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Abstract

This paper aims at providing a small-volume expansion framework for the scat-
tering resonances of an open cavity perturbed by small particles. The shift of the
scattering frequencies induced by the small particles is derived without neglecting
the radiation effect. The formula holds for arbitrary-shaped particles. It shows
a strong enhancement in the frequency shift in the case of subwavelength parti-
cles with dipole resonances. The formula is used to image small particles located
near the boundary of an open resonator which admits whispering-gallery modes.
Numerical examples of interest for applications are presented.
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1 Introduction

The influence of a small particle on a cavity mode plays an important role in fields such
as optical sensing, cavity quantum electrodynamics, and cavity optomechanics [22,36,43].
Open optical cavities are used to detect, characterize, and determine the size of small
particles. They show great promise for a broad range of physical sensing applications
that rely on sensitive detection of resonance shifts to probe internal or external physical
parameter changes [48]. Sensitive detection of small particles is essential for a variety of
applications ranging from medical diagnostics and drug discovery to security screening
and environmental science, amongst others. The binding of a small particle to an open
op- tical cavity perturbs the cavity mode at a resonance wavelength resulting in a cavity
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resonance shift. The Bethe-Schwinger closed cavity perturbation formula [16] (see also
[13] for its rigorous derivation) has been widely employed in the case of radiating cavities
in order to characterize the properties of the small particle from the induced cavity
resonance shifts. Unfortunately, this formula omits the radiation effect (see, for instance,
[20]). Moreover, since it is established only for spherical particles, it can not be used to
retrieve the orientation of the particle. Note that the detection of the particle’s orientation
is of great concern in bio-sensing [38]. In this paper, we provide a formal derivation of the
perturbations of scattering resonances of an open cavity due to a small-volume particle
without neglecting the radiation effect. The small-volume asymptotic formula in this
paper generalizes to the open cavity case those derived in [5, 6, 9, 13]. It is valid for
arbitrary-shaped particles. It shows that the perturbations of the scattering resonances
can be expressed in terms of the polarization tensor of the small particle.

For simplicity, we consider the transverse magnetic polarization case. For the analysis
of the transverse electric case we refer the reader to [1]. Transverse magnetic and electric
polarizations can be excited separately in some open cavities and the shifts in the reso-
nances can be measured efficiently [27,38]. The case of the full Maxwell equations can be
treated by the same approach developed here. Two cases are considered in this paper: the
one-dimensional case and the multi-dimensional case. The applicability of our approach
to the perturbations of whispering-gallery modes by external arbitrary-shaped particles
is also discussed. Whispering-gallery modes are a subclass of resonances which are char-
acterized by their surface mode nature [20]. They can occur in optical cavities possessing
a closed concave surface. Spherical, disc, and ring cavities represent the simplest res-
onatr geometry and have then seen much attention in the literature over the years [20].
Their resonant shifts are used to image particles near the surface of the optical cavity.
Finally, we characterize the effect that an arbitrary shaped subwavelength particle, which
is bound to the surface of the cavity, has on the whispering-gallery modes of the cavity
due to the particle’s dipole resonances. The coupling between the subwavelength resonant
particle and the cavity modes is essential for imaging the particle. In fact, as proved in
this paper, since the shift of the scattering frequencies is proportional to the polarization
of the particle [2, 7, 8, 11], which blows-up at subwavelength resonances, the effect of a
subwavelength resonant particle on the cavity modes can be significant. Note that in the
one-dimensional case, the scattering resonances are simple while in the multi-dimensional
case, they can be degenerate or even exceptional. It is worth emphasizing that the ex-
istence of exceptional scattering resonances is due to the non-hermitian character of the
scattering resonance problem. For the analysis of exceptional points, we again refer the
reader to [1]. The analysis of such a challenging problem is much simpler in the transverse
electric case than in the transverse magnetic one. The reader is also referred to [23–25] for
small amplitude sensitivity analyses of the scattering resonances. Numerical computation
of resonances has been addressed, for instance, in [21, 26, 31,32, 40,47].

The paper is organized as follows. In Section 2, using the method of matched asymp-
totic expansions, we derive the leading-order term in the shifts of scattering resonances of
a one-dimensional open cavity and characterize the effect of radiation. Section 3 general-
izes the method to the multi-dimensional case. In Section 4, we consider the perturbation
of whispering-gallery modes by small particles. A formula is obtained for the shifting of
the frequencies and it shows that there is a strong enhancement in the frequency shifts in
the case of subwavelength resonant particles, which allows for their recognition in spite of
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their small size. The splitting of scattering frequencies of the open cavity of multiplicity
greater than one due to small particles is also discussed. In Section 5, we present some
numerical examples to illustrate the accuracy of the formulas derived in this paper and
their use in the sensing of small particles. The paper ends with some concluding remarks.

2 One dimensional case

a b

εm

x

The unperturbed cavity

Impedance boundary conditions

a b

εm

x

Impedance boundary conditions

δ
2− δ

2

εc

µm

µm µc

The perturbed cavity

Figure 1: One dimensional cavity.

We first consider a one dimensional cavity. We let the magnetic permeability µδ be
µm in (a, b) \ (−δ/2, δ/2) and µc in (−δ/2, δ/2) and the electric permittivity εδ be εm in
(a, b) \ (−δ/2, δ/2) and εc in (−δ/2, δ/2), see Figure 1. Here, a < b, δ > 0 is small, and
µm, µc, εm, and εc are positive constants.

Let ω0 be a scattering resonance of the unperturbed cavity and let u0 denote the
corresponding eigenfunction, that is,







∂x ((1/εm)∂xu0) + ω2
0µmu0 = 0 in (a, b),

(1/εm)∂xu0 + iω0u0 = 0 at a,

(1/εm)∂xu0 − iω0u0 = 0 at b,

εmµm

´ b

a
|u0|2 dx = 1.

We now consider the perturbed problem: we seek a solution uδ, for which ωδ → ω0 as
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δ → 0 of the following equation:







∂x ((1/εδ)∂xuδ) + ω2
δµδuδ = 0 in (a, b),

(1/εm)∂xuδ + iωδuδ = 0 at a,

(1/εm)∂xuδ − iωδuδ = 0 at b,

εmµm

´ b

a
|uδ|2 dx = 1.

(1)

Remark 2.1. The above one-dimensional scattering resonance problems govern scattering
resonances of slab-type structures. They are a consequence of Maxwell’s equations, under
the assumption of time-harmonic solutions. They correspond to the transverse magnetic
polarization; see [24]. The scattering resonances ω0 and ωδ lie in the lower-half of the
complex plane. The eigenfunctions u0 and uδ satisfy the outgoing radiation conditions
at a and b and, consequently, grow exponentially at large distances from the cavity. To
give a physical interpretation of scattering resonances, we must go to the time domain,
see, for instance, [21, 24].

Proposition 2.2. As δ → 0, we have

ωδ = ω0 + δω1 +O(δ2),

where

ω1 =
α(∂xu0(0))

2 + ω2
0εm(µc − µm)(u0(0))

2

2ω0 + iεm((u0(a))
2 + (u0(b))

2)
. (2)

The polarization α is defined by

α =

(
εm
εc

− 1

)

∂xv
(1)(

1

2
)
∣
∣
−
, (3)

and v(1) is the unique solution (up to a constant) of the auxiliary differential equation:
{

∂x(1/ε̃)∂xv
(1) = 0,

v(1)(ξ) ∼ ξ as |ξ| → +∞,

with ε̃ = εcχ(−1/2,1/2) + εmχR\(−1/2,1/2). Here, |− indicates the limit at (1/2)− and χI

denotes the characteristic function of the set I.

Remark 2.3. Note that the polarization α can be computed explicitly. It is given by
α = 1− (εc/εm).

Proof. Using the method of matched asymptotic expansions for δ small, see [6], we con-
struct asymptotic expansions of ωδ and uδ.

To reveal the nature of the perturbations in uδ, we introduce the local variable ξ = x/δ
and set eδ(ξ) = uδ(x). We expect that uδ(x) will differ appreciably from u0(x) for x
near 0, but it will differ little from u0(x) for x far from 0. Therefore, in the spirit of
matched asymptotic expansions, we shall represent uδ by two different expansions, an
inner expansion for x near 0, and an outer expansion for x far from 0. We write the outer
and inner expansions:

uδ(x) = u0(x) + δu1(x) + . . . for |x| ≫ δ,
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and
uδ(x) = e0(ξ) + δe1(ξ) + . . . for |x| = O(δ).

The asymptotic expansion of ωδ must begin with ω0, so we write

ωδ = ω0 + δω1 + . . . .

In order to determine the functions ui(x) and ei(ξ), we have to equate the inner and the
outer expansions in some “overlap” domain within which the stretched variable ξ is large
and x is small. In this domain the matching conditions are:

u0(x) + δu1(x) + · · · ∼ e0(ξ) + δe1(ξ) + . . . .

Now, if we substitute the inner expansion into (1) and formally equate coefficients of δ−2

and δ−1, then we obtain
∂ξ((1/ε̃)∂ξe0) = 0,

and
∂ξ((1/ε̃)∂ξe1) = 0,

where the stretched coefficient ε̃ is equal to εc in (−1/2, 1/2) and to εm in (−∞,−1/2)∪
(1/2,+∞). From the first matching condition, it follows that e0(ξ) = u0(0) for all ξ.
Similarly, we have

e1(ξ) ∼ ξ∂xu0(0) as |ξ| → +∞. (4)

Let v(1)(ξ) be such that
{

∂ξ((1/ε̃(ξ))∂ξv
(1)(ξ)) = 0,

v(1)(ξ) ∼ ξ as |ξ| → +∞.

Let G(ξ) = |ξ|/2 be the free space Green function,

∂2
ξG(ξ − ξ′) = δ0(ξ − ξ′).

Since

∂2
ξv

(1)(ξ) = (1− (εm/εc))∂ξv
(1)(−1/2)|+ + ((εm/εc)− 1)∂ξv

(1)(1/2)|−,

we have

v(1)(ξ) = ξ+(1−(εm/εc))∂ξv
(1)(−1/2)|+G(ξ+1/2)+((εm/εc)−1)∂ξv

(1)(1/2)|−G(ξ−1/2),

where the subscripts + and − indicate the limits at (1/2)− and (1/2)+, respectively.
Moreover,

ˆ 1/2

−1/2

∂2
ξv

(1) dξ = 0,

yields
∂ξv

(1)(−1/2)|+ = ∂ξv
(1)(1/2)|−.

Hence,

v(1)(ξ) = ξ+((εm/εc)−1)∂ξv
(1)(1/2)|−G(ξ+1/2)− ((εm/εc)−1)∂ξv

(1)(1/2)|−G(ξ−1/2).
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On the other hand,
G(ξ − 1/2) ∼ |ξ| − ξ/(2|ξ|) + . . . ,

and
G(ξ + 1/2) ∼ |ξ|+ ξ/(2|ξ|) + . . . as |ξ| → +∞.

Therefore,
v(1)(ξ) ∼ ξ − ((εm/εc)− 1)∂ξv

(1)(1/2)|− ξ/|ξ|+ . . . .

Assume first that µm = µc. The second matching condition (4) yields

u1(x) ∼
(

− ∂xu0(0)((εm/εc)− 1)∂ξv
(1)(1/2)|−

)

ξ/|ξ| for x near 0.

To find the first correction ω1, we multiply

∂x((1/εm)∂xu1) + ω2
0µmu1 = −2ω1ω0µmu0

by u0 and integrate over (a,−ρ/2) and (ρ/2, b) for ρ small enough. Upon using the
radiation condition and Green’s theorem, as ρ goes to zero we obtain

iω1((u0(a))
2 + (u0(b))

2)− 1

εm
α(∂xu0(0))

2 = −2ω1ω0µm

ˆ b

a

u2
0 dx,

where the polarization α is given by

α = ((εm/εc)− 1)∂ξv
(1)(1/2)|− = 1− εc

εm
. (5)

Therefore, we arrive at

ω1 =
α(∂xu0(0))

2

2ω0µmεm
´ b

a
u2
0 dx+ iεm((u0(a))

2 + (u0(b))
2)
. (6)

The term iεm((u0(a))
2 + (u0(b))

2) accounts for the effect of radiation on the shift of the
scattering resonance ω0.

Now, if µc 6= µm, then we need to compute the second-order corrector e2. We have

∂ξ((1/ε̃)∂ξe2) + ω2
0µ̃e0 = 0,

and
e2(ξ) ∼ ξ2∂2

xu0(0)/2 as |ξ| → +∞.

Here, the stretched coefficient µ̃ is equal to µc in (−1/2, 1/2) and to µm in (−∞,−1/2)∪
(1/2,+∞).

From the equation satisfied by u0, we obtain

∂2
xu0(0) = −ω2

0µmεmu0(0). (7)

Recall that e0(ξ) = u0(0) and let v(2) be such that
{

∂ξ((1/ε̃(ξ))∂ξv
(2)(ξ)) = (1/(εmµm))µ̃(ξ),

v(2)(ξ) ∼ ξ2/2 as |ξ| → +∞.
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It is easy to see that ∂ξ((1/ε̃(ξ))∂ξ(v
(2)(ξ) − ξ2/2)) is (1/εm)((µc/µm) − 1) for ξ ∈

(−1/2, 1/2) and is 0 for |ξ| > 1/2. Therefore,

v(2)(ξ)− ξ2/2 ∼ ((µc/µm)− 1)|ξ| as |ξ| → +∞.

Then

u1(x) ∼ ∂xu0(0)(ξ − ((εm/εc)− 1)∂ξv
(1)(1/2)ξ/|ξ|+ . . . ) + ∂2

xu0(0)((µc/µm)− 1)|ξ|+ . . . ,

and so

iω1((u0(a))
2+(u0(b))

2)− 1

εm
α(∂xu0(0))

2+
1

εm
∂2
xu0(0)((µc/µm)−1)u0(0) = −2ω1ω0µm

ˆ b

a

u2
0 dx,

which yields the result. �

Remark 2.4. Proposition 2.2 can be easily generalized to the case where εm and µm are
variable in (a, b). Under the normalization

´ b

a
εm(x)µm(x)|u0(x)|2 dx = 1, the shift in the

scattering resonance ω1 is given by

ω1 =
α(∂xu0(0))

2 + (µc/µm(0)− 1)
[
ω2
0εm(0)µm(0)(u0(0))

2 + εm(0)∂x(1/εm)(0)∂xu0(0)u0(0)
]

2ω0 + i(εm(a)(u0(a))
2 + εm(b)(u0(b))

2)
,

where the polarization α is defined by

α =

(
εm(0)

εc
− 1

)

∂xv
(1)(

1

2
)
∣
∣
−
,

and v(1) is the unique solution (up to a constant) of

{

∂x(1/ε̃)∂xv
(1) = 0,

v(1)(ξ) ∼ ξ as |ξ| → +∞,

with ε̃ = εcχ(−1/2,1/2)+εm(0)χR\(−1/2,1/2). The term εm(0)∂x(1/εm)(0)∂xu0(0)u0(0) comes
from the fact that

∂2
xu0(0) = −ω2

0µm(0)εm(0)u0(0)− εm(0)∂x(1/εm)(0)∂xu0(0),

instead of (7).

3 Multi-dimensional case

In this section, we generalize (2) to the multi-dimensional case. In dimension two, the
formula obtained corresponds, as in the one-dimensional case, to an open cavity with the
transverse magnetic polarization [25]. We use the same notation as in Section 2.

Let Ω be a bounded domain in R
d for d = 2, 3, with smooth boundary ∂Ω, see Figure

2. Let ω0 be a simple eigenvalue of the unperturbed open cavity. Then there exists a non
trivial solution u0 to the equation:
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Ω

D

ε = εm
µ = µm

ε = εc
µ = µc

ε = 1
µ = 1

R
d \ Ω

Cavity perturbed by an internal particle

Figure 2: Multi-dimensional cavity.







∇ · ((1/ε)∇u) + ω2
0µu = 0 in R

d,

εmµm

ˆ

Ω

|u|2 dx = 1,

u satisfies the outgoing radiation condition,

(8)

where µ = 1 + (µm − 1)χΩ and ε = 1 + (εm − 1)χΩ. Here, χΩ denotes the characteristic
function of the domain Ω. We refer to [21] for a precise statement of the outgoing radiation
condition.

In order to express the radiation condition, we consider a ball large enough to contain
the domain Ω. Here, for simplicity, we assume that Ω is the ball of radius R centered at
the origin and introduce the capacity operator Tω, which is given by [10]

Tω : φ =







∑

m∈Z

φme
imθ

+∞∑

m=0

m∑

l=−m

φl
mY

l
m

7→







∑

m∈Z

zm(ω,R)φme
imθ,

+∞∑

m=0

zm(ω,R)
m∑

l=−m

φl
mY

l
m,

where

zm(ω,R) =







ω(H(1)
m )′(ωR)

H(1)
m (ωR)

if d = 2,

ω(h(1)
m )′(ωR)

h(1)
m (ωR)

if d = 3.
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Here, θ is the angular variable, Y l
m is a spherical harmonic, and H(1)

m (respectively, h(1)
m )

is the Hankel function of integer order (respectively, half-integer order).
Then the outgoing radiation condition is as follows:

(1/εm)
∂u0

∂ν
= Tω0

[u0]on ∂Ω. (9)

Note also that the above explicit version of the capacity operator will be used in
Section 5 to test the validity of our formula. Then, (8) is equivalent to







(1/εm)∆u0 + ω2
0µu0 = 0 in Ω,

(1/εm)
∂u0

∂ν
= Tω0

[u0] on ∂Ω,

εmµm

´

Ω
|u0|2 = 1,

(10)

where ν denotes the normal to ∂Ω. As in the one-dimensional case, the scattering reso-
nances lie in the lower-half of the complex plane and the associated eigenfunctions grow
exponentially at large distances from the cavity since they satisfy the outgoing radiation
condition. We also remark that since on one hand, z−m(ω,R) = zm(ω,R) for all m ∈ Z,

and on the other hand, Y −l
m = (−1)lY

l
m, we have

ˆ

∂Ω

Tω[f ]g dσ =

ˆ

∂Ω

fTω[g] dσ for all f, g ∈ H1/2(∂Ω), (11)

for d = 2, 3, where Hs(∂Ω) is the standard Sobolev space of order s.
Let D ⋐ Ω be a small particle of the form D = z + δB, where δ is its characteristic

size, z its location, and B is a smooth bounded domain containing the origin. Denote
respectively by εc and µc the electric permittivity and the magnetic permeability of the
particle D. In view of (9), the eigenvalue problem is to find ωδ such that there is a
non-trivial couple (ωδ, uδ) satisfying







(1/εm)∆uδ + ω2
δµmuδ = 0 in Ω \ D̄,

(1/εc)∆uδ + ω2
δµcuδ = 0 in D,

(1/εm)
∂uδ

∂ν

∣
∣
+
= (1/εc)

∂uδ

∂ν

∣
∣
−

on ∂D,

(1/εm)
∂uδ

∂ν
= Tωδ

[uδ] on ∂Ω,

where the subscripts + and − indicate the limits from outside and inside D, respectively.

Proposition 3.1. As δ → 0, we have

ωδ = ω0 + δdω1 +O(δd+1),

where

ω1 =
M(εm/εc, B)∇u0(z) · ∇u0(z) + ω2

0|B|εm(µc − µm)(u0(z))
2

2ω0 + εm
´

∂Ω
∂ωTω|ω=ω0

[u0]u0 dσ
, (12)

with M being the polarization tensor associated with the domain B and εm/εc the contrast

defined by (15) with v(1) being given by (14).
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Proof. Assume, for now, that µc = µm. Let λ0 = ω2
0, λδ = ω2

δ . We expand

ωδ = ω0 + δdω1 + . . . and λδ = λ0 + δdλ1 + . . . .

Let the outer expansion of uδ be

uδ(y) = u0(y) + δdu1(y) + . . . ,

and the inner one, eδ(ξ) = uδ((x− z)/δ), be

eδ(ξ) = e0(ξ) + δe1(ξ) + . . . ,

where ξ = (x− z)/δ. Therefore, we have

Tωδ
≃ T

ω0+δ
d
ω1

≃ Tω0
+ δdω1∂ωTω|ω0

+ . . . .

Moreover, we obtain






((1/εm)∆ + λ0µm)u1(y) = −λ1µmu0(y) for |y − z| ≫ O(δ),

(1/εm)
∂u1

∂ν
= Tω0

[u1] + ω1∂ωTω|ω=ω0
[u0] on ∂Ω,

(13)

and 





∆ξej = 0 in R
d \ B̄,

∆ξej = 0 in B,
∂ej
∂ν

|+ = (εm/εc)
∂ej
∂ν

|− on ∂B,

for j = 1, 2. Imposing the matching conditions

u0(y) + δdu1(y) + · · · ∼ e0(ξ) + δe1(ξ) + . . . as |ξ| → +∞,

and y → z, we arrive at e0(ξ) → u0(z) and e1(ξ) ∼ ∇u0(z) · ξ. So, we have e0(ξ) = u0(z)

for every ξ and e1(ξ) = ∇u0(z) · v(1)(ξ), where v(1) is such that (see [6])







∆ξv
(1) = 0 in R

d \ B̄,

∆ξv
(1) = 0 in B,

∂v(1)

∂ν
|+ = (εm/εc)

∂v(1)

∂ν
|− on ∂B,

v(1)(ξ) ∼ ξ as |ξ| → +∞.

(14)

Let Γ be the fundamental solution of the Laplacian in R
d. Let M(εm/εc, B) be the

polarization tensor associated with the domain B and the contrast εm/εc given by [4]

M(εm/εc, B) = (
εm
εc

− 1)

ˆ

∂B

∂v(1)

∂ν

∣
∣
−
(ξ)ξ dσ(ξ). (15)

We refer the reader to [4] for the symmetry, positivity, and monotonicity of M . Then,
by the same arguments as in [6, Section 4.1], it follows that

u1(y) ∼ −M(εm/εc, B)∇Γ(y − z) · ∇u0(z) as y → z. (16)

10



Multiplying (13) by u0 and integrating by parts over Ω \ B̄δ, we obtain from (11) that

−λ1µm

ˆ

Ω\Bρ

(u0)
2 dx =

ˆ

∂Ω

(
Tω0

[u1]u0 − Tω0
[u0]u1

)
dσ

︸ ︷︷ ︸
=0

+ω1

ˆ

∂Ω

∂ωTω|ω=ω0
[u0]u0 dσ

+
1

εm

ˆ

∂Bδ

(u0

∂u1

∂ν
− u1

∂u0

∂ν
) dσ.

From (16), we have
ˆ

∂Bδ

(u0

∂u1

∂ν
− u1

∂u0

∂ν
) dσ −−→

δ→0
−M(εm/εc, B)∇u0(z) · ∇u0(z).

Therefore,

−λ1µm

ˆ

Ω

u2
0 dx− λ1

2ω0

ˆ

∂Ω

∂ωTω|ω=ω0
[u0]u0 dσ = − 1

εm
M(εm/εc, B)∇u0(z) · ∇u0(z),

and finally, we arrive at

λ1 =
M(εm/εc, B)∇u0(z) · ∇u0(z)

1 + (1/(2ω0)) εm
´

∂Ω
∂ωTω|ω=ω0

[u0]u0 dσ
, (17)

or equivalently,

ω1 =
M(εm/εc, B)∇u0(z) · ∇u0(z)

2ω0 + εm
´

∂Ω
∂ωTω|ω=ω0

[u0]u0 dσ
. (18)

In the multi-dimensional case, the effect of radiation on the shift of the scattering reso-
nance ω0 is given by εm

´

∂Ω
∂ωTω|ω=ω0

[u0]u0 dσ. Note also that formula (18) reduces to (6)
in the one-dimensional case. In fact, the polarization tensor M reduces to α defined by
(5) and the operator Tω corresponds to multiplication by −iω at a and +iω at b. If one
relaxes the assumption µc = µm, one can easily generalize formula (18) by computing, as
in [6] and in Section 2, the second-order corrector e2. We then get the desired result. �

4 Perturbations of whispering-gallery modes by an

external particle

Whispering-gallery modes are modes which are confined near the boundary of the cavity.
Their existence can be proved analytically or by a boundary layer approach based on
WKB (high frequency) asymptotics [20, 30, 33, 35, 36, 39, 42]. Whispering-gallery modes
are exploited to probe the local surroundings [28,29,37]. Biosensors based on the shift of
whispering-gallery modes in open cavities by small particles have been also described by
use of Bethe-Schwinger type formulas, where the effect of radiation is neglected [14, 20,
45,46]. In this section, we provide a generalization of the formula derived in the previous
section and discuss its validity for whispering-gallery modes.

Assume that ω0 is a whispering-gallery mode of the open cavity Ω. Let Ωρ be a

small neighborhood of Ω. Suppose that the particle D is in Ωρ \ Ω, see Figure 3. If
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ε = εm
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ε = 1
µ = 1

R
d \ Ω

Cavity perturbed by an external particle

Ωρ

Figure 3: Perturbed cavity by an external particle.

the characteristic size δ of D is much smaller than ρ, which is in turn much smaller
than 2π/(

√
εmµmω0), then by the same arguments as those in the previous section, the

leading-order term in the shift of the resonant frequency ω0 is given by

ω1 ≃
M(1/εc, B)∇v0(z) · ∇v0(z) + ω2

0|B|(µc − 1)(v0(z))
2

2ω0 + εm
´

∂Ω
∂ωTω|ω=ω0

[u0]u0 dσ
.

Here, the polarization tensor M(εm/εc, B) in (17) is replaced by M(1/εc, B) since ε in
the medium surrounding the particle is equal to 1 and v0 is defined in R

d by

v0(x) = −ω2
0(µm−1)

ˆ

Ω

Γ(x−y;ω0)u0(y) dy+(
1

εm
−1)

ˆ

Ω

∇yΓ(x−y;ω0)·∇u0(y) dy, (19)

where Γ(·;ω0) is the fundamental solution of ∆ + ω2
0, which satisfies the outgoing radi-

ation condition. We remark that v0 = u0 in Ω. Moreover, the assumption that ω0 is a
whispering-gallery mode in order that the gradient of v0 at the location of the particle
has a significant magnitude.

Now, assume that the particle D is a subwavelength particle with dipole resonances,
i.e., εc depends on the frequency ω and can take negative values. In this case, there
is a discrete set of frequencies, called subwavelength resonant frequencies, such that at
these frequencies problem (14) is nearly singular, and therefore the polarization tensor
associated with the particle D blows up, see [2, 8, 11]. Assume that the subwavelength
resonant particle is coupled to the cavity, i.e., there is a whispering-gallery cavity mode
ω0 such that ℜω0 is a subwavelength resonance of the particle.

12



Then when the particle D is illuminated at the frequency ℜω0, its effect on the cavity
mode ω0 is given by the following proposition.

Proposition 4.1. We have

ω1 ≃
M((1/εc)(ℜω0), B)∇v0(z) · ∇v0(z) + ω2

0|B|(µc − 1)(v0(z))
2

2ω0 + εm
´

∂Ω
∂ωTω|ω=ω0

[u0]u0 dσ
, (20)

where v0 is defined by (19).

Proposition 4.1 shows that despite their small size, subwavelength particles with dipole
resonances significantly change the cavity modes when their subwavelength resonances
are close to the cavity modes.

Finally, suppose that ω0 is of multiplicity m. Then, following [12, 18, 19], ω0 can be
split into m scattering resonances ωδ,j having the following approximations:

ω2
δ,j ≃ ω2

0 + δdηj, (21)

with ηj being the j-th eigenvalue of the matrix

(

M∇v0,p(z) · ∇v0,q(z) + ω2
0|B|(µc − 1)v0,p(z)v0,q(z)

µmεm
´

Ω
u0,pu0,q dx+ (1/(2ω0)) εm

´

∂Ω
∂ωTω|ω=ω0

[u0,q]u0,p dσ

)m

p,q=1

. (22)

Here, {v0,q}q=1,...,m are obtained by (19) with {u0,q}q=1,...,m being an orthonormal eigenspace
associated with ω0.

5 Numerical illustrations

In two dimensions, when the cavity and the small-volume particle are disks we can use the
multipole expansion method to efficiently compute the perturbations of the whispering-
gallery modes [34]. Our approach is as follows. We first use a projective eigensolver [15] to
obtain a coarse estimate of the locations of the resonances of a two disk system. We then
focus on the particular resonances in this set that correspond to the whispering-gallery
modes of the open cavity and obtain a refined estimate of their locations using Muller’s
method [3].

It is well-known that boundary integral formulations of the exterior and transmission
scattering problems are prone to so-called spurious resonances which can interfere with
the search for the true scattering resonances [17]. In order to achieve a better separa-
tion between the spurious resonances and the true resonances when using the projective
eigensolver, a combined field integral equation approach can be used [41,44].

Throughout this section, Ω is a disk of radius 1 centered at the origin and ω0 is the
frequency of a whispering-gallery mode. Let D be a disk of radius δ centered at (1+2δ, 0).
Suppose that εm = εc = 1/5. The behavior of ωδ,1, ωδ,2 as δ → 0 is plotted in Figure
4. Formula (21) matches the behavior of the eigenvalue perturbation as can be seen
in Figure 5. On the other hand, we can easily reconstruct δ from a single scattering
resonance shift.

Next, consider a disk Dδ of radius δ = 0.1 centered at (z, 0). A plot of |ω2
δ,j − ω2

0| as
z varies between 1.2 and 6 is presented in Figure 6.
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Figure 4: As the size of the small disk δ → 0, the perturbed whispering-gallery modes ωδ,1 and ωδ,2

converge towards the unperturbed mode ω0.

Multipole expansion method

Asymptotic formula
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Figure 5: Comparison between the asymptotic formula for the perturbation |ω2

δ,1−ω2

0 | of the whispering-
gallery mode and the perturbation computed numerically as the size of the small disk δ → 0.
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Asymptotic formula
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Figure 6: Comparison between the asymptotic formula for the perturbation |ω2

δ,j−ω2

0 | of the whispering-
gallery mode and the perturbation computed numerically as the position of the inclusion (z, 0) varies.
The plot on the left corresponds to the perturbed resonance ωδ,1 and the plot on the right corresponds
to the perturbed resonance ωδ,2.

By using (21), one can also reconstruct the polarization tensor. We highlight here the
case of subwavelength resonant particles. In this case we have a strong enhancement in
the frequency shift, which allows for the recognition of much smaller particles.

Consider a disk D of radius 0.1 centered at (1.2, 0). Suppose εm = 1/5. A plot of
|ω2

δ,1−ω0
2| as 1/εc varies is presented in Figure 7. Notice the high peak in the perturbation

as εc approaches the value −1.

-2 -1 1 2

1μc

-15

-10

-5

Log2 |ωδ, j2-ω02 |

Figure 7: Resonance perturbation |ω2

δ,1 − ω2

0 | as a function of 1/εc, here allowed to also take negative
values.

Finally, suppose we have n particles arranged outside Ω as vertices of a regular n-gon,
and tangent to ∂Ω. Suppose all the particles have the same polarization tensor M . As
δ → 0, we can consider the contribution of each particle independently, and thus summing
up (21) we have

ω2
δ,j − ω2

0 ≃
n∑

i=1

δdηi,j, (23)

where ηi,j is the j-th eigenvalue of (22) with z substituted by zi, the center of the i-
th particle. Considering different frequencies, we can reconstruct n by looking for a
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minimizer of an appropriate discrepancy functional.

6 Concluding remarks

In this paper, the leading-order term in the shifts of scattering resonances by small
particles is derived and the effect of radiation on the perturbations of open cavity modes
is characterized. The formula derived characterizes the dependency of the frequency shifts
on the position and the polarization tensor of the particle. It is valid for arbitrary-shaped
particles. By reconstructing the polarization tensor of the small particle from the shifts of
scattering resonances, the orientation of the perturbing particle can be inferred by using
the results in [4, Section 4.11.1], which affords the possibility of orientational binding
studies in biosensing. It is also worth mentioning that, by combining the arguments
of [5, 13] together with those presented here, the formula derived in this paper can be
generalized to open electromagnetic and elastic cavities.

References

[1] H. Ammari, A. Dabrowski, B. Fitzpatrick, and P. Millien, Perturbations of the scat-
tering resonances of an open cavity by small particles. Part II: The transverse electric
polarization case, submitted.

[2] H. Ammari, Y. Deng, and P. Millien, Surface plasmon resonance of nanoparticles and
applications in imaging, Arch. Ration. Mech. Anal., 220 (2016), 109–153.

[3] H. Ammari, B. Fitzpatrick, H. Kang, M. Ruiz, S. Yu, and H. Zhang, Mathematical

and computational methods in photonics and phononics, Mathematical Surveys and
Monographs, Vol. 235, American Mathematical Society, Providence, 2018.

[4] H. Ammari and H. Kang, Polarization and moment tensors. With applications to

inverse problems and effective medium theory, Applied Mathematical Sciences, 162.
Springer, New York, 2007.

[5] H. Ammari, H. Kang, and H. Lee, Asymptotic expansions for eigenvalues of the Lamé
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