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Abstract. In this paper, we are concerned with the recovery of the geometric shapes of
inhomogeneous inclusions from the associated far field data in electrostatics and acoustic
scattering. We present a local resolution analysis and show that the local shape around
a boundary point with a high magnitude of mean curvature can be reconstructed more
easily and stably. In proving this, we develop a novel mathematical scheme by analyzing
the generalized polarisation tensors (GPTs) and the scattering coefficients (SCs) coming
from the associated scattered fields, which in turn boils down to the analysis of the layer
potential operators that sit inside the GPTs and SCs via microlocal analysis. In a delicate
and subtle manner, we decompose the reconstruction process into several steps, where all
but one steps depend on the global geometry, and one particular step depends on the mean
curvature at a given boundary point. Then by a sensitivity analysis with respect to local
perturbations of the curvature of the boundary surface, we establish the local resolution
effects. Our study opens up a new field of mathematical analysis on wave super-resolution
imaging.
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1. Introduction

We are concerned with the recovery of inhomogeneous inclusions from measurement of the
scattered fields in electrostatics and acoustic scattering. We are particularly interested in
studying and analysing how the mean curvature of a shape of an inhomogeneity would affect
propagation of information of the shape via the scattered field. Let D signify the shape of
an inhomogeneity. We show that information from points x ∈ ∂D with high magnitude of
mean curvature |H(x)| propagates with a significantly larger magnitude. This is reflected
by the sensitivity analysis of the scattered field with respect to the change of the shape.
Indeed, we can localize our analysis at those boundary points with high mean curvature.
Such larger sensitivity of information allows one more easily to locate these points of high
mean curvature and also in a stable manner to reconstruct the local shape around these
points.

The study of the correspondence between the geometry of an inhomogeneous inclusion
and its scattered field has attracted significant attention in the literature. It can also
find important applications in practice including medical imaging and geophysical explo-
ration [8, 22]. From a physical intuition, “pathological” geometries should help to improve
the transmission of scattering information and hence enhance the imaging effect. One of
the “pathological” geometries that has been studied extensively in the literature is the
corner/edge singularity, where the surface tangential vectors are discontinuous. In [19], it
is shown that the corner singularity of an inhomogeneity always scatters a probing field
nontrivially and in [16], the authors further quantified the result by establishing a positive
lower bound of the scattering energy. That means, a corner singularity of an inhomogeneous
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inclusion can always generate significant scattering, and this is consistent with the afore-
mentioned physical intuition. From a geometric perspective, a corner singularity indicates
that the “extrinsic” curvature is infinity. Hence, it is natural to consider the scattering due
to curvatures. In [17], the scattering by curvatures was considered and it is shown that if
there is a boundary point on a generic inclusion with a sufficiently high curvature, then
it scatters every probing field nontrivially. It is remarked that in [17], the “pathological”
boundary point possesses both high mean and Gaussian curvatures. We would also like to
mention in passing the related study in the literature on the scattering from impenetrable
obstacles, or the so-called cavities, with “pathological” geometries; see [21, 28–30] and the
references therein. In particular, in [30] the recovery of the boundary curvature of a convex
acoustic obstacle from the associated high-frequency scattered fields was established and
in [21] characterisations of the generalized polarisation tensors (GPTs) [8,9] of the scattered
field due to corner singularities of an insulating cavity in electrostatics were derived.

In this paper, we rigorously reinforce the aforementioned physical intuition from a recon-
struction perspective by performing sensitivity analysis of the reconstruction around the
boundary point with high mean curvature. That means, we include the corner/edge singu-
larity as an extreme case. We consider our study for the electrostatics and the wave scatter-
ing in the quasi-static regime, where the reconstructions are severely more ill-conditioned
than the corresponding high-frequency reconstruction. Indeed, we know that the corre-
sponding reconstructions are exponentially ill-posed [14, 15, 23]. One of the major findings
in our study can be roughly described as follows by taking the reconstruction in electro-
statics for the discussion. The generalized polarised tensors (GPTs) of the scattered field
are a natural and powerful shape descriptor of the underlying inclusion [7, 8]. It is a fact
that the high-frequency information of the shape of the inclusion, namely the fine details of
shape, enters into the higher order GPTs. Thus the boundary information around the high-
curvature point enters into the high-order GPTs. However, GPTs decay exponentially; and
hence, as the scattered field propagates away from the inclusion, the fine-detail information
of the inclusion becomes less visible and will be contaminated by the noise. However, if we
have very large magnitude of high curvature information, these higher order GPTs, albeit
exponentially decay, will be pushed up to relatively high magnitudes, making them more
apparent. Therefore after a further perturbation around such a point of high curvature, the
fine details near it will be more apparent in the far field and stably reconstructable. Hence,
it is unobjectionable to claim that one can produce super-resolution reconstruction of the
inclusion around the high curvature point. On the other hand, it is emphasized that in this
work we are not suggesting a new reconstruction method. In fact stable ways of reconstruct-
ing inclusions using the GPTs via the optimisation approach can be found in [1, 5, 6, 10].
In our study, Newton’s method is considered, but the aim of mentioning that is rather to
analyse the local sensitivity of the scattered field measurement at the high-curvature point.

Although it is physically intuitive to expect that the local geometry of the shape of an
inclusion should have an effect on the local resolution, it turns out that the corresponding
derivation is highly technical. In fact, decoding the local geometric information of an
inclusion from the corresponding scattered field is highly challenging. In this paper, we
develop a novel mathematical scheme to understand this correspondence through analyzing
the GPTs and scattering coefficients (SCs) coming from the associated scattered fields,
which in turn boils down to the analysis of the operators that sit inside the GPTs and SCs
via microlocal analysis. By doing so, we are able to decompose the reconstruction process
into several steps in a delicate and subtle manner, where all but one steps depend only on
the global geometry, and one particular step that depends on the mean curvature of the
surface at that point (c.f. Corollary 2.11). Finally, we are able to see clearly how sensitivity
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of local perturbations relates to local curvature information of the surface. Our study has
important applications in super-resolution wave imaging.

The rest of the paper is organised as follows. In Section 2, we consider the electrostatic
transmission problem. We compute the semi-classical symbols of several related operators
on the boundary of the inclusion including the Neumann-Poincaré operator and its variants,
and perform a sensitivity analysis on the generalized polarization tensors and hence the
scattering coefficients. We establish an increased sensitivity at points with mean curvature
of high magnitude. Then we move on to the inverse wave scattering in the low-frequency
regime governed by the Helmholtz system with a small wavenumber and observe a similar
property in Section 3.

2. Localized sensitivity analysis for reconstructions in electrostatics

In this section, we consider the reconstruction of an inhomogeneous inclusion in electro-
statics. We first introduce the electrostatic transmission problem as well as the associated
layer potential operators that are crucial in our subsequent analysis. We compute the
semi-classical symbols of those operators when viewing them as pseudo-differential opera-
tors. Then we conduct the localised sensitivity analysis at the high-curvature point on the
boundary of the inclusion.

2.1. Electrostatic transmission problem and layer-potential operators. We intro-
duce the electrostatic transmission problem and the associated layer-potential operators.
Consider an open connected domain D with a C2,α, 0 < α < 1, boundary ∂D and a
connected complement Rd\D, d ≥ 2. Physically, D is the support of an inhomogeneous
dielectric inclusion. Let εc and εm be two positive constants, signifying the electric permit-
tivities. Consider a medium configuration as follows,

εD = εcχ(D) + εmχ(R
d\D), (2.1)

where and also in what follows, χ stands for the characteristic function of a domain. Let
u0 be a given harmonic function that signifies a probing field of the inclusion D. The
electrostatic transmission problem is given for a potential field u ∈ H1

loc(R
d) as follows,

{
∇ · (εD∇u) = 0 in Rd,

u− u0 = o(|x|1−d) as |x| → ∞.
(2.2)

We proceed to introduce the single-layer potential operator and the Neumann-Poincaré
operator associated with (2.2). They are crucial in solving (2.2) via the layer-potential
theory, and moreover they provide critical ingredients in solving the inverse problem of
reconstructing the inclusion D from the associated scattered field u− u0.

Given a density function φ ∈ L2(∂D), the single-layer and double-layer potentials, S∂D[φ]
and D∂D[φ], are respectively defined as follows,

S∂D[φ](x) :=

∫

∂D

G(x− y)φ(y)dσ(y), (2.3)

D∂D[φ](x) :=

∫

∂D

∂

∂νy
G(x− y)φ(y)dσ(y), (2.4)

for x ∈ Rd, where G is the fundamental solution of the Laplacian in Rd :

G(x− y) =

{
− 1

2π log |x− y| if d = 2 ,
1

(2−d)̟d
|x− y|2−d if d > 2 ,

(2.5)
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with ̟d denoting the surface area of the unit sphere in Rd. The single-layer potential
satisfies the following jump relation across ∂D:

∂

∂ν
(S∂D[φ])

± = (±1

2
I +K∗

∂D)[φ] , (2.6)

where the superscripts ± indicate the limits from outside and inside D respectively, and
K∗

∂D : L2(∂D) → L2(∂D) is the Neumann-Poincaré operator defined by

K∗
∂D[φ](x) :=

1

̟d

∫

∂D

〈x− y, ν(x)〉
|x− y|d φ(y)dσ(y) , (2.7)

with νx being the outward normal at x ∈ ∂D. It is noted that K∗
∂D maps L2

0(∂D) onto
itself, where

L2
0(∂D) := {φ ∈ L2(∂D);

∫

∂D

φ dσ = 0}.

The transmission problem (2.2) can be rewritten as




∆u = 0 in D
⋃
(Rd\D) ,

u+ = u− on ∂D ,

εc
∂u+

∂ν
= εm

∂u−

∂ν
on ∂D ,

u− u0 = O(|x|1−d) as |x| → ∞ .

(2.8)

With the help of the single-layer potential, one can rewrite the perturbation u− u0, which
is due to the inclusion D, as

u− u0 = S∂D[φ] , (2.9)

where φ ∈ L2(∂D) is an unknown density, and S∂D[φ] signifies the refraction part of the
potential in the presence of the inclusion. By virtue of the jump relation (2.6), solving the
above system (2.8) is equivalent to solving the density function φ ∈ L2(∂D) of the following
integral equation

∂u0
∂ν

=

(
εc + εm

2(εc − εm)
I −K∗

∂D

)
[φ] . (2.10)

This gives

u− u0 = S∂D ◦ (λI −K∗
∂D)

−1

[
∂u0
∂ν

]
, (2.11)

where

λ :=
εc + εm

2(εc − εm)
.

The invertibility of the operator ( εc+εm
2(εc−εm)I − K∗

∂D) from L2(∂D) onto L2(∂D) and from

L2
0(∂D) onto L2

0(∂D) is proved (cf. [8,26]), provided that | εc+εm
2(εc−εm) | > 1/2 via the Fredholm

alternative, which holds when the constants εc and εm are positive.
From (2.11), we see that in order to understand the quantitative behaviour of the scat-

tered field, one needs to investigate the mapping properties of the Neumann-Poincaré op-
erator. Since ∂D is C2,α, the operator K∗

∂D : L2(∂D) → L2(∂D) is compact (cf. [4]), and
its spectrum is discrete and accumulates at zero. All the eigenvalues are real and bounded
by 1/2. Moreover, 1/2 is always an eigenvalue and its associated eigenspace is of dimension
one, which is nothing else but the kernel of the single-layer potential S∂D. In two dimen-
sions, it is proved that if λi 6= 1/2 is an eigenvalue of K∗

∂D, then −λi is an eigenvalue as well.
This property is known as the twin spectrum property; see [31]. The Fredholm eigenvalues
are the eigenvalues of K∗

∂D. It is easy to see, from the properties of K∗
∂D, that they are

invariant with respect to rigid motions and scaling. They can be explicitly computed for
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ellipses and spheres. In fact, if a and b denote the semi-axis lengths of an ellipse then it can
be shown that ±(a−b

a+b
)i are the Fredholm eigenvalues [27]. For the sphere, they are given

by 1/(2(2i + 1)); see [25]. Some other computations of Neumann-Poincaré eigenvalues for
different shapes can be found in [18, 20, 24]. In three dimensions, in [32, 33], it is derived
that

λj(K∗
∂D) ∼





3
∫
∂D

H2(x)dσx −
∫
∂D

K(x)dσx

128π





1
2

j−
1
2 , (2.12)

where λj denotes the j-th Neumann-Poincaré eigenvalue, and H(x) and K(x) are respec-
tively the mean and Gaussian curvatures at the point x ∈ ∂D. Therefore, one sees that the
magnitude of λj not only has a decay order, but also depends on a constant related to the
curvature of the inclusion.

From (2.12), it is natural to expect that the curvature of the boundary of the inclusion
should also enter into the scattered field in an explicit way. In fact, in what follows, we shall
establish such an explicit dependence locally at a boundary point with a high magnitude of
mean curvature. It turns out that the corresponding derivation is technical and tricky. For
that purpose, we need to introduce the so-called generalized polarisation tensor (GPT) in
arbitrary dimensions in the next subsection.

2.2. Generalized polarization tensor in arbitrary dimensions. For |x| > |y|, one has

Γ(x− y) =cd

∞∑

k=0

|y|k
|x|k+d−2

C
( d−2

2
)

d,k (〈ωx , ωy 〉)

=

∞∑

k=0

cd,k
|y|k

|x|k+d−2

∑

|l1|≤l2≤...≤ld−1=k

Yl1,...,ld−1
(ωx)Yl1,...,ld−1

(ωy),

(2.13)

where ωx := x/|x|, ωy = y/|y| ∈ Sd−1, cd, ck,d are some dimensional constants, C
( d−2

2
)

d,k are the

Gegenbauer polynomials (which are generalization of Legandre polynomials when d = 3) and
Yl1,...,ld−1

(ω) with |l1| ≤ l2 ≤ ... ≤ ld−1 are the spherical harmonics. Similar to the expansions
given by generalized polarisation tensors in two and three dimensions [5, 8], by virtue of
(2.11) and (2.13), one can expand the scattered potential for all |x| > sup{|x| : x ∈ D} as

(u− u0)(x) =

∞∑

k=0

∑

|l1|≤l2≤...≤ld−1=k

cd,k |x|−k−d+2 Yl1,...,ld−1
(ωx)

×
∫

∂D

|y|kYl1,...,ld−1
(ωy)

{
(λI −K∗

∂D)
−1

[
∂u0
∂ν

]}
(y)dσ(y).

(2.14)

The generalized polarisation tensor (GPT) is obtained by choosing incident harmonic func-
tion u0(x) = |x|kYl1,...,ld−1

(ωy) and then taking the coefficient with respect to the function
Yl1,...,ld−1

(ωx) in (2.14). That is,

Definition 2.1. The generalized polarisation tensors (GPTs) of dimension d with a given
λ and a domain D ⊂ Rd with a C2,α boundary are defined as

M(l1,...,ld−1),(m1,...,md−1)(λ,D)

:=

∫

∂D

|y|ld−1Yl1,...,ld−1
(ωy)

{
(λI −K∗

∂D)
−1
[
∂ν
(
rmd−1Ym1,...,md−1

(ω)
)]}

(y)dσ(y),
(2.15)

where |l1| ≤ l2 ≤ ... ≤ ld−1 and |m1| ≤ l2 ≤ ... ≤ md−1.

By writing L = (l1, ..., ld−1) and Ik = {L : l1| ≤ l2 ≤ ... ≤ ld−1 = k}, we handily obtain
the following lemma.
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Lemma 2.2. Consider a domain D ⊂ R of C2,α class. The solution to (2.2) with

u0(x) =
∞∑

k=0

∑

M∈Ik

aM rkx YM (ωx)

and |x| > sup{|x| : x ∈ D} is given by

(u− u0)(x) =
∞∑

k=0

∑

L∈Ik

∞∑

n=0

∑

M∈In

cd,k aM |x|−k−d+2 YL(ωx)ML,M (λ,D) .

Hence, for x ∈ R · Sd−1 with R > sup{|x| : x ∈ D}, one has

ML,M (λ,D) =
1

cd,k
|R|2k+d−2

∫

Sd−1

YL(ωx)

(
u− rnYM (ω)

)
(Rωx)dωx . (2.16)

Notice that this definition extends the definition of genearlized polarization tensors to an
arbitrary dimension d. Moreover, it is easy to show that the transformation rules and de-
caying properties in high dimensions are similar to those in [5,8]. The above lemma indicates
that the scattering information is fully encoded in the GPTs,M(l1,...,ld−1),(m1,...,md−1)(λ,D) =
ML,M (λ,D).

2.3. Sensitivity analysis of the Neumann-Poincaré operator. In this section, we
present the shape derivative of the Neumann-Poincaré operator (2.7) associated with a
shape D sitting inside a general space Rd for any d ≥ 2. The special two-dimensional case
was first treated in [12], and the general case was considered in [1]. Since this result is of
fundamental importance for our future analysis, we shall briefly derive it here for the sake
of completeness.

Given a shape D sitting inside Rd, we consider a regular parametrization of the surface
∂D as

X : U ⊂ Rd−1 → ∂D ⊂ Rd,

u = (u1, u2, ..., ud−1) 7→ X(u) .

For notational sake, we often write the vector Xi :=
∂X
∂ui

. For a given d− 1 vector {vi}d−1
i=1 ,

we denote the d − 1 cross product ×d−1
i=1 vi = v1 × v2... × vd−1 as the dual vector of the

functional det( · , v1, v2, ..., vd−1), i.e., 〈w,×d−1
i=1 vi〉 = det(w, v1, v2, ..., vd−1) for any w, which

is guaranteed to exist by the Reisz representation theorem. Then, from the fact that X

is regular, we know ×d−1
i=1Xi is non-zero, and the normal vector ν := ×d−1

i=1Xi/| ×d−1
i=1 Xi| is

well-defined.
Now we consider an ε-perturbation of D, namely ∂Dε given by

∂Dε := {x̃
∣∣ x̃ = x+ εh(u)ν(x) , x ∈ ∂D} , (2.17)

with h ∈ C2,α(∂D). Let Ψε(x) := x+ εh(u)ν(x) be the diffeomorphism from ∂D to ∂Dε. It
is directly verified that

Xε : U ⊂ Rd−1 → ∂Dε ⊂ Rd,

u = (u1, u2, ..., ud−1) 7→ Ψε[u] = X(u) + εh(u)ν(X(u)) ,

is a regular parametrization over ∂Dε for sufficiently small ε ∈ R+. Writing g to be the
induced metric on ∂D from Rd, directly from the definition, we have Xε

i = Xi + ε ∂h
∂ui
ν +

εh
∑d−1

j=1

∑d−1
k=1 g

ikAkjXj , where the matrix Aij is defined as

A := (Aij) = 〈II(Xi,Xj), ν〉 ,
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and II is the second fundamental form given by

II : T (∂D)× T (∂D) → T⊥(∂D),

II(v, w) = −〈∇̄vν, w〉ν = 〈ν, ∇̄vw〉ν,
where ∇̄ is the standard covariant derivative on the ambient space Rd. From the multi-
linearity and alternating property of the d − 1 cross product, we can readily calculate at
any point b ∈ U that

×d−1
i=1X

ε
i (b) = ×d−1

i=1


Xi + ε

∂h

∂ui
ν + εh

d−1∑

j,k=1

gikAkjXj




= (1 + εh(b)trg(A)(b))
(
×d−1

i=1Xi(b)
)
+O(ε2),

where the constant in large O is bounded by |A(X(b))| at the point X(b) and ||h||C1 and

trg(A)(b) := trg(A)(X(b)) =

d−1∑

j,k=1

gjkAkj(X(b)) := (d− 1)H(X(b)) ,

with (gij) = g−1 and H(X(b)) being the mean curvature at the point X(b). Hence it yields
that

〈 · , νε(b)〉 dσε(b) = 〈 · ,×d−1
i=1X

ε
i (b)〉 db

=
〈
· , (1 + εh(b)trg(A)(b))

(
×d−1

i=1Xi(b)
)〉

db+O(ε2)

= (1 + εh(b)trg(A)(b)) 〈 · , ν(b)〉 dσε(b) +O(ε2), (2.18)

where νε(b) denotes the normal vector at Xε(b). Moreover, for two arbitrary points x, y ∈
∂D given by x = X(a), y = X(b) for some a, b ∈ U , we have

Xε(a)− Xε(b) = X(a)− X(b) + εK(a, b)[h], (2.19)

whereK(a, b)[h] := h(a)ν(a)−h(b)ν(b). Hence, by the Taylor expansion of |Xε(a)−Xε(b)|−d

in ε, it follows that

|Xε(a)− Xε(b)|−d

=|X(a)− X(b)|−d − d ε|X(a)− X(b)|−d−2〈X(a)− X(b),K(a, b)[h]〉+O(ε2) .
(2.20)

Combining (2.18) and (2.20), we obtain the following series expression

〈Xε(a)− Xε(b) , νε(b)〉
|Xε(a)− Xε(b)|d dσε(b) :=

∞∑

n=0

εnKh,n(a, b) dσ(b),

where

Kh,0(a, b) :=
〈X(a)− X(b) , ν(b)〉

|X(a)− X(b)|d

Kh,1(a, b) :=
〈X(a)− X(b) , h(b)tr(A)(b)ν(b)〉+ 〈K(a, b)[h], ν(b)〉

|X(a)− X(b)|d

−d 〈X(a)− X(b) ,K(a, b)[h]〉〈X(a)− X(b), ν(b)〉
|X(a)− X(b)|d+2

,

and the higher order terms Kh,i can be explicitly calculated from (2.20) in a similar fashion.
Therefore we see that the kernel of the Neumann-Poincaré operator varies analytically with
respect to ε along any direction h ∈ C2,α(∂D).
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Starting from now on, whenever the context is clear, by an abuse of notation we shall
not distinguish between F (x) and F (a) for any function F over ∂D if x = X(a) ∈ ∂D. Now

we define a sequence of integral operators K(n)
D,h: L

2(∂D) → L2(∂D) by

K(n)
D,h[φ](x) :=

∫

∂D

Kh,n(x, y)φ(y)dσ(y), ∀φ ∈ L2(∂D) , (2.21)

for n ≥ 0. Notice here that the notion Kh,0(x, y) is nothing but the kernal of K∗
∂D itself.

Then we can directly obtain the following result from (2.21).

Theorem 2.3. For N ∈ N, there exists a constant C depending only on N , ||X||C2 and

||h||C2 such that the following estimate holds for any φ̃ ∈ L2(∂Dε) and φ := φ̃ ◦Ψε:

∣∣∣∣
∣∣∣∣K

∗
∂Dε

[φ̃ ◦Ψε]−K∗
∂D[φ]−

N∑

n=1

εnK(n)
D,h[φ]

∣∣∣∣
∣∣∣∣
L2(∂D)

≤ CεN+1||φ||L2(∂D) . (2.22)

In particular, the kernel of K(1)
D,h can be explicitly expressed by

Kh,1(x, y) =
〈x− y , ν(y)〉h(y)trg(A)(y) + 〈K(x, y)[h], ν(y)〉

|x− y|d

− d
〈x− y ,K(x, y)[h]〉〈x− y, ν(y)〉

|x− y|d+2
,

where K(x, y)[h] := h(x)ν(x) − h(y)ν(y) and trg(A)(y) = (d − 1)H(y) with H(y) denoting
the mean curvature of the surface at y.

2.4. K∗
∂D and K(1)

D,h as pseudo-differential operators. In this subsection, we derive some

crucial properties of K∗
∂D and K(1)

D,h, verifying that they are pseudo-differential operators

with particular orders and obtain their principal symbols.
First, we note that for a fixed x ∈ ∂Ω, if we take the geodesic normal coordinate v ∈

Tx(∂Ω) ∼= Rd−1 7→ X(v) := expx(v) ∈ ∂Ω, then we have gij(x) = δij and Γk
ij(x) = 0, where

Γk
ij are the Christoffel symbols. For y = expx(δ ω) with |ω | = 1, we have

ν(y) = ν(x) + δA(x)ω + δ2
1

2
[∂ωA(x)ω +A(x)A(x)ω + |A(x)ω|2ν(x)] +O(δ3) ,

√
det(g(y)) = 1 + δ2Ric(ω, ω) +O(δ3) .

Therefore we obtain the following expansion for the kernel of K∗
∂D,

Kh,0(x, y)dσ(y) = δ−d+2 〈A(x)ω, ω〉 dy +O(δ−d+3).

Following [32, 33], via a Fourier transform of the kernel of Kh,0(x, y) with respect to v :=
δω, we obtain the symbol around x = y in the geodesic normal coordinate (noting that
gij(x) = δij) as

pK∗

∂D
(x, ξ) := Fv

[
〈A(x)ω, ω〉 |v|−d

]
(ξ) +O(|ξ|−2)

=
d−1∑

i,j=1

Aij(x)Fv

[
vivj |v|−d

]
(ξ) +O(|ξ|−2) =

d−1∑

i,j=1

Aij(x) ∂i∂j | ξ |+O(|ξ|−2)

=

d−1∑

i,j=1

Aij(x)

(
δij
|ξ| −

ξiξj
|ξ|3

)
+O(|ξ|−2)

=(d− 1)H(x) |ξ|−1 − 〈A(x) ξ, ξ〉 |ξ|−3 +O(|ξ|−2) .



SENSITIVITY ANALYSIS FOR RECONSTRUCTIONS IN TRANSMISSION PROBLEMS 9

Therefore K∗
∂D is a pseudodifferential operator of order −1 on ∂D and hence in the Schatten

p class Sp for p > d − 1 for d > 2 via the Weyl asymptotics. We summerize the above
discussion in the following theorem, which generalizes the three-dimensional result in [32,33].

Theorem 2.4. The operator K∗
∂D is a pseudodifferential operator of order −1 on ∂D if

∂D ∈ C2,α with its symbol given as follows in the geodesic normal coodinate around each
point x:

pK∗

∂D
(x, ξ) = (d− 1)H(x) |ξ|−1 − 〈A(x) ξ, ξ〉 |ξ|−3 +O(|ξ|−2) ,

where the large O depends on ‖X‖C2. Hence K∗
∂D is a compact operator of Schatten p class

Sp for p > d− 1 for d > 2.

A remark is that the above result holds also for K∂D instead of K∗
∂D when we only look at

the first order term. We would also like to remark that if the geodesic normal coordinate is
not chosen, and for a general coordinate, tracing back the above steps, we have instead

pK∗

∂D
(x, ξ) = (d− 1)H(x) |ξ|−1

g(x) − 〈A(x) g−1(x) ξ, g−1(x) ξ〉 |ξ|−3
g(x) +O(|ξ|−2

g(x)) .

The above remark is in force to indicate that our choice of geodesic normal coordinate is
just for simplification of the resulting computation and is not a necessary move. In a similar
manner, we can obtain:

Theorem 2.5. Let ∂D ∈ C2,α. The operator K(1)
D,h defined in (2.21) can be decomposed as

K(1)
D,h = K(1)

D,h,0 +K(1)
D,h,−1 +K(1)

D,h,−2 , (2.23)

where K(1)
D,h,0, K

(1)
D,h,−1 and K(1)

D,h,−2 are pseudodifferential operators of order 0,−1,−2 respec-

tively on ∂D with their symbols given as follows in the geodesic normal coordinate around
each point x:

p
K

(1)
D,h,0

(x, ξ) = −∂ξh(x)| ξ |−1 = O(1) ,

p
K

(1)
D,h,−1

(x, ξ) = h(x)

{
(4d− 1)|H(x)|2 | ξ |−1 + (5d+ 1)H(x)〈A(x)ξ , ξ〉 | ξ |−3

+
1

2
|A(x)|2F | ξ |−1 +

24 d− 1

2
|A(x)ξ|2 | ξ |−3 − 9d | 〈A(x)ξ , ξ〉 |2 | ξ |−5

}

−12d+ 1

2
∆h(x) | ξ |−1 − 1

2
Hessξ,ξh(x) | ξ |−3

= O(|ξ|−1) ,

p
K

(1)
D,h,−2

(x, ξ) = O(|ξ|−2) ,

where | · |F is the Frobenius norm of the matrix and the constant of the large O depends

on ‖X‖C2 and ‖h‖C2. Moreover, K(1)
D,h,−1 is a compact operator of Schatten p class Sp for

p > d− 1 and d > 2.

Proof. By straightforward calculations, we can obtain the kernel of K(1)
D,h in the geodesic

normal coordinate as follows,

Kh,1(x, y)dσ(y)

= − δ−d+1 ∂ωh(x) dy

+ δ−d+2

(
h(x)

[
(d− 1)H(x) 〈A(x)ω, ω〉 − d| 〈A(x)ω, ω〉 |2 + 1

2
|A(x)ω |2

]

−1

2
Hessω,ωh(x)

)
dy + O(δ−d+3),
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where the constant of large O now depends on ||h||C3 . Using the Fourier transform of the
kernel Kh,1(x, y) with respect to v := δω, ω ∈ Sd−1, we obtain the symbol around x = y in
the geodesic normal coordinate (and noticing ∇vv = 0) that

p
K

(1)
D,h

(x, ξ)

:= −Fv

[
|v|−d ∂vh(x)

]
(ξ)

+Fv

[
|v|−d−2

(
h(x)

[
(d− 1)H(x) 〈A(x) v, v〉 |v|2 − d| 〈A(x) v, v〉 |2 + 1

2
|A(x) v |2|v|2

]

−1

2
Hessv,vh(x)|v|2

)]
(ξ) +O(|ξ|−2)

= −
d−1∑

i=1

∂ih(x)Fv

[
vi |v|−d

]
(ξ)

+
d−1∑

i,j=1

(
(d− 1)h(x)H(x)Aij(x) + h(x)

1

2

d−1∑

k=1

Aik(x)Akj −
1

2
∂i∂jh(x)

)
Fv

[
vivj |v|−d

]
(ξ)

−d h(x)
d−1∑

i,j,k,l=1

Aij(x)Akl(x)Fv

[
vivjvkvl |v|−d−2

]
(ξ) +O(|ξ|−2)

= −
d−1∑

i=1

∂ih(x) ∂i | ξ |+
d−1∑

i,j=1

(
(d− 1)h(x)H(x)Aij(x) + h(x)

1

2

d−1∑

k=1

Aik(x)Akj

−1

2
∂i∂jh(x)

)
∂i∂j | ξ | − d h(x)

d−1∑

i,j,k,l=1

Aij(x)Akl(x) ∂i∂j∂k∂l | ξ |3 +O(|ξ|−2) .

Therefore, we have

p
K

(1)
D,h

(x, ξ) = −∂ξh(x)| ξ |−1

+h(x)

{
(4d− 1)|H(x)|2 | ξ |−1 + (5d+ 1)H(x)〈A(x)ξ , ξ〉 | ξ |−3

+
1

2
|A(x)|2F | ξ |−1 +

24 d− 1

2
|A(x)ξ|2 | ξ |−3 − 9d | 〈A(x)ξ , ξ〉 |2 | ξ |−5

}

−12d+ 1

2
∆h(x) | ξ |−1 − 1

2
Hessξ,ξh(x) | ξ |−3

+O(|ξ|−2),

which readily yields (2.23).
The proof is complete.

�

2.5. A property of the generalized polarisation tensors. By (2.11), in order to anal-
yse the quantitative behaviour of the scattered field, one needs to analyse the operator
(λI−K∗

∂D)
−1◦∂ν . In this subsection, we analyse the symbol of the operator (λI−K∗

∂D)
−1◦∂ν

in terms of the GPT ML,M (λ,D). We have the following lemma for a subsequent use.

Lemma 2.6. The GPT ML,M (λ, ∂D) in (2.16) has the following representation

ML,M (λ, ∂D) =
〈
|r|kYL(ω) , (PD,1 + PD,0 + PD,−1) (|r|nYM (ω))

〉

L2(∂D,dσ)
, (2.24)
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where PD,m are pseudo-differential operators of order m for m = 1, 0,−1, and in the geodesic
normal coordinate around each point x, there holds

pPD,1
(x, ξ) =λ−1|ξ|,

pPD,1
(x, ξ) =λ−1

(
λ−1 − 1

2

)(
(d− 1)H(x)− 〈A(x) ξ, ξ〉 |ξ|−2

)
,

pPD,−1
(x, ξ) =O

(
λ−1|ξ|−1

)
,

(2.25)

where the constant of the large O depends on ‖X‖C2 and ‖h‖C2.

Proof. First, by straightforward calculations, we can render the symbol of the operator
(λI −K∗

∂D)
−1 as follows

p(λI−K∗

∂D
)−1(x, ξ) = λ−1+λ−2(d−1)H(x) |ξ|−1−λ−2〈A(x) ξ, ξ〉 |ξ|−3+O

(
λ−2|ξ|−2

)
, (2.26)

where it is noted that |λ| > 1
2 .

Next, it is noticed that the function u0(x) = rk YL(ω) satisfies ∆u0 = 0, where (r, ω) ∈
R+×Sd−1 is the spherical coordinate of x ∈ Rd. Hence, the map Λ0 : r

k YL(ω) 7→ ∂νr
k YL(ω)

is in fact a Dirichlet-to-Neumann (DtN) map associated with the Laplacian. In [35], it is
shown that the Laplacian can be factorised into a product of two operators modulo a
smoothing operator, and it is a pseudo-differential operator of order 1. In the sequel, we
choose a coordinate on a neighbourhood of x ∈ ∂D as (a, s) with X̃(a, s) = expx(a) +
s ν(expx(a)).

We proceed to compute the symbol of the composition operator, (λI − K∗
∂D)

−1 ◦ Λ0.
Following [35] and considering the fact that

∆ = ∂2ν + (d− 1)H(x)∂ν +∆∂D , (2.27)

and under our choice of coordinates, one has

∂ε |ε=0 gij(x+ εν(x)) = ∂ε |ε=0 〈X̃(ei, ε), X̃(ej , ε)〉 = −Aij(x) .

Therefore using the recursive formula (3.11)-(3.14) in [35] and keeping in mind that the
second-order derivatives of g do not vanish, we obtain that the symbol of Λ0 and its deriv-
ative with respect to x are given by,

pΛ0(x, ξ) =|ξ|+ 1

2
〈A(x)ξ, ξ〉 |ξ|−2 − d− 1

2
H(x)

− 1

4
〈∂νA(x)ξ, ξ〉 |ξ|−3 − 1

2
|A(x)ξ|2 |ξ|−3 +

1

4
|〈A(x)ξ, ξ〉|2 |ξ|−5

+
d− 1

4
∂νH(x) |ξ|−1 − 1

4
(d− 1)H(x)〈A(x)ξ, ξ〉 |ξ|−3

+
(d− 1)2

4
|H(x)|2 |ξ|−1 − 1

4
〈∂ξA(x)ξ, ξ〉 |ξ|−4 − d− 1

4
∂ξH(x) |ξ|−1

− 1

4
〈∆g(x)ξ, ξ〉|ξ|−3 − 1

4
〈Hessξ,ξg(x)ξ, ξ〉|ξ|−5 +O

(
|ξ|−2

)
,

(2.28)

and

∂

∂xl
pΛ0(x, ξ) =

1

2
〈∂lA(x)ξ, ξ〉 |ξ|−2 − d− 1

2
∂lH(x)− 1

2

d−1∑

i,j,k=1

∂l∂kg
ij(x)ξiξjξk|ξ|−3

+
1

2

d−1∑

i,k=1

∂lΓ
k
ii(x)ξk|ξ|−1 +O

(
|ξ|−1

)
.

(2.29)
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It is worth noticing that in (2.28), the symbol pΛ0(x, ξ) is computed with one more term
for our later use in the next section. By combining (2.28) and (2.29), we have

p(λI−K∗

∂D
)−1◦Λ0

(x, ξ)

=p(λI−K∗

∂D
)−1(x, ξ)pΛ0(x, ξ) +

∂

∂ξ
p(λI−K∗

∂D
)−1(x, ξ)

∂

∂x
pΛ0(x, ξ) +O

(
λ−1|ξ|−1

)

=λ−1|ξ|+ λ−1

(
λ−1 − 1

2

)(
(d− 1)H(x)− 〈A(x) ξ, ξ〉 |ξ|−2

)
+O

(
λ−1|ξ|−1

)
,

which together with (2.16) readily gives (2.24)–(2.25).
The proof is complete.

�

2.6. Sensitivity analysis of the generalized polarisation tensor and the scattered

potential field. In this subsection, we compute the shape derivative of the generalized
polarisation tensor ML,M (λ,D), L ∈ Ik,M ∈ In, which fully accounts for the shape deriv-
ative of the scattered field (u − u0)(x) associated with D. From that, we can analyse the
semi-classical symbols of the operators involved in the sensitivity of ML,M (λ,D). This is of
crucial importance to understand how the (local) sensitivity of the scattered field behaves
under the influence of the mean curvature in the next subsection.

The main result of this subsection is contained in the following theorem.

Theorem 2.7. For N ∈ N, there exists a positive constant C depending only on N , L ∈
Ik,M ∈ In, ||X||C2 and ||h||C2 such that

∣∣∣∣∣ML,M (λ,Dε)−ML,M (λ,D)−
N∑

n=1

εnM(n)
L,M (λ,D, h)

∣∣∣∣∣ ≤ CεN+1, (2.30)

for some M(n)
L,M (λ,D, h), with M(1)

L,M (λ,D, h) given as

M(1)
L,M (λ,D, h) =

〈
|r|kYL(ω) , QD,h (|r|nYM (ω))

〉

L2(∂D,dσ)
,

where

QD,h = QD,h,1,I +QD,h,1,II +QD,h,0, (2.31)

with QD,h,1,I , QD,h,1,II being pseudo-differential operators of order 1 and QD,h,0 being of
order 0, and that in normal coordinate around each point x,

pQD,h,1,I
(x, ξ) = λ−2∂ξh(x) = O(λ−2|ξ|),

pQD,h,1,II
(x, ξ) = −λ−1

(
(d− 1)h(x)H(x)|ξ| − h(x)〈A(x)ξ, ξ〉 |ξ|−1

)
= O(λ−1|ξ|),

pQD,h,0
(x, ξ) = O

(
λ−1

)
,

where the constant of the large O depends on ‖X‖C2 and ‖h‖C2.

Proof. Consider a point y ∈ ∂D given by y = X(b) for some b ∈ U . We have Xε(b) =
y + h(y)ν(y). By using (2.18), the decomposition (2.27) and the understanding that ∂ν
acting on rk YL(ω) is in fact a DtN map Λ0 which is self-adjoint on 〈 · , · 〉 1

2
,− 1

2
coupling, we
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can deduce that

ML,M (λ,Dε)−ML,M (λ,D)

=
ε

cd,k
|R|d−2+k

∫

Sd−1

YL(ωx)
δ

δh

[(
u− rnYM (ω)

)
(Rωx)

]
(h)dωx +O(ε2)

= ε

∫

∂D

|y|k YL(ωy)
{
h ◦ Λ0 ◦ (λI −K∗

∂D)
−1 ◦ Λ0 [r

n YM (ω)]
}
(y) dσ(y)

−ε
∫

∂D

|y|k YL(ωy)
({

(λI −K∗
∂D)

−1 ◦ K(1)
D,h ◦ (λI −K∗

∂D)
−1 ◦ Λ0

}
[rn YM (ω)]

)
(y) dσ(y)

+ε(d− 1)

∫

∂D

|y|k YL(ωy)
({[

hH , (λI −K∗
∂D)

−1
]
◦ Λ0

}
(rn YM (ω))

)
(y) dσ(y)

−ε
∫

∂D

|y|k YL(ωy)
{{

(λI −K∗
∂D)

−1 ◦ h ◦∆∂D

}
[rn YM (ω)]

}
(y) dσ(y)

+O(ε2) , (2.32)

where [A,B] is the commutator of A and B. Here and also in what follows, when a function
is written as an operator, it signfies the multiplicative operator as multiplication by the
function.

To compute derivatives of the symbols, we need to be more careful. After keeping in
mind that the second derivatives of g(x) do not vanish, we obtain the followings:

∂

∂xl
p(λI−K∗

∂D
)−1(x, ξ) = λ−2(d− 1)∂lH(x) |ξ|−1 − λ−2〈∂lA(x) ξ, ξ〉 |ξ|−3 +O

(
λ−2|ξ|−2

)
,

ph∆∂D
(x, ξ) = h(x)|ξ|2 , ∂

∂xl
ph∆∂D

(x, ξ) = ∂lh(x) |ξ2|+ h(x)
d−1∑

i,k=1

∂lΓ
k
ii(x) ξk .

Together with the symbol of Λ0 and its derivatives, we could render the symbols of the
following 4 operators in concern in the geodesic normal coordinate (where |λ| > 1

2) as
follows:

ph◦Λ0◦(λI−K∗

∂D
)−1◦Λ0

(x, ξ)

= h(x)pΛ0(x, ξ)p(λI−K∗

∂D
)−1(x, ξ)pΛ0(x, ξ) + h(x)

∂

∂ξ
pΛ0(x, ξ)

∂

∂x
p(λI−K∗

∂D
)−1(x, ξ)pΛ0(x, ξ)

+h(x)
∂

∂ξ
pΛ0(x, ξ)p(λI−K∗

∂D
)−1(x, ξ)

∂

∂x
pΛ0(x, ξ)

+h(x)pΛ0(x, ξ)
∂

∂ξ
p(λI−K∗

∂D
)−1(x, ξ)

∂

∂x
pΛ0(x, ξ) +O(λ−1)

= λ−1h(x)|ξ|2 +
(
λ−2 − λ−1

)(
(d− 1)h(x)H(x)|ξ| − h(x)〈A(x)ξ, ξ〉 |ξ|−1

)
+O(λ−1) ,

and

p
(λI−K∗

∂D
)−1◦K

(1)
D,h

◦(λI−K∗

∂D
)−1◦Λ0

(x, ξ)

= p(λI−K∗

∂D
)−1(x, ξ)p

K
(1)
D,h

(x, ξ)p(λI−K∗

∂D
)−1(x, ξ)pΛ0(x, ξ) +O(λ−11)

= −λ−2∂ξh(x) +O(λ−1) ,
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as well as

p[hH ,(λI−K∗

∂D
)−1]◦Λ0

(x, ξ)

=

(
− ∂

∂x
(h(x)H(x))

∂

∂ξ
p(λI−K∗

∂D
)−1(x, ξ) +

∂

∂ξ
(h(x)H(x))

∂

∂x
p(λI−K∗

∂D
)−1(x, ξ)

)
pΛ0(x, ξ)

+O
(
λ−2|ξ|−2

)

= λ−2〈[(d− 1)H(x)I + 2A(x)]ξ , ∂(h(x)H(x))〉 |ξ|−2 − 3λ−2∂ξ(h(x)H(x))〈A(x) ξ, ξ〉 |ξ|−4

+O
(
λ−2|ξ|−2

)

= O
(
λ−2|ξ|−1

)
,

and

p(λI−K∗

∂D
)−1◦h◦∆∂D

(x, ξ)

= p(λI−K∗

∂D
)−1(x, ξ)ph∆∂D

(x, ξ) +
∂

∂ξ
p(λI−K∗

∂D
)−1(x, ξ)

∂

∂x
ph∆∂D

(x, ξ) +O
(
λ−21

)

= λ−1h(x)|ξ|2 + λ−2

(
(d− 1)h(x)H(x) |ξ| − h(x)〈A(x) ξ, ξ〉 |ξ|−1

)
+O

(
λ−2|ξ|0

)
.

Therefore we can combine the above results to obtain

pQ(x, ξ)

= λ−2∂ξh(x)− λ−1

(
(d− 1)h(x)H(x)|ξ| − h(x)〈A(x)ξ, ξ〉 |ξ|−1

)
+O

(
λ−1|ξ|0

)
,

where the operator Q is given as

Q :=h ◦ Λ0 ◦ (λI −K∗
∂D)

−1 ◦ Λ0 − (λI −K∗
∂D)

−1 ◦ K(1)
D,h ◦ (λI −K∗

∂D)
−1 ◦ Λ0

+ (d− 1)
[
hH , (λI −K∗

∂D)
−1
]
◦ Λ0 − (λI −K∗

∂D)
−1 ◦ h ◦∆∂D.

This completes the proof.
�

2.7. Localization of sensitivity of generalized polarization tensors at points of

high mean curvature. Consider the space

tr∂DKer(∆) := {u |∂D: ∆u = 0 in Rd}.

Notice that tr∂DKer(∆)
Hs(∂D,dσ)

= Hs(∂D, dσ) for all s ∈ R. Considering the fact that
QD,h is a pseudo-differential operator of order 1, and the closure of operators under the
weak operator topology, we can have that

{
〈ψ , QD,h φ〉L2(∂D,dσ) : ψ ∈ Hs(∂D, dσ), φ ∈ Ht(∂D, dσ), s, t ∈ R, s+ t− 1 = 0

}

=




∑

k,m

∑

L∈Ik,M∈Im

aLbMM(1)
L,M (λ,D, h) : aL, bM ∈ C such that the sum converges



 ,

where from now on we abuse the notation of 〈ψ , φ 〉L2(∂D,dσ) as an L
2-pivoting as soon as

the resulting ψ φ ∈ L1(∂D, dσ). Therefore, the map h 7→
(
M(1)

L,M (λ,D, h)
)

L∈Ik,M∈In,k,n∈N

can fully reconstruct the opeartor-valued map h 7→ QD,h = QD,h,1,I+QD,h,1,II+QD,h,0. Now
with suitable choices of ψ ∈ Hs(∂D, dσ), φ ∈ Ht(∂D, dσ) such that s, t ∈ R, s + t − 1 = 0,
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we can obtain the principal symbol in the geodesic normal coodinate at each point x as
follows

lim
t→∞

t−1e−itϕx,ξQD,he
itϕx,ξχx = pQD,h,1,I

(x, ξ) + pQD,h,1,II
(x, ξ) ,

where ξ ∈ Sd−1 and ϕx,ξ( · ) = 〈ξ, logx( · )〉 in half of the injective radius of the convex neigh-
borhood and is zero outside 3/4 of the injective radius, and χx( · ) is a cut off function such
that χx(x ) = 1 and its value is zero outside 3/4 of injective radius. Then pQD,h,1,I

(x, ξ) +
pQD,h,1,II

(x, ξ) can be reconstructed in full by the property of being homogenous of degree
one. On the other hand, one can recover h(x)H(x) from pQD,h,1,I

(x, ξ) + pQD,h,1,II
(x, ξ) as

follows via Theorem (2.7),

∫

Sd−1

(
pQD,h,1,I

(x, ξ) + pQD,h,1,II
(x, ξ)

)
|ξ|−1dσ(ξ)

=

∫

Sd−1

(
λ−2 ∂ξh(x)|ξ|−1 − λ−1(d− 1)h(x)H(x) + λ−1h(x)〈A(x)ξ, ξ〉 |ξ|−2

)
dσξ

= [(1− d)ωd + 1]λ−1h(x)H(x).

Hence the inverse composition map

(
M(1)

L,M (λ,D, h)
)

L∈Ik,M∈In,k,n∈N

7→inv1 QD,h 7→inv2 pQD,h,1,I
(x, ξ) + pQD,h,1,II

(x, ξ) 7→inv3 h(x)H(x)

is well-defined. To make the above description more precise, let us consider the following
complete orthornormal bases on L2(∂D, dσ):

{ηp,∂D}k∈N where −∆∂Dηp,∂D = λ2pηp,∂D ,

and write λ(∆∂D) to be the eigenvalues λ satisfying the above. By Weyl’s asymptotics,

we have at least that λ−1
p ∼ p−

1
d−1 . Therefore for any smooth function φ on ∂D, we

have 〈ηp,∂D , φ〉L2(∂D,dσ) = O(p−l) for any l. By the density of its subspace tr∂DKer(∆)

in L2(∂D, dσ), {rnYM (ω)|∂D}M∈In,n∈N is also a complete frame in L2(∂D, dσ). Therefore
there is a change of basis map (Up,L,∂D) which is the matrix for the change of the basis

to the corresponding orthonormal one. We write
(
U−1
L,p,∂D

)
as its inverse. Moreover, since

ηp,∂D is orthornomal,

U−1
L,p,∂D = 〈rkYL(ω) , ηp,∂D〉L2(∂D,dσ) .

Combining the above discussions, we have the following theorem in force.

Theorem 2.8. We have the following inversion formula for ∂D ∈ C2,α and h ∈ C2,α

[(1− d)ωd + 1]h(x)H(x)

= inv3 ◦ inv2 ◦ inv1
[(

M(1)
L,M (λ,D, h)

)

L∈Ik,M∈In,k,n∈N

]

:=

∫

Sd−1

lim
t→∞

G(ξ, t, x)dσ(ξ),

(2.33)
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where

G(ξ, t, x) :=
∑

L ∈ Ik, M ∈ In M̃ ∈ Iñ,
k, n, r, s ∈ N

|ξ|−1t−1e−itϕx,ξ ηs,∂D Us,L,∂D M(1)
L,M (λ,D, h)

× U−1
M,r,∂D 〈ηr,∂D , χx e

itϕx,ξ〉L2(∂D,dσ).

Now let ∂Dǫ be given as in (2.32), and u∂Dǫ
be u satisfying (2.8) with u0 = rnYM (ω)

and the support of the inhomogeneity Dǫ. We further define

∂

∂ǫ

(〈
YL(ωx) ,

(
u∂Dǫ

− rnYM (ω)

)
(Rωx)

〉

L2(RSd−1,dωx)

)

L∈Ik,M∈In,k,n∈N

7→inv0
(
M(1)

L,M (λ,D, h)
)

L∈Ik,M∈In,k,n∈N
.

Hence we have the following corollary:

Corollary 2.9. For ∂D ∈ C2,α and h ∈ C2,α, we have

[(1− d)ωd + 1]h(x)H(x)

=inv3 ◦ inv2 ◦ inv1 ◦ inv0


 ∂
∂ǫ

(〈
YL(ωx) ,

(
u∂Dǫ

− rnYM (ω)

)
(Rωx)

〉

L2(RSd−1,dωx)

)

L∈Ik,M∈In,k,n∈N


 .

(2.34)

We would like to remark that the change of coordinate maps are indeed unbounded maps
from l2 to l2. In general, it is well known that the inverse problem is exponentially ill-posed.
However we would like to dissect the composition map in Corollary 2.9 and understand more
on how the ill-posedness are given by different properties of the domain. Now let us gaze at
the composition of inv3 ◦ inv2 ◦ inv1 in (2.34) and establish the properties of the composition
of maps under a specific assumption on ∂D.

Before we continue to understand the inverse problem, let us understand the perturbation
of the change of the above coordinate maps and how they affect the condition number of a
restriction of U to a particular finite dimensional subspace. For this purpose, let us consider
the following restriction and extension:

U−1
L,p,∂D|L(Vs,∂D,Ws,∂D) := Proj∗Ws,∂D

◦ U−1
L,M,∂D ◦ ProjVs,∂D

,

Uq,L,∂D|L(Ws,∂D,Vs,∂D) := Proj∗Vs,∂D
◦ UM,L,∂D ◦ ProjWs,∂D

,

where ProjVs,∂D
: L2(∂D, dσ) → Vs := Span{ηp,∂D}p<|{M :md−1≤s}| and ProjWs,∂D

: L2(∂D, dσ) →
Ws := Span{rnYM (ω)|∂D}md−1≤s with s ∈ N.

Lemma 2.10. Given a general ∂D ∈ C1,α, let ∂Dǫ be an ε-perturbation under a direction
h ∈ C1,α and let S = |{T : td−1 ≤ s}|, for ε ∈ R+ small enough, we have

max

{ ∣∣∣‖U−1
L,p,∂Dε |L(Vs,∂Dε ,Ws,∂Dε )‖l2→l2 − ‖U−1

L,p,∂D|L(Vs,∂D,Ws,∂D)‖l2→l2

∣∣∣ ,
∣∣∣‖UL,p,∂Dε |L(Vs,∂Dε ,Ws,∂Dε )‖−1

l2→l2
− ‖UL,p,∂D|L(Vs,∂D,Ws,∂D)‖−1

l2→l2

∣∣∣
}

< 2ε max
1≤P≤S

{
max

{
1, max

z 6=λP ,z∈λ(∆∂D)

‖g‖2
C1

|z2 − λ2P |

}
‖h‖C0‖A‖C1λ2P ‖rs|∂D‖L2(∂D,dσ)

+‖h‖C1‖∂ν(rsYT (ω))|∂D‖L2(∂D,dσ) + ε(d− 1)‖h‖C0‖H‖C0‖rsYT (ω)|∂D‖L2(∂D,dσ)

}
.
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Proof. For a general ∂D ∈ C1,α, considering ∂Dǫ under a perturbation h, and comparing
the surface Laplacian on ∂D with the one on ∂Dε, we have by direct computations that

∆∂Dǫ −∆∂D = εh(x)
(
∂νg

ij(x)∂i∂j + ∂νg
ij(x)Γk

ij(x)∂k − gij(x)∂νΓ
k
ij(x)∂k

)
+O(ε2)

where by definition and by the Gauss-Codazzi formula, we have

∂νg
ij(x) = gil(x)Alm(x)gmj(x) and ∂νΓ

k
ij(x) =

1

2
gkl
(
∇jAil(x) + Γr

ij(x)Arl(x)
)
,(2.35)

after absorbing the notations. Since ∆−1
∂Dǫ is collectively compact with respect to ε, by

Osborn’s Theorem [34] and that for repeated eigenvalues, we have, after applying ∆−1
∂Dǫ =

−ε∆−1
∂Dǫ∂ε∆∂Dǫ |ε=0 ∆

−1
∂Dǫ +O(ε2), that if we consider −λ2 6= 0 an eigenvalue of ∆∂D with

multiplicity m and Eλ be its eigenspace, then there exists {ηλ,s,∂D}ms=1 a basis of Eλ such
that

λ2s,ε − λ2

= −ε
〈
ηλ,s,∂D, h(x)

(
∂νg

ij(x)∂i∂j + ∂νg
ij(x)Γk

ij(x)∂k − gij(x)∂νΓ
k
ij(x)∂k

)
ηλ,s,∂D

〉

L2(∂D,dσ)

+O(ε2),

and

[ηλ,s,∂Dε ◦ Φε − ηλ,s,∂D]
∣∣
E⊥

λ

= ε
∑

z 6=λ

〈
ηz,∂D, h(x)

(
∂νg

ij(x)∂i∂j + ∂νg
ij(x)Γk

ij(x)∂k − gij(x)∂νΓ
k
ij(x)∂k

)
ηλ,s,∂D

〉

L2(∂D,dσ)

z2 − λ2
ηλ,∂D

+O(ε2),

where
(
−λ2s,ε, ηλ,s,,∂Dε

)
is an eigenpair of ∆∂Dǫ , and Φε brings ∂D to ∂Dε. By Poincaré

inequalities and Cauchy inequality,

‖[ηλ,s,∂Dε ◦ Φε − ηλ,s,∂D]|E⊥

λ
‖2L2(∂D,dσ)

≤ ε2 max
z 6=λ,z∈λ(∆∂D)

1

|z2 − λ2|2 ×
∥∥∥h(x)

(
∂νg

ij(x)∂i∂j + ∂νg
ij(x)Γk

ij(x)∂k − gij(x)∂νΓ
k
ij(x)∂k

)
ηλ,s,∂D

∥∥∥
2

L2(∂D,dσ)
+O(ε3)

≤ ε2 max
z 6=λ,z∈λ(∆∂D)

1

|z2 − λ2|2 ‖h‖
2
C0‖g‖4C1‖A‖2C0λ

4 +O(ε3).

From the fact that ‖ηλ,s,∂Dε‖2
L2(∂Dε,dσ) = 1, dσ∂Dε = (1 + ε(d− 1)h(x)H(x))dσ∂D + O(ε2)

and L2(∂D, dσ) = Eλ ⊕ E⊥
λ , one can show that for s = 1, ...,m,

‖ηλ,s,∂Dε ◦ Φε − ηλ,s,∂D‖2L2(∂D,dσ) ≤ ε2 max

{
1,max

z 6=λ

‖g‖4
C1

|z2 − λ2|2
}
‖h‖2C0‖A‖2C1λ

4 +O(ε3).

Therefore we have that if ε ∈ R+ is sufficiently small,
∣∣∣〈rkYL(ω) , ηp,∂Dε〉L2(∂Dε,dσ) − 〈rkYL(ω) , ηp,∂D〉L2(∂D,dσ)

∣∣∣

≤ 2ε

{
max

{
1, max

z 6=λp,z∈λ(∆∂D)

‖g‖2
C1

|z2 − λ2p|

}
‖h‖C0‖A‖C1λ2p‖rk|∂D‖L2(∂D,dσ)

+‖h‖C1‖∂ν(rkYL(ω))|∂D‖L2(∂D,dσ) + ε(d− 1)‖h‖C0‖H‖C0‖rkYL(ω)|∂D‖L2(∂D,dσ)

}
.
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Next we recall that

‖U−1
L,p,∂D|L(Vs,∂D,Ws,∂D)‖l2→l2 = σmax(U

−1
L,M,∂D|L(Vs,∂D,Ws,∂D)),

‖Uq,L,∂D|L(Ws,∂D,Vs,∂D)‖l2→l2 = 1/σmin(UM,L,∂D|L(Ws,∂D,Vs,∂D)),

where σmax(T ) and σmin(T ) are the respective maximum and minimum singular values of
an operator T . Finally, by Osborn’s theorem once again, one can show the lemma. �

To consolidate our study, we next compute κ(UL,p,∂D|L(Vs,∂D,Ws,∂D)) for several concrete
examples of ∂D.

Example I.1. Let us first consider ∂D = R0S
d−1 where R0 < 1. In this case, instead of

indexing ηk,∂D via k ∈ N, we may instead order them with M ∈ In, n ∈ N, since

ηM,R0Sd−1 = ω−1
d−1R

− d−1
2

0 YL(ω),

where ωd−1 is the volumn of Sd−1. We have

U−1
L,M,R0Sd−1 = ω−1

d−1R
k− d−1

2
0 〈YL(ω) , YM (ω)〉L2(∂D,dσ) = ω−1

d−1R
k− d−1

2
0 δLM .

Hence, if R0 is small, we have

‖U−1
L,M,R0Sd−1 |L(V

s,R0S
d−1 ,Ws,R0S

d−1 )‖l2→l2

= σmax(U
−1
L,M,R0Sd−1 |L(V

s,R0S
d−1 ,Ws,R0S

d−1 )) = ω−1
d−1R

− d−1
2

0 max{Rs
0, 1},

‖UM,L,R0Sd−1 |L(W
s,R0S

d−1 ,Vs,R0S
d−1 )‖l2→l2

= 1/σmin(UM,L,R0Sd−1 |L(W
s,R0S

d−1 ,Vs,R0S
d−1 )) = ωd−1R

d−1
2

0 max{R−s
0 , 1}.

Therefore we have the following estimate of the condition number when ∂D = R0S
d−1:

κ(UM,L,R0Sd−1 |L(W
s,R0S

d−1 ,Vs,R0S
d−1 )) = max{R−s

0 , Rs
0} .

Example I.2. Consider ∂Dδ as follows: ∂D = R0S
d−1 with perturbation k ∈ C1, and

‖k‖C1 < 1 and small magnitude δ. Now, applying Lemma 2.10, together with λT,Sd =
s(s+ d− 2) for td−1 = s, we have for δ ∈ R+ sufficiently small and s ∈ R+ sufficiently large
that

max

{ ∣∣∣∣‖U
−1
L,p,∂Dδ |L(V

s,∂Dδ ,Ws,∂Dδ )‖l2→l2 − ω−1
d−1R

− d−1
2

0 max{Rs
0, 1}

∣∣∣∣ ,
∣∣∣∣‖UL,p,∂Dδ |L(V

s,∂Dδ ,Ws,∂Dδ )‖
−1
l2→l2

− ω−1
d−1R

− d−1
2

0 min{Rs
0, 1}

∣∣∣∣
}

< 2δωd max

{
s(s+ d− 2)Rs+1

0 + sRs−2
0 +Rs−1

0 , (d− 1)R2
0 +R−1

0 + 1

}

< 2δωd max

{
(s+ d− 2)2Rs+1

0 , R−1
0 + d

}
.
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Hence for small enough δ ∈ R+, we obtain

κ(UL,p,∂Dδ |L(V
s,∂Dδ ,Ws,∂Dδ ))

≤
max{Rs

0, 1}+ 2δω2
dR

d−1
2

0 max

{
(s+ d− 2)2Rs+1

0 , R−1
0 + d

}

min{Rs
0, 1} − 2δω2

dR
d−1
2

0 max

{
(s+ d− 2)2Rs+1

0 , R−1
0 + d

}

≤





Rs
0+2δω2

d
R

d−1
2

0 (s+d−2)2Rs+1
0

1−2δω2
d
R

d−1
2

0 (s+d−2)2Rs+1
0

if R0 ≥ 1 ,

1+2δω2
d
R

d−1
2

0 (R−1
0 +d)

Rs
0−2δω2

d
R

d−1
2

0 (R−1
0 +d)

if R0 ≤ 1 .

From the above example, we have the following corollary.

Corollary 2.11. Let us consider ∂Dδ as a δ-perturbation of ∂D = R0S
d−1 along the direc-

tion k ∈ C2(∂D) with ‖k‖C2 < 1 for sufficiently small δ ∈ R+. Then for h ∈ C2(∂Dδ) with
‖h‖C2 < 1, considering an ε-perturbation of ∂Dδ along the direction h, (∂Dδ)ε, we have

|[ProjV
s,∂Dδ

(hH)](x)|

≤





Cd
Rs

0+2εω2
d
R

d−1
2

0 (s+d−2)2Rs+1
0

1−2εω2
d
R

d−1
2

0 (s+d−2)2Rs+1
0

‖M(1)
L,M (λ,D, h)‖L(V

s,Sd−1 ,Vs,Sd−1 ) if R0 ≥ 1,

Cd
1+2εω2

d
R

d−1
2

0 (R−1
0 +d)

Rs
0−2εω2

d
R

d−1
2

0 (R−1
0 +d)

‖M(1)
L,M (λ,D, h)‖L(V

s,Sd−1 ,Vs,Sd−1 ) if R0 ≤ 1,

.

Similarly,

|[ProjV
s,∂Dδ

(hH)](x)|

≤





Cd
R2s+d−2

cd,s

Rs
0+2εω2

d
R

d−1
2

0 (s+d−2)2Rs+1
0

1−2εω2
d
R

d−1
2

0 (s+d−2)2Rs+1
0

×
∥∥∥∥∥

∂
∂ǫ

(〈
YL(ωx) ,

(
u(∂Dδ)ǫ − rnYM (ω)

)
(Rωx)

〉

L2(RSd−1,dωx)

)∥∥∥∥∥
L(V

s,Sd−1 ,Vs,Sd−1 )

, if R0 ≥ 1,

Cd
R2s+d−2

cd,s

1+2εω2
d
R

d−1
2

0 (R−1
0 +d)

Rs
0−2εω2

d
R

d−1
2

0 (R−1
0 +d)

×
∥∥∥∥∥

∂
∂ǫ

(〈
YL(ωx) ,

(
u(∂Dδ)ǫ − rnYM (ω)

)
(Rωx)

〉

L2(RSd−1,dωx)

)∥∥∥∥∥
L(V

s,Sd−1 ,Vs,Sd−1 )

, if R0 ≤ 1.

Proof. For a given resolution s ∈ N, we have

|[ProjV
s,∂Dδ

(hH)](x)|

=

∣∣∣∣inv3 ◦ inv2 ◦ inv1
[(

M(1)
L,M (λ,D, h)

)

L∈Ik,M∈In,k,n≤s

]∣∣∣∣

≤ Cd κ(UL,p,∂Dδ |L(V
s,∂Dδ ,Ws,∂Dδ )) lim sup

t→∞
‖χx e

itϕx,ξ‖L2(∂S,dσ) ‖M(1)
L,M (λ,D, h)‖L(V

s,Sd−1 ,Vs,Sd−1 ),

for some constant Cd. The results follow from the computations in Example 2 and (2.16).
�

It is now clear that the reconstruction of h(x) from M(1)
L,M (λ,D, h) is more sensitive with

points of high mean curvature |H(x)|2 if D is not too far from R0S
d−1. This can be more
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explicitly explained as follows. If we have

(
(u− rnYM (ω))meas |Γ

)

M∈In,n∈N

, we obtain

(
(ML,M )meas(λ,Dexact)

)

L∈Ik,M∈In,k,n∈N

. Then one may reconstruct D via the following

Newton type iteration of (Dn, hn), n = 1, 2, . . ., where they are recursively defined as follows:

M(1)
L,M (λ,Dn, hn) =(ML,M )meas(λ,Dexact)−ML,M (λ,Dn) ,

Dn+1 ={x+ h(x)ν(x) : x ∈ Dn} ,
(2.36)

and the reconstruction step for hn is again more sensitive with points of high mean curvature
|H(x)|2.
Remark 2.12. It is remarked that the recovery of hn in (2.36) shall be numerically per-
formed via (2.22) and (2.32) instead of inv3◦inv2◦inv1 in (2.33) and division by H(x). The
composition of the three operators are considered only for theorectial analysis of sensitivity,
and it is not ideal to perform that numerically.

Remark 2.13. It is emphasized that we did not claim that

h 7→
([(

u− rnYM (ω)

)
(Rωx)

]
(h)

)

M∈In,n∈N

has a bounded inverse, but only that

[ProjVs,∂D
(hH)](x) 7→

(
M(1)

L,M (λ,D, h)
)

L∈Ik,M∈In,k,n≤s

has a bounded inverse under the weighted norm, considering the fact that the inverse problem
to reconstruct D from the scattered fields is exponentially ill-posed as is shown in [14,15,23]
and indicated by the decay order of ML,M (λ,D).

Remark 2.14. We remark that the mechanism of detecting geometric singularities in [30]
is of high frequency nature, while our analysis is in the low frequency regime. High resolution
boundary information of the inclusion only enters scattered fields as high order GPTs or SCs
as will be shown in the next section, which decay exponentially. This is consistent with the
well-known exponential ill-posedness [14, 15, 23], that high resolution information is more
prone to the noise contamination. However, if we have large curvature points, higher order
GPTs and SCs, albeit still exponentially decaying, will be pushed up to a high magnitude. If
a perturbation is further applied, fine details of the perturbation near a high curvature point
will be amplified in the far field and easily reconstructable (c.f. Theorem 2.8 and Corollary
2.11.)

We can describe the above understanding using an example in two dimensions. For
instance, we may take a shape D1 coming as an ε0-perturbation of a circle D0 along a
direction

h̃ = h/‖h‖,
where

h :=
N∑

k=−N

C |k|eikθ = 1 + 2
1− C cos(θ) + CN+1 cos((N − 1)θ)− CN cos(Nθ)

1 + C2
,

for a fixed small ε0 and a fixed large N where C > 1, which is highly irragular around the
point zero if N is very large. As we expect, the resulting object has the property that the cor-
responding GPT with order (m,n) has a decaying order of δmn(R/C)

2n+ε0(R/C)
m(R/C)n+

O(ε20). We see that if C is comparable with R, the decay is less rapid (up till order N),
and hence the high frequency information of the boundary inclusion enters the scattered
field more stably. If we further perturb D1 to D2 as a δ-perturbation of D1, with the fact
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that the geometry of D1 has already made GPT with order (m,n) where |m|, |n| < N have
a relatively larger magnitude, the scattered measurements projected onto these components
are no longer hindered by noise and propagate to the far field. Therefore, the perturbations
from D1 to D2 can be better detected from the far-field measurements.

3. Transmission Helmholtz problem in the low frequency regiem and its

sensitivity analysis

In this section, we consider the transmission Helmholtz problem. For given positive
constants ε0, µ0, ε1, µ1, we let k0 = ω

√
ε0µ0 and k1 = ω

√
ε1µ1, and consider u satisfying




∇ · ( 1

µD
∇u) + ω2εDu = 0 in Rd,

( ∂
∂|x| − ik0)(u− u0) = o(|x|− d−1

2 ) as |x| → ∞,
(3.1)

where µD = µ1χ(D)+µ0χ(R
d\D), εD = ε1χ(D)+ε0χ(R

d\D) and u0 satisfies (∆+k20) = 0.
In (3.1), ω ∈ R+ denotes the operating frequency. Throughout the rest of our study, we
consider the case that ω ≪ 1, or equivalently k0 ≪ 1. This is referred to as the quasi-static
regime. It is in fact an important regime regarding the fact that when ω is small, the
resolution of the corresponding inverse problem is considerably poor.

For a given k ∈ R+, we introduce

Sk
∂D[φ](x) :=

∫

∂D

Gk(x− y)φ(y)dσ(y), (3.2)

Dk
∂D[φ](x) :=

∫

∂D

∂

∂νy
Gk(x− y)φ(y)dσ(y), (3.3)

for x ∈ Rd with d ≥ 2, where Gk is the fundamental solution of the Helmholtz equation
with outgoing radiation condition in Rd as follows:

Γk(x− y) = Ck,d(k|x− y|)− d−2
2 H

(1)
d−2
2

(k|x− y|), (3.4)

with Cd some constant depending only on d, and H
(1)
d−2
2

is the Hankel function of the first

kind and order (d − 2)/2. It is known that the single-layer potential Sk
∂D satisfies the

following jump condition on ∂D:

∂

∂ν

(
Sk
∂D[φ]

)±
= (±1

2
I +Kk

∂D

∗
)[φ] , (3.5)

where the superscripts ± indicate the limits from outside and inside D respectively, and
Kk

∂D

∗
: L2(∂D) → L2(∂D) is the Neumann-Poincaré operator defined by

Kk
∂D

∗
[φ](x) :=

∫

∂D

∂νxΓk(x− y)φ(y)dσ(y) . (3.6)

With the above preparations, u ∈ H1
loc(R

d) in (3.1) can be given by

u =

{
u0 + Sk0

∂D[ψ] on Rd\D,
Sk1
∂D[φ] on D,

where (φ, ψ) ∈ L2(∂D)×L2(∂D) is the unique solution to (provided that k21 is not a Dirichlet
eigenvalue of the Laplacian in D)

{
Sk1
∂D[φ]− Sk0

∂D[ψ] = u0
1
µ1
(−1

2I +Kk1
∂D

∗
)[φ]− 1

µ0
(12I +Kk0

∂D

∗
)[ψ] = 1

µ0

∂u0
∂ν

,
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or that
{
1

2

(
1

µ0
I +

1

µ1

(
Sk1
∂D

)−1
Sk0
∂D

)
+

1

µ0
Kk0

∂D

∗ − 1

µ1
Kk1

∂D

∗
(
Sk1
∂D

)−1
Sk0
∂D

}
[ψ]

=
1

µ1
(−1

2
I +Kk1

∂D

∗
) ◦
(
Sk1
∂D

)−1
[u0]−

1

µ0

∂u0
∂ν

=

(
1

µ1
− 1

µ0

)
∂u0
∂ν

.

As in [13], we can now write

u− u0 =

(
1

µ1
− 1

µ0

)
Sk0
∂D ◦

{
1

2

(
1

µ0
I +

1

µ1

(
Sk1
∂D

)−1
Sk0
∂D

)

+
1

µ0
Kk0

∂D

∗ − 1

µ1
Kk1

∂D

∗
(
Sk1
∂D

)−1
Sk0
∂D

}−1 [∂u0
∂ν

] (3.7)

where the inverse in the equation exists by the Fredholm alternative theorem.
From the following asymptotics as z → +0,

Jα(z) =
1

Γ(α+ 1)

(z
2

)α
+O(zα+2) and Yα(z) =

{
2
π

(
log
(
z
2

)
+ γ
)
+O(z)

Γ(α+1)
π

(
z
2

)−α
+O(z−α+2)

, (3.8)

we have

Γk(x− y) =

{
Ck [C1 log (k|x− y|) + C2 +O (k|x− y|)] if d = 2,

Ck,d

[
k2−d|x− y|2−d +O

(
k4−d|x− y|4−d

)]
if d > 2 ,

where Cd only depends on d and C2 is another constant. Since S∂D and K∂D
∗ are both of

order−1, we have the following lemma as in [13].

Lemma 3.1. We have the following decompositions for the boundary potential operators,

Sk
∂D = S∂D + ω2 Sk

∂D,−3 and Kk
∂D

∗
= K∂D

∗ + ω2Kk
∂D,−3 ,

where Kk
∂D,−3,Sk

∂D,−3 are uniformly bounded w.r.t. ω and are of order −3.

Next, by following the same arguments as those for establishing Theorem 2.3, one can
perturb ∂D along the normal direction ν, which in turn gives the perturbations of the
boundary potential operators, being pseudo-differential operators with one order higher
than the respective original operators. We actually have the following result.

Corollary 3.2. For all k, N ∈ N, there exists a constant C depending only on N , ||X||C2

and ||h||C2 such that the following estimate holds for any φ̃ ∈ L2(∂Dε) and φ := φ̃ ◦Ψε:

∣∣∣∣
∣∣∣∣S

k
∂Dǫ

[φ̃ ◦Ψε]− Sk
∂D[φ]−

N∑

n=1

εn
(
Sk
)(n)
D,h

[φ]

∣∣∣∣
∣∣∣∣
L2(∂D)

≤ CεN+1||φ||L2(∂D) ,

∣∣∣∣
∣∣∣∣K

k
∂Dǫ

∗
[φ̃ ◦Ψε]−Kk

∂D

∗
[φ]−

N∑

n=1

εn
(
Kk
)(n)
D,h

[φ]

∣∣∣∣
∣∣∣∣
L2(∂D)

≤ CεN+1||φ||L2(∂D) ,

with
(
Sk
)(1)
D,h

=
(
S0
)(1)
D,h

+ ω2
(
Sk
)(1)
D,h,−2

and
(
Kk
)(1)
D,h

= (K)
(1)
D,h + ω2

(
Kk
)(1)
D,h,−2

,

where
(
Kk
)(1)
D,h,−2

,
(
Sk
)(1)
D,h,−3

are uniformly bounded w.r.t. ω and are of order −2.
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Moreover similar to the argument in Section 2.5, since u0 satisfies (∆ + k20)u0 = 0, the

mapping u0 7→ ∂u0
∂ν

can be viewed as the following Dirichlet to Neumann map with respect

to the operator ∆ + k20, which we denote Λk0 . Now again using the factorization method
as in [35], we have that Λk0 is a pseudo-differnetial operator of order 1 with its symbol in
geodesic normal coordinate for each x being given by,

pΛk0
(x, ξ) = pΛ0(x, ξ)−

1

2
k20 |ξ|−1 +O

(
|ξ|−2

)
.

Comparing this symbol with pΛ0(x, ξ), we can obtain the following lemma.

Lemma 3.3. The following decomposition on ∂D holds:

Λk0 = Λ0 + ω2 Λk0,−1 ,

where Λk0,−1 is uniformly bounded w.r.t. ω and is a pseudo-differntial operator of order −1
with its symbol given by

pΛk0,−1
(x, ξ) = −1

2
ε0µ0 |ξ|−1 +O

(
|ξ|−2

)
.

Similarly, when we consider the perturbation of Λk0 with respect to h along the normal
direction of ∂D, we may consider the decomposition (2.27) and follow Subsection 2.6 to
obtain the perturbation of Λk0 in terms of (d− 1)H(x)h(x)Λk0 and h(x)∆∂D, but now with
an additional term h(x)k20 on the boundary. Therefore, we readily obtain the following:

Corollary 3.4. For all k, N ∈ N, there exists a constant C depending only on N , ||X||C2

and ||h||C2 such that the following estimate holds for any φ̃ ∈ H
1
2 (∂Dε) and φ := φ̃ ◦Ψε:

∣∣∣∣
∣∣∣∣Λk0,σDǫ

[φ̃ ◦Ψε]− Λk0,σD[φ]−
N∑

n=1

εnΛ
(n)
k0,D,h[φ]

∣∣∣∣
∣∣∣∣
H

1
2 (∂D)

≤ CεN+1||φ||L2(∂D) ,

where

Λ
(1)
k0,D,h = Λ

(1)
0,D,h + ω2Λ

(1)
k0,D,h,0 .

Here Λ
(1)
k0,D,h,0 is uniformly bounded w.r.t. ω and is a pseudo-differntial operator of order 0

with

p
Λ
(1)
k0,D,h,0

(x, ξ) = −ε0µ0 h(x) +O
(
|ξ|−1

)
.

We would like to remark that the variational derivative of Λ
(1)
k0,D,h contains the term

Λ
(1)
k0,D,h,0 of order 0 instead of −1, in contrast to what one may have expected.

3.1. Scattering coefficients in arbitrary dimensions. With the above preparations, we
have all the tools to analyse the scattered field in (3.1) in terms of the scattering coefficients
as defined in [3, 11], which we shall first extend to arbitrary dimensions in what follows.

From an analogous form to Graf’s addition formula, we have

(k0|x− y|)− d−2
2 H

(1)
d−2
2

(k0|x− y|)

=
∞∑

k=0

(k0|x|)−
d−2
2

+kH
(1)
d−2
2

+k
(k0|x|)(k0|y|)−

d−2
2

+kJ d−2
2

+k
(k0|y|)

∑

L∈Ik

YL(ωx)YL(ωy)

for |x| > |y|. From that, the scattering coefficients can then be defined by putting u0 =

(kr)−
d−2
2

+kJ d−2
2

+k
(kr)YL(ω) which satisfies (∆+ k20)u0 = 0, and then taking the coefficient

with respect to the function YL(ωx), i.e. as follows:
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Definition 3.5. The scattering coefficients associated with the scattered field u− u0 given
by (3.1) with given µ0, µ1, ε0, ε1, ω and a domain D ⊂ R with a C2,α boundary are defined
by

WL,M (µ0, µ1, ε0, ε1, D)

:=

∫

∂D

(k0|y|)−
d−2
2

+kJ d−2
2

+k
(k0|y|)YL(ωy)

{(
1

µ1
− 1

µ0

){
1

2

(
1

µ0
I +

1

µ1

(
Sk1
∂D

)−1
Sk0
∂D

)

+
1

µ0
Kk0

∂D

∗ − 1

µ1
Kk1

∂D

∗
(
Sk1
∂D

)−1
Sk0
∂D

}−1

◦ Λk0

}

×
[
(k0r)

− d−2
2

+nJ d−2
2

+n
(k0r)YM (ω)

]
(y) dσ(y) ,

where k0 = ω
√
µ0ε0 and k1 = ω

√
µ1ε1.

By direct calculations, one can establish the following lemma.

Lemma 3.6. Let D ⊂ Rd be a bounded domain with a C2,α boundary. Consider the solution
to (2.2) with

u0(x) =
∞∑

k=0

∑

L∈Ik

aL (k0rx)
− d−2

2
+kJ d−2

2
+k

(k0r)YL(ωx) .

Then the scattered field for |x| > sup{|x| : x ∈ D} is given by

(u− u0)(x)

=Ck0,d

∞∑

k=0

∑

L∈Ik

∞∑

n=0

∑

M∈In

aM (k0|x|)−
d−2
2

+kH
(1)
d−2
2

+k
(k0|x|)YL(ωx)WL,M (µ0, µ1, ε0, ε1, D) .

(3.9)

Hence, for x ∈ R Sd−1 where R > sup{|x| : x ∈ D}, we have

WL,M (µ0, µ1, ε0, ε1, D)

=
1

Ck0,d
(k0|x|)

d−2
2

−k 1

H
(1)
d−2
2

+k
(k0R)

∫

Sd−1

YL(ωx)

(
u− (k0r)

− d−2
2

+nJ d−2
2

+n
(k0r)YM (ω)

)
(Rωx)dωx .

(3.10)

We note one important property in force:
(

1

µ1
− 1

µ0

){
1

2

(
1

µ0
I +

1

µ1

(
Sk1
∂D

)−1
Sk0
∂D

)
+

1

µ0
Kk0

∂D

∗ − 1

µ1
Kk1

∂D

∗
(
Sk1
∂D

)−1
Sk0
∂D

}−1

◦ Λk0(u0)

= {λI −K∂D
∗}−1 ◦ Λk0(u0) + ω2Rµ0,µ1,ε0,ε1,ω,∂D,−1(u0),

where λ = µ0+µ1

2(µ0−µ1)
which is the same equation as that in Section 2, modulus ω2R∂D,−1(u0)

for a certain operator R∂D,−1 that is uniformly bounded with respect to ω and is of order
−1. Therefore we obtain:

Theorem 3.7. We have

u− u0 = Sk0
∂D ◦

(
{λI −K∂D

∗}−1 ◦ Λk0(u0) + ω2Rµ0,µ1,ε0,ε1,ω,∂D,−1(u0)
)
,

where R∂D,−1 is uniformly bounded with respect to ω and is of order −1.

Using the asymptotic properties of Jα and Yα in (3.8), we can further obtain the following
corollary by straightforward calculations.
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Lemma 3.8. We have

WL,M (µ0, µ1, ε0, ε1, D) = ML,M (λ,D) +O(ω2) ,

where λ = µ0+µ1

2(µ0−µ1)
.

3.2. Sensitivity analysis of the scattering coefficients in the low frequency regime.

Combining Lemmas 3.7 and 2.6, we readily obtain:

Lemma 3.9. The scattering coefficient ML,M (λ, ∂D) has the following representation

WL,M (µ0, µ1, ε0, ε1, D)

=

〈
(k0r)

− d−2
2

+kJ d−2
2

+k
(k0r)YL(ω) ,

(
PD,1 + PD,0 + PD,−1

+ ω2Rµ0,µ1,ε0,ε1,ω,∂D,−1

)(
(k0r)

− d−2
2

+nJ d−2
2

+n
(k0r)YM (ω)

)〉

L2(∂D,dσ)

,

(3.11)

where PD,m are pseudo-differential operators of order m for m = 1, 0,−1 as given in Lemma
2.6, and Rµ0,µ1,ε0,ε1,ω,∂D,−1 is of order −1 and is uniformly bounded with respect to ω.

Following the proof of Theorem 2.7 and utilizing Lemmas 3.1-3.3 and 3.7, we can also
obtain that

Theorem 3.10. For N ∈ N, there exists a constant C depending only on N , L ∈ Ik,M ∈
In, ||X||C2 and ||h||C2 such that
∣∣∣∣∣WL,M (µ0, µ1, ε0, ε1, Dε)−WL,M (µ0, µ1, ε0, ε1, D)−

N∑

n=1

εnW(n)
L,M (µ0, µ1, ε0, ε1, D, h)

∣∣∣∣∣

≤ CεN+1,

(3.12)

for some W(n)
L,M (µ0, µ1, ε0, ε1, D, h) with W(1)

L,M (µ0, µ1, ε0, ε1, D, h) given by

W(1)
L,M (µ0, µ1, ε0, ε1, D, h)

=
〈
(k0r)

− d−2
2

+kJ d−2
2

+k
(k0r)YL(ω) , ˜Qµ0,µ1,ε0,ε1,ω,D,h

(
(k0r)

− d−2
2

+nJ d−2
2

+n
(k0r)YM (ω)

)〉

L2(∂D,dσ)
,

where

˜Qµ0,µ1,ε0,ε1,ω,D,h = QD,h,1,I +QD,h,1,II +QD,h,0 + ω2Rµ0,µ1,ε0,ε1,ω,∂D,0

with QD,h,1,I , QD,h,1,II , QD,h,0 being the same as those in Theorem 2.7, and Rµ0,µ1,ε0,ε1,ω,∂D,0

a pseudo-differential operator of order 0 and uniformly bounded with respect to ω.

3.3. Localization of sensitivity of scattering coefficients at points of high mean

curvature. Similar to Section 2.7, let us consider

tr∂DKer(∆ + k20) := {u |∂D: (∆ + k20)u = 0 in Rd},

where we notice that tr∂DKer(∆ + k0)2)
Hs(∂D,dσ)

= Hs(∂D, dσ) for all s ∈ R. Similar to
the situation for the generalized polarization tensors, one has
{〈

ψ , ˜Qµ0,µ1,ε0,ε1,ω,D,h φ
〉

L2(∂D,dσ)
: ψ ∈ Hs(∂D, dσ), φ ∈ Ht(∂D, dσ), s, t ∈ R, s+ t− 1 = 0

}

=




∑

k,m

∑

L∈Ik,M∈Im

aLbMW(1)
L,M (µ0, µ1, ε0, ε1, D, h) : aL, bM ∈ C such that the sum converges



 .
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It is worth emphasizing in what follows that with suitable choices of ψ ∈ Hs(∂D, dσ), φ ∈
Ht(∂D, dσ) such that s, t ∈ R, s + t − 1 = 0, one can obtain the principal symbol in the
geodesic normal coordinate at each point x as follows

lim
t→∞

t−1e−itϕx,ξ ˜Qµ0,µ1,ε0,ε1,ω,D,he
itϕx,ξχx = pQD,h,1,I

(x, ξ) + pQD,h,1,II
(x, ξ) ,

where ξ ∈ Sd−1 and ϕx,ξ( · ) = 〈ξ, logx( · )〉 in half of the injective radius. Let us consider the
same complete orthornormal bases on L2(∂D, dσ) as in Section 2.7, namely {ηk,∂D}k∈N,
and {(k0r)−

d−2
2

+nJ d−2
2

+n
(k0r)YM (ω)}M∈In,n∈N are also a complete frame by density of

tr∂DKer(∆ + k20). For r0 such that J d−2
2

+n
(k0r0) 6= 0 for all n ∈ N (otherwise some basis

needs to be dropped), let us denote by
(
Ũk,L,∂D

)
the map that changes the basis to the

orthonormal one and
(
Ũ−1
L,k,∂D

)
as its inverse. Then we render the following:

Theorem 3.11. For r0 such that J d−2
2

+n
(k0r0) 6= 0 for all n ∈ N, we have the following

inversion formula for ∂D ∈ C2,α and h ∈ C2,α,

[(1− d)ωd + 1]h(x)H(x) =

∫

Sd−1

lim
t→∞

G̃(ξ, t, x)dσ(ξ), (3.13)

where

G̃(ξ, t, x) :=
∑

L ∈ Ik, M ∈ In M̃ ∈ Iñ,
k, n, r, s ∈ N

|ξ|−1t−1e−itϕx,ξ ηs,∂D Ũs,L,∂D W(1)
L,M (µ0, µ1, ε0, ε1, D, h)

× Ũ−1
M,r,∂D

〈
ηr,∂D , χx e

itϕx,ξ
〉
L2(∂D,dσ)

.

In the following, we define

ProjW̃s,∂D
: L2(∂D, dσ) → W̃s := Span{(k0r)−

d−2
2

+nJ d−2
2

+n
(k0r)YM (ω)|∂D}md−1≤s,

for s ∈ N. Then, via a perturbation analysis, we have

Lemma 3.12. Given a general ∂D ∈ C2,α, let ∂Dǫ be an ε-perturbation along h ∈ C2,α and
let S = |{T : td−1 ≤ s}|. Then for ε ∈ R+ sufficiently small, we have

max

{ ∣∣∣‖Ũ−1
L,p,∂Dε |L(Vs,∂Dε ,W̃s,∂Dε )‖l2→l2 − ‖Ũ−1

L,p,∂D|L(Vs,∂D,W̃s,∂D)‖l2→l2

∣∣∣ ,
∣∣∣‖UL,p,∂Dε |L(Vs,∂Dε ,Ws,∂Dε )‖−1

l2→l2
− ‖UL,p,∂D|L(Vs,∂D,Ws,∂D)‖−1

l2→l2

∣∣∣
}

< 2ε max
1≤P≤S

{
max

{
1, max

z 6=λP ,z∈λ(∆∂D)

‖g‖2
C1

|z2 − λ2P |

}
‖h‖C0‖A‖C1λ2P ‖(k0r)−

d−2
2

+s

×J d−2
2

+s
(k0r)|∂D‖L2(∂D,dσ) + ‖h‖C1‖∂ν((k0r)−

d−2
2

+sJ d−2
2

+s
(k0r)YT (ω))|∂D‖L2(∂D,dσ)

+ε(d− 1)‖h‖C0‖H‖C0‖(k0r)−
d−2
2

+sJ d−2
2

+s
(k0r)YT (ω)|∂D‖L2(∂D,dσ)

}
.

Similar to the specific examples in Section 2, we can have the following results.

Example II.1. Let us consider ∂D = R0S
d−1 with R0 < 1. Using the previous notations,

we have

Ũ−1
L,M,R0Sd−1 = ω−1

d−1(k0R0)
k− d−2

2 [J d−2
2

+k
(k0R0)]

−1δLM .
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For k0R0/2 ≪ 1, we have

(k0R0)
k− d−2

2 [J d−2
2

+k
(k0R0)]

−1 ∼ Γ

(
d− 2

2
+ k

)(
k20R

2
0

2

) d−2
2

−k

.

Hence we have the following estimate of the condition number when ∂D = R0S
d−1,

κ(ŨM,L,R0Sd−1 |L(W̃
s,R0S

d−1 ,Vs,R0S
d−1 )

) ≤ C

√
s+ d− 2

2

(
k20R

2
0 (s+ d− 2)

2

) d−2
2

+s

.

Example II.2. Consider ∂Dδ as follows: ∂D = R0S
d−1 with perturbation k ∈ C2, and

‖k‖C2 < 1 and small magnitude δ. Now, applying Lemma 3.12, together with λT,Sd =
s(s+ d− 2) for td−1 = s, we have for δ small enough and large enough s,

max

{ ∣∣∣∣‖Ũ
−1
L,p,∂Dδ |L(V

s,∂Dδ ,W̃s,∂Dδ )
‖l2→l2 − ω−1

d−1R
− d−1

2
0

∣∣∣∣ ,
∣∣∣∣∣‖ŨL,p,∂Dδ |L(V

s,∂Dδ ,W̃s,∂Dδ )
‖−1
l2→l2

− ω−1
d−1R

− d−1
2

0 Γ

(
d− 2

2
+ k

)(
k20R

2
0

2

) d−2
2

−s
∣∣∣∣∣

}

< 2δ(2R0 + 2s− d+ 2)(2s− d+ 2)

((
d− 2

2
+ s

)
k20

) d−2
2

−s

R−2s−1
0 ,

and therefore, for small enough δ, we obtain

κ(ŨL,p,∂Dδ |L(V
s,∂Dδ ,Ws,∂Dδ ))

≤ kd−2−2s
0 R

d−2
2

−2s

0 + 2δ ωd−1(2R0 + 2s− d+ 2)kd−2−2s
0 R−2s−1

0

(2s− d+ 2)−
d−2
2

−s−1R
− d−1

2
0 − 2δ ωd−1(2R0 + 2s− d+ 2)kd−2−2s

0 R−2s−1
0

.

From the above example, we have similar results to those in Corollary 2.11.

Corollary 3.13. Let ∂Dδ be a δ-perturbation of ∂D = R0S
d−1 along the direction k ∈

C2(∂D) with ‖k‖C2 < 1 for sufficiently small δ ∈ R+. Then for h ∈ C2(∂Dδ) with ‖h‖C2 < 1,
considering an ε-perturbation of ∂Dδ along the direction h, (∂Dδ)ε, we have

|[ProjV
s,∂Dδ

(hH)](x)|

≤ Cd
kd−2−2s
0 R

d−2
2

−2s

0 + 2δ ωd−1(2R0 + 2s− d+ 2)kd−2−2s
0 R−2s−1

0

(2s− d+ 2)−
d−2
2

−s−1R
− d−1

2
0 − 2δ ωd−1(2R0 + 2s− d+ 2)kd−2−2s

0 R−2s−1
0

×‖W(1)
L,M (µ0, µ1, ε0, ε1, D

δ, h)‖L(V
s,Sd−1 ,Vs,Sd−1 ) .

Similarly,

|[ProjV
s,∂Dδ

(hH)](x)|

≤ CdCk0,d(k0|x|)
d−2
2

−k 1

|H(1)
d−2
2

+k
(k0R)|

× kd−2−2s
0 R

d−2
2

−2s

0 + 2δ ωd−1(2R0 + 2s− d+ 2)kd−2−2s
0 R−2s−1

0

(2s− d+ 2)−
d−2
2

−s−1R
− d−1

2
0 − 2δ ωd−1(2R0 + 2s− d+ 2)kd−2−2s

0 R−2s−1
0

×
∥∥∥∥∥
∂

∂ǫ

(〈
YL(ωx) ,

(
u(∂Dδ)ǫ − (k0r)

− d−2
2

+nJ d−2
2

+n
(k0r)YM (ω)

)
(Rωx)

〉

L2(RSd−1,dωx)

)∥∥∥∥∥
L(V

s,Sd−1 ,Vs,Sd−1 )

.
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The proof of Corollary 3.13 is similar to that of Corollary 2.11, and therefore we skip it.

By Corollary 3.13, we readily see that the reconstruction of h(x) fromW(1)
L,M (µ0, µ1, ε0, ε1, D, h)

is more sensitive at points with high mean curvature |H(x)|2 when D is not too far from
R0S

d−1.
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