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RECONSTRUCTION OF DOMAINS WITH ALGEBRAIC BOUNDARIES FROM

GENERALIZED POLARIZATION TENSORS

HABIB AMMARI, MIHAI PUTINAR, ANDRIES STEENKAMP, AND FAOUZI TRIKI

Abstract. This paper aims at showing the stability of the recovery of a smooth planar domain with a
real algebraic boundary from a finite number of its generalized polarization tensors. It is a follow-up of the
work [H. Ammari et al., Math. Annalen, 2018], where it is proved that the minimal polynomial with real
coefficients vanishing on the boundary can be identified as the generator of a one dimensional kernel of a
matrix whose entries are obtained from a finite number of generalized polarization tensors. The recovery
procedure is implemented without any assumption on the regularity of the domain to be reconstructed and
its performance and limitations are illustrated.
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1. Introduction

Let D be a bounded connected Lipschitz domain in R2, and assume that its boundary ∂D contains the
origin. Let Υ be the conductivity distribution in R2 given by

Υ = kχ(D) + χ(R2 \D),

where χ denotes the indicator function, and k is a fixed constant in (0, 1) ∪ (1, +∞). Let u0(x) = 1
2π ln |x|,

be the fundamental solution to the Laplacian in R2. For a given position z in R2, we consider the following
conductivity equation

{
∇ ·Υ∇u(x, z) = δz(x) in R2,
u(x, z)− u0(x, z) = O(|x|−1) as |x| → ∞,

where δz is the Dirac function at z and u0(x, z) := u0(x − z). The system (1) has a unique solution u
which is the total voltage potential generated by the point source placed at z [7]. The function −∇u0(x, z)
represents the background electric field while u(x, z) − u0(x, z) is the perturbation of the voltage potential
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due to presence of the inclusion D. Then, the far-field perturbation of the voltage potential due to the
presence of D is given by [7]

u(x, z)− u0(x, z) =

∞∑

|α|,|β|=1

(−1)|α|+|β|

α!β!
∂αu0(x)Mαβ∂βu0(z) as |x| → +∞,(1)

where and throughout this paper, we use the conventional notation:

xα = xα1
1 xα2

2 , α = (α1, α2) ∈ N2, and |α| = α1 + α2.

We also use the graded lexicographic order: α, β ∈ N2 verifies α ≤ β if |α| < |β|, or, if |α| = |β|, then
α1 ≤ β1 or α1 = β1 and α2 ≤ β2.

The quantities Mαβ that appear naturally in the multi-polar asymptotic expansion (1), are called Gen-
eralized Polarization Tensors (GPTs). We emphasize that GPTs are not dependent on the positions x and
z. In fact they only depend on the inclusion D and the conductivity ratio 1/k or conductivity contrast
λ := k+1

2(k−1) . For a fixed contrast λ, the GPTs are indeed geometric quantities associated with the shape of

the domain D such as eigenvalues, capacities, and moments. The notion of GPTs has been used in diverse
fields of academic research as well as of engineering applications such as the theories of composites, inverse
problems, bio-medical imaging, bio-sensing, nano-sensing, and electro-sensing [5, 9–13,15,26].

From the asymptotic expansion (1), we deduce that the knowledge of all the GPTs is equivalent to knowing
the far-field responses of the inclusion for all harmonic excitations. It is well known that in that case the
inverse problem of recovering (λ, D) has a unique solution [6], and a number of algorithms have been proposed
for its numerical treatment [3, 4, 7, 8]. However, in applications, the GPTs are usually only measured with
finite accuracy and only a finite number of them can be determined from noisy data. Hence, studying the
well-posedness of the inverse problem when only a finite number of GPTs are available is of importance.

The purpose of this paper is to evaluate how much information one can get from the knowledge of a finite
number of these GPTs. Precisely, assuming that the domain has an algebraic boundary, we are interested
in the inverse problem of recovering its position, its shape and the contrast for given a finite number of its
GPTs. Recently the uniqueness to this inverse problem was established by the same authors [1]. Our goal in
the present paper is twofold: (i) to quantify the stability of the inversion and (ii) to implement the inversion
procedure and apply it to much more general cases than those discussed in [1]. In particular, we show here
how to recover the true domain (with possibly nonsmooth boundary) from the recovered polynomial level
set even in the case where several candidate domains have the same polynomial level set. In doing so, we
resolve key numerical issues which include handling of bifurcation points, segmentation points, and arc sets.
It is worth emphasizing that the stability estimates proved in this paper holds for algebraic domains with
smooth boundaries. Their generalization to the nonsmooth case is technically quite challenging.

The paper is organized as follows. In Section 2, we introduce the class under consideration of domains
with algebraic boundaries. Stability issues are studied in Section 3. The main stability estimates are given
in Theorem 3.2. Section 4 is devoted to the presentation of our new numerical algorithm which is designed
to recover algebraic domains from finite numbers of their associated GPTs. It is worth mentioning that
based on the density with respect to Hausdorff distance of algebraic domains among all bounded domains,
the proposed algorithm can be extended via approximation beyond its natural context. This observation
has already turned algebraic curves into an efficient tool for describing shapes and reconstructing them from
their associated moments [19–23,25].

2. Real algebraic domains

In this section, we introduce the class of bounded open subsets in R2 with real algebraic boundaries. We
recall the following definition.

Definition 2.1. An open set G in R2 is called real algebraic (or simply algebraic) if there exists a finite
number of real coefficient polynomials gi(x), i = 1, · · · , m, such that

∂G ⊂ V := {x ∈ R2 : g1(x) = · · · = gm(x) = 0}.



3

The ellipse is a simple example of an algebraic domain, since its general boundary coincides with the zero
set of the quadratic polynomial function

g(x) =
∑

|α|≤2

gαxα

for given real coefficients (gα)|α|≤2 and proper signs in the top degree part.
We further denote by G the collection of bounded algebraic domains. It is well-known that the differential

structure of the boundary ∂G consists of algebraic arcs joining finitely many singular points, see for instance
[16].

As mentioned in [1], since the connectedness of the respective sets is not accessible by the linear algebra
tools we developed for reconstructing an algebraic domain from a finite number of its generalized polarization
tensors, we drop such a constraint here. Nevertheless, we call "domains" all elements G ∈ G.

Following [23] we consider a particular class of algebraic domains which are better adapted to the unique-
ness and stability of our inverse shape problem. Let

G∗ :=
{

G ∈ G : G = int G
}

.(2)

An element of G∗ is called an admissible domain, although it may not be connected.
The assumption that G = int G implies that G contains no slits or ∂G does not have isolated points. If

G ∈ G∗, the algebraic dimension of ∂G is one, and the ideal associated to it is principal. To be more precise,
∂G is contained in a finite union of irreducible algebraic sets Xj , j ∈ J, of dimension one each. The reduced
ideal associated to every Xj is principal:

I(Xj) = (Pj), j ∈ J ;

see, for instance, [14, Theorem 4.5.1]. We assume that each Pj is indefinite, i.e., it changes sign when crossing
Xj . Therefore, one can consider the polynomial g =

∏
j∈J Pj , vanishing of the first-order on ∂G, that is

|∇g| 6= 0 on the regular locus of ∂G. According to the real version of Study’s lemma (cf. [16, Theorem 12])
every polynomial vanishing on ∂G is a multiple of g, that is I(∂G) = (g). We define the degree of ∂G as
the degree of the generator g of the ideal I(∂G). For a thorough discussion of the reduced ideal of a real
algebraic surface in Rd, we refer the reader to [17].

Throughout this paper, we denote by g(x) the single polynomial vanishing on ∂G which is the generator
of I(∂G) and satisfying the following normalization condition gα∗ = 1, where α∗ = maxgα 6=0 α. We further
assume that G ∈ G∗.

3. Uniqueness and stability estimates

In this section, we first recall the uniqueness result obtained in [1] and then derive stability estimates for
the inversion procedure for smooth algebraic domains.

3.1. Uniqueness. Let R[x] be the ring of polynomials in the variables x = (x1, x2) and let Rn[x] be the
vector space of polynomials of degree at most n (whose dimension is rn = (n+1)(n+2)/2). Any polynomial
function p(x) ∈ Rn[x] has a unique expansion in the canonical basis xα, |α| ≤ n of Rn[x], that is,

p(x) =
∑

|α|≤n

pαxα

for some vector coefficients p = (pα) ∈ Rrn
. The following results are established in [1].

Theorem 3.1. Let G ∈ G∗ with ∂G Lipschitz of degree d, and let g(x) =
∑

|α|≤d gαxα, be a polynomial

function that vanishes of the first-order on ∂G, satisfying I(∂G) = (g), gα∗ = 1, and g(0) = 0, where
α∗ = maxgα 6=0 α. Then, there exists a discrete set Σ ⊂ C0 := C \ [−1/2, 1, 2], such that for any fixed
λ ∈ C0 \ Σ, g = (gα) ∈ Rrd

is the unique solution to the following normalized linear system:

p = (pα) ∈ Rrd
;

∑

|β|≤d

Mαβ(λ, G)pβ = 0 for |α| ≤ 2d; pα∗ = 1, α∗ = max
pα 6=0

α.(3)
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Corollary 3.1. Let G, G̃ ∈ G∗ be Lipschitz of degree d. Let g and g̃ be two polynomials that vanish respectively

of the first order on ∂G and on ∂G̃ satisfying I(∂G) = (g) and I(∂G̃) = (g̃). Assume that g(0) = g̃(0) = 0

and ‖∇g‖, ‖∇g̃‖ > 0 on respectively ∂G and ∂G̃. Moreover, assume that G is the unique element of G∗

containing 0 such that ∂G ⊂ {g = 0} ∪Br(0), where Br(0) is the disk of center 0 and radius r large enough.

Let λ and λ̃ be fixed in C0 such that λ /∈ Σ, λ̃ /∈ Σ̃, where the sets Σ(∂G) and Σ̃ = Σ(∂G̃) are as defined in
Theorem 3.1. Then, the following uniqueness result holds:

(Mαβ(G, λ))|α|≤2d,0<|β|≤d = (Mαβ(G̃, λ̃))|α|≤2d,0<|β|≤d iff G = G̃ and λ = λ̃.(4)

Proof. The result is a direct consequence of Theorem 3.1. Since the generalized polarization tensors coincide,
and λ /∈ Σ, we can deduce from Theorem 3.1 that g = g̃. The fact that g(0) = g̃(0) = 0 and ‖∇g‖, ‖∇g̃‖ > 0

on respectively ∂G and ∂G̃ implies that G = G̃. A straightforward calculation shows then that λ = λ̃, which
finishes the proof. �

3.2. Stability estimates. In this section we derive, under some regularity assumption, stability estimates
for the considered inverse problem. For fixed integer d > 0, and constants R > 0, M0 > 0, κ > 0, define a
reduced set of algebraic domains G∗

0 by

G∗
0 :=

{
G ∈ G∗

0 : G ⊂ BR(0), I(∂G) = (g), g(0) = 0, deg(g) = d, ‖g‖ ≤M0, min
∂G
‖∇g‖ ≥ κ

}
,(5)

where deg denotes the degree. It is not difficult to show that there exists a constant M > M0, that only
depends on G∗

0 , such that

|g|, ‖∇g‖, ‖H(g)‖ ≤M on BR(0)(6)

for all g satisfying I(∂G) = (g), where G ∈ G∗
0 and H(g) is the Hessian matrix of g.

Let K1 and K2 be two compact sets in R2. Recall that the Hausdorff distance between K1 and K2 is
defined by

dH(K1, K2) = max

{
sup

x∈K1

d(x, K2), sup
x∈K2

d(x, K1)

}
,

where d(x, Ki) = infy∈Ki
‖x− y‖, i = 1, 2. Let ‖ ‖ denote the Euclidean norm of tensors.

Theorem 3.2. Let G ∈ G∗
0 , G̃ ∈ G∗

0 with respectively ∂G and ∂G̃. Let δ > 0 be a fixed constant and λ0 ∈ R

satisfying Bδ(λ0) ⋐ C∩
{
|λ| > 1

2

}
. Then there exists λ∗ ∈ (λ0−δ, λ0 +δ), constants η = η(λ0, δ,G∗

0 ) ∈ (0, 1),
and C = C(λ0, δ,G∗

0 ) > 0, such that if
∑

|α|≤2d,0<|β|≤d

∥∥∥Mαβ(λ∗, G)−Mαβ(λ∗, G̃)
∥∥∥

2

= ε2 < 1,

then the following stability result holds:

dH(∂G, ∂G̃) ≤ Cεη.(7)

In order to prove Theorem 3.2, we need to show several intermediate results. Let g(x) =
∑

|α|≤d gαxα

and g̃(x) =
∑

|α|≤d g̃αxα be respectively polynomial functions that vanish respectively of the first-order on

∂G and ∂G̃ satisfying I(∂G) = (g), gα∗ = 1, g(0) = 0, and I(∂G̃) = (g̃), g̃α∗ = 1, g̃(0) = 0.
Further, we shall use standard notation concerning Sobolev spaces. For a density φ ∈ H−1/2(∂G), define

the Neumann-Poincaré operator: K∗
G : H−1/2(∂G)→ H−1/2(∂G), by

K∗
G[φ](x) =

1

2π
p.v.

ˆ

∂G

〈x− y, νG(x)〉

‖x− y‖2
φ(y) dσ(y), x ∈ ∂G,

where p.v. denotes the principal value, νG(x) is the outward unit normal to ∂G at x ∈ ∂G, 〈 , 〉 denotes the
scalar product in R2, and ‖ ‖ denotes the Euclidean norm in R2.
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The following lemma characterizes the resolvent set ρ(K∗
G) of the operator K∗

G, see, for instance, [7]
and [18].

Lemma 3.1. We have C \ (−1/2, 1/2] ⊂ ρ(K∗
G). Moreover, if |λ| ≥ 1/2 , then (λI − K∗

G) is invertible on

H
−1/2
0 (∂G) := {f ∈ H−1/2(∂G) : 〈f, 1〉−1/2,1/2 = 0}. Here, 〈 , 〉−1/2,1/2 denotes the duality pairing between

H−1/2(∂G) and H1/2(∂G).

For |λ| > 1/2 and a multi-index α = (α1, α2) ∈ N2, define φα by

φα(y) := (λI −K∗
G)−1 [νG(x) · ∇xα] (y), y ∈ ∂G.

The GPTs Mαβ for α, β ∈ N2 (|α|, |β| ≥ 1), associated with the contrast λ and the domain G can be
rewritten as [7]

Mαβ(λ, G) :=

ˆ

∂G

yβφα(y) dσ(y).(8)

Denote by C⋆ := C \ (−∞,−2] ∪ [2, +∞), and let µ = λ−1 ∈ C⋆. Define respectively M(µ) and M̃(µ) to
be the rectangular matrices with coefficients:

Mαβ(µ) :=

ˆ

∂G

(I − µK∗
G)−1 [νG(x) · ∇xα] yβ dσ(y),(9)

M̃αβ(µ) :=

ˆ

∂G̃

(I − µK∗

G̃
)−1

[
ν

G̃
(x) · ∇xα

]
yβ dσ(y).(10)

Note that Mαβ(λ, G) = λMαβ(1/λ) and Mαβ(λ, G̃) = λM̃αβ(1/λ).
Recall the following result from [1].

Lemma 3.2. The functions µ → M(µ), M̃(µ) ∈ L (Rrd , Rr2d) are holomorphic matrix-valued on C⋆. In

addition, ker(M(0)) = {cg; c ∈ R} and ker(M̃(0)) = {cg̃; c ∈ R}.

The proof of Theorem 3.2 has two main steps. In the first step, using the normalized linear system (3),

we estimate g − g̃ in terms of M(0) − M̃(0). The second step consists in applying the unique continuation

of holomorphic functions on M(µ)− M̃(µ) to "propagate the information" from 0 to µ = λ−1.

Let

F (µ) :=
∑

|α|≤2d,0<|β|≤d

∥∥∥Mαβ(µ)− M̃αβ(µ)
∥∥∥

2

.

We remark that F (µ) is a real positive function on C⋆ ∩ R. We deduce from Lemma 3.2 that F (µ) is
holomorphic on C⋆ and that F (0) = 0 implies g = g̃. We next estimate how much g is close to g̃ when F (0)
is very small.

Proposition 3.1. Let the constants κ and M be defined by (5) and (6), respectively. Let ε0 = κ5

65M4 and

C = 64 M4

κ5 . Assume that F (0) ≤ ε2
0. Then the following inequality holds:

dH
2(∂G, ∂G̃) ≤ CF 1/2(0).(11)

In order to prove Proposition 3.1 we need the following three lemmas.

Lemma 3.3. We have

‖g − g̃‖2
L2(∂G) + ‖g − g̃‖2

L2(∂G̃)
≤ 2κ−1M2F 1/2(0).(12)

Proof. From the definition of the matrices M(0) and M̃(0), we have
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(13)

qt
(
M(0)− M̃(0)

)
p =

ˆ

∂G

νG(y) · ∇q(y)p(y) dσ(y)−

ˆ

∂G̃

ν
G̃

(y) · ∇q(y)p(y) dσ(y), ∀p ∈ Rd[x], q ∈ R2d[x],

where the superscript t denotes the transpose.

Since g and g̃ are in G∗ defined by (2) and they respectively generate the ideals associated to ∂G and ∂G̃,

we have νG(x) = ∇g(x)
‖∇g(x)‖ , x ∈ ∂G and ν

G̃
(x) = ∇g̃(x)

‖∇g̃(x)‖
, x ∈ ∂G̃. Then (13) becomes

qt
(
M(0)− M̃(0)

)
p =

ˆ

∂G

∇g

‖∇g‖
· ∇q(y)p(y) dσ(y)−

ˆ

∂G̃

∇g̃

‖∇g̃‖
· ∇q(y)p(y) dσ(y),∀p ∈ Rd[x], q ∈ R2d[x].

By taking q(x) = g̃(x)g(x), p(x) = g(x) + g̃(x), and considering the fact that g(x) and g̃(x) respectively

vanish on ∂G and on ∂G̃, one finds that

(g̃g)t
(
M(0)− M̃(0)

)
(g + g̃) =

ˆ

∂G

‖∇g‖ (g − g̃)
2

dσ +

ˆ

∂G̃

‖∇g̃‖ (g − g̃)
2

dσ,

which in turn implies that

ˆ

∂G

‖∇g‖ (g − g̃)
2

dσ +

ˆ

∂G̃

‖∇g̃‖ (g − g̃)
2

dσ ≤ 2
(
‖g‖2 + ‖g̃‖2

)
F 1/2(0).

Hence, (12) holds. �

For r > 0 small, let Or ⊂ R being the tubular domain along ∂G, defined by

Or := {y + sνG(y); y ∈ ∂G, s ∈ (−r, r)} .

Lemma 3.4. Assume that 0 < r ≤ κ
M . Then

|g(x)| ≥
κ

2
r, ∀x ∈ ∂Or.(14)

Proof. Let x = y + ±rνG(y) ∈ Or, for some y ∈ ∂G be fixed. From the regularity of g, it follows that the
function s→ g(y ± sνG(y)) is C2 and satisfies the following Taylor expansion of order two at zero:

g(y ± rνG(y)) = ±∇g(y) · νG(y)r +
r2

2
νt

G(y)H(g)(y ± s0νG(y))νG(y),

where H(g)(y) is the Hessian matrix of g at y, and s0 is some constant in between 0 and ±r. Recalling that

νG(x) = ∇g(x)
‖∇g(x)‖ , we therefore obtain that

|g(x)| ≥ κr −M
r2

2
,

which finishes the proof.
�

The proof of Lemma 3.4 shows that if the zero level set of g is isolated, that is, ‖∇g‖ 6= 0 on ∂G, then
the polynomial g behaves as a weighted signed distance function to the boundary ∂G in the small tubular
neighborhood domain Or.

Lemma 3.5. Let r∗ = κ
M and ε0 = κ5

65M4 . Assume that F (0) ≤ ε2
0. Then

∂G̃ ⊂ Or∗ .(15)
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Proof. Let x̃(t) be the parametric representation of the boundary ∂G̃ (∂G̃ = {x̃(t), t ∈ R+}) satisfying

dx̃

dt
(t) = J∇g̃(x̃(t)), t > 0, and x̃(0) = 0,(16)

where J is the counter-clockwise rotation matrix by π/2. Since g̃ is smooth, x̃(t) is the unique solution to
the system (16), which is in addition of class C1 and is periodic on R+.

Now we shall prove that x̃(t) lies indeed in Or∗ , for all t ∈ R+. Assume that ∂G̃ is not entirely included
in Or∗ , and define

t0 = sup{t ∈ R+ : x̃(t) ∈ Or∗}.

Since 0 ∈ ∂G, t0 > 0 is well defined, is finite, and verifies x̃(t0) ∈ ∂Or∗ . Lemma 3.4 then implies that

|g(x̃(t0))| ≥
κ

2
.(17)

In view of the regularity of g and since x̃ verifies (16), we have

|g(x̃(t))− g(x̃(s))| ≤M2|t− s|, ∀s, t ∈ R+.(18)

Combining inequalities (17) and (18), we obtain that

|g(x̃(t))| ≥
κ

4

for all t satisfying |t− t0| ≤
κ

4M2 . Whence

‖g − g̃‖2

L2(∂G̃)
≥

ˆ t0+ κ

4M2

t0− κ

4M2

|g(x̃(t))|2‖∇g̃(x̃(t))‖dt ≥
κ4

32M2
.

This together with (12) entail

F 1/2(0) ≥
κ5

64M4
,

which is in contradiction with the fact that F (0) ≤ ε2
0. Then the inclusion (15) is satisfied.

�

Proof of Proposition 3.1. Now, we are ready to prove Proposition 3.1. We further assume that F (0) ≤ ε2
0.

Let x̃(t) be defined by (16). Since ∂G̃ ⊂ Or∗ , for each t > 0, there exists r(t) ∈ (0, r∗) and y(t) ∈ ∂G, such
that x(t) = y(t)± r(t)νG(y(t)). Noting that x(t) ∈ Or(t), we get from Lemma 3.4 the following estimate:

|g(x̃(t))| ≥
κ

2
r(t).

Following the same arguments as those in the proof of Lemma 3.5, we get

|g(x̃(s))| ≥
κ

4
r(t)

for all s satisfying |t− s| ≤ κ
4M2 . Whence

‖g − g̃‖2

L2(∂G̃)
≥

ˆ t0+ κ

4M2

t0− κ

4M2

|g(x̃(t))|2‖∇g̃(x̃(t))‖dt ≥
κ4

32M2
r2(t)

for all t ∈ R+. Then
κ4

32M2
d2(x̃(t), ∂G) ≤

κ4

32M2
r2(t) ≤ ‖g − g̃‖2

L2(∂G̃)

for all t ∈ R+, which implies

κ4

32M2
sup

x∈∂G̃

d2(x, ∂G) ≤ ‖g − g̃‖2

L2(∂G̃)
.(19)

Repeating the same steps by interchanging G and G̃, we also get

κ4

32M2
sup

x∈∂G
d2(x, ∂G̃) ≤ ‖g − g̃‖2

L2(∂G).(20)



8 HABIB AMMARI, MIHAI PUTINAR, ANDRIES STEENKAMP, AND FAOUZI TRIKI

Finally, combining inequalities (19), (20), and (12), we obtain the final result of Proposition 3.1. �

The second step in proving Theorem 3.2 consists in showing the following proposition.

Proposition 3.2. Let δ > 0 be a fixed constant and λ0 ∈ R satisfying Bδ(λ0) ⋐ C∩
{
|λ| > 1

2

}
. Then, there

exist constants θ = θ(λ0, δ) > 0 and C = C(λ0, δ) > 0 such that

F (0) ≤ C

∥∥∥∥λ 7→ F (
1

λ
)

∥∥∥∥
θ

L∞((λ0−δ,λ0+δ))

.(21)

Proof. Let ω ⋐ B2(0) be the image of (λ0 − δ, λ0 + δ) by the complex function λ 7→ 1/λ. Then there exists
a constant r0 ∈ (0, 2) such that ω ⋐ Br0

(0). Denote by M1 = ‖µ 7→ F (µ)‖L∞(Br0 (0)), and let w be the
harmonic measure satisfying 




∆w = 0 in Br0
(0) \ ω,

w = 0 on ∂Br0
(0),

w = 1 on ∂ω.

Since µ 7→ F (µ) is holomorphic on Br0(0), the function µ 7→ log |F (µ)| is subharmonic, and we can deduce
from the Two constants Theorem [24] the following inequality:

F (µ) ≤M
1−w(µ)
1 ‖µ 7→ F (µ)‖

w(µ)
L∞(ω).

Then by taking θ = w(0), and C = M
1−w(0)
1 , we obtain the result. �

Proof of Theorem 3.2. Finally, we are now in a position to prove Theorem 3.2. Let λ∗ ∈ (λ0− δ, λ0 + δ). By
combining estimates (11) and (21) together with the fact that Mαβ = λMαβ , we finally obtain the desired
stability result stated in Theorem 3.2. �

4. Algorithm description and numerical examples

4.1. Algorithm. Before we can dive into the algorithm for recovering algebraic domains from finitely many
of their GPTs we must first define a processed form of the GPTs that will form our starting point. In [1,
Algorithm 6.2] the GPTs (Mαβ)|α|≤2d,|β|≤d are flattened out into a linear system. We define one such
system explicitly here. For doing so, we use the notation Mαβ = M[α1,α2],[β1,β2], where α = (α1, α2) and
β = (β1, β2).

Definition 4.1. The GPT tessera of order (m,n) is given by

M̃m,n :=




M[m,0],[n,0](λ, G) M[m,0],[n−1,1](λ, G) · · · M[m,0],[1,n−1](λ, G) M[m,0],[0,n](λ, G)
M[m−1,1],[n,0](λ, G) M[m−1,1],[n−1,1](λ, G) · · · M[m−1,1],[1,n−1](λ, G) M[m−1,1],[0,n](λ, G)

...
...

. . .
...

M[1,m−1],[n,0](λ, G) M[1,m−1],[n−1,1](λ, G) · · · M[1,m−1],[1,n−1](λ, G) M[1,m−1],[0,n](λ, G)
M[0,m],[n,0](λ, G) M[0,m],[n−1,1](λ, G) · · · M[0,m],[1,n−1](λ, G) M[0,m],[0,n](λ, G)




.

Definition 4.2. The Tesselated GPT (TGPT) of order (d) is given by

TGPT2d,d :=




M̃1,1 M̃1,2 · · · M̃1,d

M̃2,1 M̃2,2 · · · M̃2,d

...
...

. . .
...

M̃2d,1 M̃2d,2 · · · M̃2d,d




.

Our algorithm has in total nine steps. The detail of each step is given algorithmically below with an
accompanying description and diagrams. The main steps consist in first recovering the polynomial level
set from the given GPTs, then then reconstructing the domain candidates and finally selecting one of the
domain candidates in order to minimise the discrepancy between its GPTs and those of the true domain.
Our algorithm goes far beyond the stability estimates established in the previous section. Here there is no
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TGPT

Coefficients

Polynomial Single Loop Domain

Segmentation pointsBifurcation points Arc set

Recovered Domains Circuit set

Figure 4.1. This diagram shows in broad terms the process we take to recover a domain
from an associated TGPT.

need to assume that the curve to be recovered is smooth. Nevertheless, in order to reconstruct the domain
candidates, several issues need to be carefully resolved. These include bifurcation points, segmentation
points, and arc sets.

There are also tuning parameters scattered throughout the various processes and for the most part they
are fixed. These tuning parameters should not distract from the otherwise straightforward process.
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Algorithm 4.2 Check for a Loop

1: procedure checkLoop(P (x, y), tstep, tolpo, tol)
2: {[xp, yp] : p ∈ 1, .., N} ← TraceLvlSet(P (x, y), [0, 0], [0, 0], tstep, tolpo)

3: D := {[xp, yp] : p ∈ 1, .., N}
4: if ‖[x0, y0]− [xN , yN ]‖ < tol then

5: return D
6: else

7: return D = ∅
8: end if

9: end procedure

Description: The purpose of this step is to confirm if the recovered polynomial level set is not
already a smooth Jordan curve. If this is the case, the rest of the algorithm is unnecessary and inap-
plicable. To confirm, we trace out the level set using Algorithm 4.3 with the origin as an initial point
and terminal points. Minor technicalities are involved in order to make sure that the procedure does not
stop exactly where it begins.

Algorithm 4.3 Polynomial Level set trace

1: procedure TraceLvlSet(P (x, y), p0, T, dir = 1, tstep, tolpo)
2: H(x, y) := [−∂yP (x, y), ∂xP (x, y)]
3: [x0, y0] = p0 ; t0 = 0
4: while End-condition = false do

5: [xn, yn] = dir ·H(xn−1, yn−1)tn−1 + [xn−1, yn−1]
6: tn = tn−1 + tstep

7: if minτ∈T ||[xn, yn]− τ || < tolpo then

8: End-condition = true
9: end if

10: end while

11: N := argminn∈N||[Xn, Yn]− τ || : τ ∈ T
12: return {[Xn, Yn]}n∈{0,1,...,N}

13: end procedure

Description: The core notion of this procedure is the following two steps. Firstly define an equation
of motion from the polynomial. Secondly use this equation to move along the level set starting from a
known point on the level set. The equation of motion is given in line 5 and uses function H(x, y) which
is the gradient of P (x, y) rotated by π/2. H(x, y) is called the Hamiltonian and is tangent to the level
set for points (x, y) on the level set. The tracing out is done by a Runga-Kutta algorithm. The stop
condition is defined by a set T . The stop condition is hence that the traced level set reaches a specified
proximity to a point in T . The set T can consist of a single or several points.

Algorithm 4.1 Recover Domain

1: procedure recDom(TGPT2d,d, λ)
2: g ←Algorithm 6.2.(TGPT, λ)
3: P (x, y) := Σn

i,jgi,jxiyj ← g
4: D′ ← checkLoop(P (x, y), tstep, tolpo, tol)
5: if D′ 6= ∅ then

6: return D′

7: end if

8: B ← GetBifurcationPoints(P (x, y), a, b, tolbif )
9: S ← GetSegmentationPoints(P (x, y), B, rini, rstep, N)

10: E ← FindArcs(P (x, y), S, Bound)
11: C ← FindCircuits(E, B, S)
12: D ← ConstructDomains(P (x, y), S, C, tstep, tol)

13: D ← rankDomains(D, TGPT2,1)

14: return D
15: end procedure

Description: This is the wrapper that calls the individual procedures that constitute the algorithm.
It is included as to see the sequence of steps. The assumed starting point of the algorithm is TGPT2d,d.
The TGPT is obtained from [1, Algorithm 6.1]. We now go into the details of each step.
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Algorithm 4.4 Bifurcation points

1: procedure GetBifurcationPoints(P (x, y), a, b, tolbif )
2: F (x, y) := [P (x, y), ∂xP (x, y), ∂yP (x, y)]
3: Bpre := argmin(x,y)∈[a,b]2F (x, y)
4: B ←Cluster points in Bpre that have distance < tolbif

5: return B = {[b
(i)
x , b

(i)
y ]}i∈M

6: end procedure

Description: The recovered polynomial level set consists of finitely many smooth arcs. These arcs
meet at what is called bifurcation points. Bifurcation points are easily found by minimizing P (x, y) and
its derivatives. The order of derivatives dependent on the number of arcs meeting. For our purposes it
was sufficient to only minimize the first. Two things to note, a, b specify a box within which there is
searched and tolbif is the threshold for the minimization. The code used would automatically increase
tolbif until at least two bifurcation points were found.

Algorithm 4.5 Segmentation points

1: procedure GetSegmentationPoints(P (x, y), B, rini, rstep, N)

2: for bi = [b
(i)
x , b

(i)
y ] : i ∈M do

3: si = {}
4: r = rini

5: while |si| < 4 do

6: [x
(i)
j , y

(i)
j ] = bi + [r cos(θj) , r sin(θj)] ∀ θj := 2π j

N ; j ∈ {1, 2, ..., N}

7: if |{j : P (x
(i)
j , y

(i)
j ) = 0}| > 3 then

8: si := {[x
(i)
k , y

(i)
k ] : P (x

(i)
k , y

(i)
k ) = 0 , k ∈Mi}

9: else

10: r = r + rstep

11: end if

12: end while

13: S ← si

14: end for

15: return S = {[x
(i)
k , y

(i)
k ] : k ∈Mi , i ∈M}

16: end procedure

Description: As seen in Figure 4.3 the bifurcation points seldom lie on the level set. We now seek
the nearest points on the level set to a fixed bifurcation point. These segmentation points define the end
points of arcs in the level set. Note the double index notation, which is useful for defining arcs. The
parameter N determines the fineness of the minimization and was fixed at 1000 and left at that.
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Figure 4.2. Recovered polynomial level set with bifurcation and segmentation points.

Algorithm 4.6 Arcs

1: procedure FindArcs(P (x, y), S, Bound)
2: TrivArcs := {(ik, il, 0) : k 6= l ∧ k, l ∈Mi , i ∈M}

3: for [x
(i)
k , y

(i)
k ] ∈ S do

4: {[xp, yp] : p ∈ {1, .., N}} =TraceLvlSet(P (x, y), s, S \ {s}, 1, tstep)

5: [x
(j)
l , y

(j)
l ] =: ŝ = argmins′∈S\{s}||[xN , yN ]− s′||

6: if ei ∈ TrivArcs or ||[xN , yN ]|| > Bound then

7: Skip to next segmentation point.
8: else

9: eik := (ik, jl, 1) Positive direction
10: e−ik := (jl, ik, 2) Negative direction
11: E ← {eik, e−ik}
12: end if

13: end for

14: E ← TrivArcs
15: return E
16: end procedure

Description: The task of this procedure is to find which pairs of segmentation points are connected
through the level set. The connection is described as an ordered triple. The first two entries are the
indices of the segmentation end points. The third entry is the direction of motion along the level set.
Zero is used when the arc does not lie on the level set, see Figure 4.3. The parameter Bound here is just
to ensure arcs do note race off to infinity.
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Figure 4.3. Close-up of the top bifurcation point.

Algorithm 4.7 Circuits

1: procedure FindCircuits(E, B, S)
2: C ′ ← Algorithm from [2]
3: for c ∈ C ′ do

4: Remove c if |c| < 4
5: Remove c if |c| > 2|B|
6: Remove c if it does not containing the origin.
7: Remove c if it visits the same bifurcation point twice.
8: Remove c if it is a variation of a previous circuit.
9: end for

10: The result is C ⊂ C ′

11: return C
12: end procedure

Description: This procedure has the goal of making circuits from the previously obtained directed
arcs. For clarity this procedure is represented in a more simplified way than the others. The first step is
to use a well-known algorithm like the one in [2] in order to find all elementary circuits. Other algorithms
are also viable as the arc set is quite small. These circuits represent domain candidates. To reduce the
number of candidates, we incorporate some information on the domain. This information takes the form
of constraints on the size, inclusion of the origin and internal bifurcation points.
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Figure 4.4. The various allowed arcs recovered from the level set, displayed each in a unique colour.

Algorithm 4.8 Constructed Candidate Domains

1: procedure ConstructDomains(P (x, y), S, C, tstep, tol)
2: for c ∈ C do

3: for (ik, jl, dir 6= 0) := e ∈ c do

4: s := [x
(i)
k , y

(i)
k ]

5: s′ := [x
(j)
l , y

(j)
l ]

6: {[x
(e)
j , y

(e)
j ] : j ∈ [Ne]} = TraceLvlSet(P (x, y), s, s′, dir, tstep)

7: end for

8: for (ik, jl, dir = 0) := e ∈ c do

9: {[x
(e)
j , y

(e)
j ] : j ∈ [Ne]} ← interpolate from other arcs.

10: end for

11: D(c) :=
⋃

e∈c{[x
(e)
j , y

(e)
j ] : j ∈ [Ne]}

12: end for

13: D := {D(c) : c ∈ C}
14: return D
15: end procedure

Description: This procedure is used to convert a circuit into a set of boundary points. The
circuit can be thought of as a blue print for the domain candidate. This is because the circuit defines the
sequence of arcs that constitute a domain. Hence the procedure traces out these arcs using the respective
segmentation points as start and stop points. The gaps in between arcs obtained from tracing the level
set are filled via interpolation from the existing arcs. The result is a set of domains in the form of a set
of boundary points.
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Algorithm 4.9 Rank Domains

1: procedure rankDomains(D, TGPT2,1)

2: for D(c) ∈ D do

3: Export D(c) as imagec.png
4: Read imagec.png as a curve (see https://github.com/yanncalec/SIES)

5: Compute TGPT
(c)
2,1.

6: c = argminc
‖TGPT

(l)
2,c

−TGPT2,c‖

‖TGPT2,c‖

7: D ← Dc

8: end for

9: return D
10: end procedure

Description: This final procedure is to discern which of the finite set of domain candidates most
closely resembles the true domain. The resemblance is determined by the first order TGPT. The reason
for the export step is that it sub-samples the domain candidate. Otherwise the recovered domain contains
far too many points to be numerically stable.

Figure 4.5. Recovered domains compared to the true domain.

https://github.com/yanncalec/SIES
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Figure 4.6. Figure of a disk with a sector missing.

4.2. Examples. In this section, we apply the algorithm described in the previous subsection to a few
examples. We demonstrate its performance by means of a well chosen examples. We also show where the
algorithm fails.

In the first example, Figure 4.7 present the possible seven domain candidates corresponding to a disk with
a sector missing shown in Figure 4.6. The true domain is recovered by Algorithm 4.9. Here, it corresponds
to the one with relative error 0.021.



17

Figure 4.7. Figure of viable domain candidates.
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In the second example, we consider domains with the same recovered level set. These are discerned
from each other by using some boundary information and matching the associated TGPTs. Figures 4.9,
4.10, and 4.11 show three of the six distinct domains. We call these domains "conjoined circles", "crescent"
and "intersection of circles" respectively to indicate the shape. All of these shape have the same level set
namely two overlapping circles as seen in Figure 4.8. Among the candidates of the conjoined circles the best
candidate was found to have relative error 0.01, see Figure 4.9. Among the candidates of the crescent the
best candidate was found to have relative error 0.053, see Figure 4.10. And among the candidates of the
intersection of circles shape the best candidate was found to have relative error 0.044, see Figures 4.11.

Figure 4.8. The level set of two overlapping circles gives rise to six distinct domains.
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Figure 4.9. Conjoined circles.

Figure 4.10. Crescent.

Figure 4.11. Intersection of circles.
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In the third example, we present in Figure 4.12 a square with sinusoidal sides and its recovery from a
single domain candidate.

Figure 4.12. Domain recovery with a single candidate.

Finally, we show in Figure 4.13 that sometimes the recovered polynomial simply does not give the right
domain. The true domain is in blue while the level set of the reconstructed polynomial from the GPTs is
in red. This failure to recover the level set could stem from several reasons. The first reason is that higher
degree domains are more unstable due to the higher powers taken in computing their GPTs. The second
reason is that the proximity of the origin to a bifurcation point could cause instability. This however is
still under investigation. We invite the reader to play around with the algorithm which is open source and
available at https://github.com/JAndriesJ/ASPT.
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Figure 4.13. Failed polynomial recovery.
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