com-
putations, on the same computer. If greater precision than that of the capacitance matrix approximation
is required, then the values derived from the capacitance matrix can be used as initial values for root
finding algorithms to reduce computational time.
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Figure 4: The subwavelength resonant frequencies of a system of ten spherical resonators. We compare the values
computed using the multipole expansion method to discretized the full boundary integral equation and the values
computed using the capacitance matrix. The computations using the full multipole method took 41 seconds while
the approximations from the capacitance matrix took just 0.02 seconds, on the same computer. Each resonator
has unit radius and we use δ = 1/5000.

3 Periodic systems

Next, we will investigate the case when the resonators are repeated periodically as illustrated in Figure 5,
often referred to as a metamaterial. Conceptually, there are three different cases depending on the
dimensions of periodicity of the lattice, dl, and of the ambient space d:

• d − dl = 0, which we will refer to as a crystal. In this fully periodic case (either d = dl = 2 or
d = dl = 3), the metamaterial has no boundary to the surrounding space.

• d− dl = 1, which we will refer to as a screen. In this case, the structure consists of a thin sheet of
resonators.

• d−dl = 2, which we will refer to as a chain. There is one example of this case, namely d = 3, dl = 1.

We assume that D, as defined in Section 2, is repeated in a periodic lattice Λ. We let Pl : R
d → R

dl be
the projection onto the first dl coordinates, and P⊥ : Rd → R

d−dl be the projection onto the last d− dl
coordinates.

We let l1, ..., ldl
∈ R

d denote lattice vectors generating the lattice Λ, in other words such that

Λ := {m1l1 + ...+mdl
ldl

| mi ∈ Z} .

For simplicity, we assume that P⊥li = 0, which means that the lattice is aligned with the first dl coordinate
axes.

For a point x ∈ R
d, we will throughout use the notation x = (xl, x0), where xl ∈ R

dl is the vector
along the first dl dimensions and x0 ∈ R

d−dl . Denote by Y ⊂ R
d a fundamental domain of the given

lattice. Explicitly, we take

Y := {c1l1 + ...+ cdl
ldl

| 0 ≤ c1, ..., cdl
≤ 1} .

The dual lattice of Λ, denoted Λ∗, is generated by α1, ..., αdl
satisfying αi · lj = 2πδij and P⊥αi = 0, for

i, j = 1, ..., dl. The Brillouin zone Y ∗ is defined as Y ∗ :=
(
R

dl × {0}
)
/Λ∗, where 0 is the zero-vector in

R
d−dl . We remark that Y ∗ can be written as Y ∗ = Y ∗

l × {0}, where Y ∗
l has the topology of a torus in

dl dimensions.
The periodically repeated ith resonator Di and the full periodic structure D are given, respectively,

by

Di =
⋃

m∈Λ

Di +m, D =

N⋃

i=1

Di.
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Figure 5: A periodic array of material inclusions. Here, three material inclusions (resonators) are sketched with
periodicity in one dimension. Each interior has a different wave speed v1, v2, v3 and the surrounding medium has
a wave speed v. The contrast between the ith resonator and the background is given by δi, where a small value of
δi describes a large contrast.

We study the equation





∆u+ k2u = 0 in R
d \ D,

∆u+ k2i u = 0 in Di, i = 1, . . . , N,

u|+ − u|− = 0 on ∂D,

δi
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−

= 0 on ∂Di, i = 1, . . . , N,

u(xl, x0) satisfies the outgoing radiation condition as |x0| → ∞.

(3.1)

The radiation condition depends on the dimensionality (see, for instance, [43, 2, 16]). Note that we only
impose a radiation condition for x away from the periodic structure and, in the fully-periodic case, we
do not assume any radiation condition. As we shall see, since there is no radiation condition in the first
dl coordinate dimensions, the spectrum σ of (3.1) is in general continuous. In order to effectively study
this equation, we will use the Floquet-Bloch theory, which is outlined below.

3.1 Floquet-Bloch theory

A function f(x) ∈ L2(Rd) is said to be α-quasiperiodic, with quasiperiodicity α ∈ Y ∗, if e−iα·xf(x) is
Λ-periodic. Given a function f ∈ L2(Rd), the Floquet transform of f is defined as

F [f ](x, α) :=
∑

m∈Λ

f(x−m)eiα·m. (3.2)

F [f ] is always α-quasiperiodic in x and periodic in α. The Floquet transform is an invertible map
F : L2(Rd) → L2(Y × Y ∗), with inverse given by (see, for instance, [16, 50])

F−1[g](x) =
1

|Y ∗
l |

∫

Y ∗

g(x, α) dα, x ∈ R
d,

where g(x, α) is extended quasiperiodically for x outside of the unit cell Y .
If we apply the Floquet transform to (3.1) we obtain, where uα(x) := F [u](x, α),





∆uα + k2uα = 0 in R
d \ D,

∆uα + k2i u
α = 0 in Di, i = 1, . . . , N,

uα|+ − uα|− = 0 on ∂D,

δi
∂uα

∂ν

∣∣∣∣
+

− ∂uα

∂ν

∣∣∣∣
−

= 0 on ∂Di, i = 1, . . . , N,

uα(xd, x0) is α-quasiperiodic in xd,

uα(xd, x0) satisfies α-quasiperiodic radiation condition as |x0| → ∞.

(3.3)
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The α-quasiperiodic radiation condition depends on the dimensionality, and we refer (for example) to
[16, 29, 31, 32] for details. The spectrum σ of the original problem (3.1) is parametrised by the spectra
σ(α), α ∈ Y ∗, of the problem (3.3), which in turn are known to consist of discrete values ω = ωα

i :

σ =
⋃

α∈Y ∗

σ(α), σ(α) =

∞⋃

i=1

ωα
i .

Definition 3.1 (Band function). The resonant frequencies ωα
i , seen as functions of α, are called band

functions. The collection of band functions is called the band structure.

Definition 3.2 (Band gap). A band gap of D is a connected component of C \ σ. If the spectrum σ is
real, we define a band gap of D as a connected component of R \ σ, which consists of intervals in R.

As in Section 2, we will focus on the subwavelength part of the spectrum, which are the resonant
frequencies ωα

i which tend to 0 as δ → 0.
In the case k 6= |α + q| for all q ∈ Λ∗, we can define the quasiperiodic Green’s function Gα,k(x, y) as

the Floquet transform of Gk(x, y) in the first dl coordinate dimensions, i.e.,

Gα,k(x, y) := −
∑

m∈Λ

eik|x−y−m|

4π|x− y −m|e
iα·m.

The series in (3.7) converges uniformly for x and y in compact sets of Rd, x 6= y, and k 6= |α + q| for
all q ∈ Λ∗. Shortly speaking, using this Green’s function we can define analogous quantities and get
analogous results as in the finite case. The quasiperiodic single layer potential Sα,k

D is then defined as

Sα,k
D [ϕ](x) :=

∫

∂D

Gα,k(x, y)ϕ(y) dσ(y), x ∈ R
d.

Lemma 3.3. The quasiperiodic single layer potential Sα,k
D : L2(∂D) → H1(∂D) is invertible if k is small

enough and k 6= |α+ q| for all q ∈ Λ∗.

The quasiperiodic single layer potential satisfies many conceptually similar properties as the “regular”
single layer potential (which is a consequence of the fact that the singularity of corresponding Green’s
functions are the same, i.e. Gα,k − Gk is a smooth function of x around the origin). For example, the
quasiperiodic single layer potential satisfies the jump relations on ∂D:

Sα,k
D [ϕ]

∣∣
+
= Sα,k

D [ϕ]
∣∣
−

on ∂D, (3.4)

and
∂

∂ν
Sα,k
D [ϕ]

∣∣∣
±
=

(
±1

2
I + (K−α,k

D )∗
)
[ϕ] on ∂D, (3.5)

where (K−α,k
D )∗ is the quasiperiodic Neumann–Poincaré operator, given by

(K−α,k
D )∗[ϕ](x) :=

∫

∂D

∂

∂νx
Gα,k(x− y)ϕ(y) dσ(y).

Above, we assumed that k 6= |α + q| for all q ∈ Λ∗. When k is small and lies in the subwavelength
regime, this condition separates into two cases:

• k < infq∈Λ∗ |α+ q|. Waves in this regime are exponentially decaying away from the structure. Such
waves, which vanish in the far-field, are known as evanescent waves.

• |α| < k < infq∈Λ∗\{0} |α + q|. Waves in this regime are propagating far away from the structure,
and this regime is known as the first radiation continuum.
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Figure 6: Example of the subwavelength band structure of a resonator array with two resonators in the unit
cell. The shaded region is the first radiation continuum, defined by |α| < ω/v < infq∈Λ∗\{0} |α + q|, while the
unshaded region correspond to evanescent modes. Here we see an example of band gap opening: there is an
uncovered interval between the first and the second bands. Moreover, between the subwavelength bands and the
higher (non-subwavelength) bands there will always be a band gap.

If we briefly assume that vi and δi are real we can interpret the two regimes as follows. When k <
infq∈Λ∗ |α + q|, the problem (3.3) can be viewed as the spectral problem for a self-adjoint operator, and
the resonant frequencies are real. When |α| < k < infq∈Λ∗\{0} |α+ q|, due to the radiation condition this
equation no longer correspond to a self-adjoint operator. Therefore, the resonators attain a small but
non-zero imaginary part corresponding to the coupling with the far-field. The transition between these
two regimes occurs when k = |α| for some q (known as a Rayleigh-Wood anomaly), which are the points
where the spectrum becomes real and the modes become localized to the structure.

In the two regimes mentioned above, we have the following integral representation (analogously to
Lemma 2.1).

Lemma 3.4. Assume that k 6= |α+ q| for all q ∈ Λ∗. Then the Helmholtz problem (3.1) is equivalent to
finding ψ, φ ∈ L2(∂D) such that

Aα(ω, δ)

(
ψ
φ

)
=

(
0
0

)
, (3.6)

where the operator Aα(ω, δ) : L2(∂D)× L2(∂D) → H1(∂D)× L2(∂D) is defined as

Aα(ω, δ) =

(
S̃ω
D −Sα,k

D

− 1
2I + K̃ω,∗

D −δ̃
(

1
2I + (K−α,k

D )∗
)
)
,

with δ̃, S̃ω
D and K̃ω,∗

D defined in (2.4), (2.9) and (2.11), respectively.

3.2 Evanescent-mode resonances

If we assume |α| > c > 0 for some constant c independent of ω and δ, the quasiperiodic Helmholtz single
layer potential is well approximated by the corresponding Laplace single layer potential in the sense that
Sα,ω
D = Sα,0

D + O(ω2) in the operator norm. Because of this, we can use analogous methods as those
outlined in Section 2, and obtain similar results. It is worth pointing out that the following results hold
even in the case d = 2, and for general dl.

Lemma 3.5. Assume |α| > c > 0 for some constant c independent of ω and δ, and consider a fundamental
cell containing N subwavelength resonators D = D1 ∪ . . . DN in Y . Then, it holds that ker(− 1

2I +

(K−α,0
D )∗) = span{ψα

1 , ψ
α
2 , . . . , ψ

α
N} where ψα

i := (Sα,0
D )−1[χ∂Di

].
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Theorem 3.6. Assume |α| > c > 0 for some constant c independent of ω and δ, and consider a
fundamental cell containing N subwavelength resonators D = D1 ∪ . . . DN in Y . For sufficiently small
δ > 0, there exist N subwavelength resonant frequencies ωα

1 (δ), . . . , ω
α
N (δ) with non-negative real parts.

Remark 3.7. The above theorem describes only the subwavelength part of the band structure. For small
enough δ, there will be a band gap between the first N bands (which are in the subwavelength regime)
and the higher bands (which are not close to 0 for small δ; see Figure 6).

Definition 3.8 (Quasiperiodic capacitance matrix). Assume α 6= 0. For a system of N ∈ N resonators
D1, . . . , DN in Y we define the quasiperiodic capacitance matrix Cα = (Cα

ij) ∈ C
N×N to be the square

matrix given by

Cα
ij = −

∫

∂Di

(Sα,0
D )−1[χ∂Dj

] dσ, i, j = 1, . . . , N.

Lemma 3.9. The quasiperiodic capacitance matrix is a Hermitian matrix.

Definition 3.10 (Generalized quasiperiodic capacitance matrix). Assume α 6= 0. For a system of N ∈ N

resonators D1, . . . , DN in Y we can define the generalized quasiperiodic capacitance matrix, denoted by
Cα = (Cα

ij) ∈ C
N×N , to be the square matrix given by

Cα
ij =

δiv
2
i

|Di|
Cα

ij , i, j = 1, . . . , N.

The next result characterizes the first N resonances of the periodic structure, and shows that they
are in the subwavelength regime.

Theorem 3.11. Let d ∈ {2, 3} and 0 < dl ≤ d. Consider a system of N subwavelength resonators in Y ,
and assume |α| > c > 0 for some constant c independent of ω and δ. As δ → 0, the N subwavelength
resonant frequencies satisfy the asymptotic formula

ωα
n =

√
λαn +O(δ3/2), n = 1, . . . , N,

where {λαn : n = 1, . . . , N} are the eigenvalues of the generalized quasiperiodic capacitance matrix Cα ∈
C

N×N , which satisfy λαn = O(δ) as δ → 0.

Remark 3.12. The error term O(δ3/2) has higher order compared to the error term O(δ) in Theorem 2.7.
This is a consequence of the fact that the O(ω)-term in the expansion of Sα,ω

D vanishes.

Corollary 3.13. Let d ∈ {2, 3}, 0 < dl ≤ d and assume |α| > c > 0 for some constant c independent of
ω and δ. Let vαn be the eigenvector of Cα associated to the eigenvalue λαn. Then the resonant mode uαn
associated to the resonant frequency ωα

n is given, as δ → 0, by

uαn(x) =

{
v
α
n · Sα,k

D (x) +O(δ1/2), x ∈ R
d \ D,

v
α
n · Sα,ki

D (x) +O(δ1/2), x ∈ Di,

where S
α,k
D : Rd → C

N is the vector-valued function given by

S
α,k
D (x) =



Sα,k
D [ψα

1 ](x)...
Sα,k
D [ψα

N ](x)


 , x ∈ R

d \ ∂D,

with ψα
i := (Sα,0

D )−1[χ∂Di
].

Figure 7 shows the resonant mode of a square crystal in two dimensions (d = dl = 2) for α close to the
corner of the Brillouin zone. Here, we can observe the two-scale behaviour associated to subwavelength
metamaterials: the resonant modes are oscillating on the small scale, with amplitudes which satisfy
large-scale oscillations (for more details on this, we refer to [23]).
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(a) Small-scale behaviour of the resonant mode. (b) One-dimensional plot over many unit cells.

Figure 7: Plot of the resonant mode of a square crystal for α close to the corner of the Brillouin zone. We see
that the resonant modes have a distinct two-scale behaviour: rapidly oscillating on the small scale, and a large
scale envelope which satisfies a homogenized equation.

3.3 Resonances in the first radiation continuum

Here we study the regime |α| < k < infq∈Λ∗\{0} |α+q|. Since the analysis depends on the dimensionalities,
we will exemplify it in the case of a metascreen, d− dl = 1.

Recall that k = ω/v. In the current regime, we must have α → 0 as ω → 0. Therefore, we assume
that

α = ωα0 ∈ Y ∗,

for some α0, independent of ω and such that |α0| < 1/v. In scattering problems, this limit corresponds to
incident waves with a fixed direction of incidence (specified by α0) and a frequency ω in the subwavelength
regime.

3.3.1 Green’s function and capacitance matrix formulation

In the current setting, the quasiperiodic Green’s function admits the spectral representation

Gα,k(x) =
eiα·xeik0|x0|

2ik0|Yl|
−

∑

q∈Λ∗\{0}

ei(α+q)·xe−
√

|α+q|2−k2|x0|

2|Yl|
√
|α+ q|2 − k2

, (3.7)

where k0 =
√
k2 − |α|2. The series in (3.7) converges uniformly for x in compact sets of Rd, x 6= 0, and

|α| < k < infq∈Λ∗\{0} |α + q|. In the case when k = α = 0, we define the periodic Green’s function G0,0

as

G0,0(x) =
|x0|
2|Yl|

−
∑

q∈Λ∗\{0}

eiq·xe−|q||x0|

2|Yl||q|
. (3.8)

When ω → 0, we then have the asymptotic expansion

Gωα0,k(x) =
1

2ik0|Yl|
+G0,0(x) +

α · x
2k0|Yl|

+O(ω). (3.9)

In particular, the Green’s function has a singularity when ω → 0. In fact, this will make the analysis
conceptually similar to the case in Section 2.5. We define the operator Ŝα,k

D : L2(∂D) → H1(∂D) as

Ŝα,k
D [ϕ](x) = S0,0

D [ϕ](x)− i − α · x
2k0|Yl|

∫

∂D

ϕ dσ −
∫

∂D

α · y
2k0|Yl|

ϕ(y) dσ(y). (3.10)

We then have the asymptotic expansion Sωα0,ω
D = Ŝωα0,ω

D +O(ω), with respect to the operator norm, as
ω → 0.
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Lemma 3.14. S0,0
D is invertible from the mean-zero space L2

0(∂D) onto its image.

Lemma 3.15. For any α0 ∈ Y ∗ with |α0| < 1, (Sωα0,ω
D )

−1
is a holomorphic operator-valued function of

ω in a neighbourhood of ω = 0.

Crucially, Lemma 3.15 shows that inverse (Sωα0,ω
D )−1 does not have the ω−1-singularity around ω =

0. This will allow us to define capacitance coefficients in the current setting. Since (Sωα0,ω
D )−1 is a

holomorphic function of ω we have (Sωα0,ω
D )

−1
= Sα0

0 + O(ω) as ω → 0, for some operator Sα0

0 which is
independent of ω.

Definition 3.16 (Periodic capacitance matrix). For α0 with |α0| < 1, and for a system of N ∈ N

resonators D1, . . . , DN in Y we can define the periodic capacitance matrix C0 = (C0
ij) ∈ R

N×N to be the
square matrix given by

C0
ij = −

∫

∂Di

Sα0

0 [χ∂Di
] dσ, i, j = 1, . . . , N.

Similarly to Lemma 2.11, the periodic capacitance matrix can alternatively be written

C0
ij =

∫

Y \D

∇V 0
i · ∇V 0

j dx,

where V 0
i = S0,0

D [ψ0
i ] and ψ

0
i = Sα0

0 [χ∂Di
]. Because of this formula, C0 share many of the properties of

the capacitance matrices in previous settings.

Lemma 3.17. The periodic capacitance matrix C0 is a real, symmetric, positive semi-definite matrix
with one vanishing eigenvalue. Moreover, C0 is independent of α0.

The name periodic comes from the fact that an α-quasiperiodic function is, in the case α = 0, a
periodic function. Since α = ωα0 and ω is small, we are working close to the periodic case. In fact, since
C0 is independent of α0, all relations involving C

0 are equal to the periodic case α0 = 0.

Definition 3.18 (Generalized periodic capacitance matrix). For a system of N ∈ N resonators D1, . . . , DN

in Y we can define the generalized periodic capacitance matrix, denoted by C0 = (C0
ij) ∈ C

N×N , to be the
square matrix given by

C0
ij =

δiv
2
i

|Di|
C0

ij , i, j = 1, . . . , N.

Since Sωα0,ω
D has a ω−1-singularity as ω → 0, we cannot apply the Gohberg-Sigal theory to study the

characteristic value perturbation of Aα(ω, δ) defined in Lemma 3.4. Instead, we rephrase the system in
the following result [11].

Lemma 3.19. Let k = ω/v and assume that α = ωα0 for some α0 independent of ω and δ such that
|α0| < 1/v. Then the Helmholtz problem (3.1) is equivalent to finding η ∈ H1(∂D) such that

Âα(ω, δ)η = 0, (3.11)

where the operator Âα(ω, δ) : H1(∂D) → L2(∂D) is defined as

Âα(ω, δ) =

(
−1

2
I + K̃ω,∗

D

)(
S̃ω
D

)−1

− δ̃

(
1

2
I + (K−α,k

D )∗
)(

Sωα0,k
D

)−1

.

Now we can apply the functional analytic approach, outlined in Section 1.3, to derive the following
result on the subwavelength resonant frequencies in the current setting [11, 8].

Theorem 3.20. Let d − dl = 1, k = ω/v and assume that α = ωα0 for some α0 independent of ω and
δ such that |α0| < 1/v. As δ → 0, there are N subwavelength resonant frequencies which satisfy the
asymptotic formula

ωα
n =

√
λ0n +O(δ), n = 1, . . . , N,

where {λ0n : n = 1, . . . , N} are the eigenvalues of the generalized periodic capacitance matrix C0 ∈ C
N×N ,

which satisfy λ0n = O(δ) as δ → 0.
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3.3.2 Higher-order approximations

In the case δiv
2
i ∈ R for all i, the leading-order parts of the resonances, given in Theorem 3.20, are real.

It is also interesting to compute corresponding imaginary parts, which will specify the bandwidth of the
resonant behaviour. We have the asymptotic expansion of Sωα0,ω

D = Sα0

0 + ωSα0

−1 +O(ω2). Then we can
define the “higher-order” matrix C1,α0 as

C1,α0

ij = −
∫

∂Di

Sα0

−1[χ∂Dj
] dσ

and corresponding generalized matrix C1,α0 as

C1,α0

ij =
δiv

2
i

|Di|
C1,α0

ij .

Therefore, we have the following result, which gives the resonances ωα
i to a higher order [11].

Theorem 3.21. Let d − dl = 1, k = ω/v and assume that α = ωα0 for some α0 independent of ω and
δ such that |α0| < 1/v. As δ → 0, the N subwavelength resonant frequencies satisfy ωα

n = ω̂α
n + O(δ3/2)

where ω̂α
n , for n = 1, ..., N , are the roots ω = ω̂α

n of the equation

det
(
C0 + ωC1,α0 − ω2I

)
= 0.

We define cn ∈ C
d by

cn =

∫

∂D

yψ0
n(y) dσ(y), n = 1, ..., N.

While the capacitance coefficients can be thought of as total charge (or “mass”), ci is the centre of mass
(up to rescaling). Briefly put, we can compute C1,α0 in terms of these coefficients, which allows us to
compute explicit expressions of ω̂α

n .

3.3.3 Modal decomposition

The “higher-order” term Sα0

−1 in the expansion of the single layer potential enters the expression for the
resonant modes in this case. From the arguments used to derive Theorem 3.21 we have the following
result on the resonant modes [11].

Theorem 3.22. Let d− dl = 1, k = ω/v and assume that α = ωα0 for some α0 independent of ω and δ
such that |α0| < 1/v. Let v0n be the eigenvector of C0 associated to the eigenvalue λ0n. Then the resonant
mode uαn associated to the resonant frequency ωα

n is given, as δ → 0, by

uαn(x) =

{
v
0
n · Sα,k

D (x) +O(δ1/2), x ∈ R
d \ D,

v
0
n · Sα,ki

D (x) +O(δ1/2), x ∈ Di,

where S
α,k
D : Rd → C

N is the vector-valued function given by

S
α,k
D (x) =




Sα,k
D [ψ0

1 + kψ1,α0

1 ](x)
...

Sα,k
D [ψ0

N + kψ1,α0

N ](x)


 , x ∈ R

d \ ∂D,

with ψ0
i := Sα0

0 [χ∂Di
] and ψ1,α0

i := Sα0

−1[χ∂Di
].

With these resonant modes at hand, we can easily solve the associated scattering problem




∆uα + k2uα = 0 in R
d \ D,

∆uα + k2i u
α = 0 in Di, i = 1, . . . , N,

uα|+ − uα|− = 0 on ∂D,

δi
∂uα

∂ν

∣∣∣∣
+

− ∂uα

∂ν

∣∣∣∣
−

= 0 on ∂Di, i = 1, . . . , N,

uα(xd, x0) is α-quasiperiodic in xd,

uα − uin satisfies α-quasiperiodic radiation condition as |x0| → ∞.

(3.12)
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Here, we assume that uin is a plane wave with some wave vector k; uin(x) = eik·x. Furthermore, α is
now specified in terms of k as α = Plk, where (as before) Pl is the projection to the first dl coordinates.
Then, for small ω we assume that k = ωw for some fixed w.

Theorem 3.23. Let d − dl = 1, and assume that uin = eik·x where k = ωw. Also, assume that
|ω−ω0

i | > K
√
δ for i = 1, ..., N , for some constant K > 0. Then, as δ → 0, the solution to the scattering

problem (3.12) can be written, uniformly for x in compact subsets of Rd, as

uα − uin =

N∑

n=1

anu
α
n(x)− Sα,k

D

(
Sα,k
D

)−1

[uin] +O(
√
δ), (3.13)

where V is the matrix of eigenvectors of C0 and the coefficients an = an(ω) satisfy the problem

V



ω2 − (ω0

1)
2

. . .

ω2 − (ω0
N )2






a1
...
aN


 =




δ1v
2
1

|D1|

∫
∂D1

(
Sα,k
D

)−1

[uin] dσ

...
δNv2

N

|DN |

∫
∂DN

(
Sα,k
D

)−1

[uin] dσ


+O(δ3/2).

3.3.4 Connection to quasiperiodic capacitance matrix

In the previous sections, we have used the notation C0 for the periodic capacitance matrix, and Cα

for the quasiperiodic capacitance matrix, defined for α ∈ Y ∗ \ {0}. This choice of suggestive notation
is deliberate, and in this section we will show that these capacitance matrices can be combined into a
continuous function of α ∈ Y ∗, in the sense that C0 = limα→0 C

α.
For α ∈ Y ∗, α 6= 0, the Green’s function Gα,0 satisfies

Gα,0(x) = − 1

2|Yl|
∑

q∈Λ∗

ei(α+q)·xe−|α+q||x0|

|α+ q| , (3.14)

so that for small α we have

Gα,0(x) = − 1

2|α||Yl|
− iα · x

2|α||Yl|
+G0,0(x) +O(|α|). (3.15)

In this setting we define the operator Ŝα,0
D : L2(∂D) → H1(∂D) as

Ŝα,0
D [ϕ](x) = S0,0

D [ϕ](x)− 1 + iα · x
2|α||Yl|

∫

∂D

ϕ dσ +

∫

∂D

iα · y
2|α||Yl|

ϕ(y) dσ(y). (3.16)

The structure of this operator is entirely analogous to Ŝα,k
D defined in Section 3.3.1 (where, conceptually,

the limit ω → 0 now corresponds to |α| → 0). Therefore, we can apply the same method to obtain the
following result.

Lemma 3.24. The periodic capacitance matrix C0 and the quasiperiodic capacitance matrix Cα, for
α ∈ Y ∗ \ {0}, satisfy

C0 = lim
α→0

Cα.

4 Applications of the generalized capacitance matrix

The generalized capacitance matrix can be applied to explain a variety of interesting physical phenomena.
We particularly want to study extraordinary macroscopic properties (such as exotic effective parameters,
rainbow trapping or unidirectional scattering) as well as robust localization at subwavelength scales.
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4.1 Double-negative materials

The field of metamaterials more or less began with the realisation that micro-structured media could be
designed to have effectively negative material parameters. This behaviour can also be replicated in the
setting studied in this work, as reported in [17]. Consider a large number N of identical resonator pairs,
given by

DN =
⋃

1≤j≤N

(
zNj + sRdN

j
D
)
, (4.1)

where D = D1 ∪D2 is some fixed pair of resonators, 0 < s ≪ 1 is some characteristic size, zNj ∈ R
3 are

the positions of the resonator pairs and RdN
j

are rotations in R
3 which orient the pair in the direction of

the unit vector dNj . We will assume that sN = Λ for some fixed Λ > 0 and that there is some bounded

domain Ω such that {zNj : 1 ≤ j ≤ N} ⊂ Ω for any N ≥ 1. We also want that the resonators are regularly
distributed in the sense that there exists some number ν such that

min
i 6=j

|zNi − zNj | ≥ νN−1/3, for any N ≥ 1. (4.2)

Additionally, we want that there exists some positive function V ∈ C1(Ω) and a matrix-valued function
B ∈ C1(Ω) such that there are constants C1 and C2 which satisfy

max
1≤j≤N

∣∣∣∣∣∣
1

N

∑

i 6=j

Gk(zNi − zNj )f(zNi )−
∫

Ω

Gk(y − zNj )V (y)f(y) dy

∣∣∣∣∣∣
≤ C1N

−α/3‖f‖C0,α(Ω), (4.3)

for all f ∈ C0,α(Ω) with 0 < α ≤ 1 and all N ≥ 1, and similarly

max
1≤j≤N

∣∣∣∣∣∣
1

N

∑

i 6=j

(
f(zNi ) · dNi

) (
dNi · ∇Gk(zNi − zNj )

)
−
∫

Ω

f(y)BGk(y − zNj ) dy

∣∣∣∣∣∣
≤ C2N

−α/3‖f‖(C0,α(Ω))3 ,

(4.4)

for all f ∈
(
C0,α(Ω)

)3
with 0 < α ≤ 1 and all N ≥ 1.

Remark 4.1. The regularity assumptions (4.3) and (4.4) are challenging to comprehend in general. In
the case that the positions {zNj : 1 ≤ j ≤ N} are uniformly distributed in Ω, then V (x) is constant.

Likewise, if the orientations are such that the average of dNj (dNj )⊤ in any neighbourhood of Ω converges
to the identity, then B(x) is equal to some positive function times the identity matrix.

We must make some additional assumptions to achieve the desired double-negative behaviour. We
assume that the material parameters are such that v1 = v2 ∈ R and δ1 = δ2 = µ2s2 for some number
µ > 0. This means that the generalized capacitance coefficients associated to a single resonator pair
do not depend on s. As such, the leading-order term in the expansion of the subwavelength resonant
frequencies, as s → 0, is fixed. Additionally, we will assume that the pair of resonators is symmetric in
the sense that

P :=

∫

∂D

y1(ψ1 − ψ2) dσ(y) > 0, while

∫

∂D

y2(ψ1 − ψ2) dσ(y) =

∫

∂D

y3(ψ1 − ψ2) dσ(y) = 0, (4.5)

for ψ1 and ψ2 as defined in Lemma 2.2. In this case, we also have that the subwavelength resonant
frequencies for the resonator pair are given, as s→ 0, by

ω1 =
√
λ1 − iτ1µ

2s+O(s2), (4.6)

ω2 =
√
λ2 + µ3η1s

2 − iµ4η2s
3 +O(s4), (4.7)

for real numbers τ1, η1 and η2.
We want the incident frequency to be close to the second resonant frequency, which corresponds to

the dipole resonant mode. In particular, we assume that there is some a < µ3η1 such that

ω =
√
λ2 + as2. (4.8)
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Under these assumptions, we can derive an effective medium theory for the system as N → ∞. Let uN be
the field scattered by an array of N resonator pairs of the form (4.1). Suppose there is some macroscopic
field u ∈ C1,α(Ω) which is such that uN converges to u in C1,α(Ω) as N → ∞. Then, we can show that
u must satisfy the equation [17]

∇ ·M1(x)∇u(x) +M2(x)u(x) = 0 in R
3, (4.9)

where

M1 =

{
I in R

3 \ Ω,
I − Λg1B in Ω,

and M2 =

{
k2 in R

3 \ Ω,
k2 − Λg0V in Ω,

for positive constants g0 and g1 given by

g0 =
2(C11 + C12)

1− λ1/λ2
and g1 =

µ2v21
2|D|λ2(µ3η1 − a)

P 2.

Equation (4.9) shows the desired double-negative behaviour. Since we assumed that a < µ3η1, it holds
that g1 > 0. Thus, if B(x) is a positive definite matrix for all x ∈ Ω and Λ is chosen to be sufficiently
large, then M1(x) will be a negative definite matrix for all x ∈ Ω. Likewise, since g0 > 0 and V > 0 by
assumption, we can choose Λ to be sufficiently large that M2(x) < 0 for all x ∈ Ω. We refer to [17] for
the details.

4.2 Frequency separation with graded arrays

By introducing a gradient to the properties of a metamaterial, it is possible to cause different frequencies
to be localized at different positions in the structure. This frequency separation is useful for a variety of
applications since it means an incoming signal can be separated into its different frequency components.
This phenomenon is often known as rainbow trapping and has been observed in a variety of electromagnetic
[62, 46], acoustic [4, 69, 47] and other metamaterials [30]. Approximating the system using the generalized
capacitance matrix, we can study the extent to which a system of coupled subwavelength resonators is
able to perform frequency separation in a controllable manner.

This behaviour is very similar to the action of the cochlea. Devices based on these principles have
been used to design biomimemtic hearing devices [6, 59, 49]. For example, a graded resonator array
is shown in Figure 8 to replicate the frequency separation of the cochlea. These structures are useful
for building artificial hearing approaches as well as, conversely, learning about the function of human
hearing. For example, understanding the details of cochlear amplification is a significant open question
and is obscured by the challenges in experimenting on living biological organisms. By designing analogue
artificial devices, we are able to test theories and reveal crucial insight into the fundamantal mechanisms
that underpin human hearing [6, 59].

4.3 Sensitivity enhancement using high-order exceptional points

We want to design “enhanced” sensors that are strongly influenced by small perturbations in their imme-
diate surroundings. For example, we want to be able to sense the presence of a small object, as depicted
in Figure 9a. This small object might be a virus, for example [64]. Typically, such an occurrence would
cause a shift in the resonant frequencies that is proportional to the strength of the perturbation (i.e.
proportional to the size of the small object). The idea here, however, is to design an array for which
this shift is enhanced, particularly for small perturbations [66, 45]. We achieve this by adding sources of
energy gain and loss to the system, represented by material parameters with non-zero imaginary parts.
This means that Lemma 2.13 no longer holds and we can fine-tune the material parameters in order to
create systems with coincident eigenvectors. The fundamental result guiding this work is the following
lemma [9].

Lemma 4.2. Let m ∈ L∞(R3) and N ∈ N. Suppose that a system has an N th-order singularity in the
sense that the Green’s function Gk

m, which is defined as the solution to
(
∆x +m(x)k2

)
Gk

m(x, y) = δy(x)
in R

3, has the form

Gk
m(x, y) = Gk(x, y) +

N∑

j=1

ϕj(x)ϕj(y)

(k2 − (k∗)2)j
+R(k, x, y),

24



x1

x2

(a) A graded array of resonators. High frequencies will give a maximum response towards
the left of the array while lower frequencies will be detected further to the right.

(b) The modulus of the 30th eigen-
mode for a graded array of 50 res-
onators, as an example. There is
a clear position of maximum ampli-
tude.

(c) The relationship between the frequency (real part) and the
position of maximum amplitude. The crosses are the resonant
frequencies of an array of 50 resonators and the line is a
relationship of the form observed in the human cochlea.

Figure 8: The frequency separation of a graded array of resonators can be chosen to mimic the response of the
cochlea. A graded array of 50 resonators is simulated here and its response is chosen to match the relationship
that exists in the human cochlea.

PT -symmetric array of active
resonators with an exceptional point

small object

(a) An active system of resonators can be designed such that it
supports an exceptional point, meaning that it experiences an
enhanced response to small perturbations such as the presence
of a small particle.

Perturbation strength

F
re
q
u
en

cy
sh
if
t

linear shift

enhanced shift

.

(b) Exceptional sensors
can experience enhanced
eigenfrequency shifts.

Figure 9: Resonator arrays with exceptional points can be used to design enhanced sensors.
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for k in a neighbourhood of some k∗ ∈ C, where Gk is the free space Helmholtz Green’s function,
{ϕ1, . . . , ϕN} ⊂ H1

loc(R
3) are generalized eigenfunctions associated to k∗ and the remainder R is a holo-

morphic function of k that is smooth as a function of x and y. If a small material inclusion Ω is introduced
to the system, then the new system has a resonant frequency kΩ with the asymptotic behaviour

kΩ = k∗ + (ηz|Ω|)1/N + o(|Ω|), as |Ω| → 0,

with ηz is a constant that depends on the position and material parameters of the small particle Ω, the
background material parameters m and the generalized eigenfunction ϕN .

One way to create N th-order singularities, as are required by Lemma 4.2, is to design structures with
higher-order resonant singularities. That is, structures with exceptional points, where eigenvalues and
eigenvectors coincide. In this setting, we will search for asymptotic exceptional points.

Definition 4.3. A set of parameter values is said to be an N th-order asymptotic exceptional point with
respect to δ if there exist N resonant frequencies ω1, . . . , ωN and associated eigenmodes u1, . . . , uN such
that for any i, j ∈ {1, . . . , N}

ωi = ωj +O(δ), as δ → 0,

and for any i, j ∈ {1, . . . , N} there exists some K ∈ C such that

ui = Kuj +O(δ), as δ → 0.

Remark 4.4. The restriction to considering asymptotic exceptional points in this work is not a weakness
of the analytic approach but represents the behaviour of the system. The radiation condition means that
the symmetry we impose on the resonators is not extended to the far field, meaning that we won’t have
exact degeneracy at the exceptional points.

Exceptional points are a consequence of balanced symmetries in the system, which cause the eigen-
vectors to align. So that the system already has some underlying symmetry, exceptional points are often
sought in structures with parity–time symmetry. We will assume that the problem is parity–time sym-
metric in the sense that each resonator Di can be uniquely associated to another resonator Dj (possibly
with i = j) such that

Di = PDj and v2i δi = T (v2j δj), (4.10)

where the parity operator P : R3 → R
3 and the time-reversal operator T : C → C are given, respectively,

by
P(x) = −x and T (z) = z.

For a system of two subwavelength resonators, we can find the eigenvalues and eigenvectors of the gen-
eralized capacitance matrix explicitly. Using these formulas, we can show that there exists an asymptotic
exceptional point for certain parameter values [11].

Theorem 4.5. A PT -symmetric pair of subwavelength resonators has an asymptotic exceptional point
of order two with respect to δ in the subwavelength regime. In particular, if

Im(v21δ1) = b∗ :=
Re(v21δ1)C12√
C2

11 − C2
12

,

then λ1 = λ2 and v1 = Kv2 for some K ∈ C, where (λi, vi), i = 1, 2, are the eigenpairs of the generalised
capacitance matrix C. Further to this,

if Im(v21δ1) < b∗ then
√
λ1,
√
λ2 are real valued and

√
λ1 6=

√
λ2,

if Im(v21δ1) > b∗ then
√
λ1,
√
λ2 are purely imaginary and

√
λ1 6=

√
λ2.

The approximate nature of the asymptotic exceptional point predicted in Theorem 4.5 is demonstrated
by Figure 10, where the subwavelength resonant frequencies of the full differential system are simulated
directly using the multipole expansion method. We can see that there is a critical value of the gain and
loss (the imaginary parts of the material parameters) such that the eigenvalues coincide at leading order.
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D1 D2

v21δ1=a+ib v22δ2=a−ib

.

v

(a) A PT -symmetric pair of spherical resonators.

(b) The two subwavelength resonant frequencies.

Figure 10: The two subwavelength resonant frequencies of a pair of PT -symmetric resonators can be simulated
directly from the full differential system using the multipole expansion method. An asymptotic exceptional point
occurs at b∗ ≈ 0.5 × 10−4, where the frequencies coincide at leading order. For b smaller than b∗, the leading-
order terms of the resonant frequencies are real, while for b larger than b∗ they are purely imaginary and are the
conjugate of one other, again to leading order.

Below this critical value the leading-order parts of the resonant frequencies are real and they form a
purely imaginary conjugate pair above this value.

In order to produce higher-order subwavelength exceptional points, we need to study larger systems of
resonators. So that the capacitance matrix is easier to work with in this case, we will make an additional
assumption that the resonators are relatively far apart, meaning that we can use the dilute approximation
given in Lemma 2.16. This means we can efficiently analyse large systems of resonators, in terms of
this leading-order approximation of the capacitance matrix [9]. For a system of three subwavelength
resonators, we can show that there is one third-order subwavelength asymptotic exceptional point. This
is described by Theorem 4.6 and the subwavelength resonant frequencies are depicted in Figure 11.

Theorem 4.6. A PT -symmetric system D of three dilute resonators has an asymptotic exceptional point
of order 3 with respect to ε and δ at the resonant frequency ω∗, which is given as ε, δ → 0 by

ω∗ =

√
4π(3 + εc1)Re(v21δ1)

3|D1|
+O(δ + δ1/2ε),

where c1 is the real root of the polynomial c31 +
27
4 c1 − 27

8 = 0 (i.e. c1 ≈ 0.483...).

We can continue this process to study higher-order exceptional points in larger systems. We quickly
find that as the dimension grows the number of exceptional point similarly grows. In a system of four
subwavelength resonators we find that there are four asymptotic exceptional points. The imaginary parts
of the material parameters on each resonator at each exceptional point are depicted in Figure 12. We can
see that each exceptional point corresponds to one of the four different combinations of relative magnitude
and sign that is possible under the assumption of PT symmetry.

The symmetry exhibited by the fourth-order asymptotic exceptional points shown in Figure 12 can
also be seen in higher-order exceptional points in larger structures. For example, in Figure 13, we take
the fourth-order exceptional points from Figures 12a and 12d and find asymptotic exceptional points
of order 8 and 14 in dilute resonator arrays of the corresponding size. Exceptional points with the
same qualitative distribution as in Figures 13d–13f were previously observed in Hamiltonian systems
in [68]. This analysis demonstrates the value of the generalized capacitance matrix, particularly under
an assumption of diluteness, which gives a concise yet rigorous approximation of the behaviour of the
differential system.

4.4 Subwavelength guiding of waves

The study of point defects in band gap materials has had immense impact on technological applications.
The most notable examples are doped semiconductors, where conducting modes are induced by impurities
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-2

0

2

(a) The subwavelength resonant frequen-
cies of the full differential problem.

-2

0

2

(b) The approximate subwavelength res-
onant frequencies, under the dilute ap-
proximation.

Figure 11: A PT -symmetric system of three subwavelength resonators supports an asymptotic exceptional point,
where the eigenvalues (and corresponding eigenvectors) of the dilute capacitance matrix coincide. We can compare
the resonant frequencies of the full differential problem in (a), computed using the multipole expansion method,
and the approximate frequencies in (b), computed using the dilute approximation of the generalized capacitance
matrix. In both cases, the relative size of the imaginary parts are fixed and they are rescaled by some τ , which is
such that the asymptotic exceptional point occurs at τ = 1.

1.87 0.56

(a) bd > 0 and |b| > |d|.

0.0456 2.00

(b) bd > 0 and |b| < |d|.

1.70

-1.13

(c) bd < 0 and |b| > |d|.

0.734

-1.93

(d) bd < 0 and |b| < |d|.

Figure 12: A system of four PT -symmetric resonators supports four asymptotic exceptional points, each with its
own symmetry. Here, we plot the leading order coefficients of the imaginary parts of the material parameters (the
gain or loss) at each of the four asymptotic exceptional points, using the notation b = Im(v21δ1) and d = Im(v22δ2).
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(a) N = 4
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(b) N = 8

-2

0

2

(c) N = 14

(d) N = 4 (e) N = 8 (f) N = 14

(g) N = 4 (h) N = 8 (i) N = 14

Figure 13: Higher-order asymptotic exceptional points can be found in larger arrays of resonators.

in the semiconductor material. As we have seen, band gaps can be found in any type of wave-propagation
systems, and defects in a subwavelength band gap material can be used to enable trapped or guided waves
on very small length-scales.

To fix the setting, we consider the equation in the fully periodic case d = dl = 2. We study the
equation (3.1), where D consists of a single, circular resonator inside Y . However, instead of considering
the periodic crystal D, we detune the size of some resonators, thereby creating a defect. We will consider
the two defects illustrated in Figure 14, where either a single resonator or a line of resonators are detuned.
We choose a square lattice with unit cell Y

Y =

[
−1

2
,
1

2

)
×
[
−1

2
,
1

2

)
,

and let D be a circle of radius R and Dd a circle of radius R + ε for some −R < ε < 1 − R. Then we
define the defect crystals

Dpt =

(
⋃

m∈Z2\{(0,0)}

D +m

)
∪Dd, Dln =

(
⋃

m1∈Z,m2∈Z\{0}

D + (m1,m2)

)
∪
(

⋃

m∈Z×{0}

Dd +m

)
.

We will always consider defect structures in relation to a corresponding unperturbed, periodic structure,
in this case D.

Definition 4.7 (Subwavelength band-gap frequency). A subwavelength resonant frequency of a resonator
structure with a defect is called a subwavelength band-gap frequency if it lies inside a band gap of the
unperturbed structure.
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(a) Point-defect crystal.

D
Dd · · ·· · ·

...

...

vvr
δ

Y

Ystrip

(b) Line-defect crystal.

Figure 14: Illustration of the two different defect crystals, and the material parameters, in the case of smaller
defect resonator.

4.4.1 Fictitious source method for point defects

We wish to solve (3.1) where the periodic crystal D is replaced by Dpt or Dln. Firstly, we observe that
Dln is periodic in the x1-direction, so corresponding problem can be reduced to the quasiperiodic problem
in the strip Ystrip =

[
− 1

2 ,
1
2

)
× R by Floquet-Bloch theory. This makes the analysis of the two problems

(Dpt on R
2 or Dln on Ystrip) conceptually very similar. We will outline the method of fictitious sources

in the case of a point defect. We are studying the problem




∆u+ k2u = 0 in R
2\Dpt,

∆u+ k2ru = 0 in Dpt,

u|+ − u|− = 0 on ∂Dpt,

δ
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−

= 0 on ∂Dpt,

(4.11)

where kr = ω/vr and vr is the wave speed inside the resonators. The idea is to replace the defected
resonator with an unperturbed resonator, along with fictitious sources which are designed to make the
new problem equivalent to the original. More precisely, we consider the problem





∆ũ+ k2ũ = 0 in R
2\D,

∆ũ+ k2r ũ = 0 in D,
ũ|+ − ũ|− = fχ∂D on ∂D,

δ
∂ũ

∂ν

∣∣∣∣
+

− ∂ũ

∂ν

∣∣∣∣
−

= gχ∂D on ∂D,

(4.12)

where f, g are the source terms and χ∂D is, as usual, the characteristic function of ∂D. Note that (4.12)
is posed on the periodic geometry D, and that the non-zero sources are present only on the boundary of
the central resonator D. We seek solutions u of (4.11) and ũ of (4.12) for ω inside the band gap of the
periodic problem. Inside the unit cell Y , we can represent the solution ũ as

ũ =

{
H + Sk

D[φ] in Y \D,
Skr

D [ψ] in D,
(4.13)

where H satisfies the homogeneous equation ∆H+k2H = 0 in Y . Using this approach, we can explicitly
compute f, g in terms of ψ, φ so that ũ coincides with u in Y \ (D ∩Dd).

Lemma 4.8. The density pair (ψ, φ) and the effective sources (f, g) satisfy the following relation

(Aε −A)

(
ψ
φ

)
=

(
f
g

)
, (4.14)
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where Aε is defined as
Aε := (P2)

−1ADd
P1. (4.15)

Here, A and ADd
are the operators defined in Lemma 2.1 for the domains D and Dd, respectively, and

the operators P1 : L2(∂D)2 → L2(∂Dd)
2 and P2 : L2(∂D)2 → L2(∂Dd)

2 are defined by

P1

(
einθ

eimθ

)
= δmn

R

Rd




H
(1)
n (krR)

H
(1)
n (krRd)

einθ

Jn(kR)

Jn(kRd)
einθ


 , P2

(
einθ

eimθ

)
= δmn




Jn(kRd)

Jn(kR)
einθ

J ′
n(kRd)

J ′
n(kR)

einθ


 .

As in previous settings, we can use an integral equation formulation of the problem. In the defect
crystal setting, however, the formulation is slightly different than previously [15].

Lemma 4.9. The subwavelength band-gap frequencies of (4.11) are precisely the characteristic values
ω = ωε(δ) of the operator

Mε(ω, δ) = I +

(
1

(2π)2

∫

Y ∗

Aα(ω, δ)−1 dα

)(
Aε

D(ω, δ)−A(ω, δ)
)

(4.16)

inside the band gap of D, such that ωε → 0 as δ → 0. Here, Aα is the operator defined in Lemma 3.4,
which is invertible for ω inside the band gap.

We let ω∗ = ω∗(δ) be the maximum of the first band:

ω∗(δ) = max
α∈Y ∗

ωα
1 (δ).

The following theorem demonstrates the existence of band-gap frequencies in the point defect crystal [15].

Theorem 4.10. Assume that δ and ε are small enough and the pair (R, ε) satisfies one of the two
assumptions:

(i) R small enough and ε < 0 (dilute regime);

(ii) R close enough to 1/2 and ε > 0 (non-dilute regime).

Then there exists a subwavelength band-gap frequency ωε of (4.11). In both cases we have the asymptotic
expansion

ωε − ω∗ = exp

(
− µ

δε
+O

(
1

ε ln δ

))
,

when ε and δ go to zero, for some constant µ > 0.

Remark 4.11. An explicit expression for µ is given in [15].

Remark 4.12. In the reverse cases, i.e. if R is close to 1/2 and ε < 0 or if R is small and ε > 0,
there will be no band-gap frequencies. In these cases, the resonance frequency of the defected resonator
is shifted downwards, and will therefore lie outside of the band gap.

4.4.2 Guided waves in line defects

We let Dln be the line defect crystal and study the problem




∆u+ k2u = 0 in R
2\Dln,

∆u+ k2ru = 0 in Dln,

u|+ − u|− = 0 on ∂Dln,

δ
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−

= 0 on ∂Dln,

u(x1, x2)e
−iαx1 is periodic.

(4.17)

In this case, we have a very similar characterization of the band-gap frequencies to the one given in
Lemma 4.9.
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(a) Localized mode.
(b) Subwavelength bulk band (dotted black) and band-
gap frequency (solid red).

Figure 15: Localized mode on subwavelength scales (a) and corresponding band-gap frequency (b). These point
defect structures can provide a good degree of localization. However, as is apparent from (b), the band-gap frequency
is exponentially close to the edge of the bulk band and is therefore sensitive to imperfections of the structure.

Lemma 4.13. The subwavelength band-gap frequencies of (4.11) are precisely the characteristic values
ω = ωε(δ, α1) of the operator

Mε,α1(ω, δ) = I +

(
1

2π

∫ π

−π

A(α1,α2)(ω, δ)−1 dα2

)(
Aε

D(ω, δ)−A(ω, δ)
)

(4.18)

inside the band gap of D, such that ωε → 0 as δ → 0.

We now let ωα1,∗ be the maximum of the first band at α = (α1, α2):

ωα1,∗(δ) = max
α2∈[−π,π]

ω
(α1,α2)
1 (δ).

Then we have the following result.

Theorem 4.14. Assume that δ and ε are small enough and the pair (R, ε) satisfies one of the two
assumptions:

(i) R small enough and ε < 0 (dilute regime);

(ii) R close enough to 1/2 and ε > 0 (non-dilute regime).

Then there exists a subwavelength resonant frequency ωε of (4.17) satisfying ωε > ωα1,∗. Moreover, as
δ, ε→ 0 we have

ωε(δ, α1) = ωα1,∗(δ) + µ(α1)
√
δε2 +O

(
ε2
√
δ

(
1

ln δ
+ ε

))
(4.19)

for some µ = µ(α1) > 0 which is independent of ε and δ.

We call ωε, viewed as a function of α1, a defect band. We emphasize that parts of the defect band
might not correspond to band-gap frequencies in the sense of Definition 4.7: from Theorem 4.14 we know
that ωε(α1) > ωα1,∗ while in order for ωε to lie in the band gap of D we need ωε(α1) > ω∗ where, as
before, ω∗ = maxα1∈[−π,π] ω

α1,∗
1 .

In order for the whole defect band to lie in the subwavelength band gap, we need a sufficiently large
ε. Since Theorem 4.14 is based on asymptotically expanding M for small ε, a different analysis is needed
to handle this case. The following result is based on asymptotics in the dilute regime, and is valid even
for ε with large magnitude [21].

Theorem 4.15. For δ and R small enough, and for fixed ε ∈ (−R, 0), there exists a unique subwavelength
resonant frequency ωε of (4.17) satisfying ωε > ωα1,∗. For α1 6= 0,

ωε(α1) = ω̂ +O
(
R2 + δ

)
,
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where ω̂ is the root of the following equation:

1 +

(
ω̂2R2

2δ
ln

R

Rd
+

(
1− R2

R2
d

))
1

2π

∫ π

−π

(ωα)2

ω̂2 − (ωα)2
dα2 = 0. (4.20)

For δ and R small enough, and for fixed ε ∈ [0, 1 − R), there are no resonant frequencies satisfying
ωε > ωα1,∗.

Proposition 4.16. For R and δ small enough, there exists an ε0 > 0 such that for any ε ∈ (−R,−ε0)
we have

ωε(α1) > ω∗

for all α1 ∈ [−π, π].

In order for the line defect crystal to be useful as a waveguide, we need the localized modes to
propagate along the defect line. In other words, we must exclude the case of bound modes, which are
modes that are localized along the direction of the line. If there is such a mode u, corresponding to a
frequency ω, we can apply the Floquet transform so that uα(x) := F [u](x, α) solves (4.11) for any α.
Corresponding band function attains the same value ω for any α, so we conclude that bound modes are
associated to flat band functions. The next result from [21] shows that the defect modes in our case are
not bound along the defect line.

Proposition 4.17. For δ and R small enough, and for α1 /∈ {0, π}, the subwavelength resonant frequency
ωε = ωε(α1) satisfies

∂ωε

∂α1
6= 0.

(a) Guided mode.
(b) Subwavelength bulk band (solid blue) and defect band
(dashed red).

Figure 16: Guided mode at subwavelength scales (a) and corresponding band-gap frequency (b). Here ε < −ε0,
which means that the whole defect band will be above the bulk band. Moreover, we see that the defect band is
not flat, and corresponding modes are propagating along the line defect. The defect band was computed using the
asymptotic formula (4.20) (red dashed) and by discretizing the operator Mε,α1(ω, δ) (defined in (4.18)) using the
multipole method (red circles).

The integral representation for the localized and guided waves (Lemma 4.9 and Lemma 4.13) can be
discretized using the multipole method, which provides an efficient method to compute the band-gap
frequency and corresponding localized mode (see Figure 15 and Figure 16).

4.5 Robust guiding at subwavelength scales

There is a fundamental restriction of the practical applicability of the localized modes studied in Sec-
tion 4.4. Taking the point defect as example, we have from Theorem 4.10 that the band-gap frequency
is exponentially close to the edge of the bulk bands (see Figure 15). When fabricating such structures,
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there is a large risk that small imperfections will cause the band-gap frequency to be lost inside the bulk
bands, so that the desirable localization property disappears.

For structures to have physically achievable localization properties, such properties must be robust
against imperfections of their design. To accomplish this, we take inspiration from the field of topological
insulators. These are materials which can conduct current along the edges of the material, while are
insulating in the bulk. The striking property of topological insulators is that these conducting edge
modes originate from the structure of the bulk, rather than the edge itself. Moreover, they are localized
to the edges and exhibit a remarkable robustness against perturbations of the system.

We study a high-contrast resonator analogue of the Su-Schrieffer-Heeger (SSH) model [61]. We con-
sider the case of a chain of resonators, corresponding to d = 3 and dl = 1, where the unit cell is given
by

Y =

[
−L
2
,
L

2

)
× R

2.

Moreover, we consider the case of a dimer of resonators D = D1 ∪ D2. We need two assumptions
of symmetry for the analysis that follows. The first assumption is that each individual resonator is
symmetric in the sense that there exists some x1 ∈ R such that

R1D1 = D1, R2D2 = D2, (4.21)

where R1 and R2 are the reflections in the planes p1 = {−x1}×R
2 and p2 = {x1}×R

2, respectively. We
also assume that the dimer is symmetric in the sense that

PD1 = D2, (4.22)

where, as before P(x) = −x. We denote the resonator separation within the cell as l, and between the
cells as l′, i.e.

l = 2x1, l′ = L− l,

see Figure 17. For simplicity, we choose v = v1 = v2 = 1, and study effects originating from the geometry
of the structure. As we shall see, a topological phase transition occurs when l changes across the symmetry
point l = L/2 (corresponding to l = l′).

We begin by considering the periodic equation





∆uα + ω2uα = 0 in R
3 \ ∂D,

uα|+ − uα|− = 0 on ∂D,

δ
∂uα

∂ν

∣∣∣∣
+

− ∂uα

∂ν

∣∣∣∣
−

= 0 on ∂D,

e−iα1x1uα(x1, x2, x3) is periodic in x1,

uα(x1, x2, x3) satisfies the α-quasiperiodic outgoing radiation condition

as
√
x22 + x23 → ∞.

(4.23)

To enable explicit computations of asymptotic expansions and topological properties, we will assume
that the resonators are dilute, in the sense that they occupy a small volume compared to the surrounding
medium. As in Section 4.3, we assume that the resonators can be obtained by rescaling fixed domains
B1, B2 as follows:

D1 = εB1 −
(
l

2
, 0, 0

)
, D2 = εB2 +

(
l

2
, 0, 0

)
, (4.24)

for some small parameter ε > 0. The first result shows that, in addition to the band gap above the second
band, there is also a band gap between the first two bands in the case l 6= L/2 [7].

Theorem 4.18. In the dilute regime and with δ sufficiently small, there exists a subwavelength band gap
between the first two bands if l 6= L/2, i.e.

max
α∈Y ∗

ωα
1 < min

α∈Y ∗

ωα
2 ,

for ε and δ small enough.
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Figure 17: Example of the array, drawn to illustrate the symmetry assumptions.

In the case l = l′ = L/2, the first and the second bands will have a degeneracy at α = π/L. Moreover,
the two bands will intersect linearly in a so-called Dirac cone. By altering l, this Dirac cone will open a
band gap. As we shall see, the nature of this band gap is fundamentally different in the two cases l < l′

and l > l′.

4.5.1 Topological indices and band inversion

We will now define an index which quantifies the topological properties of the Bloch eigenbundle.

Definition 4.19 (Zak phase). For a non-degenerate band ωα
j , we let uαj be a family of normalized

eigenmodes which depends continuously on α. We then define the Zak phase ϕzak
j as

ϕzak
j := i

∫

Y ∗

〈
uαj ,

∂

∂α
uαj
〉
dα,

where 〈·, ·〉 denotes the L2(D)-inner product.

Qualitatively, a non-zero Zak phase means that the crystal has undergone band inversion, meaning
that at some point in the Brillouin zone the monopole/dipole nature of the first/second Bloch eigenmodes
has swapped. In the current setting, a monopole mode is a mode with even parity, while a dipole mode
is a mode with odd parity. For the two-resonator chain studied here, the first mode will always be of
monopole nature at the origin α = 0 (which is a consequence of the fact that the eigenvectors of the
periodic capacitance matrix C0 are, respectively, ( 11 ) and

(
1
−1

)
). At α = π/L, the modes will also be

of monopole/dipole nature, but which of these corresponds to the first or second mode depends on the
geometry of the structure [10].

Theorem 4.20. We assume that D is in the dilute regime specified by (4.24). Then the Zak phase
satisfies

ϕz
j =

{
0, if l < l′,

π, if l > l′,

for ε and δ small enough.

The Zak phase predicts band inversion in the case l > l′, which is the statement of the next result.

Proposition 4.21. For ε and δ small enough, the crystal has undergone band inversion in the case l > l′,
but not if l < l′. In other words, the eigenfunctions associated with the first and second bands at α = π/L
satisfy

u
π/L
1 (−x) = u

π/L
1 (x), u

π/L
2 (−x) = −uπ/L2 (x), when l < l′,

u
π/L
1 (−x) = −uπ/L1 (x), u

π/L
2 (−x) = u

π/L
2 (x), when l > l′.
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As δ → 0, these eigenfunctions are given, respectively, by

u
π/L
1 (x) = ( 11 ) · S

π/L,ω
D (x) +O(δ), u

π/L
2 (x) =

(
1
−1

)
· Sπ/L,ω

D (x) +O(δ), when l < l′,

u
π/L
1 (x) =

(
1
−1

)
· Sπ/L,ω

D (x) +O(δ), u
π/L
2 (x) = ( 11 ) · S

π/L,ω
D (x) +O(δ), when l < l′.

Here, Sα,ω
D (x) is the function defined in Corollary 3.13.

4.5.2 Robustness of edge modes

We now study a finite chain of resonators which supports topologically protected edge modes. Specifically,
we assume that D has the form

D =

(
M⋃

n=−M

D0 + n(l + l′, 0, 0)

)
⋃
(

M⋃

n=−M+1

D0 + n(l + l′, 0, 0)− (l′, 0, 0)

)
, (4.25)

where D0 is a single repeating resonator. In other words, D consists of an odd number N of identical
resonators (N = 4M + 1) with alternating distances l and l′ that are swapped at the middle resonator.
An example of such a configuration is depicted in Figure 18. In this figure, it is shown how to associate
different Zak phases on either side of the central resonator (which constitutes the “edge”). Based on the
principle of bulk-boundary correspondence, we thereby expect robust localized modes around this edge.

We model wave propagation in the crystal D by the Helmholtz problem




∆u+ ω2u = 0 in R
3 \ ∂D,

u|+ − u|− = 0 on ∂D,

δ
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−

= 0 on ∂D,

|x|
(

∂
∂|x| − iω

)
u→ 0 as |x| → ∞.

(4.26)

Figure 19 shows a comparison between the band-gap frequencies of a chain with a topological defect (as
in Figure 18), compared against a chain with a point defect (analogously as in Section 4.4). Not only is
the topological band-gap frequency further away from the edges of the band gap, but it also exhibits a
lower variance when random Gaussian errors is imposed on the resonator locations. For large error, we
see that the band-gap frequency of the topological defect chain (Figure 19a) is much more robust than
the band-gap frequency of the point-defect chain.

In Remark 2.17 we observed that, under the dilute assumption, the capacitance formulation is anal-
ogous to the tight-binding model commonly utilized in studies of quantum-mechanical systems. The
tight-binding model is often coupled with a nearest-neighbour approximation, whereby long-range in-
teractions are neglected. Figure 20b shows the bulk and band-gap frequencies computed using such
nearest-neighbour approximation. Compared to Figure 20a, where all interactions are taken into ac-
count, we observe that the nearest-neighbour approximation is not accurate. This discrepancy shows a
fundamental difference between topological edge modes in the setting of classical waves and quantum-
mechanical waves. Moreover, we see that the band-gap frequency in Figure 20b is unaffected by the error.
This can be seen as a consequence of chiral symmetry, which is not present without the nearest-neighbour
approximation.

4.5.3 Edge modes in a dislocated chain

In Section 4.5.1 we saw that the structure under consideration has different topological properties in the
different cases l > l′ and l < l′. These two regimes only differ by a choice of unit cell: if we shift the
unit cell Y by L/2 the regimes will be swapped. Correspondingly, edges between the different topological
regimes are created by introducing a shift between the unit cells on either side of the edge. This is
exemplified in Figure 18. Another example of this principle is to translate, or dislocate, half the chain by
some distance d as illustrated in Figure 21. In this case, we consider a chain of resonators given by

Ddisloc =

(
−1⋃

m=−∞

D + (mL, 0, 0)

)
∪
(

∞⋃

m=0

D + (mL+ d, 0, 0)

)
,
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l′l′l l

ϕz
j = 0 ϕz

j = π

Figure 18: Two-dimensional cross-section of a finite dimer chain with 13 resonators, heuristically showing how
to identify unit cells with different Zak phases on either side of the edge.

(a) Dimer chain with 41 resonators, separation dis-
tances d = 3, d′ = 6.

(b) Point-defect chain with 41 resonators, separation
distance d = 12 and defect radius Rd = 0.99.

Figure 19: Simulation of band-gap frequency (red) and bulk frequencies (black) of a topological defect (a) and point
defect (b) chain, with Gaussian N (0, σ2) errors added to the resonator positions. The standard deviation σ is
expressed as a percentage of the average resonator separation.

(a) Dilute dimer chain with 41 resonators, separation
distances d = 12, d′ = 42.

(b) Nearest-neighbour approximation for the dilute
dimer chain from (a).

Figure 20: Similar simulations as in Figure 19, but for a dilute chain. (a): fully-coupled simulations, where
all interactions are taken into account. (b): nearest-neighbour approximation, where long-range interactions
are neglected. The nearest-neighbour approximation provides a chirally symmetric problem, in which the centre
frequency is preserved. This approximation is not accurate, and the centre frequency will have a small but non-zero
variance corresponding to small but non-zero long-range interactions.

37



. . .. . .

. . .. . .

d

Figure 21: We start with an array of pairs of subwavelength resonators, known to have a subwavelength band gap.
A dislocation (with size d > 0) is introduced to create band-gap frequencies.

where D is the resonator dimer defined as in the beginning of this section.
Qualitatively, it is straightforward to understand how the dislocation will affect the existence and

behaviour of band-gap frequencies. As d increases from 0, we will detune the dimer coupling, which
is responsible for the band gap, and band-gap frequencies will therefore appear from each edge of the
band gap. On the other hand, when d is very large the two half-space chains will decouple, and the
bulk-boundary correspondence suggests that each of these half-chains will support a single band-gap
frequency. We therefore expect only a single band-gap frequency in this limit. As d varies between 0
and ∞ these two frequencies hybridize, and will together cover the whole band gap. This is sketched in
Figure 22.

We now set out to prove that the picture outlined above is correct. Similarly to Section 4.4, we will
apply a fictitious source method to model the dislocated structure Ddisloc in terms of the original structure
D along with fictitious sources on the dislocated resonators. The analysis is separated into three parts,
depending on the value of d:

• d ≪ 1. In this case, we can use asymptotic expansions in terms of d to prove that there is a
band-gap frequency emerging from each edge of the band gap.

• d = mL for some m > 0. This particular dislocation is equivalent to removing m dimers from D.
This observation simplifies the problem and allows explicit computations of the band-gap frequencies
in terms of the eigenvalue problem of certain Toeplitz matrices.

• d > d0, where d0 is the width of one resonator. Due to technical reasons, we restrict the remaining
values of d, so that the dislocated and the original resonators are not overlapping.

d

ω

band-gap frequencies

band gap

essential spectrum

essential spectrum

subwavelength

regime

Figure 22: As the dislocation size d increases from zero, a band-gap frequency appears from each edge of the
subwavelength band gap. These two frequencies converge to a single value within the subwavelength band gap as
d → ∞.

With these ideas at hand, the following two theorems were proved in [7]. The first result, valid for
small d, shows the emergence of a band-gap frequency from each edge of the band gap.

Theorem 4.22. Assume that D1 and D2 are strictly convex. For small enough d and δ, and in the case
l0 > 1/2, there are two band-gap frequencies ω1(d), ω2(d) such that ωj(d) → ω⋄

j , j = 1, 2 as d→ 0. In the
case l0 < 1/2, there are no band-gap frequencies as d, δ → 0.

Theorem 4.23. Assume that the resonators are in the dilute regime specified by (4.24) and that l0 > 1/2.
Then, for small enough δ and ε, there exists some d0 = O(ε) such that there are two band-gap frequencies
ω1(d) and ω2(d) for all d ∈ [d0,∞), both of which converge to the same value ω∞ as d→ ∞.
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In particular, Theorem 4.23 states that the band-gap frequencies will cover an interval I := [ω1(d0), ω2(d0)]
inside the band gap, and therefore allows us to fine-tune the system to achieve optimal robustness. In
Figure 23 we see numerically computed eigenmodes, clearly showing how the edge modes of the “half
system” hybridize to create the two band-gap frequencies.

Figure 23: Left: The two edge modes for an array of 42 spherical resonators of radius 1. Here, we simulate an
array with parameters L = 9, l = 6, d = 30 and δ = 1/7000. Right: For comparison, the edge mode of the
corresponding ‘half system’ is shown, which can be thought of as the d = ∞ case. In both cases, the eigenmodes
are shown directly above the corresponding system of resonators.

4.5.4 Non-Hermitian band inversion and edge modes

In the previous sections, we assumed that the wave speeds satisfy v = v1 = v2 = 1, and only considered
topological phenomena originating from the geometry of the resonator chain. In this section we do the
opposite, namely we study topologically protected modes in structures where the geometry is periodic,
and where topological edges are introduced in terms of the resonator wave speeds. Most importantly,
we allow the wave speeds to be complex, giving a non-Hermitian capacitance formulation similarly as in
Section 4.3. Details of this analysis are found in [18].

We let D be the dimer D = D1 ∪D2 as defined previously in Section 4.5.1. For i = 1, 2 and m ∈ Z,
we introduce the notation

Dm
i := Di + (mL, 0, 0), kmi :=

ω

vmi
.

Here, vmi denotes the wave speed inside Dm
i . We will assume that the contrast parameter is given by

δ ∈ R for all resonators. We then consider





∆u+ k2u = 0 in R
3 \ D,

∆u+ (kmi )2u = 0 in Dm
i ,

u|+ − u|− = 0 on ∂D,

δ
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−

= 0 on ∂D,

u(x1, x2, x3) satisfies the outgoing radiation condition as
√
x22 + x23 → ∞.

(4.27)

In the general setting, this equation is not periodic and cannot be approached using Floquet-Bloch theory.
For prescribed values v1, v2 ∈ C we will consider two different cases, depending on vmi :

Periodic structure: vm1 = v1, m ∈ Z, vm2 = v2, m ∈ Z, (4.28)

Defect structure: vm1 =

{
v1, m ≤ 0,

v2, m > 0,
vm2 =

{
v2, m ≤ 0,

v1, m > 0.
(4.29)

We emphasize that complex values of vi correspond to non-Hermitian structures. In the case v1 = v2,
the periodic structure is PT -symmetric.
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We begin by studying the periodic structure. In Section 4.5.1 we described the concept of band
inversion in the Hermitian case. In the present case, since the quasiperiodic generalized capacitance
matrix Cα is non-Hermitian, the band inversion phenomenon is formulated in a slightly different manner.
For j = 1, 2, we let uj and wj denote a bi-orthogonal system of eigenvectors of Cα. In other words, uj

and wj are eigenvectors of Cα and (Cα)
∗
, respectively, and satisfy wi · uj = δij .

We let the right Bloch eigenmodes uαj be the modes of (4.27), and the left Bloch eigenmodes wα
j be

the modes of (4.27) with wave speeds given by v1 and v2, respectively. From Corollary 3.13, we then
have

uαj = uj · Sα,k
D (x) +O(δ1/2),

wα
j = wj · Sα,k

D (x) +O(δ1/2).

Definition 4.24 (non-Hermitian Zak phase). For a non-degenerate band ωα
j of the periodic structure

(4.28), we let uαj and wα
j be a family of normalized right, respectively left, eigenmodes which depend

continuously on α. We define the (non-Hermitian) Zak phase ϕzak
j by

ϕzak
j :=

i

2

∫

Y ∗

(〈
wα

j ,
∂uαj
∂α

〉
+
〈
uαj ,

∂wα
j

∂α

〉)
dα.

In the case v1 = v2 ∈ R, this definition coincides with Definition 4.19, and we therefore choose the
same notation for these two definitions. In the sequel, we will occasionally write ϕzak

j (v1, v2) to denote
the Zak phase defined with wave speed v1 inside D1 and v2 inside D2.

In the Hermitian case, a non-zero Zak phase is equivalent to an inverted band structure. The fact that
the Hermitian Zak phase is quantized originates from the fact that the eigenmodes are purely monopole
and dipole modes at α = 0 and α = π/L. Unlike the Hermitian case, the non-Hermitian Zak phase is not
quantized. A non-integer value of the Zak phase can be attributed to a “partial” band inversion, where
the eigenmodes are expressed as (complex) linear combinations of monopole and dipole modes, which
swap as α traverses Y ∗.

For the next result, we will assume that the Hermitian counterpart of the structure is topologically
trivial. More precisely, we assume

ϕzak
j

(
Re(v1),Re(v2)

)
= 0. (4.30)

Then the following result from [18] holds.

Proposition 4.25. Assume that the chain is periodic and topologically trivial, in other words that it
satisfies (4.28) and (4.30). Then we have

ϕzak
j (v1, v2) = −ϕzak

j (v2, v1) +O(δ) and ϕzak
j (v1, v2) = ϕzak

j (v1, v2) +O(δ).

In particular, if v2 = v1, we have ϕzak
j (v1, v1) = O(δ).

Remark 4.26. Proposition 4.25 provides intuition on how to create structures supporting edge modes.
Proposition 4.25 shows that distinct Zak phases can, in general, be achieved by swapping v1 and v2
while keeping the geometry fixed. Therefore, the defect specified in (4.29) results in Zak phases with
opposite signs on the different sides of the edge. The reason we assume (4.30) is to emphasize that
distinct Zak phases can originate as a pure non-Hermitian effect, which disappears in the Hermitian limit
as Im(v1), Im(v2) → 0.

We now turn to the analysis of the defect problem, specified in (4.29) and illustrated in Figure 24.
Since the geometry of this defect chain is periodic, we can utilize a Floquet-Bloch approach to derive a
capacitance matrix characterization of any localized mode. We define the matrices

A =

(
1 b

b 1

)
, B = |D1|

( (
δv22
)−1

b
(
δv21
)−1

b
(
δv21
)−1 (

δv22
)−1

)
,
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v2 v1

m = 1

v1 v2

m = 0

v1 v2

m = −1

· · · v2 v1

m = 2

· · ·

Figure 24: Illustration of the edge. The special case v1 = v2 corresponds to local PT symmetry. Legend:
material parameter v1, material parameter v2.

for some parameter b ∈ C, which can be interpreted as the decay of the localized mode between two
consecutive resonators. The corresponding capacitance matrix, whose eigenvalue problem provides a
discrete approximation to the localized mode and corresponding frequency, is given by

Cedge = B−1CαA.

The eigenvalues of this matrix depend on α ∈ Y ∗. In order for localized modes to exist, there must be an
eigenvalue µ = µα

j (b0) of Cedge which is constant in α for some b = b0. We can then compute b as b = b±,
where

b± =
1

2


l
(
1− v21

v22

)
±

√

l2
(
1− v21

v22

)2

+
4v21
v22


 , l =

λ2 + λ1
λ2 − λ1

, (4.31)

with λ1 = C
π/L
11 + C

π/L
12 and λ2 = 2C0

11. Depending on the values of v1 and v2, we either have |b+| =
|b−| = 1 (in which case there are no localized modes) or that |b±| < 1 while |b∓| > 1. Based on these
ideas, we can prove the following result [18].

Theorem 4.27. Suppose that the array of resonators has a defect in the material parameters specified
by (4.29). Then, for small δ,

• if v1 = v2 with Im(v1)
2 ≤ Re(v1)

2

l2−1 (unbroken PT -symmetry), the structure does not support simple
localized modes in the subwavelength regime.

• if v1 = v2 with Im(v1)
2 > Re(v1)

2

l2−1 (broken PT -symmetry) or if v1 6= v2 (no PT -symmetry), the
frequency ω of a simple localized mode in the subwavelength regime must satisfy

ω =
√
µα
j (b0) +O(δ).

Here, b0 is the value of b specified by (4.31) satisfying |b0| < 1.

Remark 4.28. Theorem 4.27 provides a characterization of the possible frequency ω and decay length b
of simple localized modes in the subwavelength regime. In order to prove that such mode indeed exists,
we would have to prove that one eigenvalue µα

j (b0) is indeed constant in α. Analytically, this is obscured
by the fact that the capacitance coefficients have a complicated dependency on α. Numerically, however,
the eigenvalues µ are straightforward to compute, providing convincing evidence for such modes to exist.
Moreover, the localized modes can easily be computed in large finite chains (see Figure 25), demonstrating
excellent agreement between the numerical and theoretically predicted values.

In both the Hermitian and non-Hermitian cases, there are degeneracies associated to symmetric
structures. Breaking the symmetry can open the degeneracy into topologically distinct band gaps as
illustrated in Figure 26. In the Hermitian case, the degeneracy is a linear intersection known as a Dirac
cone. In the non-Hermitian, PT -symmetric case, there can be exceptional point degeneracies which open
when the PT -symmetry is detuned. In both the Hermitian and the non-Hermitian case, edge modes are
created when the two topologically different phases are joined along an interface.
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(a) Localized mode in the case of small imaginary part. (b) Localized mode in the case of large imaginary part.

Figure 25: Plots of localized modes in finite, large, arrays of resonators. Observe the different x-axis scales in
the two subfigures, demonstrating significantly different degrees of localization. The localized modes have purely
non-Hermitian origin and disappear in the Hermitian limit when Im(vi) → 0.

Hermitian:

α

ω

l0 < 1/2
No band inversion

α

ω

Dirac cone degeneracy
l0 = 1/2

α

ω

l0 > 1/2
Full band inversion

Non-Hermitian:

α

ω

Partial inversion
|v1| < |v2|

α

ω

Exceptional point
v1 = v2

α

ω

Partial inversion
|v1| > |v2|

Figure 26: Comparison between the topological phase transitions studied in Section 4.5.1 and Section 4.5.4. In
the Hermitian case studied in Section 4.5.1, the Dirac cone found in the symmetric case l0 = 1/2 can open into
topologically distinct band gaps. In the non-Hermitian case, the degeneracy corresponds to an exceptional point.
This exceptional point can open into separable bands which have distinct, albeit non-quantized, Zak phases.

4.6 Bound states in the continuum and Fano resonances

Sometimes, localized modes can exist in periodic structures without a defect. This typically happens
when the structure has certain symmetries, resulting in resonant modes in the radiation continuum
whose far-field radiation vanishes. Such states are known as bound states in the continuum.

Definition 4.29. A resonant mode uαn of (3.3) is said to be a bound state in the continuum if the
corresponding resonant frequency ωα

n is real, satisfies |α| < ωα
n/v and the mode satisfies,

uαn(xl, x0) = O(e−K|x0|), |x0| → ∞, K > 0.

As we shall see, there are two symmetry conditions required to achieve bound states in the continuum
in the subwavelength resonator arrays. The first condition is a symmetry condition of the structure D,
while the second condition is that α = 0, which corresponds to modes that radiate perpendicularly to
the structure. We then have the following result from [8].

Theorem 4.30. Assume that d − dl = 1 and that D = D1 ∪D2 ⊂ Y . We assume that D satisfies the
symmetry conditions

PD1 = D2, P0D1 = D1 P0D2 = D2,

42



and δ1v
2
2 = δ2v

2
2 ∈ R, where P,P0 : Rd → R

d are the parity operators

P(x) = −x and P0(xl, x0) = (xl,−x0).

Moreover, we assume that α = 0. Then, for small enough δ, the second resonant mode u02 is a bound
state in the continuum.

Interestingly, we can never have the first resonant mode u01 as a bound state in the continuum. This is
due to the fact that the first mode corresponds to the broad, low-frequency response of the screen which
is not due to the local resonance of the structure.

An interesting problem is now to describe the behaviour when the symmetry conditions are no longer
satisfied. In particular, when P0Di 6= Di, we can use Theorem 3.21 to conclude that ωα

2 has a small
but non-zero imaginary part. As we will see next, this causes an interesting Fano-type transmission
scattering.

Given a unit vector w = (wl, w0) ∈ R
d with w0 > 0 we define the wave vectors

k+ =
ω

v

(
wl

w0

)
, k− =

ω

v

(
wl

−w0

)
.

We also let α = ω
vwl. We now assume that

uin(x) = c1e
ik−·x + c2e

ik+·x,

and seek the behaviour of the solution u of (3.12). In the first radiation continuum, the scattered field
u − uin consists of a single propagating mode as |x0| → ∞. We will write f ∼ g to denote that two
functions f, g are equal up to exponentially decaying factors, in the sense that there is some constant
K > 0 such that

|f(xl, x0)− g(xl, x0)| = O(e−Kx0) as x0 → ∞.

We therefore have

u ∼
{
c1e

ik−·x + d1e
ik+·x, x0 → ∞,

c2e
ik+·x + d2e

ik−·x, x0 → −∞,
(4.32)

where (
d1
d2

)
= S

(
c1
c2

)
, S =

(
r+ t−
t+ r−

)
. (4.33)

S is known as the scattering matrix. The reflection and transmission coefficients r+, t+ are the coefficients
of the outgoing part of the field in the case uin(x) = eik−·x, i.e. when the incident field is a plane wave
from the positive x0 direction (and reversely for r−, t−). The following theorem was proved in [8].

Theorem 4.31. Assume that PD = D and that 0 ≤ ω ≤ K
√
δ for some constant K. Let c =∫

∂D
y0ψ

0
1(t) dσ(y) and assume that c 6= 0. Then we have the following asymptotic expansion of the

scattering matrix as δ → 0

S =
ωα
1

ωα
1 − ω

(
1 1
1 1

)
+

2iω Im(ωα
2 )

(ωα
2 )

2 − ω2

(
1 −1
−1 1

)
−
(
1 0
0 1

)
+O(δ1/2), (4.34)

where the error term is uniform with respect to ω.

The scattering matrix S contains two transmission peaks originating from the resonances ωα
1 and ωα

2 .
Since the imaginary part of ωα

2 is very small, this corresponds to a sharp peak which will interfere with
the broader peak associated to ωα

1 to create an asymmetric, Fano-type, transmission peak as illustrated
in Figure 27.
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· · ·· · ·
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(a) Sketch of a screen of resonators with an incident plane
wave uin. In this case, we have resonators arranged in a
P-symmetric dimer that is inclined at an angle of θ to the
plane of the metascreen.
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0.6

0.8

1

(b) Transmission spectrum for the system in (a) with θ =
0.025π.

Figure 27: Sketch of a resonator screen (a) and corresponding transmission spectrum (b). If θ = 0, the resonant
modes at α = 0 are bound states in the continuum and the transmission spectrum does not show a resonant peak at
ω ≈ 3. For small but non-zero θ, a characteristic Fano-type transmission peak appears at the resonant frequency.

4.7 Extraordinary transmission and unidirectional reflection

We now investigate further scattering phenomena of resonator screens. In particular, we will extend the
analysis in the previous section (valid in the Hermitian case when vi ∈ R) to the non-Hermitian case with
a PT -symmetric screen. We assume that

δ1v
2
1 = a+ ib, δ2v

2
2 = a− ib,

in other words that δ1v
2
1 = T (δ2v

2
2). Then we can apply Theorem 3.21 to conclude that

ωα
2 =

√
2aC0

11

|D1|
+

ik0
4C0

11

(
b2|Yl|
a2

− c2

|Yl|

)
+O(δ3/2),

where k0 and c are defined as in the previous section. The following theorem, proved in [11], describes
the scattering behaviour of this PT -symmetrical screen of resonators.

Theorem 4.32. Assume that D is PT -symmetric, so that PD1 = D2 while δ1v
2
1 = a+ib and δ2v

2
2 = a−ib

for a > 0, b ≥ 0. Moreover, assume that P3D1 = D2. Let c =
∫
∂D

y0ψ
0
1(t) dσ(y) and ω∗ =

√
2aC0

11

|D1|
.

Assume that b|Yl| 6= a|c| and that ω ∈ R is in the subwavelength regime such that ω − ω∗ = O(δ). We
then have the following asymptotic expansion of the scattering matrix:

S =
2iω Im(ωα

2 )

(ωα
2 )

2 − ω2

(
1 −1
−1 1

)
+

2k0b

a|D1|
(
(ωα

2 )
2 − ω2

)
(
−ac ib|Yl|
ib|Yl| ac

)
−
(
1 0
0 1

)
+O(δ1/2),

where the error term is uniform with respect to ω in a neighbourhood of ω∗. In particular, we have

r± = −
ω2
∗ − ω2 ± 2k0bc

|D1|

(ωα
2 )

2 − ω2
+O(δ1/2),

and, at leading order, r+ and r− vanish at ω = ω+ and ω = ω−, respectively, which are given by

ω2
+ = ω2

∗ +
2k0bc

|D1|
, ω2

− = ω2
∗ −

2k0bc

|D1|
.

Comparing Theorem 4.31 (which is valid only for b = 0) and Theorem 4.32, we see that there is an
extra term in Theorem 4.32 corresponding to the non-zero gain and loss b 6= 0. This term is responsible
for the approximate zeros of r+ and r− leading to unidirectional reflection. This is numerically verified
in Figure 28, where we observe that the two reflectances vanish on different sides of the critical frequency
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ω∗. Moreover, at least formally, we see that when Im(ωα
2 ) = 0, the singularity of the scattering matrix S

will not vanish in the case b 6= 0. In the Hermitian case, real resonances correspond to bound states in
the continuum, which decouple from the far-field and therefore cannot be excited by incoming waves. In
the non-Hermitian case, however, we can have real resonances with modes which are excited by incoming
waves. Such resonances correspond to extraordinary transmission, where the transmitted field is greatly
amplified. This amplification, which is impossible in the Hermitian case due to energy conservation, is
possible due to the energy input in the non-Hermitian case [11].
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Figure 28: Plot of the transmittance T± = |t±|
2 (blue) and reflectance R± = |r±|

2 (red) as functions of the
frequency. Due to reciprocity we have T+ = T−. However, we observe that R+ 6= R−. In particular, there are
points when R± vanish while R∓ is non-zero, known as unidirectional reflection. Moreover, in this non-Hermitian
case the transmission coefficients are not bounded by unity and can attain large peak values, known as extraordinary
transmission.

4.8 Time-modulated metamaterials

We have now seen a variety of phenomena that can occur when the material parameters vary periodically
in the spatial variable x. Mathematically, we can treat the time variable t in a similar fashion. If
the material parameters depend periodically on t, there can be conceptually similar phenomena which
nevertheless have fundamentally different physical implications.

The Helmholtz equation we have studied so far originates from the scalar wave equation when posed
in the frequency domain, and is valid only when the material parameters are constant in time. To study
the time-dependent case, we return to the wave equation

(
∂

∂t

1

κ(x, t)

∂

∂t
−∇ · 1

ρ(x, t)
∇
)
u(x, t) = 0, x ∈ R

d, t ∈ R. (4.35)

Here, κ(x, t) and ρ(x, t) are the material parameters. We consider the case of a finite collection of
resonators D = D1 ∪ ... ∪ DN in d = 3 spatial dimensions. We assume that the modulation is only
performed inside the resonators, so that

κ(x, t) =

{
κ0, x ∈ R

3 \D,
κi(t), x ∈ Di,

, ρ(x, t) =

{
ρ0, x ∈ R

3 \D,
ρi(t), x ∈ Di.

(4.36)

We assume that κi ∈ C1(R) for each i = 1, ..., N . We will consider the case when the modulation of 1/ρ
and 1/κ consist of a finite Fourier series with a large number of Fourier coefficients:

1

ρi(t)
=

M∑

n=−M

ri,ne
inΩt,

1

κi(t)
=

M∑

n=−M

ki,ne
inΩt,

for some M ∈ N satisfying M = O
(
δ−γ/2

)
for some 0 < γ < 1. Moreover, we assume that they are

periodic in t with period T and frequency Ω = 2π
T .
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As before we define the (time-dependent) contrast parameter and wave speeds as

δi(t) =
ρi(t)

ρ0
, vi(t) =

√
κi(t)

ρi(t)
, v0 =

√
κ0
ρ0
,

and assume that
δi(t) = O(δ), vi(t) = O(1) v = O(1), for all t ∈ R,

for i = 1, ..., N , where δ ≪ 1.
The notion of frequency is slightly altered in this time-modulated setting. Since the wave equation

(4.35) is periodic in t, we can apply the Floquet transform in t and obtain the differential problem





(
∂

∂t

1

κ(x, t)

∂

∂t
−∇ · 1

ρ(x, t)
∇
)
u(x, t) = 0,

u(x, t)e−iωt is T -periodic in t.
(4.37)

It is apparent that ω plays the role of the quasiperiodicity in the Floquet-Bloch theory, and we will refer
to ω as a quasifrequency. Since ω is defined modulo Ω, we define the time-Brillouin zone Y ∗

t := C/(ΩZ).
Observe that we allow complex quasifrequencies; real ω correspond to solutions which are bounded in t,
whereas non-real ω correspond to exponentially increasing or decaying solutions.

Due to the periodic nature of Y ∗
t , the usual definition of subwavelength frequencies does not apply to

quasifrequencies. For example, in the particular case when Ω = O(δ1/2) (which will be of interest later
on), the whole Brillouin zone scales as O(δ1/2), meaning that all quasifrequencies tend to zero as δ → 0.
In order to distinguish between these quasifrequencies, we introduce the following definition.

Definition 4.33 (Subwavelength quasifrequency). A quasifrequency ω = ω(δ) ∈ Y ∗
t of (4.37) is said to be

a subwavelength quasifrequency if there is a corresponding Bloch solution u(x, t), depending continuously
on δ, which can be written as

u(x, t) = eiωt
∞∑

n=−∞

vn(x)e
inΩt,

where
ω → 0 and MΩ → 0 as δ → 0,

for some integer-valued function M =M(δ) such that, as δ → 0, we have

∞∑

n=−∞

‖vn‖L2(D) =

M∑

n=−M

‖vn‖L2(D) + o(1).

The following theorem, proved in [19], gives the capacitance matrix approximation to the subwave-
length quasifrequencies as δ → 0.

Theorem 4.34. Assume that the material parameters are given by (4.36). Then, as δ → 0, the quasifre-
quencies ω ∈ Y ∗

t to the wave equation (4.35) in the subwavelength regime are, to leading order, given by
the quasifrequencies of the system of ordinary differential equations for yi(t),

N∑

j=1

Cijyj(t) = − |Di|
δi(t)

d

dt

(
1

δiv2i

d(δiyi)

dt

)
, (4.38)

for i = 1, ..., N .

The matrix appearing in the left-hand side of (4.38) is the capacitance matrix. We can rewrite (4.38)
into the following system of Hill equations

Ψ′′(t) +M(t)Ψ(t) = 0, (4.39)
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D1 D2

κ1(t) = 1 + ε sin(Ωt) κ2(t) = 1− ε sin(Ωt)

(a) A PT -symmetric pair of spherical resonators. (b) The two subwavelength resonant frequencies.

Figure 29: Similarly as in the non-Hermitian case demonstrated in Figure 10, there can be exceptional points
in the time-modulated case. The two subwavelength quasifrequencies of a pair of PT -symmetric, time-modulated
resonators can be approximated through the capacitance formulation, and an asymptotic exceptional point occurs
at ε ≈ 0.3.

where the vector Ψ and the matrix M are defined as

Ψ(t) =

(√
δi(t)

vi(t)
yi(t)

)N

i=1

, M(t) =W1(t)CW2(t) +W3(t),

with W1,W2 and W3 being the diagonal matrices with diagonal entries

(W1)ii =
viδ

3/2
i

|Di|
, (W2)ii =

vi√
δi
, (W3)ii =

√
δivi
2

d

dt

1

(δiv2i )
3/2

d(δiv
2
i )

dt
,

for i = 1, ..., N . The time-modulated case shares many similarities with the non-Hermitian case (with
complex parameters) studied before. Both these cases have energy input and output to the system,
and not surprisingly we can find exceptional points in the time-modulated systems. Figure 29 shows
the emergence of an exceptional point in a dimer structure, similar to Figure 10 but instead due to the
time-modulation.

4.9 Near-zero metamaterials

In Section 4.1 we saw the emergence of exotic parameter values, namely negative effective parameters,
due to the small-scale structure of the metamaterial. In the present section we will observe effective
material parameters which are close to zero, in which case the Helmholtz equation reduces to the Laplace
equation and wave propagation occurs without phase change (corresponding to “infinite” phase velocity).

4.9.1 Near-zero refractive index in honeycomb crystals

Y

D2D1

α∗
1

α∗
2

Γ

Y ∗

Figure 30: Honeycomb crystal and corresponding Brillouin zone.
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We consider a two-dimensional infinite honeycomb crystal in two dimensions depicted in Figure 30.
We let the lattice Λ be generated by the lattice vectors

l1 = L

(√
3

2
,
1

2

)
, l2 = L

(√
3

2
,−1

2

)
.

We assume that each unit cell contains two resonators, D = D1∪D2, such that each resonator is invariant
under rotation by 2π/3 and so that D is invariant under rotation by π.

The dual lattice Λ∗ is generated by α1 and α2 given by

α1 =
2π

L

(
1√
3
, 1

)
, α2 =

2π

L

(
1√
3
,−1

)
.

The points

α∗
1 =

2α1 + α2

3
, α∗

2 =
α1 + 2α2

3
,

in the Brillouin zone are called Dirac points. Next, we will study the band functions and Bloch modes
around these points. For simplicity, we only consider the analysis around the Dirac point α∗ := α∗

1, the
other point having a similar behaviour.

(a) Subwavelength band structure of a honeycomb structure,
exhibiting a Dirac cone at α = K.

(b) Small-scale behaviour of the eigenmodes at the Dirac
point.

Figure 31: The honeycomb structure exhibits a Dirac cone at the corner of the Brillouin zone. Corresponding
eigenmodes are rapidly oscillating, and is periodic across one hexagon in the honeycomb structure.

At α = α∗, the generalized capacitance matrix Cα has an eigenvalue of multiplicity 2: λα∗

1 = λα∗

2 .
The next result shows that this asymptotic degeneracy is in fact an exact degeneracy, and moreover that
the band functions intersect in a Dirac cone at this point (see Figure 31a) [14].

Theorem 4.35. For α close to α∗ and δ small enough, the first two band functions form a Dirac cone,
i.e.,

ωα
1 = ω∗ − µ|α− α∗|

[
1 +O(|α− α∗|)

]
,

ωα
2 = ω∗ + µ|α− α∗|

[
1 +O(|α− α∗|)

]
,

(4.40)

where ω∗ and µ are independent of α and satisfy

ω∗ =
√
λα∗

1 +O(δ) and µ = |c|
√
δµ0 +O(δ), µ0 =

1

2

√
v2r

|D1|Cα∗

11

, c =

∣∣∣∣
∂Cα

12

∂α1

∣∣∣
α=α∗

∣∣∣∣ ,

as δ → 0. Moreover, the error term O(|α− α∗|) in (4.40) is uniform in δ.
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(a) Large-scale behaviour of the eigenmodes close to the
Dirac point.

(b) Spatial frequency f of the envelopes as a function of the
frequency shift ε = ω − ω∗.

Figure 32: For frequencies close to the Dirac frequency, the eigenfunctions oscillate on two distinct scales. The
spatial frequency of the large-scale oscillations vanish at the centre of the Dirac cone, corresponding to zero
refractive index.

Next, we will see that the near-zero property follows as a direct consequence of the Dirac cone. We
consider a homogenization setting close to the Dirac points. We rescale the unit cell by replacing Y with
sY for some small s > 0. To fix the order of the resonant frequencies, i.e. ωα

i = O(1), we assume that
δ = O(s2) as s→ 0. We then have the following result [20].

Theorem 4.36. For frequencies ω close to the Dirac frequency ω∗, namely, ω−ω∗ = β
√
δ, the following

asymptotic behaviour of the Bloch eigenfunction u
α∗/s+α̃
s holds:

uα∗/s+α̃
s (x) =

[
Aeiα̃·x

Beiα̃·x

]
· Sα∗,k

D

(x
s

)
+O(s),

where the macroscopic field [ũ1, ũ2]
T := [Aeiα̃·x, Beiα̃·x]T satisfies the two-dimensional Dirac equation

µ0

[
0 (−ci)(∂1 − i∂2)

(−ci)(∂1 + i∂2) 0

] [
ũ1
ũ2

]
=
ω − ω∗√

δ

[
ũ1
ũ2

]
.

The system of Dirac equations can be considered as a homogenized equation for the honeycomb
structure. Each ũj satisfy the Helmholtz equation

∆ũj +
(ω − ω∗)

2

µ2
ũj = 0. (4.41)

In particular, at ω = ω∗ this effective equation reduces to the Laplace equation corresponding to effective
zero refractive index. Equation (4.41) describes the large-scale behaviour of the eigenmodes, illustrated
in Figure 32. We emphasize that in addition to this large-scale behaviour, there will be small-scale
oscillations described by the functions Sα∗,k

D as illustrated in Figure 31.

4.9.2 Double-near zero in time-modulated materials

l2
Y

l1

3
1
2

1
2

3

κj(t) = 1 + ǫ sin
(
Ωt+ 2πj

3

)

· · ·

··· · · ·

···

Figure 33: Illustration of the trimer honeycomb lattice, with phase-shifted time-modulations inside the trimers.
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(a) Static band structure (b) Modulated band structure

Figure 34: In time-modulated structures, Dirac cones may appear at the origin of the Brillouin zone. Such points
are associated to double near-zero materials, enabling wave transmission without phase changes and with strong
interactions with incoming waves.

The Dirac cone observed in the previous section is located at the corner of the Brillouin zone, which
means that corresponding modes do not lie in the radiation continuum. For physical structures of finite
dimensions, these waves will be confined to the structure and will not interact with incoming waves.
Physically, this can be seen as an impedance mismatch, leading to poor transmission, due to the fact
that this structure corresponds to a single-near zero material, where only one of the material parameters
vanish.

In order to overcome this low transmission, it is desirable to create structures with Dirac cones at
the origin of the Brillouin zone. Corresponding modes lie in the radiation continuum, and will therefore
interact with incoming waves. In order to achieve this, we study a time-modulated honeycomb structure
as illustrated in Figure 33. Using the theory from Section 4.8 we can compute the (quasi-)band structure
associated to this material. In Figure 34 we see the static (folded) band structure, with six bands in the
subwavelength regime. For a particular modulation strength, we see that a Dirac cone degeneracy may
appear at the origin of the Brillouin zone, enabling a double-near zero material around this point.

5 Concluding remarks

In this review, we have studied several Helmholtz scattering problems posed in the subwavelength regime
and repeatedly encountered the concept of capacitance. We have studied the mathematical properties of
the generalized capacitance matrix, in both finite and infinite, periodic settings. We were then able to
use the capacitance formulation to study several different interesting physical phenomena in the field of
subwavelength metamaterials. This formulation emerged from a functional analytic approach, where the
generalized capacitance matrix describes the perturbation of the kernel of a non-linear integral operator
for asymptotically small parameter values. Similar approaches apply to a plethora of other subwavelength
scattering problems, including high-contrast dielectric particles, plasmonic nanoparticles and Helmholtz
resonators [3, 24, 25, 26, 27]. Suitable capacitance formulations can thereby be used to characterize a
wide range of subwavelength resonance phenomena.

Approximating classical wave systems in terms of generalized capacitance matrices shares similarities
with the tight-binding approximation that is used widely in quantum theory, in the sense that both
formulations provide a discrete approximation to a continuous differential problem. As we have seen,
there are nevertheless fundamental differences, for instance due to the strong interactions between the
subwavelength resonators. As observed in Remark 2.17, the correspondence between the capacitance
formulation and the tight-binding approximation holds only in the case of dilute resonators. Even in the
dilute case, long-range interactions between subwavelength resonators are relatively strong and nearest-

50



neighbour approximations are not generally appropriate. The strength of the capacitance formulation is
that the capacitance matrix accounts for these strong interactions, thereby providing a unified mathe-
matical model to study challenging problems in subwavelength physics.

A Abstract capacitance matrix

In this section, we describe how the capacitance formulation emerges from the structure of a general
integral operator A, which describes a subwavelength resonance problem. We work with the functional
analytic approach described in Section 1.3. At δ = 0, we assume that the operator A(ω, 0) has a
characteristic value ω = 0 of multiplicity 2N , admitting the following pole-pencil decomposition:

A(ω, 0)−1 =
K

ω2
+R(ω), for K =

N∑

i=1

〈Φi, ·〉Ψi, (A.1)

where ker(A(0, 0)) = span{Ψj}, ker(A∗(0, 0)) = span{Φj} andR is holomorphic for ω in a neighbourhood
of 0. Moreover, we assume that A(ω, δ), for small but non-zero δ, satisfies

A(ω, δ) = A(ω, 0) + L(ω, δ),

for some operator L satisfying (in corresponding operator norm) ‖L‖ = O(δ) uniformly for ω in a
neighbourhood of 0.

In this abstract setting, we can derive a capacitance formulation of the subwavelength resonances.
We solve the equation A(ω, δ)Φ = 0. Multiplying with A(ω, 0)−1, we have

0 = A(ω, 0)−1A(ω, δ)Φ = A(ω, 0)−1 (A(ω, 0) + L) Φ =

(
I +

KL
ω2

+RL
)
Φ.

Defining B(ω, δ) = ω2R(ω)L(ω, δ) yields
(
ω2I +KL+ B

)
Φ = 0. (A.2)

The characteristic values are therefore determined by (A.2), which is in general a non-linear eigenvalue
problem since L and B depend on ω. If we consider the subwavelength resonances, we have ‖B‖ = O(ω2δ)
uniformly for ω and δ around 0. Similarly, we have L = L0 + L̂, where L̂ = O(ωδ). Therefore, the
subwavelength resonances are approximated by the eigenvalues of the finite-rank operator −KL0 whose
restriction to ker(A(0, 0)) is given by the generalized capacitance matrix:

Cij = −〈Φi,L0Ψj〉.

Then the characteristic values satisfy

ωn = ±
√
λn +O(δ),

where λn are the eigenvalues of C.
As an example of this formulation, for a finite collection of N resonators in d = 3 (as considered in

Section 2), the operator A is given by

A(ω, δ) =

(
S̃ω
D −Sk

D

− 1
2I + K̃ω,∗

D −δ̃
(

1
2I +Kk,∗

D

)
)
.

With above notation, we then have that

A(ω, 0) =

(
S0
D −S0

D

− 1
2I +K0,∗

D 0

)
, L(ω, δ) =

(
0 0

0 −δ̃
(

1
2I +Kk,∗

D

)
)
, L0(δ) =

(
0 0

0 −δ̃
(

1
2I +K0,∗

D

)
)
.

Moreover, it can be shown that A(ω, 0)−1 satisfies (A.1) where

Φi = − v2i
|Di|

(
0

χ∂Di

)
, Ψj =

(
ψi

ψi

)
, ψi = (S0

D)−1[χ∂Di
].

From this, it is straightforward to compute Cij = δiv
2
i

|Di|
〈χ∂Di

, ψj〉, as defined in (2.16) in Definition 2.6.
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