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Sanghyeon Yu∗† Habib Ammari∗

Abstract

Surface plasmons of strongly coupled metallic nanoparticles are useful for controlling
light at the nanoscale. Here we develop a new physical model for understanding plasmons
of the interacting many-particle systems. We combine both the plasmon hybridization and
transformation optics approaches so that our model gives a simple and intuitive picture
when the particles are close-to-touching. In the proposed approach, the system’s plasmon
is a combination of the gap-plasmons of each pair of particles. This provides new physical
insights into how the spectrum of the plasmons depends on the geometry of the system.

1 Manuscript

Metallic nanostructures have been extensively studied and utilized for sub-wavelength control of
light due to their unique ability to support surface plasmons, which are oscillations of electron
density on metal-dielectric interfaces [1–5]. Among various structures, a system of interacting
nanoparticles is of fundamental importance [5]. When the particles are closely spaced, their
plasmons exhibit significant spectral shifts, extreme light confinement, and Fano resonances [4]
due to their strong electromagnetic interaction. These phenomena have important applications
including optical nanocircuits, single molecule sensing, spectroscopy, and nonlinear optics [1–5].
However, understanding the strong interaction between the particles is quite challenging because
plasmons depend on the geometry of the particles in a complicated way. It is important to clarify
this intricate relationship for a rational design of plasmonic devices.

The plasmon hybridization model results in a simple and intuitive physical picture for plas-
mons of interacting particles in a way analogous to molecular orbital theory, providing a general
and powerful design principle [5–7]. In this model, the hybridized plasmons are viewed as
simple combinations of the individual particle plasmons. However, when the particles become
close-to-touching, the picture becomes complicated since a large number of uncoupled plasmons
contribute to each hybridized plasmon. Recently, Transformation Optics (TO) has been applied
to understand the plasmons of two close-to-touching particles and other geometrically singular
structures [8–10]. We also refer to [11-60] for related works on close-to-touching particles. TO
reveals the hidden symmetries in singular plasmonic systems, thereby giving a unique physical
insight into the origin of broadband light-harvesting. TO also yields analytic or semi-analytic
solutions. But TO alone cannot be applied to systems featuring three (or more) particles.
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Figure 1: Schematic description of our proposed model. (a) comparison with the standard
hybridization model. (b) a more general case.

In this work, we develop a new hybridization model for plasmons of strongly interacting
many-particle systems. Our model combines the advantages of both the plasmon hybridization
and TO approaches, thus providing a simple and intuitive picture when the particles are close-
to-touching. More importantly, the proposed model leads to new physical insights into the
relation between geometry and plasmons: how global and local features of the system’s complex
geometry affect the spectrum of the plasmons.

Before explaining our model, we mention that the non-local effect, which has a quantum
origin, is an important issue when the gap distance is extremely small (below 0.5 nm) [61–66].
Our focus is not on modelling the non-local effect but on understanding the strong interaction
between the particles. We shall assume the local model for the metal permittivity. The nonlocal
effect can be accounted for by using the approach of [8, 63, 64].

We now explain our proposed model which we call the Singular Hybridization (SH) Model.
In the standard hybridization model, a plasmon of the system is a combination of plasmons of
individual particles. On the contrary, in our approach, the basic building blocks are the gap-
plasmons of a pair of particles, and we use the TO approach to capture their singular behavior.
This simple conceptual change is the key to solving the aforementioned challenges. In Figure
1a, we show a schematic comparison for a trimer, as it is the simplest example for our model
(we emphasize that our model can be applied to a general configuration of particles as shown
in Figure 1b). The trimer plasmon is now treated as a combination of two gap-plasmons. In
our picture, the new plasmons are formed by the hybridization of these gap-plasmons. The
gap-plasmons are strongly confined in their respective gaps and all the gaps are well-separated,
which means that the gap-plasmons do not overlap significantly with each other. Hence, the
spectral shifts due to their hybridization should be moderate. Therefore, we can expect that we
still get a simple picture even in the close-to-touching case.

To gain a better understanding, we develop a coupled mode theory for the hybridization of
singular gap-plasmons. For simplicity, we consider only 2D structures, however, our theory can

be extended to the 3D case. We assume the Drude model for the metal permittivity ǫ = 1− ω2
p

ω2 ,
where ωp is the bulk plasma frequency and the background permittivity is ǫ0 = 1. We also adopt
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Figure 2: Gap-plasmon of a dimer. (A) oscillation of a gap-plasmon. (B) the red-shift of the
spectrum. We set R = 20 nm and ωp = 8 eV.

the quasi-static approximation by assuming the system to be small compared to the wavelength
of the incident light. We remark that the radiation reaction can be incorporated to go beyond
the quasi-static limit, as described in [8].

We begin with the TO description [8,9] of gap-plasmons which are the basic building blocks
of our proposed model. Consider a dimer of cylinders of radii R separated by a distance δ.
TO has revealed that, when the two cylinders get closer, the wavelength of their plasmon near
the gap becomes smaller and energy accumulation occurs in the gap region, which gives rise to
an extreme field enhancement (Figure 2a). TO also can describe the singular spectral shift of
gap-plasmons. Let us consider the gap-plasmons whose dipole moment is aligned parallel to the
dimer axis since these plasmons contribute to the optical response significantly. Their resonance
frequencies ωTO

n are given by

ωTO
n = ωp

√

e−ns sinh(ns), n = 1, 2, 3, · · · ,

with the parameter s satisfying sinh2 s = (δ/R)(1 + δ/4R). We denote their associated gap-
plasmons by |ωTO

n 〉. When the gap distance δ gets smaller, as shown in Figure 2b, the frequencies
ωTO
n are red-shifted singularly and the spectrum becomes denser. Thus, the TO description

captures the singular behavior of gap-plasmons.
We now turn to our model. We explain our model taking a trimer as an example (Figure

3a). The trimer plasmon is specified as a superposition of the gap-plasmon of the pair (B1, B2)
and that of the pair (B2, B3). We let (an, bn) represent the following linear combination of the
gap-plasmons: an|ωTO

n (B1, B2)〉+ bn|ωTO
n (B2, B3)〉. Their hybridization is characterized by the

following coupled mode equations:

[

(ωTO
n )2 ∆n

∆n (ωTO
n )2

] [

an
bn

]

= ω2

[

an
bn

]

.

Here, ∆n represents the coupling between the two gap-plasmons. As the bonding angle θ between
the two gap-plasmons decreases, the coupling strength ∆n increases, which is to be expected
since the two gaps get closer. This coupled mode system is derived using the spectral theory
of the Neumann–Poincaré operator [67–69] and TO (see the supplemantary materials for the
details). We emphasize that the above equation is a simplified version of our theory. Although
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Figure 3: Trimer plasmons. (a) geometry of the trimer. The pairs (B1, B2) and (B2, B3) are
close-to-touching while B1 and B3 are well-separated. (b) hybridization diagram.

we require additional TO gap-plasmons for improved accuracy, we shall see that this simplified
version can already capture the physics. Solving the equation, we obtain the hybrid plasmons
for the trimer

|ω±
n 〉 ≈

1√
2

(

|ωTO
n (B1, B2)〉 ∓ |ωTO

n (B2, B3)〉
)

, n = 1, 2, 3, · · · ,

and their resonance frequencies

ω±
n ≈ ωTO

n ±∆n, n = 1, 2, 3, · · · .

So our theory predicts that the spectrum consists of a family of pairs (ω−
n , ω

+
n ) of resonance

frequencies which are split from the dimer resonance frequencies ωTO
n . The dimer part ωTO

n is
singularly shifted as the gap distance δ get smaller, while the splitting part ∆n remains moderate.
We call |ω−

n 〉 and |ω+
n 〉 the bonding trimer plasmon and anti-bonding trimer plasmon, respectively

(Figure 3b). The bonding plasmon has a net dipole moment pointing in the x-direction so that
it can be excited by the x-polarized light. Similarly, the anti-bonding plasmon can be excited
by the y-polarized light. These plasmons are very different from the bonding plasmon and anti-
bonding plasmon of a dimer in the standard hybridization model. They are trimer plasmons
and are capable of capturing the close-to-touching interaction via TO. We also mention that in
our model the physical picture for the trimer is quite different from the standard hybridization
one given in [70].

We now discuss the physical implication of our SH model. The power of our model comes from
its ability to decompose the spectrum into a singular part, which depends on the local geometry,
and a regular part, which depends on the global geometry. The resonance frequency ω±

n for
the trimer consists of two parts: the singularly shifted part ωTO

n and the regular splitting part
∆n. The singular part ωTO

n is determined by the small gap distance δ, which is a ‘local’ feature
of the geometry. On the other hand, the regular part ∆n is determined by the bonding angle
θ, which is a ‘global’ feature of the geometry. In other words, the small gap distance δ affects
the ‘overall’ behavior of the spectrum while the bonding angle θ controls the ‘detailed’ splitting
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Figure 4: Absorption cross section σa for the trimer. (a, b) the gap distance δ = 1.5 nm. (c, d)
the gap distance δ = 0.3 nm.

of the spectrum. This shows an interesting relation between the spectrum and the geometry:
local (and global) features of the geometry can determine the global (and local) behavior of
the spectrum, respectively. This relation provides us with a design principle: manipulation
of the local geometrical singularity (such as inter-particle gap distances) to control the overall
behavior of the spectrum, together with manipulation of the global geometry to achieve a detailed
splittings of the spectrum. Our SH model provides a systematic way of achieving such a design
using gap-plasmons as basic building blocks. We emphasize that our approach is valid for general
systems consisting of an arbitrary number of interacting particles, with arbitrary positions and
different radii, as long as the shape of each particle is circular in 2D or spherical in 3D.

We validate our model with numerical examples for the trimer. We set the radius of the
particles to be R = 30 nm. We consider the two cases: when the inter-particle gap distance
are (i) δ = 1.5 nm and (ii) δ = 0.3 nm. Notice that the ratio δ/R is very small so that the
particles are nearly touching. We assume the Drude model ǫ = 1− ω2

p/(ω(ω + iγ)) with ωp = 8
eV and γ = 0.2 eV. In Figures 4a and 4b, we plot the absorption cross section for the trimer
with the gap distance δ = 1.5 nm when the bonding angle is θ = 150◦ (weak coupling) and
θ = 85◦ (strong coupling), respectively. In the latter case, the coupling strength between the
gap-plasmons is stronger since the gaps are closer to each other. The absorption cross section
is computed by a 2D version of the numerical method developed in [60]. Similarly, in Figures
4c and 4d, we plot the absorption cross section in the case of the smaller gap distance δ = 0.3
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nm. We also plot the values of the resonance frequencies ω−
n and ω+

n (red and blue dashed lines)
computed by a complete version of our theory. Their corresponding plasmons are dominated
by bonding and anti-bonding combinations of gap-plasmons, respectively. As expected, the
resonance peaks of the absorption are located near the bonding (and anti-bonding) plasmon
frequencies ω−

n (and ω+
n ) for the x-polarized (and y-polarized) incident field, respectively. The

gray dots represent the dimer frequency ωTO
n computed using the TO approach. As the gap-

distance δ gets smaller, the overall spectrum is significantly red-shifted in conjunction with the
singular shift of ωTO

n . The green arrows indicate how much the trimer frequencies ω±
n have

split from the dimer frequency ωTO
n . The splitting ω±

n −ωTO
n is clearly shown and it is moderate

regardless of the inter-particle gap-distance. In the strong coupling case (smaller bonding angle),
the splitting is more pronounced. Also, the absorption of the y-polarized incident field becomes
stronger since the net dipole moment of the anti-bonding mode increases as the bonding angle
θ decreases. Hence, the numerical results are consistent with the prediction of our proposed SH
Model.

In conclusion, we have proposed the Singular Hybridization Model for plasmons of strongly
interacting particles which gives a simple and intuitive physical picture when the particles are
close-to-touching. The proposed model demonstrates an elegant interplay between the hybridiza-
tion model and transformation optics, clarifying a deep geometrical dependence of the plasmon
spectrum. We believe that our model can have a significant impact on the design of future
plasmonic devices.

2 Supplementary Materials

Here we outline our coupled mode theory for the hybridization of singular gap-plasmons. We
consider the 2D case for simplicity. We also assume the quasi-static approximation.

Integral equation approach for surface plasmons. Suppose we have a system of nanopar-
ticles Ω with permittivity ǫ. We assume the background permittivity is ǫ0 = 1 and the electric
field Ein is incident. Then the induced charge density σ on the surfaces ∂Ω of the particles is
determined by the following integral equation [67–69]:

(K∗
Ω − λI)[σ] = Ein · n|∂Ω, λ =

ǫ+ 1

2(ǫ− 1)
,

where K∗
Ω
is the Neumann–Poincaré (NP) operator given by

K∗
Ω[σ](r) =

1

2π

∫

∂Ω

(r− r′) · n(r)
|r− r′|2 σ(r′)dS(r′), r ∈ ∂Ω.

and n is the outward unit normal vector to the surface. If the permittivity ǫ is negative, then
the above problem may admit a solution even when the incident field Ein is absent. In fact, this
solution corresponds to the (localized) surface plasmon of the given system. More precisely, the
mathematical analysis of the surface plasmons is equivalent to the following eigenvalue problem
for the NP operator [67–69]:

K∗
Ω[σ] = λσ, λ =

ǫ+ 1

2(ǫ− 1)
.
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If we model the metal permittivity by Drude’s model in which ǫ = 1 − ω2
p/ω

2, then the above
eigenvalue problem can be rewritten as

AΩ[σ] := ω2
p

(1

2
I −K∗

Ω

)

[σ] = ω2σ.

Let ω2
n and σn be the eigenvalues and eigenfunctions of the operator AΩ. Then ωn (and σn)

represents the resonance frequency (and the charge density) of plasmons, respectively. Let us
denote the plasmon charge density σn by |ωn〉 to indicate that its resonance frequency is ωn.

Let us define an inner product 〈ωn|ωn′〉 of two plasmons |ωn〉 and |ωn′〉 by

〈ωn|ωn′〉 =
∫

∂Ω
σn(r)

∫

∂Ω

(−1)

2π
log |r− r′|σn′(r′)dS(r′)dS(r).

It can be shown that the eigenfunctions of the operator K∗
Ω
(hence AΩ) form a complete orthog-

onal basis with respect to the above inner product.

TO description of the dimer plasmons. Consider the dimer D = B+ ∪ B− where B±

is a circular cylinder of radius R centered at ±(R + δ/2, 0). Note that the two particles B+

and B− are separated by a distance δ. Using the TO approach [8, 9], we can derive the dimer
plasmons (i.e. the eigenvalues and eigenfunctions of the operator AD) explicitly. The conformal
transformation Φ given by

x′ + iy′ = Φ(x+ iy) =
x+ iy + a

x+ iy − a
, a = (δ(R+ δ/4))1/2,

maps the dimer to a concentric annulus whose inner radius is ri = e−s and outer radius is
re = es, where sinh s = a/R. Let (r′, θ′) be the polar coordinates of the transformed frame,
namely, z′ = x′ + iy′ = r′eiθ

′
. As mentioned in the manuscript, we consider only the dimer

plasmons whose dipole moment is aligned in the x-direction. The resonance frequencies of these
plasmons are

ωTO
n = ωp

√

e−ns sinh(ns), n = 1, 2, 3, · · · ,
and their associated plasmon charge densities |ωTO

n 〉 are given as follows: for n = 1, 2, 3, · · · ,

|ωTO
n 〉(r) = ± 1√

Nn

cosh s− cos θ′

α
cosnθ′, r ∈ ∂B±,

where the normalization constant Nn is chosen such that 〈ωTO
n |ωTO

n 〉 = 1. We can verify
that |ωTO

n 〉 are the eigenfunctions of AD with the eigenvalues (ωTO
n )2, namely, AD|ωTO

n 〉 =
(ωTO

n )2|ωTO
n 〉.

Hybridization of singular plasmons: a trimer case. Next, we consider the trimer T =
B1 ∪B2 ∪B3 given in the manuscript. Recall that the pairs (B1, B2) and (B2, B3) are close-to-
touching while B1 and B3 are well-separated. After some translation and rotation and by abuse
of notation, we can define the TO dimer plasmons for the pair (B1, B2) and the pair (B2, B3)
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as follows:

|ωTO
n (B1, B2)〉 =

{

|ωTO
n 〉 on ∂B1 ∪ ∂B2,

0 on ∂B3,

and

|ωTO
n (B2, B3)〉 =

{

0 on ∂B1,

|ωTO
n 〉 on ∂B2 ∪ ∂B3.

These two dimer plasmons hybridize to form new modes. We approximate a hybridized mode
|ωn〉 as a linear combination |ωn〉 = an|ωTO

n (B1, B2)〉+ bn|ωTO
n (B2, B3)〉. This is a good approx-

imation when the gap distance δ is small. In fact, we can prove that the set of |ωTO
n (Bi, Bj)〉

form an ’almost’ orthogonal basis. More precisely, as δ → 0,

〈ωTO
n (B1, B2)|ω

TO
n′ (B2, B3)〉 ≈ 0 for all n, n′ = 1, 2, 3, · · · ,

and consequently,
〈ωn|ωn′〉 ≈ 0 for n 6= n′.

Using the fact that AD|ω
TO
n 〉 = (ωTO

n )2|ωTO
n 〉, we can easily see that

[

(ωTO
n )2 ∆n

∆n (ωTO
n )2

] [

an
bn

]

= ω2

[

an
bn

]

,

where ∆n is given by
∆n = 〈ωTO

n (B1, B2)|AT |ω
TO
n (B2, B3)〉.

By finding the eigenvalues and eigenvectors of the matrix on the LHS, we can find good ap-
proximations for the hybrid plasmons and their resonance frequencies. The interaction term
∆n can be computed analytically using the connection between TO and the method of im-
age charges [60]. By including a full set of basis (the gap-plasmons with different TO angular
momenta n and the gap-plasmons for the other pair (B1, B3)), we can compute all the reso-
nance frequencies and their associated plasmon modes accurately. We remark that this model
is also numerically efficient in the nearly touching case. As mentioned in the main text, it is
straightforward to extend the above coupled mode theory to a more general system of particles.
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