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Abstract

The aim of this paper is to understand the behaviour of a large number

of coupled subwavelength resonators. We use layer potential techniques in

combination with numerical computations to study a graded array of sub-

wavelength resonators. This setup is inspired by the small-scale structure

of a cochlea. We compute the resonant modes of the system and explore

the model’s ability to decompose incoming signals. We also present an

explanation for the cochlea’s so-called “travelling wave” behaviour. We

do not consider any active elements in this work, choosing instead to

thoroughly examine a fully-coupled passive model.

Mathematics subject classification: 35R30, 35C20
Keywords: subwavelength resonance, cochlear mechanics, coupled resonators,
hybridisation, passive cochlea, signal processing

1 Introduction

The development of the understanding of the cochlea has largely been a di-
chotomy between two classes of models [11]. The first, proposed by Ludwig
von Helmholtz in the 1850s, are based on resonators tuned to different audible
frequencies being distributed along the length of the cochlea [24]. Later, Georg
von Békésy demonstrated that when the cochlea is stimulated a wave travels
from the base to the apex along the basilar membrane [23]. This discovery won
him a Nobel Prize in 1961 and lead to the creation of models based on each
receptor cell being excited in sequence as the signal travels through the cochlea.

More recent developments have put Helmholtz’ resonance model back in the
spotlight by identifying bundles of cells known as inner hair cells as candidate
resonant elements. These cells are about 10µm tall and are distributed along
the basilar membrane increasing in size from base to apex [1, 16]. It is now
known that the displacement of a hair cell bundle leads to a change in the
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distribution of electrical charge in the cell membrane [18], offering a mechanism
for the production of a signal in the auditory nerve.

It is also known that the cochlea is an active organ and emits sounds (known
as otoacoustic emissions) as part of its response to a signal [19, 20, 14]. We shall
only consider a passive system of resonators here, but will present a model that
can be readily modified to include active elements in future work.

In this paper, we apply boundary integral techniques to understand the
complex interactions between the hair cell bundles [5, 10]. The mathematical
complexity of the hybridisation between a large number of coupled resonators
has been the main barrier to developing Helmholtz’ resonance models. A human
cochlea has around 3500 inner hair cells and is approximately 30mm long [21].
Compare this to the wavelength of audible sound (a few centimetres to several
metres) and it is clear that complex interactions will occur between the resonant
elements.

In order to find the eigenmodes of the system of hybridised resonators, we
employ methods based on the assumption that there is a high contrast between
both the bulk moduli and the density of the cell bundles and the fluid they are
surrounded by. Similar techniques have previously been applied to other high-
contrast materials that exhibit subwavelength resonance, the classical example
being the Minnaert resonance of air bubbles in water [3, 5]. This analysis (in
Section 2.2 & 2.3) relies on the use of layer potential techniques [4, 9, 7].

It is found that a graded array of hybridised resonators has a set of resonant
frequencies that becomes increasingly dense (within a finite range) as the num-
ber of resonators is increased. We study the eigenmodes and present a scheme
(in Section 2.4) for how the model processes incoming signals, filtering them
into the system’s resonant frequencies. Finally, in Section 2.5 we present the
significant observation that our (resonance) model predicts the existence of a
travelling wave, as observed by Békésy.

2 Response of the coupled resonators

2.1 Preliminaries

We consider a domainD in R
2 which is the disjoint union of N ∈ N bounded and

simply connected subdomains {D1, . . . , DN} such that, for each n = 1, . . . , N ,
there is 0 < s < 1 so that ∂Dn ∈ C1,s. These disjoint subdomains represent
the N hair cell bundles. We will consider the bundles arranged in a straight
line since the curvature of the cochlea does not contribute to its mechanical
behaviour [16]. Figure 1 shows an example of such an arrangement (in the
special case of circular subdomains, which we will consider from Section 2.3
onwards).

We denote by ρb and κb the density and bulk modulus of the interior of the
cell bundles, respectively, and denote by ρ and κ the corresponding parameters
for the auditory fluid (which we assume occupies R2 \D).

We consider the problem of an incident wave pin(x, t) that is scattered by
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Figure 1: An array of eight (circular) graded subdomains D = D1 ∪ · · ·∪D8 arranged linearly
along x2 = 0.

D. This is given by

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

























(

∇ · 1
ρ∇− 1

κ
∂2

∂t2

)

p = 0, for (x, t) ∈ R
2 \D × R,

(

∇ · 1
ρb
∇− 1

κb

∂2

∂t2

)

p = 0, for (x, t) ∈ D × R,

p+ − p− = 0, for (x, t) ∈ ∂D × R,
1
ρ

∂p
∂νx

∣

∣

+
− 1

ρb

∂p
∂νx

∣

∣

−
= 0, for (x, t) ∈ ∂D × R,

ps := p− pin = 0, for x ∈ R
2, t≪ 0,

(1)

where ∂
∂νx

denotes the outward normal derivative in x and the subscript + and
- are used to denote evaluation from outside and inside ∂D respectively.

We then introduce the auxiliary parameters

v =

√

κ

ρ
, vb =

√

κb
ρb
, k =

ω

v
, kb =

ω

vb
,

which are the wave speeds and wavenumbers in R
2 \D and in D respectively.

We also introduce the two dimensionless contrast parameters

δ =
ρb
ρ
, τ =

kb
k

=
vb
v

=

√

ρκb
ρbκ

. (2)

By rescaling the dimensions of the physical problem we can assume that

v = O(1), vb = O(1), τ = O(1). (3)

We also assume that the rescaled dimensions are such that the subdomains
{D1, . . . , DN} have widths that are O(1). On the other hand, we assume that
there is a large contrast between the bulk moduli, so that

δ ≪ 1. (4)

We transform problem (1) into the frequency domain by taking the Fourier
transform u(x, ω) :=

∫∞

−∞
p(x, t)eiωt dt to reach































(

∆+ k2
)

u(x, ω) = 0, in R
2 \D,

(

∆+ k2b
)

u(x, ω) = 0, in D,

u+ − u− = 0, on ∂D,

δ ∂u
∂ν

∣

∣

+
− ∂u

∂ν

∣

∣

−
= 0, on ∂D,

us := u− uin satisfies the SRC, as |x| → ∞.

(5)
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‘SRC’ is used to denote the Sommerfeld radiation condition

lim
|x|→∞

|x|1/2
(

∂

∂|x|
− ik

)

u(x, ω) = 0. (6)

The SRC is the condition required to ensure that we select the solution that is
outgoing (rather than incoming from infinity) and gives the well-posedness of
problem (5).

We wish to use layer potential representations for the solutions to the scat-
tering problem (5).

Definition 2.1. We define the Helmholtz single layer potential associated with
the domain D and wavenumber k as

Sk
D[ϕ](x) :=

∫

∂D

Γk(x− y)ϕ(y) dσ(y), x ∈ ∂D,ϕ ∈ L2(∂D), (7)

where Γk is the outgoing (i.e. satisfying the SRC) fundamental solution to the
Helmholtz operator ∆ + k2 in R

2. We similarly define the Neumann-Poincaré
operator associated with D and k as

Kk,∗
D [ϕ](x) =

∫

∂D

∂Γk(x− y)

∂νx
ϕ(y) dσ(y), x ∈ ∂D,ϕ ∈ L2(∂D). (8)

We can then represent the solution to (5) as

u =

{

uin(x) + Sk
D[ψ](x), x ∈ R

2\D,

Skb

D [φ](x), x ∈ D,
(9)

for some surface potentials (φ, ψ) ∈ L2(∂D)× L2(∂D).
We define the space H1(∂D) := {u ∈ L2(∂D) : ∇u ∈ L2(∂D)} in the usual

way and use Id to denote the identity on L2(∂D). Then, using the representation
(9), problem (5) is equivalent [7, 9] to finding (φ, ψ) ∈ L2(∂D) × L2(∂D) such
that

A(ω, δ)

(

φ
ψ

)

=

(

uin

δ ∂uin

∂νx

)

, (10)

where

A(ω, δ) :=

[

Skb

D −Sk
D

− 1
2Id+Kkb,∗

D −δ( 12Id+Kk,∗
D )

]

. (11)

We now recall from e.g. [3, 4] the main result that will allow us to understand
the leading order behaviour of A in (10).

Lemma 2.2. In the space L(L2(∂D)× L2(∂D), H1(∂D)× L2(∂D)) we have

A(ω, δ) = A0 + ω2 lnωA1,1,0 + ω2A1,2,0 + δA0,1 +O(δω2 lnω) +O(ω4 lnω),

4



where

A0 :=

[

Ŝkb

D −Ŝk
D

− 1
2Id+K∗

D 0

]

,A1,1,0 :=

[

v−2
b S

(1)
D,1 −v−2S

(1)
D,1

v−2
b K

(1)
D,1 0

]

,

A1,2,0 :=

[

v−2
b (− ln vbS

(1)
D,1 + S

(2)
D,1) −v−2(− ln vS

(1)
D,1 + S

(2)
D,1)

v−2
b (− ln vbK

(1)
D,1 +K

(2)
D,1) 0

]

,

and

A0,1 :=

[

0 0
0 −( 12Id+K∗

D)

]

.

The above operators are defined as

SD[φ](x) :=
1

2π

∫

∂D

ln |x− y|φ(y) dσ(y),

Ŝk
D[φ](x) := SD[φ](x) + ηk

∫

∂D

φ dσ, ηk :=
1

2π
(ln k + γ − ln 2)−

i

4
,

S
(1)
D,1[φ](x) :=

∫

∂D

b1|x− y|2φ(y) dσ(y),

S
(2)
D,1[φ](x) :=

∫

∂D

b1|x− y|2 ln |x− y|φ(y) + c1|x− y|2φ(y) dσ(y),

K
(1)
D,1[φ](x) :=

∫

∂D

b1
∂|x− y|2

∂ν(x)
φ(y) dσ(y),

K
(2)
D,1[φ](x) :=

∫

∂D

b1
∂|x− y|2 ln |x− y|

∂ν(x)
φ(y) + c1

∂|x− y|2

∂ν(x)
φ(y) dσ(y),

where b1 := − 1
8π , c1 := − 1

8π (γ − ln 2 − 1 − iπ
2 ) and γ = 0.5772 . . . is the Euler

constant.

The operator SD is the Laplace single layer potential associated with D.
Since we are working in two dimensions this is not generally invertible however
the following two lemmas help us understand the extent of its degeneracy.

Lemma 2.3. If for some φ ∈ L2(∂D) with
∫

∂D
φ = 0 it holds that SD[φ](x) = 0

for all x ∈ ∂D, then φ = 0 on ∂D.

Proof. The arguments given in [8, Lemma 2.25] can be easily generalised to
the case where D is the disjoint union of a finite number of bounded Lipschitz
domains in R

2.

Proposition 2.4. Independent of the number N ∈ N of connected components
making up D, we have that

dimkerSD ≤ 1.
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Proof. Let ψ ∈ kerSD. Then by Lemma 2.3 if
∫

∂D
ψ = 0 then ψ = 0. Suppose

that
∫

∂D
ψ 6= 0 then take ψ̃ ∈ kerSD with

∫

∂D
ψ̃ 6= 0 and then consider the

function

f =
ψ

∫

∂D
ψ

−
ψ̃

∫

∂D
ψ̃
.

Then f satisfies SD[f ] = 0 and
∫

∂D
f = 0 so by Lemma 2.3 we have that f = 0.

Therefore ψ = (
∫

∂D
ψ/
∫

∂D
ψ̃)ψ̃.

There are two cases to consider, in light of Proposition 2.4:

• Case I: dimkerSD = 1,

• Case II: dimkerSD = 0.

By the Fredholm Alternative Theorem, an equivalent formulation is

• Case I: SD is not invertible,

• Case II: SD is invertible.

as an operator in L(L2(∂D), H1(∂D)). We are now in a position to prove an
important property of the operator Ŝk

D that was defined in Lemma 2.2 and is
the leading order approximation to Sk

D.

Lemma 2.5. For any fixed k ∈ C\{0}, Ŝk
D is invertible in L(L2(∂D), H1(∂D)).

Proof. Since Ŝk
D is Fredholm with index 0 we need only to show that it is

injective. To this end, assume that y ∈ L2(∂D) is such that

Ŝk
D[y] = SD[y] + ηk

∫

∂D

y = 0. (12)

Case I: Let ψ0 be the unique element of kerSD with
∫

∂D
ψ0 = 1 (which exists

as a result of Lemma 2.3). We then find that SD[y] ⊥ ψ0 in L2(∂D) and hence
(12) becomes

ηk

(∫

∂D

y

)(∫

∂D

ψ0

)

= 0.

Thus
∫

∂D
y = 0. It follows from (12) that SD[y] = 0 and further by Lemma 2.3

we have that y = 0.
Case II: Define ψ0 = S−1

D (1) then (12) gives us that

SD[y] = −ηk

∫

∂D

y,

is constant so, since SD is injective, we find that y = cψ0 for some c. Substituting
back into (12) gives

c+ ηkc

∫

∂D

ψ0 = 0.

Everything here is real with the one exception of ηk (which has nonzero imagi-
nary part) so we must have that c = 0.
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2.2 Resonant modes

Definition 2.6. For a fixed δ we define a resonant frequency to be ω ∈ C with
positive real part and negative imaginary part such that there exists a nontrivial
solution to

A(ω, δ)

(

φ
ψ

)

=

(

0
0

)

, (13)

where A(ω, δ) is defined in (11). For each resonant frequency ω we define the
corresponding eigenmode (or resonant mode or normal mode) as

u =

{

Sk
D[ψ](x), x ∈ R

2\D,

Skb

D [φ](x), x ∈ D.
(14)

Remark 2.7. The reason for the choices of sign in Definition 2.6 is to give a
physical meaning to a complex resonant frequency. The real part represents the
frequency of oscillation and the imaginary part describes the rate of attenuation
(hence it should be negative, to give a solution that decays over time).

Remark 2.8. The interpretation of Definition 2.6 is that resonant modes are
modes of vibration that can (theoretically) occur without the input of energy. We
see from Figure 4 that this definition is equivalent to the notion that resonant
frequencies are those at which the system will oscillate at much greater amplitude
than is generally the case.

Manipulating the first entry of (13) we find that

Ŝkb

D [φ]− Ŝk
D[ψ] = Ŝk

D[φ− ψ] +
1

2π
ln

v

vb

∫

∂D

φ,

hence

ψ = φ+
1

2π
ln

v

vb

(∫

∂D

φ

)

(Ŝk
D)−1[χ∂D] +O(ω2), (15)

since an application of (Ŝk
D)−1 rescales like O(1/ lnω). Here, χ∂D is used to

denote the characteristic function of ∂D.
To deal with the second component of (13) we first prove some technical

lemmas.

Lemma 2.9. For any φ ∈ L2(∂D) and j = 1, . . . , N , we have that
(i)
∫

∂Dj
( 12I −K∗

D)[φ] = 0,

(ii)
∫

∂Dj
( 12I +K∗

D)[φ] =
∫

∂Dj
φ.

Proof. (i) follows from the jump relations for single layer potentials and the fact
SD[φ] is harmonic in D [9, 8]. Then (ii) is immediate.

Lemma 2.10. For any φ ∈ L2(∂D) and j = 1, . . . , N , we have that

(i)
∫

∂Dj
K

(1)
D,1[φ] = 4b1|Dj |

∫

∂D
φ,

(ii)
∫

∂Dj
K

(2)
D,1[φ] = −

∫

Dj
SD[φ] + (4b1 + 4c1)|Dj |

∫

∂D
φ,

where |Di| is the area of Di.
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Proof. (i) follows from the divergence theorem
∫

∂Dj

K
(1)
D,1[φ](x) dσ(x) = b1

∫

Dj

∫

∂D

∆x|x− y|2φ(y) dσ(y) dx

= 4b1|Dj |

∫

∂D

φ(y) dσ(y).

Similarly for (ii) we can show that
∫

∂Dj

K
(2)
D,1[φ](x) dσ(x) =

∫

Dj

∫

∂D

∆x[|x− y|2(b1 ln |x− y|+ c1)]φ(y) dσ(y) dx

= −

∫

Dj

SD[φ](x) dx+ (4b1 + 4c1)|Dj |

∫

∂D

φ(y) dσ(y),

making use of the fact that b1 = −1/8π.

Turning now to the second component of (13) we see that
(

−
1

2
Id+K∗

D + v−2
b K

(1)
D,1ω

2 lnω + v−2
b (− ln vbK

(1)
D,1 + S

(2)
D,1)ω

2

)

[φ]

−δ(
1

2
Id+K∗

D)[ψ] = O(δω2 lnω) +O(ω4 lnω).

We substitute expression (15) for ψ to see that φ satisfies the equation
(

−
1

2
Id+K∗

D

)

[φ] +
(

v−2
b K

(1)
D,1ω

2 lnω + v−2
b (− ln vbK

(1)
D,1 +K

(2)
D,1)ω

2
)

[φ]

−δ(
1

2
Id+K∗

D)[φ]−
1

2π
δ ln

v

vb

(∫

∂D

φ

)(

1

2
Id+K∗

D

)

[

(Ŝk
D)−1[χ∂D]

]

= O(δω2 lnω) +O(ω4 lnω).

(16)

At leading order (16) is just (− 1
2Id + K∗

D)[φ] = 0 so it would be useful to
understand this kernel, which we achieve with the following two lemmas.

Lemma 2.11. If φ ∈ L2(∂D) is such that φ ∈ ker(− 1
2Id+K∗

D) then there exist

constants bj such that SD[φ] =
∑N

j=1 bjX∂Dj
.

Proof. Let u := SD[φ]. Then ∆u = 0 in D and ∂u
∂ν

∣

∣

−
= (− 1

2Id+K∗
D)[φ] = 0 on

∂D (known as a “jump condition”) [7, 9] so u satisfies a homogeneous interior
Neumann problem on each of the N connected components D1, . . . , DN of D.
It is known that such problems are uniquely solvable up to the addition of a
constant.

Lemma 2.12. Fix some k0 ∈ C \ {0}. The set of vectors {ψ1, . . . , ψN} defined
as

ψi :=
(

Ŝk0

D

)−1

[X∂Di
], (17)

forms a basis for the space ker(− 1
2Id+K∗

D).
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Proof. The linear independence of {ψ1, . . . , ψN} follows from the linearity and
injectivity of Ŝk0

D , plus the independence of {X∂D1
, . . . ,X∂DN

}.

For φ ∈ L2(∂D) the difference between Ŝk0

D [φ](x) and SD[φ](x) is a constant
(in x) so they will have the same derivatives. In particular, they are both
harmonic and satisfy the same jump conditions across ∂D. Therefore, using
arguments as in Lemma 2.11, we see that if φ ∈ ker(− 1

2Id+K∗
D) then Ŝk0

D [φ] ∈
span{X∂D1

, . . . ,X∂DN
}. Thus φ ∈ span{ψ1, . . . , ψN}.

From Lemma 2.12 we know that ker(− 1
2Id + K∗

D) has dimension equal to
the number of connected components of D (a wider discussion can be found in
e.g. [2]). Thus we can take a basis

{φ1, . . . , φN},

of the null space ker(− 1
2Id + K∗

D). Then, in light of the fact that at leading
order (16) is just (− 1

2Id + K∗
D)[φ] = 0, it is natural to seek a solution of the

form

φ =

N
∑

j=1

ajφj +O(ω2 lnω + δ), (18)

for some non-trivial constants aj with
∑

j |aj | = O(1). The solutions (φ, ψ) to
(13) are determined only up to multiplication by a constant (and hence so are
a1, . . . , aN ). We fix the scaling to be such that the eigenmodes are normalised
in the L2(D)-norm

‖u‖2L2(D) =

∫

D

|Skb

D [φ]|2 = 1. (19)

We now integrate (16) over each ∂Di, i = 1 . . . N and use the results of
Lemmas 2.9 and 2.10 to find that, up to an error of O(δω2 lnω) +O(ω4 lnω),

B
(i)
δ (ω)[φ] :=

(∫

∂D

φ

)(

ω2 lnω +

((

1 +
c1
b1

− ln vb

)

−
SD[φ]|∂Di

4b1(
∫

∂D
φ)

)

ω2

)

−
v2b

4b1|Di|

[∫

∂Di

φ+
ln(v/vb)

2π

(∫

∂D

φ

)∫

∂Di

(Ŝk
D)−1[χ∂D]

]

δ = 0.

(20)

When we substitute the expression (18) for φ in (20) we find the system of
equations, up to an error of order O(δω2 lnω) +O(ω4 lnω),









B
(1)
δ (ω)[φ1] B

(1)
δ (ω)[φ2] . . . B

(1)
δ (ω)[φN ]

...
...

. . .
...

B
(N)
δ (ω)[φ1] B

(N)
δ (ω)[φ2] . . . B

(N)
δ (ω)[φN ]















a1
...
aN






= 0. (21)

Remark 2.13. Thanks to the linearity of the operators B
(i)
δ , the solutions ω(δ)

to (21) (as well as the associated eigenmodes) are independent of the choice of
basis {φ1, . . . , φN}.
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Figure 2: The resonant frequencies, plotted in the complex plane, of a system of 50 bundles
arranged linearly with each being 1.05 times the size of the previous. The first resonance
ω1 = 0.0002284− 0.0000526i is omitted. We take δ = 1/7000 in this simulation.

Remark 2.14. One can think of the step where we integrated (16) over each
∂Di, for i = 1 . . . , N , to give (20) as the point where the hybridisation (between
the N resonators) was performed (see also e.g. [5]).

2.3 Numerical computations of resonant modes

In order to improve computational efficiency, we will assume from here onward
that the cell bundles are circular. This means that we can use the so-called
multipole expansion method, an explanation of which is provided in e.g. [6,
Appendix C]. The method relies on the idea that functions in L2(∂D) are, on
each circular ∂Di, 2π-periodic so we may approximate by the leading order
terms of a Fourier series representation. We found that in most cases as few as
seven terms was sufficient to give satisfactory results.

Using such an approach we can find, for each fixed δ > 0, the N values of
ω ∈ C such that there exists a nontrivial solution to (21). For the case where
N = 50 the results are shown in Figure 2. We see that there is a range of
frequencies where the (the real part of the) resonances occur most commonly.
As N is increased, the resonances become increasingly dense in this region. In
fact, with the current arrangement, this range of frequencies does not change as
N increases. Instead, the region becomes increasingly densely filled.

It is also seen from Figure 2 that the imaginary parts of the resonances is
smallest in the region where they are most dense. This means that these fre-
quencies experience the least significant attenuation, suggesting that this range
of frequencies is that which we might call “easily audible”.

The reason ω1 = 0.0002284− 0.0000526i has been omitted from Figure 2 is
due to its O(10−5) imaginary part. This is not only inconvenient for plotting
but also means that this resonant mode will suffer much greater attenuation
and thus will be a less significant part of the motion over time.
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Figure 3: The eigenmodes u1 . . . , u6 for a system of six cell bundles arranged linearly with each
being 1.05 times the size of the previous (smallest on the left). Each pair of plots corresponds
to one of the six resonant frequencies. The upper plot shows a contour plot of the function
ℜun(x1, x2). The lower plot shows the cross section of this, taken along the line x2 = 0
(i.e. through the centres of the bundles). The eigenmodes have been normalised such that∫
D

|un|2 dx = 1 for each n = 1, . . . , N .
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It is also important to understand the eigenmodes un associated with each
resonant frequency ωn. The six resonant modes for the case of six cell bundles
are shown in Figure 3. They take the form of increasingly oscillating patterns.
In the lowest frequency eigenmode the cell bundles act as a monopole while the
highest resonant frequency corresponds to a mode that oscillates between each
adjacent bundle.

It is also notable that the solution is approximately constant on each bundle.
This is because the solution, taking the form (9), is given by Ŝkb

D [φ] at leading
order which by Lemma 2.11 is constant for φ ∈ ker(− 1

2Id+K∗
D).

2.4 Signal processing

We wish to offer an explanation of how, given an incident wave pin(x, t), our
system of coupled resonators is able to classify (and hence identify) the sound.
The system of resonators D is able to decompose the signal over its resonant
modes. It is clear that the N eigenmodes are linearly independent so we may
define the relevant N -dimensional solution spaces.

Definition 2.15. We define the N -dimensional spaces X and Y as

X := span{u1(x), . . . , uN (x)}, (22)

Y := span{u1(x)e
−iω1t, . . . , uN (x)e−iωN t}, (23)

We will approximate the solution by a decomposition in the frequency do-
main. The fact that, for n = 1, . . . , N , the Fourier transform of e−iωnt for t > 0
is given by i/(ω − ωn) motivates us to employ the form

u(x, ω) ≃

N
∑

n=1

αn(ω)i

ω − ωn
un(x), (24)

where α1, . . . , αN are complex-valued functions of a real variable.
It is important to understand whether knowing the value of the solution on

each cell bundle (which is the information that a cochlea is able to capture)
means that one can recover the weight functions α1, . . . , αN in (24).

Remark 2.16. The eigenmodes u1, . . . , uN are not orthogonal in L2(D).†

Proposition 2.17. Let {ω1, . . . , ωN} be the resonances of the system D =
D1 ∪ . . . ∪ DN and denote by u1, . . . , uN the corresponding eigenmodes. Then
the matrix γ ∈ C

N×N defined by

γij :=

∫

D

ui(x)uj(x) dx i, j = 1 . . . N, (25)

is invertible.

†It turns out however that they are nearly orthogonal. For example, the normalised
eigenmodes shown in Figure 3 satisfy (un, um)

L2(D) = O(10−3) for n 6= m.
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Proof. We can apply the Gram-Schmidt procedure to produce a basis {v1, . . . , vN}
for X that is orthonormal with respect to (·, ·)L2(D). This procedure produces
a nonsingular lower triangular matrix P ∈ C

N×N such that (v1, . . . , vN )T =
P (u1, . . . , uN )T (superscript T denotes the matrix transpose). If we define
Q ∈ C

N×N as Q := P−1 then Q is also nonsingular and lower triangular.
We can then calculate that







u1
...
uN







[

u1 . . . uN
]

= Q







v1
...
vN







[

v1 . . . vN
]

Q
T
. (26)

Integrating (26) componentwise gives that, for i, j = 1, . . . , N , it holds that

γij =
[

QINQ
T
]

ij
, (27)

and thus
det(γ) = | det(Q)|2 > 0. (28)

In order to find the weight functions α1, . . . , αN in Equation (24) we must
take the L2(D)-product with un(x) for n = 1, . . . , N and then invert γ. This
gives that









α1(ω)i
ω−ω1

...
αN (ω)i
ω−ωN









= γ−1







(u(·, ω), u1)L2(D)

...
(u(·, ω), uN )L2(D)






. (29)

Consider extending the weight functions α1, . . . , αN : R → C to functions on
all of C such that they are constant along lines parallel to the imaginary axis (i.e.
αn(ω) := αn(ℜ(ω)) for ω ∈ C, n = 1, . . . , N). Then, subject to the assumption
that (the extended versions of) α1, . . . , αN are analytic, we can recover from
(24) a similar decomposition for p(x, t) using the Fourier inversion theorem

p(x, t) ≃
1

2π

N
∑

n=1

un(x)

∫ ∞

−∞

αn(ω)i

ω − ωn
e−iωt dω

=

N
∑

n=1

un(x)αn(ωn)e
−iωnt, t > 0.

(30)

Example 2.18. pin(x, t) is a plane wave

We take as an example the case where pin(x, t) is a pulse of a plane wave with
frequency ωin ∈ R travelling in the x1 direction. This is given by

pin(x, t) = eiωin(x1/v−t), 0 < t < 1. (31)

13



Figure 4: A system of six cell bundles filters a signal into the six resonant frequencies. We
consider a system of six linearly arranged circular cell bundles that increase in size by a factor
of 1.05 which is subjected to an incoming plane wave with frequency ωin. The first plot
shows how the norm of the solution u(x, ω) to (5) varies as a function of ωin. We then show
how each coefficient α1(ω1), . . . , αN (ωN ) in (30) varies. The six resonant frequencies of this
system are ω1 = 0.002752−0.000538i, ω2 = 0.008026−0.000009i, ω3 = 0.011659−0.000048i,
ω4 = 0.014703− 0.000004i, ω5 = 0.016976− 0.000009i, ω6 = 0.019096− 0.000004i.

This has Fourier transform

uin(x, ω) = 2e
i
2
(ω−ωin)sinc(ω − ωin)e

iωinx1/v. (32)

We can then compute α1(ω), . . . , αN (ω) as in (29).
In Figure 4 we show firstly how the L2(D)-norm of the solution to the

scattering problem (5) varies as a function of ωin. As is expected, the response
is (locally) much greater when ωin is close to ℜ(ωn) for some n = 1, . . . , N .

In Figure 4 we also show how the weights α1(ω1), . . . , αN (ωN ) in (30) vary
as a function of ωin. Each constant is small except in a region of the associated
resonant frequency when the corresponding eigenmode is excited most strongly.
It should also be noted that |αn(ωn)| decreases in n. If we considered higher
order resonances the corresponding constants would be significantly smaller.
This justifies our choice to approximate p as an element of Y in (30) (i.e. to
only consider the N subwavelength modes).

2.5 Travelling wave phenomenon

In trying to resolve the differences between the two main classes of cochlear
model a crucial realisation is that our (resonance) model exhibits the travel-
ling wave behaviour observed by Békésy. This is easy to see in models with
graded arrays of uncoupled resonators, since a resonator’s response time will
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increase with decreasing characteristic frequency [17, 11], but is also true of our
hybridised model.

Figure 5: Our graded resonance model exhibits
travelling wave behaviour. We show the evo-
lution over time of 50 evenly spaced circular
cells (with size increasing by a factor of 1.05
from left to right) that are initially at rest then
uniformly excited at t = 0. We plot the cross-
section of the field along y = 0 (through the
centres of the cell bundles).

While it is true that acous-
tic waves enter the cochlea at the
base and travel through the fluid to
the apex, the travelling wave ob-
served by Békésy moves much more
slowly than this. The speed of
sound in cochlea fluid is approxi-
mately 1500m s−1 whereas the travel-
ling wave is observed at speeds close
to 10m s−1[11, 15]. This justifies the
assumption that all the hair cells are
excited simultaneously by an incom-
ing signal. Under such an assump-
tion, exciting an array initially at
rest will produce the motion shown
in Figure 5, from which the existence
of a wave travelling from the small
high-frequency resonators at the base
of the cochlea to the larger low fre-
quency resonators at the apex is clear.

It is important to note that the
travelling wave observed in Figure 5 is
merely the movement of the peak am-
plitude along the array of resonators.
It is a consequence of the asymmet-
ric eigenmodes growing from rest at
different rates. This explains why
experimentalists have not observed a
reverse travelling wave moving back
along the cochlea, as would be re-
quired by Békésy’s travelling wave
model for energy conservation [11,
22].

It is clear from Figure 5 that the amplitude initially increases before quickly
decreasing as the wave moves through the cochlea. This is consistent with ex-
perimental observations [17] and is to be expected in light of the e−iωnt factors
(ℑ(ωn) < 0) in (30). It is observed experimentally (in humans) that the travel-
ling wave slows down as it moves through the cochlea [15]. This is also witnessed
in Figure 5: the position of the wave moves relatively little between the third
and fifth plots.
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3 Concluding remarks

In this paper, we have computed leading order approximations to the resonant
frequencies and associated eigenmodes for a system of coupled subwavelength
oscillators that are graded in size. This model has the ability to decompose
incoming signals into these resonant modes. It is a significant observation that
the graded resonance model predicts the (widely observed) travelling wave be-
haviour, contributing to the unification of Helmholtz’ and Békésy’s models [11].

It has been demonstrated experimentally that sensitivity to different sound
frequencies can be mapped as a function of location along the cochlea and
that each hair cell bundle has a narrow frequency range which will cause it
to produce a much greater electrical response [12, 13]. Our coupled model
struggles to resolve this localised behaviour. Indeed, one needs to know the
(approximately constant) value of u on every cell bundle in order to recover the
constants α1(ω1), . . . , αN (ωN ) in (30).

On the other hand, it is also well known that the cochlea is an active or-
gan [19, 20, 14, 21, 22]. In future work we will investigate how introducing
appropriate forcing terms in (1) can produce the desired frequency selectivity
by individual resonant elements.
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