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Abstract

This paper is concerned with the scattering resonances of open cavities. It is a follow-
up of [1], where the transverse magnetic polarization was assumed. In that case, using
the method of matched asymptotic expansions, the leading-order term in the shifts of
scattering resonances due to the presence of small particles of arbitrary shapes was derived
and the effect of radiation on the perturbations of open cavity modes was characterized.
The derivations were formal. In this paper, we consider the transverse electric polarization
and prove a small-volume formula for the shifts in the scattering resonances of a radiating
dielectric cavity perturbed by small particles. We show a strong enhancement in the
frequency shift in the case of plasmonic particles. We also consider exceptional scattering
resonances and perform small-volume asymptotic analysis near them. Our method in this
paper relies on pole-pencil decompositions of volume integral operators.

Mathematics Subject Classification (MSC2000). 35R30, 35C20.

Keywords. Open dielectric resonator, shift of scattering resonances, plasmonic nanoparti-
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1 Introduction

In this paper, which is a follow-up of [1], we consider dielectric radiating cavities [10, 12, 17]
and rigorously obtain asymptotic formulas for the shifts in the scattering resonances that are
due to a small particle of arbitrary shape. Our formula shows that the perturbations of the
scattering resonances can be expressed in terms of the polarization tensor of the small particle.
The scattering resonances can be degenerate or even exceptional and the small particle can
be plasmonic. Our method is based on pole-pencil decompositions (see, for instance, [3, 5]) of
the volume integral operator associated with the radiating dielectric cavity problem. The new
technique introduced in this paper can not be easily extended to the transverse magnetic case
considered in [1] due to the hyper-singular character of the associated volume-integral operator.

The paper is organized as follows. In Section 2, we characterize the scattering resonances
of dielectric cavities in terms of the spectrum of a volume integral operator. In Section 3, using
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the method of pole-pencil decompositions, we derive the leading-order term in the shifts of
scattering resonances of an open dielectric cavity due to internal particles. In Section 4, using a
Lippmann-Schwinger representation formula for the Green’s function associated with the open
cavity, we generalize the formula obtained in Section 3 to the case of external particles. In
Section 5, we consider the perturbation of an open dielectric cavity by plasmonic nanoparticles.
The formula obtained for the shifting of the frequencies shows a strong enhancement in the
frequency shift in the case of plasmonic nanoparticles. In Section 6, we perform an asymptotic
analysis for the shift of exceptional scattering resonances. The paper ends with some concluding
remarks.

2 Scattering resonances of a dielectric cavity

2.1 Model

We consider the scattering of linearly polarized light by a dielectric cavity in a time-harmonic
regime. Let Ω be a bounded domain in R

d for d = 2, 3, with smooth boundary ∂Ω. Assume
ε ≡ τεc + εm inside Ω and ε = εm outside Ω, and µ = µm everywhere. Here, εc, εm, and τ are
positive constants. Since we are interested in scattering resonances, we look for solutions u of
the homogeneous Helmholtz equation at frequency ω:

{
∆u + ω2ε(x)µmu = 0 in R

d,

u satisfies the outgoing radiation condition.
(1)

Let Γm be the outgoing fundamental solution of ∆ + εmµmω
2 in free space, and let G be

the outgoing fundamental solution of ∆ + εµmω
2 in free space. We define the following integral

operator:

Definition 2.1. Let

L2(Ω) −→L2(Ω)

u 7−→Kω
Ω[u] := −

ˆ

Ω

u(y)Γm( · − y;ω)dy.

The following Lippmann-Swchinger representation formula holds:

Proposition 2.2. u is a solution of (1) if and only if u is a solution of

(
I − ω2τεcµmK

ω
Ω

)
[u] = 0. (2)

According to [9], the following spectral decomposition of the operator Kω
Ω holds:

Lemma 2.3. The operator Kω
Ω is bounded from L2(Ω) into H2(Ω). Moreover, it is a Hilbert-

Schmidt operator. Therefore, its spectrum is

σ(Kω
Ω) =

{
0, λ1(ω), λ2(ω), . . . , λj(ω), . . .

}
,

where |λj(ω)| → 0 as j → +∞ and {0} = σ(Kω
Ω)\σp(K

ω
Ω) with σp(K

ω
Ω) being the point spectrum.

Remark 2.4. The scattering resonances are precisely the frequencies for which
(
ω2τεcµm

)−1

belongs to the spectrum of Kω
Ω.

Remark 2.5. Note that ℑλj(ω) 6= 0 for all j and ω ∈ R.
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Let Hj be the generalized eigenspace associated with λj(ω). Then, from [9], it follows that

L2(Ω) is the closure of
⋃

j Hj.

Lemma 2.6. We have

L2(Ω) =
⋃

j

Hj.

Lemma 2.7. Assume that for any j, dim Hj = 1, and denote by ej a unitary basis vector for
Hj. Then the functions

fj,k(x, y) = ej(x)ek(y),

form a normal basis for L2(Ω × Ω). Moreover,

δ(x− y) =
∑

j

ej(x)ej(y).

2.2 Pole pencil decomposition of the Green’s function

We denote by G(x, y;ω) the Green’s function associated with problem (1), that is, the solution
in the sense of distributions of

(
∆x + ω2ε(x)µm

)
G(x, y, ω) = δy

satisfying the outgoing radiation condition.

Definition 2.8. In view of Lemma 2.3 and Remark 2.4, we say that ω0 is a scattering resonance
for the open cavity problem if there exists a j0 such that

1 − ω2
0τεcµmλj0

(ω0) = 0. (3)

We say that the scattering resonance ω0 is a non-exceptional scattering resonance if the following
assumptions hold:

(i) We have
1 − ω2τεcµmλj0

(ω) = R(ω)(ω − ω0),

where R(ω0) 6= 0 and ω 7→ R(ω) is analytic;

(ii) The generalized eigenspace Hj0
(ω) is of dimension 1.

Remark 2.9. It is easy to see that for τ large enough, (3) has solutions.

We can now give the following expansion for G when ω is close to a non exceptional scattering
resonance. We refer to Appendix A for its proof.

Proposition 2.10. Assume that ω0 is a non-exceptional scattering resonance. There exists a
complex neighborhood V (ω0) of ω0 such that for ω in V (ω0) \ {ω0},

G(x, y;ω) = Γm(x− y;ω) + cj0(ω0)
ej0(x;ω)ej0(y;ω)

ω − ω0

+ R̃(x, y, ω), (4)

where vect(ej0) = Hj0
. Moreover, ω 7→ R̃(x, y, ω), ω 7→ ej0( ·, ω), and ω 7→ cj0(ω) are all

analytic in V (ω0), and (x, y) 7→ R̃(x, y, ω) is smooth.
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3 Shift of the scattering resonances by internal small

particles

Now let D ⋐ Ω be a small particle of the form D = z + δB, where δ is the characteristic size
of D, z is its location, and B is a smooth bounded domain containing the origin. We suppose
that D has a magnetic permeability that is different from µm, and consider the operator

∇ ·
1

µ
∇ + εω2,

where µ = µc in D and µ = µm outside D.
As δ → 0, we seek an ωδ in a neighborhood of ω0 such that there exists a non-trivial solution

to

(∇ ·
1

µ
∇ + εω2

δ )u = 0, (5)

subject to the outgoing radiation condition.
The following asymptotic expansion of ωδ holds.

Proposition 3.1. As δ → 0, we have

ωδ − ω0 ≃ δdcj0(ω0)M(µm/µc, B)∇ej0(z;ω0) · ∇ej0(z;ω0). (6)

Before proving the above result, we state the following useful lemma. We refer to Appendix
B for its proof.

Lemma 3.2. Let

T ω
D : v 7→ ∇x

ˆ

D

v(y) · ∇G(x− y;ω)dy.

Then, TD is a well defined operator from L2(D,Rd) into itself.

Proof. (of Proposition 3.1)
The outgoing solution to problem (5) admits the following Lippmann-Schwinger represen-

tation formula:

u(x) = (
µm

µc

− 1)

ˆ

D

∇u(y) · ∇G(x, y;ωδ)dy for all x ∈ R
d.

Let

T ω
D : v ∈ L2(D)d 7→ ∇x

ˆ

D

v(y) · ∇G(x− y;ω)dy ∈ L2(D)d.

The operator T ω
D is well-defined, see, for instance, [6, Appendix B]. Therefore, we seek ωδ such

that there is a non-trivial v ∈ L2(D)d satisfying

v(x) − (1/µc − 1/µm)T ωδ

D [v](x) = 0 for all x ∈ D,

or equivalently, (
I − (

µm

µc

− 1)T ωδ

D

)
[v] = 0, (7)

where I denotes the identity operator. Hence, as the characteristic size δ of D goes to zero, we
seek ωδ in a neighborhood of ω0 such that 1/((µm/µc) − 1) is an eigenvalue of T ωδ

D .
From the pole-pencil decomposition (4) of G, we have

∇

ˆ

D

v · ∇G = ∇

ˆ

D

v · ∇Γm +
cj0(ω)

ω − ω0

( ˆ

D

v · ∇ej0 dy
)
∇ej0(x;ω) + R[v],
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where R : L2(D)d → L2(D)d is an operator with smooth kernel that is analytic in ω ∈ V (ω0).
Let

Nω
D : v ∈ L2(D)d 7→ ∇x

ˆ

D

v(y) · ∇Γm(x− y;ω)dy ∈ L2(D)d.

Then, it follows that

1
µm

µc
− 1

(
I − (

µm

µc

− 1)T ω
D

)
[v] =

(
I

µm

µc
− 1

−Nω
D

)
[v]

−
cj0(ω)

ω − ω0

(v,∇ej0)∇ej0 + R[v],

where ( ·, · ) denotes the L2 real scalar product on D.
Let L = 1/((µm/µc) − 1)I −N0

D, where N0
D := Nω=0

D . Then, (7) can be rewritten as

L[v] −
cj0(ω)

ω − ω0

(v,∇ej0)∇ej0 + R̃[v] = 0,

where R̃ : L2(D)d → L2(D)d is an operator with smooth kernel that is analytic in ω ∈ V (ω0).
Now, we need to use the orthogonal decomposition of L2(D,Rd) and the spectral analysis

of N0
D on L2(D,Rd) that can be found in [13,14]. More precisely, recall that

L2
(
D,Rd

)
= ∇H1

0 (D) ⊕H(div 0, D) ⊕W,

where H1
0 (D) is the set of H1-functions in D with trace zero on ∂D, H(div 0, D) is the space

of divergence free L2-vector fields and W is the space of gradients of harmonic H1 functions.
Here, H1 is the set of function in L2 having their weak derivatives in L2. We will use the
following lemma:

Lemma 3.3. The operator N0
D is a bounded self-adjoint map on L2(D,Rd) with ∇H1

0 (D),
H(div 0, D) and W as invariant subspaces. On ∇H1

0 (Ω), N0
D[φ] = φ, on H(div 0, D), N0

D[φ] =
0 and on W :

ν ·N0
D[φ] =

(
1

2
+ K∗

D

)
[φ · ν] on ∂D,

where ν is the outward normal on ∂D and K∗
D : L2(∂D) → L2(∂D) is the Neumann-Poincaré

operator associated with ∂D. Moreover, N0
D|W : W −→ W is a compact operator and hence,

the spectrum of N0
D|W is discrete and the associated eigenfunctions form a basis of W .

We refer the reader to [3] for the properties of the Neumann-Poincaré operator.
Therefore, using Lemma 3.3, we have

v −
cj0(ω)

ω − ω0

(v,∇ej0)L
−1[∇ej0 ] + L−1R̃[v] = 0.

So, since
||L−1R̃||

L(L
2
(D)

d
,L

2
(D)

d
)

= o(1) as δ → 0,

see [5] and [6, Lemma 4.2], the term L−1R̃[v] can be neglected, and the following asymptotic
expansion holds:

ωδ − ω0 ≃ cj0(ω0)(L
−1[∇ej0 ],∇ej0).

Moreover, from [6, Proposition 3.1] (see also Appendix C), it follows that

(L−1[∇ej0 ],∇ej0) ≃ δdM(µm/µc, B)∇ej0(z;ω0) · ∇ej0(z;ω0), (8)
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where M is the polarization tensor given by [4]

M(µm/µc, B) = (
µm

µc

− 1)

ˆ

∂B

∂v(1)

∂ν

∣∣
−

(ξ)ξ dσ(ξ),

with v(1) being such that





∆ξv
(1) = 0 in R

d \ B̄,

∆ξv
(1) = 0 in B,

∂v(1)

∂ν
|+ = (µm/µc)

∂v(1)

∂ν
|− on ∂B,

v(1)(ξ) ∼ ξ as |ξ| → +∞.

(9)

The proof is then complete. �

4 Shift of the scattering resonances by external small

particles

Now consider the case where the particle is outside Ω. The main difference is that the modes
of Kω

Ω are not defined on D, and therefore we must first write the expansion for G outside of
Ω. We start by recalling the Lippmann-Schwinger equation for v = G− Γm:

(
I − ω2τεcµmK

ω
Ω

)
[v(·, x0)](x) = ω2τεcµmK

ω
Ω [Γm(·, x0)] (x) for x, x0 ∈ Ω.

Now, using Proposition 2.10 for z and z′ inside Ω we have

v(z, z′;ω) = cj0(ω)
ej0(z;ω)ej0(z

′;ω)

ω − ω0

+ R̃(z, z′, ω),

and we can write an expansion for v(x, x0) for x ∈ R
d \ Ω:

v(x, x0) −
ω2τεcµmcj0(ω)

ω − ω0

ˆ

Ω

ej0(z, ω)Γm(z, x)ej0(x0, ω)dz − ω2τεcµmK
ω
Ω[R̃(·, x0, ω)](x)

= ω2τεcµmK
ω
Ω [Γm(·, x0)] (x) x ∈ R

d, x0 ∈ Ω.

The latter equality can be written as

v(x, x0) =
ω2τεcµmcj0(ω)

ω − ω0

(
ˆ

Ω

ej0(z, ω)Γm(z, x)dz

)
ej0(x0, ω) + R1(x, x0, ω), x ∈ R

d, x0 ∈ Ω.

where R1 is regular in space and holomorphic in ω. Let

gj0(x;ω) := ω2τεcµm

ˆ

Ω

ej0(z
′;ω)Γm(z, x;ω)dz′, x ∈ R

d.

We have

v(x, x0) =
cj0(ω)

ω − ω0

gj0(x;ω)ej0(x0, ω) + R1(x, x0, ω), x ∈ R
d, x0 ∈ Ω.
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We can now use this expansion in the Lippmann-Schwinger equation again:

v(x, x0) −
ω2τεcµmcj0(ω)

ω − ω0

gj0(x;ω)

(
ˆ

Ω

ej0(z, ω)Γm(z, x0)dz

)
− ω2τεcµmK

ω
Ω[R1(·, x0, ω)](x)

= ω2τεcµmK
ω
Ω [Γm(·, x0)] (x) x ∈ R

d, x0 ∈ R
d.

Therefore, we have an expansion for v outside of Ω:

v(x, x0) =
cj0(ω)

ω − ω0

gj0(x;ω)gj0(x0;ω) + R2(x, x0, ω), x ∈ R
d, x0 ∈ R

d.

Analogously to the calculations in the previous section, we have

v −
cj0(ω)

ω − ω0

(v,∇gj0)L
−1[∇gj0 ] + L−1R[v] = 0,

for some operator R with smooth kernel that is analytic in ω in a neighborhood V (ω0) of ω0.
Therefore, by exactly the same method as in the previous section, the following asymptotic
expansion can be obtained.

Proposition 4.1. As δ → 0, we have

ωδ − ω0 ≃ δdcj0(ω0)M(µm/µc, B)∇gj0(z;ω0) · ∇gj0(z;ω0). (10)

5 Shift of the scattering resonances due to resonant dis-

persive particles

Let D ⋐ Ω and suppose that D is made of dispersive material, i.e., such that µc depends on ω
and for a discrete set of frequencies ω, that we can call plasmonic resonances by analogy with

the transverse magnetic case, problem (9) (or equivalently the operator
( µm + µc

2(µm − µc)
I−K∗

D

)−1
)

is nearly singular, see [2,7,8]. In that case, we have the following scattering resonance problem:
Find ω such that there is a non-trivial solution v to

L(ω)[v] −
cj0(ω)

ω − ω0

(v,∇ej0)∇ej0 + R[v] = 0, (11)

where L(ω) = 1/((µm/µc(ω))−1)I−N0
D. Using the Drude model for the permeability, we have

µc(ω) = µm(1 − ω2
p/ω

2), where ωp is the volume plasma frequency.
It is easy to see that the nearly singular character of (9) is linked to the non-invertibilty of

L(ω) on W .
Denote by P1 : L2(D,Rd) −→ L2(D,Rd) the orthogonal projector on ∇H1

0 (D) and P2 :
L2(D,Rd) −→ L2(D,Rd) the orthogonal projector on H(div 0, D). Using Lemma 3.3, we can
write the resolvent operator L−1(ω) as follows:

L(ω)−1 =
1

1 − λ(ω)
P1 +

1

λ(ω)
P2 +

∑

j

(·, ϕj)ϕj

λ(ω) − λj

,

where (λj, ϕj)j are the pairs of eigenvalues and associated orthonormal eigenfunctions of N0
D.

We can then rewrite equation (11) as follows:

v −
cj0(ω)

ω − ω0

(v,∇ej0)(∇ej0 , ϕj)ϕj

λ(ω) − λj

+ L−1R[v] = 0.
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Now, taking the scalar product on L2(D,Rd) with ∇ej0 and multiplying by (ω−ω0)(λ(ω)−λj),
we obtain that

(ω − ω0)(λ(ω) − λj)(v,∇ej0) − cj0(ω0)(v,∇ej0)(∇ej0 , ϕj)
2 + (ω − ω0)(λ(ω) − λj)L

−1R[v] = 0.

Since R is analytic in ω, the remainder (ω−ω0)(λ(ω)−λj)L
−1R[v] is negligible in a neighborhood

of ω0. Hence, we arrive at the following proposition:

Proposition 5.1. As δ → 0, we have

(ωδ − ω0)(λ(ωδ) − λj) ≃ cj0(ω0)(∇ej0 , ϕj)
2.

Note that if λ(ω) − λj ≃ O(ω − ω0) for ω close to ω0, then we obtain

(ωδ − ω0)
2 ≃ cj0(ω0)(∇ej0(·;ω0), ϕj)

2,

Hence, we have a significant shift in the scattering resonances if the particle D is resonant near
or at the frequency ω0. This anomalous effect has been observed in [16].

6 Asymptotic analysis near exceptional scattering reso-

nances

In this section, we consider the asymptotic behavior of an exceptional scattering resonance for
a particular form of the Green’s function. These exceptional resonances are due to the non-
Hermitian character of the operator T ω

D, see [9,15]. For simplicity and in view of the Jordan-type
decomposition of the operator T ω

D established in [9], we assume that, for ω near ω0, G(x, y;ω)
behaves like

G(x, y;ω) = Γm(x, y;ω) + c1(ω)
h(1)(x;ω)h(1)(y;ω)

ω − ω0

+ c2(ω)
h(2)(x;ω)h(2)(y;ω)

(ω − ω0)
2 + R(ω), (12)

for two functions h(1) and h(2) in  L2(D). In this simple case, we characterize the shift of the
scattering resonance ω0 due to the small particle D, which is assumed for simplicity to be
non-plasmonic.

Following the same arguments as those in the previous sections, we seek a non-trivial v such
that

L[v] − c1(ω)
(v,∇h(1))

ω − ω0

∇h(1) − c2(ω)
(v,∇h(2))

(ω − ω0)
2∇h(2) = 0,

or equivalently,

v − c1(ω)
(v,∇h(1))

ω − ω0

L−1[∇h(1)] − c2(ω)
(v,∇h(2))

(ω − ω0)
2L

−1[∇h(2)] = 0.

By multiplying the above equation by ∇h(1) and ∇h(2), respectively, and integrating by parts
over D, we obtain the following system of equations:





(v,∇h(1))

(
1 − c1(ω)

(L−1[∇h(1)],∇h(1))

ω − ω0

)
= c2(ω)(v,∇h(2))

(L−1[∇h(2)],∇h(1))

(ω − ω0)
2 ,

(v,∇h(2))

(
1 − c2(ω)

(L−1[∇h(2)],∇h(2))

(ω − ω0)
2

)
= c1(ω)(v,∇h(1))

(L−1[∇h(1)],∇h(2))

ω − ω0

.

Therefore, the following result holds.
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Proposition 6.1. Assume that the decomposition (12) holds for ω near ω0. Then the perturbed
scattering resonance problem (due to the particle D) can be reformulated as a search for ω near
ω0 such that the matrix




1 − c1(ω)
(L−1[∇h(1)],∇h(1))

ω − ω0

−c2(ω)
(L−1[∇h(2)],∇h(1))

(ω − ω0)
2

c1(ω)
(L−1[∇h(1)],∇h(2))

ω − ω0

1 − c2(ω)
(L−1[∇h(2)],∇h(2))

(ω − ω0)
2




is singular.

7 Concluding remarks

In this paper, the leading-order term in the shifts of scattering resonances of a radiating di-
electric cavity due to the presence of small particles is derived. The formula is in terms of the
position and the polarization tensor of the particle. It is also proved that the shift is signif-
icantly enhanced if the particle is a plasmonic particle and resonates near or at a scattering
resonance of the cavity. A characterization of the shift due to small particles near an excep-
tional scattering resonance is performed. It would be challenging to develop a general theory
near such frequencies.

A Proof of Proposition 2.10

Proof. The proof follows an idea from [9]. Denote by v the difference

v(x, y) = G(x, y, ω) − Γm(x, y, ω).

One can check that v(·, x0) is a solution of the following integral equation:
(
I − ω2τεcµmK

ω
Ω

)
[v] = ω2τεcµmK

ω
Ω [Γm(·, x0)] .

Therefore,

v =

(
1

ω2τεcµm

I −Kω
Ω

)−1

Kω
Ω [Γm(·, x0)] .

Under the assumption that ω0 is a non exceptional scattering resonance (see Definition 2.8) we
can perform a pole pencil decomposition of the resolvent of Kω

Ω. We start from the spectral
decomposition of the compact operator Kω

Ω on L2(Ω). The eigenspace associated with the
eigenvalue 1

ω
2

0τεcµm

is of dimension one, and we denote by ej0 its basis. One can then write

(
1

ω2τεcµm

−Kω
Ω

)−1

=
1

(
ω2τεcµm

)−1
− λj0

(ω0)
(ej0 , ·)ej0 + R̂(·, ω),

where ( , ) denotes the L2 real scalar product on Ω, and ω 7→ R̂(·, ω) ∈ L2(Ω) is analytic in a
complex neighborhood V of ω0. Using

1 − ω2τεcµmλj0
(ω) = R(ω)(ω − ω0)

and composing with Kω
Ω, we obtain that

v(x, x0) = c̃j0(ω)
1

ω − ω0

(ej0 , K
ω
Ω [Γm(·, x0)])ej0(x) + R̃(x, x0, ω).
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Now we note that

Γm(x, y) = −Kω
Ω [δ(· − y)] (x) for all x, y ∈ R

d, x 6= y.

Using the completeness relation given in Lemma 2.7 yields

Γm(x, y) =
∑

j

λj(ω)ej(y)ej(x),

for some constantsλj. Now, we can write that

(ej0 , K
ω
Ω [Γm(·, x0)]) = ej(x0)(ej0 , λj0

(ω)ej0),

to arrive at

v(x, x0) = cj0(ω)
1

ω − ω0

ej0(x0)ej0(x) + R̃(x, x0, ω).

�

B Proof of Lemma 3.2

Proof. The operator TD is a singular integral operator of the Calderón-Zygmund type, see [11].
This type of singular operator often arises in electrostatic and magnetostatic theories (see the
appendix of [6] for a simple review of the properties of these operators within the formalism of
Green’s functions) The fact that T ω

D is well defined can be deduced directly from Proposition
2.10. Since G can be written as G(x, y) = Γm(x, y) + K(x, y) where K is a smooth kernel, we
can see that the singularity of the derivatives of G is the same as that of the derivatives of Γm,
that is ∂xi,xj

G(x, y) = ∂xi,xj
Γm(x, y) + Ki,j(x, y). Therefore, it is easy to see that the singular

part of ∂xi,xj
G(x, y) satisfies the same cancellation property as ∂xi,xj

Γm(x, y), that is,

ˆ

x+S
d−1

∂xi,xj
Γm(x, y)dy = 0.

Hence, the fact that TD is defined on L2(D,Rd) follows directly from classical Calderón-
Zygmund theory and the cancellation property above. �

C Proof of estimate (8)

Here, we give some more details on how to obtain (8) from the results of [6].

Lemma C.1. As δ → 0, we have

(L−1[∇ej0 ],∇ej0) ≃ δdM(µm/µc, B)∇ej0(z;ω0) · ∇ej0(z;ω0).

Proof. From [6, Proposition 3.1], one can see that if ϕ satisfies





∇ ·

(
1

µ
∇ϕ

)
= 0 in R

d,

∇ϕ(x) − ej0 = O
(
|x|−d+1

)
as |x| → +∞.
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then ∇ϕ solves the integral equation
(

1

µm

I −

(
1

µc

−
1

µm

)
N0

D

)
[∇ϕ] =

1

µm

∇ej0 ,

which is exactly

L[ϕ] = ∇ej0 .

Now, replacing ∇ej0 by its average and controlling the reminder via the Cauchy-Schwartz
inequality we have:

(L−1[∇ej0 ],∇ej0) =(L−1[∇ej0 ],
1

|D|

ˆ

D

∇ej0) + (L−1[∇ej0 ],∇ej0 −
1

|D|

ˆ

D

∇ej0)

=
1

|D|

ˆ

D

L−1[∇ej0 ] ·

ˆ

D

∇ej0 + O
(
δ2
)
.

But the average of ∇ϕ is exactly the dipole moment, which is given by the polarization tensor
applied to the average of the exciting field:

ˆ

D

L−1[∇ej0 ] = M(µm/µc, D)

ˆ

D

∇ej0 = δdM(µm/µc, B).

Since 1
|D|

´

D
∇ej0(x)dx−∇ej0(z) = O(δ) (recall that ej is a mode of the cavity, and is therefore

independant of δ) we can replace the average of ∇ej0 by its value at the center of D to get the
result. �
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