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Modelling the active cochlea as a fully-coupled

system of subwavelength Hopf resonators

Habib Ammari∗ Bryn Davies∗

Abstract

We combine recent breakthroughs in coupled resonator mechanics with
the theory of cochlear Hopf resonators in order to better understand the
active cochlea. We model the acoustic pressure on the surface of the basi-
lar membrane, offering an understanding of how this couples the array
of subwavelength resonators and the implications for cochlear mechanics.
By decomposing the behaviour over the system’s resonant modes, we are
able to offer explanations for several of the inner ear’s key properties,
including its frequency selectivity, nonlinear amplification and two-tone
response. A truncated multipole expansion is used to give efficient nu-
merical computations.

Mathematics subject classification: 35R30, 35C20
Keywords: subwavelength resonance, coupled Hopf resonators, active cochlear
mechanics, hybridisation, nonlinear cochlear amplifier, two-tone interference

1.1 Hopf resonators in cochlear mechanics

It is well known that the cochlea employs an active response mechanism in
its function, thanks to motor proteins within its hair cells (a process known
as somatic mobility) [17, 20]. Indeed, some of the cochlea’s most remarkable
abilities could not produced by a passive system. There is evidence that this
active mechanism acts via a positive feedback loop, resulting in an amplification
(or negative damping) effect [13, 23, 30]. However, the precise details of this
feedback mechanism represent one of the most fundamental open questions in
understanding auditory perception.

Hopf resonators have become popular objects to study thanks to their re-
markable ability to account for the key properties that typify the cochlear be-
haviour [15, 16, 11, 17, 10, 20]. The normal form of a single Hopf resonator
z = z(t) : R → C in the complex plane is given by the forced differential
equation
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dz

dt
= (µ+ iω0)z − |z|2z + F, (1)

where F = F (t) is the forcing term and ω0 and µ are real parameters. This
system is a resonator in the sense that the absolute value of the response z is
greatest when the forcing F occurs with frequency ω0.

The parameter µ is the bifurcation parameter. For µ < 0 the unforced
system (F = 0) has a stable equilibrium at z = 0 whereas when µ > 0 this
equilibrium is unstable and there exists a stable limit cycle z(t) =

√
µeiω0t.

This birth of a limit cycle is characteristic of a (supercritical) Hopf bifurcation.
For further details see e.g. [31].

The cochlea demonstrates exceptionally good frequency selectivity. Even
individuals without musical training can detect tones differing in frequency by
less than 0.5% [15, 8]. The excitation of system (1) at frequencies close to ω0 is
able to account for this frequency selectivity.

The cochlea is able to detect sounds with amplitudes ranging over six orders
of magnitude [16, 18]. This relies on an ability to amplify sounds according to a
compressive nonlinearity whereby quiet sounds are amplified much more greatly
than louder ones (see e.g. the experimental evidence in [26]). This property is
produced by the cubic term in (1) and allows six orders of magnitude in sound
amplitude to be captured by only two orders of magnitude of neural firing
rates. Further, the one-third power law associated with the solution to (1) close
to bifurcation (when µ is small) matches quantitatively with the responsiveness
observed in the cochlea [15, 18].

A further symptom of the nonlinearity that exists in the cochlea is the be-
haviour that is observed under the influence of a signal composed of two distinct
tones. It is firstly seen that when the ear is excited by such a stimulus two-tone
suppression occurs. That is, the spectrum of the response contains the expected
two amplitude peaks, however, these are smaller than each would be in the ab-
sence of the other tone [27]. Further, it has been known since the 18th century
that in such a situation the ear also detects additional tones, variously known as
combination tones or distortion products. First observed by the German organ-
ist Georg Sorge, these are often referred to as Tartini’s tones after the Italian
violinist Giuseppe Tartini [14, 25, 18]. Close to bifurcation, the nonlinearity in
(1) gives products that can account for these phenomena [18, 10].

In this work we will combine the above evidence on the relevance of Hopf
resonators in cochlear mechanics with recent breakthroughs in understanding
the coupling between an array of hair cells [1]. We will study the acoustic pres-
sure on the (two-dimensional) surface of the basilar membrane and will explore a
model based on the standard wave equation for the propagation of sound waves,
but with the addition of a “|z|2z”-inspired forcing term. A thorough discussion
of the evidence supporting the modelling of hair cells as compressible elements
that are excited by a pressure wave in the cochlea is given in [4], while the im-
plications of such a model are explored in [1]. We will show that a simple model
of an array of hair cells, when subjected to Hopf-type amplification and coupled
by variations in acoustic pressure, can describe many of the above behaviours.
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Figure 1: An array of eight (circular) subdomains D = D1 ∪ · · · ∪ D8, graded in size with
factor s > 1 and arranged linearly along x2 = 0. The separation between bubbles is assumed
to grow in proportion to the size. The point source is shown at (x0, 0) ∈ R2 on the negative
x1-axis.

1.2 Problem definition

Consider a domain D in R
2 which is the disjoint union of N ∈ N bounded and

simply connected subdomains {D1, . . . , DN}. Each subdomain ∂Dn such that
there exists some 0 < α < 1 so that ∂Dn ∈ C1,α (that is, each ∂Dn is locally
the graph of a differentiable function whose derivatives are Hölder continuous
with exponent α). These disjoint subdomains represent the N hair cell bundles.

We consider an acoustic pressure wave that is emitted by a point source at
and is scattered by D. The point source will be located at a point (x0, 0) ∈ R

2

on the negative x1-axis, so as to represent the signal entering the base of the
cochlea. We will consider the bundles arranged in a straight line since the
curvature of the cochlea does not contribute to its mechanical behaviour [9].
Figure 1 shows an example of such an arrangement, where x = (x1, x2) ∈ R

2

represents the position on the surface of the basilar membrane.
We consider the effect of a nonlinear forcing term ∂tp|∂tp|2, inspired by the

discussion in Section 1.1. The incoming signal is represented by a forcing term
f(t) at (x0, 0). We denote by ρb and κb the density and bulk modulus of the
interior of the cell bundles, respectively, and denote by ρ and κ the corresponding
parameters for the auditory fluid (which we assume occupies R2 \D). We may
then denote the acoustic wave speeds in R

2 \D and in D respectively by

v =

√

κ

ρ
, vb =

√

κb

ρb
. (2)

The propagation of the acoustic pressure wave p = p(x, t) is then given by the
problem



























(

∆− 1
v2

∂2

∂t2

)

p = 1
v2 f(t)δ(x0,0)(x), for (x, t) ∈ R

2 \D × R,
(

∆− 1
v2

b

∂2

∂t2

)

p = β
v2

b

|∂p∂t |2
∂p
∂t , for (x, t) ∈ D × R,

p+ − p− = 0, for (x, t) ∈ ∂D × R,
1
ρ

∂p
∂νx

∣

∣

+
− 1

ρb

∂p
∂νx

∣

∣

−
= 0, for (x, t) ∈ ∂D × R,

(3)

where ∂
∂νx

denotes the outward normal derivative in x and the subscripts + and
- are used to denote evaluation from outside and inside ∂D respectively. β ∈ R

is a constant that controls the magnitude of the amplification.
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The comparison between (3) and the standard form of a Hopf resonator (1)
close to bifurcation is particularly apparent when (3) is written in the form

∂2p

∂t2
= c(x)2∆p− β

∣

∣

∣

∣

∂p

∂t

∣

∣

∣

∣

2
∂p

∂t
XD(x)− f(t)δ(x0,0)(x), (x, t) ∈ R

2 × R, (4)

where c(x) := v − (v − vb)XD(x) and XD is the characteristic function of the
subset D ⊂ R

2. Similar formulations are considered by e.g. [17, 10], for the
case of a single (uncoupled) Hopf resonator.

We introduce the two dimensionless contrast parameters

δ =
ρb

ρ
, τ =

vb

v
=

√

ρκb

ρbκ
. (5)

By rescaling the dimensions of the physical problem we can assume that

v = O(1), vb = O(1), τ = O(1). (6)

We also assume that the rescaled dimensions are such that the subdomains
{D1, . . . , DN} have widths that are O(1). On the other hand, we assume that
there is a large contrast between both the bulk moduli and the density values
in R

2 \D and in D, so that
δ ≪ 1. (7)

Such an assumption is explored at length in [4], relying on experimental deter-
minations of the Poisson ratio of hair cells.

1.3 Coupling of graded resonators

To understand the fundamental interactions between the hair cell bundles we
consider the behaviour of the system of graded resonators (3) when f = 0 and
β = 0 (i.e. the unforced passive problem).

We transform problem (3) into the complex frequency domain and are left
with the Helmholtz problem



























(

∆+ ω2

v2

)

u(x, ω) = 0, for (x, ω) ∈ R
2 \D × C,

(

∆+ ω2

v2

b

)

u(x, ω) = 0, for (x, ω) ∈ D × C,

u+ − u− = 0, for (x, ω) ∈ ∂D × C,

δ ∂u
∂ν

∣

∣

+
− ∂u

∂ν

∣

∣

−
= 0, for (x, ω) ∈ ∂D × C,

(8)

where we must also insist that u(·, ω) satisfies the Sommerfeld radiation condi-
tion

lim
|x|→∞

|x|1/2
(

∂

∂|x| − i
ω

v

)

u(x, ω) = 0. (9)

This condition is required to ensure that the solution is outgoing (rather than
incoming from infinity) and gives the well-posedness of (8).
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In light of the fact that (8) contains the assumption that f = 0, we define
the resonances and associated eigenmodes of (3) to be solutions (ω, u(·, ω)) ∈
C × H1

loc(R
2) of (8). Here, H1

loc(R
2) is the space of functions that, on every

compact subset of R2, are square integrable and have a weak first derivative
that is also square integrable (i.e. they are locally in the Sobolev space H1).
We are particularly interested in solutions where ω is small and the cell bundles
are much smaller than the wavelength of the associated radiation (as is the case
in with hair cells compared to the wavelength audible sound). Such solutions
are known as subwavelength modes.

Theorem 1. The system of N coupled resonators D = D1∪· · ·∪DN has N sub-

wavelength resonances ω1, . . . , ωN and associated eigenmodes u1(x), . . . , uN (x)
satisfying (8) with the Sommerfeld radiation condition (9).

Proof. See [1] for details. The argument is based on representing the solution
u(x, ω) to (8) as

u(x, ω) =

{

Sω/v
D [ψ](x), (x, ω) ∈ R

2 \D × C,

Sω/vb
D [φ](x), (x, ω) ∈ D × C,

(10)

for some surface potentials (φ, ψ) ∈ L2(∂D)×L2(∂D) where SD is the Helmholtz

single layer potential associated with the domain D. This integral operator is
defined as

Sk
D[ϕ](x) :=

∫

∂D

Γk(x− y)ϕ(y) dσ(y), x ∈ ∂D,ϕ ∈ L2(∂D), (11)

where Γk is the outgoing (i.e. satisfying the Sommerfeld radiation condition)
fundamental solution to the Helmholtz operator ∆ + k2 in R

2.

A detailed examination of the resonances and eigenmodes can be found in
[1]. The crucial result is that, when the incoming signal has a wavelength that
is much larger than the physical dimensions of the resonators, the behaviour of
the system can be approximated by decomposing the solution over the space
spanned by the subwavelength eigenmodes. In the case of audible sound (whose
wavelength ranges from a few centimetres to several metres) being scattered by
hair cells measuring tens of micrometres, this approximation gives a compre-
hensive description of the system’s behaviour.

In order to improve computational efficiency, we assume in this work that the
cell bundles are circular. This means that we can use the multipole expansion
method, an explanation of which is provided in e.g. [2, Appendix C]. The method
relies on the idea that functions in L2(∂D) are, on each circular ∂Di, 2π-
periodic so we may approximate by the leading order terms of a Fourier series
representation.
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2 Coupled Hopf system

We decompose the motion of system (3) into the N subwavelength resonant
modes by writing

p(x, t) ≃ Re

(

N
∑

n=1

αn(t)un(x)

)

, (12)

for some complex-valued time dependencies α1(t), . . . , αN (t).
In light of the transmission properties (across ∂D) that the eigenmodes in-

herit from (8), we reach the problem

N
∑

n=1

(

α′′
n(t) + ω2

nαn(t)
)

un(x) + f(t)δ(x0,0)(x)

+ β

(

N
∑

n=1

α′
n(t)un(x)

)2( N
∑

n=1

α′
n(t)un(x)

)

XD(x) = 0.

(13)

Definition 2. Fix some large domain Q such that D ∪ {(x0, 0)} ⊂ Q. Then

define γ ∈ C
N×N to be the square matrix with entries

γi,j :=

∫

Q

ui(x)uj(x) dx = (ui, uj)2,Q, (14)

for i, j = 1, . . . , N .

We are then in a position to take the L2(Q) product of (13) with um for
m = 1, . . . , N , reaching a system of N equations equations in t given by

γT







α′′
1 + ω2

1α1

...
α′′
N + ω2

NαN






+f







(δ(x0,0), u1)2,Q
...

(δ(x0,0), uN )2,Q






+β







((
∑

α′
nun)

2
∑

α′
nun, u1)2,D

...
((
∑

α′
nun)

2
∑

α′
nun, uN )2,D






= 0.

(15)
When studying (15) it will be useful to know that the matrix γT is invertible.

Lemma 3. The matrix γ ∈ C
N×N defined in (14) is invertible.

Proof. This follows from the linear independence of the eigenmodes [1].

2.1 Pure-tone response

Consider the case of an incoming signal that consists of a single pure tone
at frequency Ω, that is, f(t) = Re(FeiΩt) for F,Ω ∈ R. In this case, we
represent the solutions to (15) as αn(t) = Xne

iΩt for complex amplitudes Xn ∈
C [17, 31, 12]. This gives the coupled equations for m = 1, . . . , N

(ω2
m − Ω2)Xm + F

N
∑

n=1

[γ−1]n,m(δ(x0,0), un)2,Q

− iΩ3β

N
∑

n=1

[γ−1]n,m





N
∑

i,j,k=1

XiXjXk(uiujuk, un)2,D



 = 0.

(16)
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Figure 2: Nonlinear amplification in the coupled Hopf system at resonance. We show how
the response X2/F varies with incoming frequency Ω in system (16) for difference forcing
magnitudes F . The response of the second eigenmode in a system of N = 6 cell bundles
is studied. The dashed line shows the case where the cubic nonlinearity has been removed
(giving a passive system) for comparison.

The results of solving (16) numerically for X1, . . . , XN are shown in Figure 2.
There is a sharply increased response when Ω is close to the resonant frequency
associated with the eigenmode. Different magnitudes of force F are shown.
When the force is smaller, the response is much greater, thereby allowing the
model to capture a very large range of forcing amplitudes with only relatively
small variations in acoustic pressure. The sharper response of the active system
will also improve frequency resolution, compared to the passive model.

In Figure 3 we study how the phase of the oscillations in the acoustic pressure
lag behind the forcing, as is common in a coupled system of oscillators. This is
achieved by writing the solution (12) as

p(x, t) ≃ Re

(

N
∑

n=1

Xne
iΩtun(x)

)

= Re
(

R(x)ei(Ωt+φ(x))
)

, (17)

for real constants R and φ, the latter of which represents the phase delay. φ in
(17) is, in principle, defined such that 0 ≤ φ < 2π, however the assumption that
φ should be a continuous function of Ω leads to the phase delays of multiple
cycles seen in Figure 3.

The behaviour shown in Figure 3 shows many similarities to experimental
observations [26, 29]. It is notable that the curves all start at a ‘lag’ of ap-
proximately minus a quarter cycle and the delay then increases with increasing
frequency. There is a tendency for curves to group around values separated by a
full cycle. Known as “phase plateaus”, this behaviour has been widely observed
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Figure 3: The phase-frequency relationship for the coupled Hopf system. We show how the
phase lag (in cycles) varies as a function of the incoming frequency Ω at different points
x = (x1, x2) on the basilar membrane. A system of N = 6 cells arranged along the line x2 = 0
is studied.

by experimentalists [24]. Indeed, the existence of phase lags of more than π

(180◦) in this model is significant since such values are not typically associated
with resonant systems but are required in order to describe the cochlea (where
delays of several cycles are common) [5].

2.2 Two-tone interference

Consider the case of an incoming signal composed of two pure tones. We explore
this behaviour by considering forcing of the form

f(t) = Re
(

F1e
iΩ1t + F2e

iΩ2t
)

, (18)

in system (15). In this case the response, captured by the complex-valued func-
tions α1(t), . . . , αN (t), will contain contributions from all the Fourier amplitudes
with frequencies pΩ1+qΩ2 for integers p, q ∈ Z [18]. Thus, for each n = 1, . . . , N

there exist X
(n)
p,q ∈ C, p, q ∈ Z such that

αn(t) =

∞
∑

p,q=−∞

X(n)
p,q e

i(pΩ1+qΩ2)t. (19)

The expansion (19) is dominated by the terms with small |p|+|q| [18, 22, 28]. As
a result, it makes sense to refer to |p|+|q| as the order of Xp,q. In particular, it is

found in [28] that the amplitudes approximately obey the law Xp,q ∼ X
|p|
1,0X

|q|
0,1

and thus diminish with increasing order (for small amplitudes).
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Figure 4: Two-tone interference in the coupled Hopf system. We study the fourth eigenmode
in a system of N = 6 cells and show how the absolute values of the leading order coefficients
vary in the case that Ω1 = |ω4| is fixed and Ω2 is varied. We use F1 = F2 = 10−4. The red

dashed line shows X
(4)
0,1 in the case where the cubic nonlinearity has been removed (giving a

passive system) for comparison.

We substitute the expansion (19) into (15). The effect of the cubic nonlin-
earity is that many terms, including all those of even order, must vanish. We
find that, for small amplitudes, we can approximate (19) by

αn(t) = X
(n)
1,0 e

iΩ1t +X
(n)
0,1 e

iΩ2t

+X
(n)
2,−1e

i(2Ω1−Ω2)t +X
(n)
−1,2e

i(−Ω1+2Ω2)t + . . . .
(20)

By comparing the coefficients of the dominant Fourier modes eiΩ1t, eiΩ2t, ei(2Ω1−Ω2)t

and ei(−Ω1+2Ω2)t we reach a coupled system of equations that we may solve to

find
{

X
(n)
1,0 , X

(n)
0,1 , X

(n)
2,−1, X

(n)
−1,2 : n = 1, . . . , N

}

(for details, see Appendix A).

Figure 4 shows the amplitudes of the four dominant Fourier modes when
Ω1 = |ω4| is fixed and Ω2 is varied (in the neighbourhood of |ω4|). When Ω2 is
away from |ω4| there appears to be little interaction between the two frequency
modes. As Ω1 and Ω2 become close, however, two phenomena emerge. Firstly,
two-tone suppression occurs. This is witnessed both by the fact that the value

of X
(4)
1,0 drops (from its otherwise constant value) and that the response of X

(4)
0,1

at resonance is diminished relative to the passive system (whish corresponds to
β = 0 and is shown as the dashed curve in Figure 4). On top of this, so-called
combination tones appear in the regime where Ω1 and Ω2 are close together.
These are shown as the two black lines in Figure 4 and represent Tartini’s famous
tones.
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3 Discussion

We have studied the acoustic pressure on the surface of the basilar membrane by
combining an understanding of the coupling between an array of subwavelength
resonators (described by Theorem 1) with the theory of Hopf resonators in
cochlear mechanics (explored in Section 1.1). This approach has proved success-
ful in describing several phenomena commonly exhibited by the cochlea. Firstly,
it was shown in Section 2.1 that the model produced the desired frequency se-
lectivity and nonlinear amplification. The phase lag also showed similarities
to experimental observations. Then, in Section 2.2 it was further shown that
the two-tone response of this coupled Hopf system both suffers from two-tone
suppression and produces combination tones.

Contrary to the linear array used in this work, the arrangement of hair cells in
the cochlea of a mammal takes the form of a row of inner hair cells and three rows
of outer hair cells. It is believed that the outer hair cells are responsible for the
forcing while inner hair cells act as receivers [7, 8]. In recent work the geometric
arrangement of the hair cells has been studied in an attempt to capture the
cochlea’s behaviour [6, 3]. Using our numerical (layer potential) formulation,
the geometry can be easily modified providing an avenue for developing such
theories.

It has been known since their first observation by David Kemp in 1978 that
the ear emits sounds known as otoacoustic emissions [19, 32]. This phenomenon
was one of the earlier pieces of evidence supporting the active nature of the
cochlea and has provided an avenue to explore its inner workings [21]. The
ear even emits spontaneous otoacoustic emissions in the absence of external
stimulation. Recent work [7, 10] has shown that a Hopf resonator can account
for the production of spontaneous otoacoustic emissions by the addition of a
“self-tuning” feedback loop. In our setting, this entails introducing a µ∂tp term
to (3) and varying the parameter µ in the neighbourhood of the bifurcation.
The spontaneous sounds are created when the system strays into the regime
where a stable limit cycle exists.

Even with the use of the multipole method (reliant on the assumption that
the cell bundles are circular) the computations in this work become expensive
for large numbers of cells. In order to efficiently and concisely demonstrate the
behaviour of the coupled Hopf system, the results displayed here use only small
values for N . While it is feasible to study up to a few hundred cells with our
current methodology, numerical computations on a model resembling a genuine
mammalian cochlea (and its approximately 15,000 hair cells) are beyond the
scope of our current setup. A rigorous approach to approximating the coupling
between an array of subwavelength resonators would thus represent a valuable
breakthrough.
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A Appendix: Two-tone interference

By writing the amplitudes αn(t) in the approximate form given in (20) we are
able to rewrite the decomposition of p(x, t) in (12) in terms of the dominant
Fourier amplitudes

p(x, t) =

(

N
∑

n=1

X
(n)
1,0 un(x)

)

eiΩ1t +

(

N
∑

n=1

X
(n)
0,1 un(x)

)

eiΩ2t

+

(

N
∑

n=1

X
(n)
2,−1un(x)

)

ei(2Ω1−Ω2)t +

(

N
∑

n=1

X
(n)
−1,2un(x)

)

ei(−Ω1+2Ω2)t,

(21)

from which we see that it is convenient to define the sums

S1,0(x) := Ω1

N
∑

n=1

X
(n)
1,0 un(x), S0,1(x) := Ω2

N
∑

n=1

X
(n)
0,1 un(x),

S2,−1(x) := (2Ω1 − Ω2)
N
∑

n=1

X
(n)
2,−1un(x), S−1,2(x) := (−Ω1 + 2Ω2)

N
∑

n=1

X
(n)
−1,2un(x).

We then wish to compute the coefficients of the Fourier modes eiΩ1t, eiΩ2t,
ei(2Ω1−Ω2)t and ei(−Ω1+2Ω2)t when we substitute (21) into the nonlinearity |∂tp|2∂tp.
We find that these coefficients are respectively given by

C1,0 := S1,0|S1,0|2 + 2S1,0

[

|S0,1|2 + |S2,−1|2 + |S−1,2|2
]

+ S2
0,1S−1,2 + 2S0,1S2,−1S1,0 + 2S2,−1S−1,2S0,1,

C0,1 := S0,1|S0,1|2 + 2S0,1

[

|S1,0|2 + |S2,−1|2 + |S−1,2|2
]

+ S2
1,0S2,−1 + 2S1,0S−1,2S0,1 + 2S2,−1S−1,2S1,0,

C2,−1 := S2,−1|S2,−1|2 + 2S2,−1

[

|S1,0|2 + |S0,1|2 + |S−1,2|2
]

+ S2
1,0S0,1 + 2S1,0S0,1S−1,2,

C−1,2 := S−1,2|S−1,2|2 + 2S−1,2

[

|S1,0|2 + |S0,1|2 + |S2,−1|2
]

+ S2
0,1S1,0 + 2S1,0S0,1S2,−1.

It is then more straightforward to see that when we substitute (20) into
system (15) and equate coefficients of the Fourier modes eiΩ1t, eiΩ2t, ei(2Ω1−Ω2)t

and ei(−Ω1+2Ω2)t we reach the four coupled systems given by

γT









(ω2
1 − Ω2

1)X
(1)
1,0

...

(ω2
N − Ω2

1)X
(N)
1,0









+F1







(δ(x0,0), u1)2,Q
...

(δ(x0,0), uN )2,Q






−iβ







(C1,0, u1)2,D
...

(C1,0, uN )2,D






= 0. (22)
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γT









(ω2
1 − Ω2

2)X
(1)
0,1

...

(ω2
N − Ω2

2)X
(N)
0,1









+F2







(δ(x0,0), u1)2,Q
...

(δ(x0,0), uN )2,Q






−iβ







(C0,1, u1)2,D
...

(C0,1, uN )2,D






= 0. (23)

γT









(ω2
1 − (2Ω1 − Ω2)

2)X
(1)
2,−1

...

(ω2
N − (2Ω1 − Ω2)

2)X
(N)
2,−1









− iβ







(C2,−1, u1)2,D
...

(C2,−1, uN )2,D






= 0. (24)

γT









(ω2
1 − (−Ω1 + 2Ω2)

2)X
(1)
−1,2

...

(ω2
N − (−Ω1 + 2Ω2)

2)X
(N)
−1,2









− iβ







(C−1,2, u1)2,D
...

(C−1,2, uN )2,D






= 0, (25)

which we can solve numerically to find
{

X
(n)
1,0 , X

(n)
0,1 , X

(n)
2,−1, X

(n)
−1,2 : n = 1, . . . , N

}

.
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