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Abstract

In [H. Ammari et al., Honeycomb-lattice Minnaert bubbles. arXiv:1811.03905],
the existence of a Dirac dispersion cone in a bubbly honeycomb phononic crystal
comprised of bubbles of arbitrary shape is shown. The aim of this paper is to prove
that, near the Dirac points, the Bloch eigenfunctions is the sum of two eigenmodes.
Each eigenmode can be decomposed into two components: one which is slowly
varying and satisfies a homogenized equation, while the other is periodic across each
elementary crystal cell and is highly oscillating. The slowly oscillating components
of the eigenmodes satisfy a Dirac equation. Our results in this paper demonstrate
for the first time a near-zero effective refractive index near the Dirac points for the
plane-wave envelopes of the Bloch eigenfunctions in a subwavelength metamaterial.
They are illustrated by a variety of numerical examples. We also compare and
contrast the behaviour of the Bloch eigenfunctions in the honeycomb crystal with
that of their counterparts in a bubbly square crystal, near the corner of the Brillouin
zone, where the maximum of the first Bloch eigenvalue is attained.

Mathematics Subject Classification (MSC2000). 35R30, 35C20.

Keywords. Honeycomb lattice, Dirac cone, Dirac equation, bubble, Minnaert res-
onance, sub-wavelength bandgap, near-zero effective property.

1 Introduction

Metamaterials are a novel group of materials designed to have special wave character-
istics such as bandgaps, negative refractive indices, or sub-wavelength scale resolution
in imaging. There have also been demonstrations of materials with near-zero refractive
indices. These materials have a wide number of applications, including low-loss bending
transmission, invisibility cloaking, and zero phase-shift propagation [12, 14, 22, 31, 40].

The first near-zero refractive index phononic crystal was theoretically demonstrated
in [31], where the effective mass density and reciprocal bulk modulus were shown to
vanish simultaneously. This near-zero effective refractive index property is a consequence
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of the existence of a Dirac dispersion cone. The double-zero property is possible because
the Dirac cone is located at the centre Γ of the Brillouin zone. Single-zero properties
have been studied for other locations of the Dirac cone; however, these materials exhibit
a low transmittance making them less desirable for applications [14, 20, 21].

In [9], the existence of a Dirac dispersion cone near the symmetry point K in a
bubbly honeycomb phononic crystal comprised of bubbles of arbitrary shape is shown.
In this paper, we demonstrate near the point K the near-zero effective property of a
bubbly honeycomb crystal at the deep sub-wavelength scale. In order to achieve high
transmittance, bubbly crystals with time-dependent material parameters should be used
[14] to turn the point K to the centre Γ of the Brillouin zone.

Metamaterials with Dirac singularities have been experimentally and numerically
studied in [38, 39, 35]. Proofs of the existence of a Dirac cone at the symmetry point
K in honeycomb lattice structures and mathematical analyses of their properties are
provided in [5, 11, 13, 17, 26, 34, 36].

Sub-wavelength resonators are the building blocks of metamaterials. In acoustics, a
gas bubble in a liquid is known to have a resonance frequency corresponding to wave-
lengths which are several orders of magnitude larger than the bubble [2, 33]. This
opens up the possibility of creating small-scaled acoustic metamaterials known as sub-
wavelength metamaterials, whereby the operating frequency corresponds to wavelengths
much larger than the device size. The simplicity of the gas bubble makes bubbly media
an ideal model for sub-wavelength metamaterials. Many experimentally observed phe-
nomena in bubbly media [23, 25, 28, 29, 30, 32, 41] have been rigorously explained in
[3, 6, 7, 5, 10]. In particular, in [5], a bubbly honeycomb crystal is considered, and a
Dirac dispersion cone centred at the symmetry point K in the Brillouin zone is shown
to exist.

In the homogenization theory of metamaterials, the goal is to map the metamate-
rial to a homogeneous material with some effective parameters. It has previously been
demonstrated that this approach does not apply in the case of bubbly crystals away from
the centre Γ of the Brillouin zone. In [9], it is shown that around the symmetry point
M in the Brillouin zone of a bubbly crystal with a square lattice, the Bloch eigenmodes
display oscillatory behaviour on two distinct scales: small scale oscillations on the order
of the size of individual bubbles, while simultaneously the plane-wave envelope oscillates
at a much larger scale and satisfies a homogenized equation. Analogously, we expect the
standard homogenization approach to fail for the honeycomb crystal and seek instead a
homogenized equation for the envelope of the eigenmodes. We will demonstrate that this
is a near-zero refractive index homogenized equation near the Dirac points. Moreover,
we will compare our results with the case of a square lattice crystal, which does not have
a linear dispersion relation in the vicinity of M and consequently cannot have effective
near-zero refractive index.

This paper is organized as follows. In section 2, we present the eigenvalue prob-
lem of the bubbly honeycomb crystal, and state the main results of [5]. In section 3,
we use layer-potential techniques to compute the Bloch eigenfunctions close to K in
the asymptotic limit of high density contrast. In section 4, we decompose the Bloch
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eigenfunctions as the sum of two eigenmodes, each with a slowly oscillating plane-wave
envelope. We also derive a Dirac equation satisfied by the slowly oscillating components
of the eigenmodes in the vicinity of the Dirac points, which generalizes to wave propaga-
tion in sub-wavelength resonant structures the result obtained in [19] for the Schrödinger
equation. The main result is stated in Theorem 4.3, where the Bloch eigenmodes are
shown to exhibit the two-scale behaviour as described above. In section 5, we numeri-
cally illustrate Theorem 4.3. We show that the macroscopic plane-wave envelope in the
honeycomb crystal has a lower order of oscillations compared to the Bloch eigenfunction
of the square crystal. Moreover, we demonstrate the near-zero effective refractive index
property of the honeycomb crystal, and compare the behaviour of the Bloch eigenfunc-
tions with those of a square crystal. Finally, in section 6, we summarise the main results
of this paper and briefly discuss the remaining challenges in the field.

2 Problem statement and preliminaries

2.1 Problem formulation

In this section, we describe the honeycomb lattice and state the main results of [5]. We
consider a two-dimensional infinite honeycomb crystal in two dimensions depicted in 1.
Define a hexagonal lattice Λ with lattice vectors:

l1 = L

(√
3

2
,
1

2

)

, l2 = L

(√
3

2
,−1

2

)

.

Denote by Y a fundamental domain of the given lattice. Here, we take

Y := {sl1 + tl2 | 0 ≤ s, t ≤ 1} .

Define the three points x0, x1, and x2 as

x0 =
l1 + l2

2
, x1 =

l1 + l2
3

, x2 =
2(l1 + l2)

3
.

We will assume that each bubble in the crystal has a three-fold rotational symmetry
and that each pair of adjacent bubbles has a two-fold rotational symmetry. More pre-
cisely, let R1 and R2 be the rotations by −2π

3 around x1 and x2, respectively, and let R0

be the rotation around x0 by π. These rotations can be written as

R1x = Rx+ l1, R2x = Rx+ 2l1, R0x = 2x0 − x,

where R is the rotation by −2π
3 around the origin. Assume that the unit cell contains

two bubbles Dj , j = 1, 2, each centred at xj such that

R1D1 = D1, R2D2 = D2, R0D1 = D2.

Denote the bubble dimer by D = D1 ∪D2.
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Figure 1: Illustration of the bubbly honeycomb crystal and quantities in the fundamental
domain Y .

α1

α2

Y ∗

α∗
1

α∗
2

Γ
Y ∗
1

Figure 2: Illustration of the dual lattice and the Brillouin zone Y ∗.

The dual lattice of Λ, denoted Λ∗, is generated by α1 and α2 satisfying αi · lj = 2πδij
for i, j = 1, 2. Then

α1 =
2π

L

(

1√
3
, 1

)

, α2 =
2π

L

(

1√
3
,−1

)

.

The Brillouin zone Y ∗ is defined as the torus Y ∗ := R
2
/Λ∗ and can be represented

either as
Y ∗ ≃ {sα1 + tα2 | 0 ≤ s, t ≤ 1} ,

or as the first Brillouin zone Y ∗
1 . The points

α∗
1 =

2α1 + α2

3
, α∗

2 =
α1 + 2α2

3
,

in the Brillouin zone are called Dirac points.
Wave propagation in the bubbly honeycomb crystal is described by the following
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α-quasi-periodic Helmholtz problem in Y :























































∇ · 1
ρ
∇u+

ω2

κ
u = 0 in Y \D,

∇ · 1

ρb
∇u+

ω2

κb
u = 0 in D,

u+ − u− = 0 on ∂D,

1

ρ

∂u

∂ν

∣

∣

∣

∣

+

− 1

ρb

∂u

∂ν

∣

∣

∣

∣

−
= 0 on ∂D,

u(x+ l) = eiα·lu(x) for all l ∈ Λ.

(2.1)

Here, ∂/∂ν denotes the normal derivative on ∂D, and the subscripts + and − indicate
the limits from outside and inside D, respectively. A non-trivial solution to this prob-
lem and its corresponding frequency is called the Bloch eigenfunction and the Bloch
eigenfrequency. Let

v :=

√

κ

ρ
, vb :=

√

κb
ρb
, k =

ω

v
, kb =

ω

vb
. (2.2)

Introduce the density contrast parameter δ as

δ :=
ρb
ρ
. (2.3)

We assume that there is a high contrast in the density while the wave speeds are com-
parable, i.e.,

δ ≪ 1 and v, vb = O(1).

2.2 Quasi-periodic Green’s function for the honeycomb lattice

Define the α−quasi-periodic Green’s function Gα,k to satisfy

∆Gα,k + k2Gα,k =
∑

n∈Λ
δ(x− n)eiα·n.

Then it can be shown that Gα,k is given by [4, 8]

Gα,k(x) =
1

|Y |
∑

q∈Λ∗

ei(α+q)·x

k2 − |α+ q|2 . (2.4)

For a given bounded domain D in Y , with Lipschitz boundary ∂D, the single layer
potential of the density function ϕ ∈ L2(∂D) is defined by

Sα,kD [ϕ](x) :=

∫

∂D
Gα,k(x− y)ϕ(y)dσ(y), x ∈ R

2.
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The following jump relations are well-known [4, 8]:

∂

∂ν
Sα,kD [ϕ]

∣

∣

∣

∣

±
(x) =

(

±1

2
I + (K−α,k

D )∗
)

[ϕ](x), x ∈ ∂D, (2.5)

where the Neumann-Poincaré operator (K−α,k
D )∗ is defined as

(K−α,k
D )∗[ϕ](x) = p.v.

∫

∂D

∂Gα,k(x− y)

∂νx
ϕ(y)dσ(y), x ∈ ∂D.

It is known that Sα,0D : L2(∂D) → H1(∂D) is invertible when α 6= 0 [4, 8].
Let ψαj ∈ L2(∂D) be given by

Sα,0D [ψαj ] = χ∂Di
on ∂D, i, j = 1, 2, (2.6)

where χ denotes the indicator function. Define the capacitance coefficient matrix Cα =
(Cαij) by

Cαij := −
∫

∂Dj

ψαi , i, j = 1, 2.

Using the symmetry of the honeycomb structure, it was shown in [5] that the capacitance
coefficients satisfy

cα1 := Cα11 = Cα22, cα2 := Cα12 = Cα21,

and

∇αc
α
1

∣

∣

∣

α=α∗
= 0, ∇αc

α
2

∣

∣

∣

α=α∗
= c

(

1
i

)

(2.7)

where we denote

c =
∂cα2
∂α1

∣

∣

∣

α=α∗
.

Note that the capacitance matrix Cα is written as

Cα =

(

cα1 cα2
cα2 cα1

)

. (2.8)

2.3 Dirac cone dispersion in the band structure

The solution to (2.1) can be represented using the single layer potentials Sα,kbD and Sα,kD

as follows (see for example [8]):

u(x) =

{

Sα,kD [ψ](x), x ∈ Y \ D̄,
Sα,kbD [φ](x), x ∈ D,

(2.9)

where the pair (φ, ψ) ∈ L2(∂D)× L2(∂D) satisfies

Aα,ω
δ

(

φ
ψ

)

= 0, (2.10)
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Here, the operator Aα,ω
δ is defined by

Aα,ω
δ :=

[

Sα,kbD −Sα,kD

−1
2I + (K−α,kb

D )∗ −δ
(

1
2I + (K−α,k

D )∗
)

]

. (2.11)

It is well-known that the integral equation (2.10) has a non-trivial solution for some
discrete frequencies ω. These can be viewed as the characteristic values of the operator-
valued analytic function Aα,ω

δ (with respect to ω); see [8].
It can be shown that ω = 0 is a characteristic value of Aα,ω

0 because

[

Sα,0D −Sα,0D

−1
2I + (K−α,0

D )∗ 0

]

has non-trivial kernel of two dimensions, which is generated by

Ψα
1 =

(

ψα1
ψα1

)

and Ψ2 =

(

ψα2
ψα2

)

,

where ψα1 and ψα2 are as in (2.6). Then Gohberg-Sigal theory [8] tells us that there exists
characteristic values ωαj = ωαj (δ), j = 1, 2, of Aα,ω

δ such that ωαj (0) = 0 and ωαj depends
on δ continuously.

It was shown in [5] that, for the honeycomb structure, the first two characteristic
values ωα1 and ωα2 form a conical dispersion relation near the Dirac point α∗. Such a
conical dispersion is referred to as a Dirac cone. More specifically, the following theorem
was proved in [5]. It worth emphasizing that the following results hold in the deep
sub-wavelength regime.

Theorem 2.1. The first two characteristic values ωαj , j = 1, 2, form a Dirac cone at α∗,
i.e.,

ωα1 (δ) = ω∗ − c
√
δλ0|α− α∗|

[

1 +O(|α− α∗|)
]

,

ωα2 (δ) = ω∗ + c
√
δλ0|α− α∗|

[

1 +O(|α− α∗|)
]

,

where

ω∗ =

√

δcα
∗

1

|D| vb +O(δ) and λ0 =

√

v2b
|D|cα∗

1

+O(δ),

for sufficiently small δ.

In the next sections, we will investigate the asymptotic behaviour of the Bloch eigen-
functions near Dirac points. Then we shall derive a homogenized equation.

3 Bloch eigenfunctions near Dirac points

In this section, we study the Bloch eigenfunctions in the regime close to α∗, following
the approach of [9].
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3.1 Asymptotic behaviour of the Green’s function

In this section, we consider Gα,k near a Dirac point α = α∗.

Lemma 3.1. The following asymptotic expansion of Gα,k holds for α near a Dirac point
α∗:

Gα,k(x) = ei(α
∗+ǫα̃)·xGα

∗,k(x) +O(ǫ2). (3.1)

Furthermore, for any φ ∈ L2(∂D),

Sα∗+ǫα̃,k
D [φ](x) = eiǫα̃·xSα∗,k

D

[

e−iǫα̃·yφ(y)
]

(x) +O(ǫ2). (3.2)

Proof. Observe that (3.1) immediately implies (3.2). We will prove it for α∗ = 2α1+α2

3 .
It is easily seen that

Gα,k(x) = Gα
∗,k(x) +

1

|Y |
∑

q∈Λ∗

ei(α
∗+q)·x

k2 − |α∗ + q|2
(

iǫα̃ · x+ 2
(α∗ + q) · ǫα̃
k2 − |α∗ + q|2

)

+O(ǫ2).

We will use the symmetry of the problem to show that the absolutely convergent series

∑

q∈Λ∗

α∗ + q

(k2 − |α∗ + q|2)2

vanishes, which proves the lemma. We define three sub-lattices Λ∗
1,Λ

∗
2, and Λ∗

3 in the
following way. Let Λ∗

1 be generated by the vectors

q1 = 2α1 + α2 and q2 = α1 + 2α2,

and define the other two sub-lattices as

Λ∗
2 = Λ∗

1 − α1 and Λ∗
2 = Λ∗

1 − (α1 + α2) .

It can be shown that Λ∗
1,Λ

∗
2, and Λ∗

3 is a disjoint partition of Λ∗ and that RΛ∗
1 = Λ∗

1.
From these facts, we find

∑

q∈Λ∗

α∗ + q

(k2 − |α∗ + q|2)2
=
∑

q∈Λ∗
1

α∗ + q

(k2 − |α∗ + q|2)2
+
∑

q∈Λ∗
2

α∗ + q

(k2 − |α∗ + q|2)2

+
∑

q∈Λ∗
3

α∗ + q

(k2 − |α∗ + q|2)2

=
∑

q∈Λ∗
1

α∗ + q

(k2 − |α∗ + q|2)2
+

α∗ +Rq − α1

(k2 − |α∗ +Rq − α1|2)2

+
α∗ +R2q − (α1 + α2)

(k2 − |α∗ +R2q − (α1 + α2)|2)2
.
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Therefore, form the fact that I +R+R2 = 0, it follows that

∑

q∈Λ∗

α∗ + q

(k2 − |α∗ + q|2)2
=
∑

q∈Λ∗
1

α∗ + q

(k2 − |α∗ + q|2)2
+

R (α∗ + q)

(k2 − |R (α∗ + q) |2)2

+
R2 (α∗ + q)

(k2 − |R2 (α∗ + q) |2)2

=
∑

q∈Λ∗
1

(α∗ + q) +R (α∗ + q) +R2 (α∗ + q)

(k2 − |α∗ + q|2)2

= 0,

which proves the claim.

Corollary 3.2. Let ψαj , for j = 1, 2, be defined by (2.6). For small ǫ > 0 and j = 1, 2,
we have

Sα∗+ǫα̃,ω
D

[

ψα
∗+ǫα̃

j

]

(x) = eiǫα̃·xSα∗,ω
D

[

ψα
∗

j (y)
]

(x) +O(ǫ2). (3.3)

Proof. Estimate (3.3) can be proved by the same argument as in the proof of Lemma
5.2 in [9].

3.2 Bloch eigenfunctions near the Dirac points

Here we consider the asymptotic behaviour of the Bloch eigenfunctions near the Dirac
points.

Let us assume that α is close to the Dirac point α∗, i.e., α = α∗+ ǫα̃ for small ǫ > 0.
Let uα be the Bloch eigenfunction with the Bloch eigenfrequency ωα. In other terms,
uα is given by

uα(x) =

{

Sα,kD [ψα](x), x ∈ Y \ D̄,
Sα,kbD [φα](x), x ∈ D,

(3.4)

where the pair (φα, ψα) ∈ L2(∂D)× L2(∂D) satisfies

Aα,ωα

δ

(

φα

ψα

)

= 0. (3.5)

In the sequel, in order to simplify the presentation, we assume the following:

Assumption 3.1. The wave speed inside the bubble is equal to the one outside, i.e.,

v = vb = 1.

Then the wave numbers k and kb become

k = ωα, kb = ωα.
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We know from Theorem 2.1 that ωα = O(
√
δ). So, for δ small enough, the integral

equation (3.5) can be approximated by






Sα,0D [φα]− Sα,0D [ψα] = O(δ),
(

−1
2I + (K−α,0

D )∗ + k2bK
α,0
D,1

)

[φα]− δ
(

1
2I + (Kα,0

D )∗
)

[ψα] = O(δ2).
(3.6)

Then, since Sα,0D is invertible when α 6= 0, the first equation of the above implies

ψα = φα +O(δ). (3.7)

Substituting the above into the second equation in (3.6), we have
(

−1

2
I + (K−α,0

D )∗ + k2bKα,0
D,1

)

[φα]− δ

(

1

2
I + (Kα,0

D )∗
)

[φα] = O(δ2). (3.8)

Since ker
(

−1
2I + (K−α,0

D )∗
)

is generated by ψα1 and ψα2 , which are defined by (2.6), we

may write φ as
φα = Aψα1 +Bψα2 +O(δ), (3.9)

where |A|+ |B| = 1.
By integrating (3.8) on ∂D, and using the following identity

∫

∂Dj

Kα,0
D,1[φ] dσ = −

∫

Dj

Sα,0D [φ] dx, (3.10)

it follows that

−ω
2|D|
v2b

A+ δ(Acα1 +Bcα2 ) = O(δ2), (3.11)

−ω
2|D|
v2b

B + δ(Acα2 +Bcα1 ) = O(δ2). (3.12)

Then, since we have from (2.7) that

cα
∗+ǫα̃

1 = cα
∗

1 +O(ǫ2), cα
∗+ǫα̃

1 = ǫc(α̃1 + iα̃2) +O(ǫ2),

and ω∗ = (δcα
∗

1 v2b/|D|)1/2 +O(δ), we obtain

−2

√

δcα
∗

1 |D|
v2b

(ω − ω∗)A+ cδǫ
(

α̃1 + iα̃2

)

B +O(δǫ2) = O(δ2),

−2

√

δcα
∗

1 |D|
v2b

(ω − ω∗)B + cδǫ
(

α̃1 − iα̃2

)

A+O(δǫ2) = O(δ2).

So we get

λ0
√
δ

[

0 ǫc(α̃1 + iα̃2)
ǫc(α̃1 − iα̃2) 0

] [

A
B

]

= (ωα − ω∗)

[

A
B

]

+O(δǫ2 + δ2), (3.13)
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where, as in Theorem 2.1,

λ0 =

√

v2b
cα

∗

1 |D| .

Then, by solving the above eigenvalue problem, we obtain two (approximate) eigenpairs
as follows:

ωα± = ω∗ ± λδǫ|c| · |α̃|+O(δǫ2 + δ2),

and

[

A±
B±

]

=









± 1√
2

c

|c|
α̃1 + iα̃2

|α̃|
1√
2









+O(δǫ2 + δ2). (3.14)

This implies that the Bloch eignfunction uα+ (resp., uα−) associated to the upper part ωα+
(resp., ωα−) of the Dirac cone can be represented as

uα
∗+ǫα̃

± = A±S
α,ωα

±

D [ψα1 ] +B±S
α,ωα

±

D [ψα2 ] +O(δ1/2).

Then, by Corollary 3.2 and the fact that ωα± = O(
√
δ), we have

uα
∗+ǫα̃

± (x) = A±e
iǫα̃·xSα∗,0

D [ψα
∗

1 ](x) +B±e
iǫα̃·xSα∗,0

D [ψα
∗

2 ](x) +O(δ1/2 + δǫ2). (3.15)

4 Homogenization of the Bloch eigenfunctions near the

Dirac points

Here we consider the rescaled bubbly honeycomb crystal by replacing the lattice constant
L with sL where s > 0 is a small positive parameter. We then derive a homogenized
equation.

We need the following lemma which can be proved by a scaling argument.

Lemma 4.1. Let ωαj , j = 1, 2, be the first two eigenvalues and uαj be the associated Bloch
eigenfunctions for the bubbly honeycomb crystal with lattice constant L. Then the bubbly
honeycomb crystal with lattice constant sL has the first two Bloch eigenvalues

ω
α/s
±,s =

1

s
ωα±,

and corresponding eigenfunctions

u
α/s
±,s(x) = uα±

(x

s

)

.

We see from the above lemma that the Dirac cone is located at the point α∗/s. We
denote the Dirac frequency as

ω∗
s =

1

s
ω∗.

We have the following result for the Bloch eigenfunctions u
α/s
j,s , j = 1, 2, near the Dirac

points α∗/s.
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Lemma 4.2. We have

u
α∗/s+α̃
±,s (x) = A±e

iα̃·xS1
(x

s

)

+B±e
iα̃·xS2

(x

s

)

+O(s2 + δ1/2),

where
Sj(x) = Sα∗,0

D [ψα
∗

j ](x), j = 1, 2.

Proof. The conclusion follows by applying (3.15) to u
α∗/s+α̃
±,s (x) = uα

∗+sα̃
± (x/s).

We see that the functions S1 and S2 describe the microscopic behaviour of the Bloch

eigenfunction u
α∗/s+α̃
±,s while A±eiα̃·x, B±eiα̃·x describe the macroscopic behaviour. Now

we derive a homogenized equation near the Dirac frequency ω∗
s .

Recall that the Dirac frequency of the unscaled honeycomb crystal satisfies ω∗ ≈
C
√
δ. As in [9], to make the order of ω∗

s fixed when s tends to zero, we assume that

Assumption 4.1. δ = µs2, for some fixed µ > 0.

Then we have

ω∗
s =

1

s
ω∗ = O(1), as s→ 0.

So, in what follows, we omit the subscript s in ω∗
s , namely, ω∗ := ω∗

s . Suppose the
frequency ω is close to ω∗, i.e.,

ω − ω∗ = β
√
δ for some constant β.

We need to find the Bloch eigenfunctions or α̃ such that

ω = ω
α∗/s+α̃
±,s .

We have from (3.13) and Lemmas 4.1 and 4.2 that the corresponding α̃ satisfies

λ0

[

0 c(α̃1 + iα̃2)
c(α̃1 − iα̃2) 0

] [

A±
B±

]

= β

[

A±
B±

]

+O(s2). (4.1)

So it is immediate to see that the macroscopic field [ũ1, ũ2]
T := [A±eiα̃·x, B±eiα̃·x]T

satisfies the Dirac equation as follows:

λ0

[

0 (−ci)(∂1 + i∂2)
(−ci)(∂1 − i∂2) 0

] [

ũ1
ũ2

]

= β

[

ũ1
ũ2

]

.

Here, the superscript T denotes the transpose and ∂i is the partial derivative with respect
to the ith variable. Note that the each component ũj , j = 1, 2, of the macroscopic field
satisfies the Helmholtz equation

∆ũj +
|c|2β2
λ20

ũj = 0. (4.2)

The following is the main result on the homogenization theory for the honeycomb
bubbly crystals.
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Theorem 4.3. For frequencies ω close to the Dirac frequency ω∗, namely, ω−ω∗ = β
√
δ,

the following asymptotics of the Bloch eigenfunction u
α∗/s+α̃
s holds:

uα
∗/s+α̃
s (x) = Aeiα̃·xS1

(x

s

)

+Beiα̃·xS2
(x

s

)

+O(s),

where the macroscopic field [ũ1, ũ2]
T := [Aeiα̃·x, Beiα̃·x]T satisfies the two-dimensional

Dirac equation

λ0

[

0 (−ci)(∂1 + i∂2)
(−ci)(∂1 − i∂2) 0

] [

ũ1
ũ2

]

=
ω − ω∗
√
δ

[

ũ1
ũ2

]

,

which can be considered as a homogenized equation for the honeycomb bubbly crystal
while the microscopic fields S1 and S2 vary on the scale of s.

5 Numerical illustrations

In this section, we illustrate the main result of this paper, namely Theorem 4.3, in the
case of circular bubbles. We do this by numerically computing the eigenmodes close
to the Dirac points for the honeycomb lattice. For comparison, in Section 5.2, we also
compute the eigenmodes in the case of a square lattice of bubbles. This also serves to
illustrate and numerically verify the conclusions from [9].

The eigenmodes are computed by discretising the operator Aα,ω
δ from equation (2.11)

using the multipole method as described in [5, 6]. All computations are made for circular
bubbles with radius R = 0.2. Moreover, the material parameters are ρ = κ = 1000,
ρb = κb = 1, which gives δ = 10−3, v = 1, and vb = 1.

5.1 Honeycomb lattice

For simplicity, we choose the scaling s = 1. Recall from (2.9) that the eigenmodes can
be expressed as

u(x) =

{

Sα,kD [ψ](x), x ∈ Y \ D̄,
Sα,kbD [φ](x), x ∈ D,

(5.1)

where Aα,ω
δ

(

φ
ψ

)

= 0. Then (φ, ψ) can be numerically computed as an eigenvector of

the discretised operator Aα,ω
δ corresponding to eigenvalue 0. Moreover, u(x) can be

computed by (5.1), extended quasi-periodically to the whole space. We will consider the
eigenmodes at frequencies ω with ω − ω∗ = β

√
δ.

First, we consider the small-scale behaviour of the eigenmodes. The small scale
corresponds to eiα̃·x ≈ 1, so Theorem 4.3 shows that the eigenfunctions are given by

uα
∗+α̃

± (x) = AS1(x) +BS2(x) +O(s).

Equation (3.14) shows that A = A± = ± 1√
2
ei(θc+θ) and B = B± = 1√

2
, where θc and θ

are the arguments of c and α̃, respectively, and the sign coincides with the sign of β. To
pick a unique eigenmode, we choose θ = 0, i.e., the quasi-periodicity α̃ =

(

α̃1

0

)

.
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Figure 3 shows the function

u∗(x) = A−S1(x) +B−S2(x),

which is the first Dirac eigenmode in the limit β → 0−. It can be seen that the eigen-
mode is highly oscillating and oscillate between −1 and 1 within one hexagon of bubbles.
Moreover, this eigenmode has no large-scale oscillation. The second eigenmode, corre-
sponding to β → 0+, has the same qualitative features.

Next, we consider the large-scale behaviour of the eigenmodes. Figure 4 shows the
real part of the first eigenmode uα

∗+α̃
− for β = 8 ·10−3. It can be seen that the eigenmode

is oscillating with a low frequency in the large scale. Moreover, it is clear that the
eigenmode consists of two superimposed fields, corresponding to the parts Aeiα̃·xS1(x)
and Beiα̃·xS2(x). These fields are phase-shifted, due to the factor ei(θc+θ) in A.

To demonstrate the near-zero effective refractive index property of the bubbly honey-
comb crystal, we consider the large-scale oscillation frequency close to the Dirac points.
From (4.2), we know that for frequencies ω = ω∗ + β

√
δ close to the Dirac frequency,

each components ũj , j = 1, 2, of the macroscopic field oscillates at a spatial frequency

f =
|c|β
λ0

.

Denote by ǫ := β
√
δ. To verify this relation, we compute the large-scale spatial frequency

of the eigenmodes for ǫ in the range ǫ ∈ [−0.01, 0.01], shown in Figure 5. It can be seen
that the relation is linear for ǫ close to 0. This verifies (4.2), and shows that close
to the Dirac frequency the macroscopic behaviour of the honeycomb crystal can be
described as a near-zero refractive index material. However, we emphasize that the
homogenization approach is valid only in the large scale; this will fail to capture the
small-scale oscillations. Also, we emphasize the counter-intuitive result that despite not
being located at Γ, the eigenmodes close to the Dirac point show close to zero phase
change across the crystal. Indeed, this is a consequence of the near-zero property.

5.2 Square lattice

In this section, we perform the same numerical experiments as in Section 5.1 but for
the case of a square lattice of bubbles. We begin by recalling the main result from [9].
Consider now a square lattice with unit cell Y as depicted in Figure 6. The corresponding
dispersion relation has a bandgap between the first and second bands, and the critical
frequency ω∗ of the first band is achieved at the symmetry point α∗ = M = (π, π) in
the Brillouin zone.

Let now Sα,kD denote the single-layer potential for the square lattice, defined analo-
gously as in Section 2.2 but with Λ and Λ∗ being the square lattice and reciprocal square
lattice, respectively. Define the function

S(x) = Sα,0D

[

ψα
∗
]

(x),

where ψα =
(

Sα,0D

)−1
[χ∂D].
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(a) Real part of u∗. (b) Imaginary part of u∗.

Figure 3: Small-scale behaviour of the first Bloch eigenfunction u∗.

(a) Two-dimensional plot. (b) One-dimensional plot along the x-axis.

Figure 4: Real part of first Bloch eigenfunction of the honeycomb lattice shown over
many unit cells.

Figure 5: Spatial frequency of the macroscopic functions ũj for different frequency shifts
ǫ := β

√
δ.
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l2

l1

D

Y

Figure 6: Illustration of the square lattice crystal and quantities in the fundamental
domain Y .

We now consider the rescaled crystal with unit cell sY, s > 0. Again, we assume
that the order of ω∗ is fixed, i.e., δ = µs2, for some µ > 0. Then the eigenmodes of
the rescaled square crystal are given in the following theorem, which is the analogue of
Theorem 4.3 for the case of a square lattice.

Theorem 5.1 ([9]). For frequencies ω close to the critical frequency ω∗, namely, (ω∗)2−
ω2 = O(s2), the following asymptotics of the Bloch eigenfunction u

α∗/s+α̃
s holds:

uα
∗/s+α̃
s (x) = eiα̃·xS

(x

s

)

+O(s),

where the macroscopic field ũ := eiα̃·x satisfies the Helmholtz equation

λ̃2∆ũ+
(ω∗)2 − ω2

δ
ũ = 0. (5.2)

which can be considered as a homogenized equation for the square bubbly crystal, while
the microscopic field S vary on the scale of s.

The isotropic form of the macroscopic equation (5.2) follows since D is a circle, and
an expression for λ̃ is given in [9].

We now compute the eigenmodes of the square crystal close to the critical frequency,
namely, ω = ω∗ − ǫ. The small-scale behaviour of the eigenmodes, i.e., the function
S
(

x
s

)

, is shown in Figure 7. It can be seen that the function oscillates at the scale of
the bubbles. Next, the large-scale behaviour is considered. Figure 8 shows the Bloch
eigenfunction over many unit cells for α̃ =

(

α̃1

0

)

and ω∗ − ω = 6 · 10−5. Similarly as in
the case of a honeycomb, the eigenfunction varies at the large scale with a low-frequency
macroscopic field ũ.

To illustrate the macroscopic equation (5.2), the spatial frequency f of the macro-
scopic field was computed for ǫ in the range ǫ ∈ [0, 0.01]. Observe that due to the
bandgap above ω∗, no eigenmodes exists for ǫ < 0. Figure 9 shows the spatial frequency
f for different ǫ. This figure shows that f scales like

√
ǫ for small ǫ > 0. This is consistent

with (5.2), from which we expect a spatial frequency

f =

√

(ω∗)2 − ω2

λ̃2δ
=

√
ǫ

(
√

ω∗ + ω

λ̃2δ

)

.
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Figure 7: Real part of small-scale behaviour of the Bloch eigenfunction of the square
lattice at α = α∗ (imaginary part close to 0).

(a) Two-dimensional plot. (b) One-dimensional plot along the x-axis.

Figure 8: Real part of Bloch eigenfunction of the square lattice shown over many unit
cells.

Figure 9: Spatial frequency of the envelope function ũ for different frequency shifts ǫ in
the case of a square lattice.
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In summary, Figures 4 and 8 show that both in the cases of a honeycomb lattice and
a square lattice, the eigenmodes have a periodic small-scale oscillation and a large-scale
macroscopic oscillation. However, Figures 5 and 9 show that the spatial frequency of the
macroscopic fields have different asymptotic behaviour close to the critical frequency, due
to the fact that the square lattice cannot be mapped to a zero-index effective material.

6 Concluding remarks

In this paper, we have derived for the first time the equation governing wave propagation
in a honeycomb crystal of sub-wavelength resonators near the Dirac points. We have
decomposed the Bloch eigenfunctions as the sum of two eigenmodes. The effective
equation for the envelope of each of these eigenmodes is of Helmholtz-type with near-zero
refractive index. Moreover, we have shown that the envelopes satisfy a Dirac equation. A
comparison with a square lattice structure shows the great potential of using honeycomb
crystals of sub-wavelength resonators as near-zero material. In a forthcoming work, we
plan to study topological phenomena in bubbly time-dependent crystals and derive their
effective properties. These materials may exhibit a Dirac cone near the point Γ and
therefore, may exhibit finite acoustic impedance and a high transmittance [14]. We also
plan to mathematically analyse wave propagation phenomena in near-zero refractive
index materials.
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nonlinéaire, 35 (2018), 1975–1998.

[3] H. Ammari, B. Fitzpatrick, D. Gontier and H. Lee and H. Zhang. A mathematical
and numerical framework for bubble meta-screens. SIAM J. Appl. Math., 77 (2017),
1827–1850.

[4] H. Ammari, B. Fitzpatrick, H. Kang, M. Ruiz, S. Yu, and H. Zhang. Mathematical
and Computational Methods in Photonics and Phononics, Mathematical Surveys
and Monographs, Vol. 235, American Mathematical Society, Providence, 2018.

[5] H. Ammari, B. Fitzpatrick, H. Lee, E. Orvehed Hiltunen, and S. Yu. Honeycomb-
lattice Minnaert bubbles. arXiv:1811.03905.

[6] H. Ammari, B. Fitzpatrick, H. Lee, S. Yu, and H. Zhang. Subwavelength phononic
bandgap opening in bubbly media. J. Diff. Equat., 263 (2017), 5610–5629.

18



[7] H. Ammari, B. Fitzpatrick, E. Orvehed Hiltunen and S. Yu. Subwavelength localized
modes for acoustic waves in bubbly crystals with a defect. SIAM J. Appl. Math.,
78 (2018), 3316–3335.

[8] H. Ammari, H. Kang, and H. Lee. Layer Potential Techniques in Spectral Analysis,
Mathematical Surveys and Monographs, Vol. 153, American Mathematical Society,
Providence, 2009.

[9] H. Ammari, H. Lee, and H. Zhang. Bloch waves in bubbly crystal near the first
band gap: a high-frequency homogenization approach. SIAM J. Math. Anal., to
appear (arXiv:1708.07955).

[10] H. Ammari and H. Zhang. Effective medium theory for acoustic waves in bubbly
fluids near Minnaert resonant frequency. SIAM J. Math. Anal., 49 (2017), 3252–
3276.

[11] J. Arbunich and C. Sparber. Rigorous derivation of nonlinear Dirac equations for
wave propagation in honeycomb structures. J. Math. Phys. 59 (2018), no. 1, 011509,
18 pp.

[12] S.A. Cummer, J. Christensen, and A. Alù. Controlling sound with acoustic meta-
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