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Abstract

Cavities, because they trap waves for long times due to their reflecting walls,
are used in a vast number of scientific domains. Indeed, in these closed media
and due to interferences, the free space continuum of solutions becomes a discrete
set of stationary eigenmodes. These enhanced stationary fields are commonly
used in fundamental physics to increase wave-matter interactions. The eigen-
modes and associated eigenfrequencies of a cavity are imposed by its geometrical
properties through the boundary conditions. In this paper, we show that one can
control the wave fields created by point sources inside cavities by tailoring only
the boundaries of the cavities. This is achieved through the use of a tunable re-
flecting metasurface, which is part of the frontiers of the cavity, and can switch its
boundary conditions from Dirichlet to Neumann. Based on the use of arrays of
subwavelength resonators, a mathematical modeling of the physical mechanism
underlying the concept of tunable metasurfaces is provided.

Mathematics Subject Classification (MSC2000). 35R30, 35C20.

Keywords. Subwavelength resonance, Helmholtz resonator, hybridization, meta-

surfaces, cavity.

Contents
1 Introduction
2 Preliminaries

2.1 Quasi-Periodic Fundamental Solution to the Helmholtz Equation with

Dirichlet Boundary Conditions . . . ... ... ... ............

22 Layer Potentials . . . . ... ... ... .. ... ... .. ... ...
2.3 Neumann Functions and their Remainders . . . ... ... ... ... ..

*Department of Mathematics, ETH Ziirich, Ramistrasse 101, CH-8092 Ziirich, Switzerland

(habib.ammari@math.ethz.ch, kimeri@student.ethz.ch, wei.wu@sam.math.ethz.ch).



3 One Periodically Arranged Helmholtz Resonator

3.1 Mathematical Description of the Physical Problem . . . . . ... ... ..
311 Geometry . ... ... .. ...
312 IncidentWave . . .. ... ... ... ... .. L L
3.1.3 The ResultingWave . ... ............ ... .......
3.14 The Resulting Wave in the Microscopic View . . . . . .. .. ...
32 MainResults . . .. ... ... ... o
3.3 Proof of the MainResults . . . ... ... ..... .. ...........
3.3.1 Collapsing the Wave-Informationsonthe Gap . . . . .. ... ..
3.3.2 Expanding the Gap Formula in Termsofé . . ... ... ... ..
3.3.3 Characteristic Values of A% and the two Resonance Values . . .
3.34 Inversion of A% - Solving the First Order Linear Equation . . .
3.3.5 Asymptotic Expansion of our Solution to the Physical Problem .
3.3.6 Evaluating the Impedance Boundary Condition . . . .. ... ..
3.4 Numerical llustrations . . . . ... ... ... ... .. ...........

Two Periodically Arranged Helmholtz Resonators

4.1 Mathematical Description of the Physical Problem . . . . ... ... ...
411 Geometry . ... .. .. ... ...
412 IncidentWave . . . . . . . . .. .. . ...
413 The ResultingWave . ... ......................
414 The Resulting Wave in the Microscopic View . . . . . .. ... ..

42 MainResults . . . . . . ... e

43 Proofofthe MainResults . . . ... ... ... ... ... ... ......
43.1 Collapsing the Wave-Informations on the Two Gaps . . . . . ..
43.2 Expanding the Gap-Formula in Terms of Delta . . . .. ... ..
433 Characteristic Values of .A°%¢ and the four Resonance Values . .
434 Inversion of A%k2- Solving the First Order Linear Equation . . .
43.5 Asymptotic Expansion of our Solution to the Physical Problem .
43.6 Evaluating the Impedance Boundary Condition . . . . ... ...

44 Numerical llustrations . . . . . . . . . . . . ... .. . ... .. ... ..

Changing a Small Part of the Boundary from Dirichlet to Neumann

5.1 Preliminaries. . . . . . . . . . . e
5.1.1 Statement of the Problem . . ... ... ... ... .........
5.1.2 The Dirichlet Function . . . . . .. ... ... ... .........

52 MainResults . . . . . . . . ...

5.3 ProofoftheMainResults . ... ... ... ... ... ... ......
53.1 ConditionontheGap ... ............... ... ....
5.3.2 Hypersingular Operator Analysis . . ... ... ..........
5.3.3 Solution to the Main Problem . . . . . ... ... ... .......



6 Nucleation of the Neumann Boundary Condition 89

6.1 TheDiskCase . . . . . . . . e, 90
6.2 Numerical llustrations . . . . . . . . . . . . e 95
7 Conclusion 96

1 Introduction

Controlling waves in cavities, which are used in numerous domains of applied and
fundamental physics, has become a major topic of interest [11, 12, 18, 21]. The wave
tields established in cavities are fixed by their geometry. They are usually modified by
using mechanical parts. Nevertheless, tailoring the cavity boundaries permits one to
design at will the wave fields they support. Here, we show that it is achievable simply
by using tunable metasurfaces that locally modify the boundaries, switching them
from Dirichlet to Neumann conditions. The concept of metasurfaces is a powerful
tool to shape waves by governing precisely the phase response of each constituting
element through its subwavelength resonance properties [6, 9, 13, 24]. Subwavelength
resonators have been also used as the building block of super-resolution imaging [3,
5, 10].

A metasurface is a thin sheet with patterned subwavelength structures, which nev-
ertheless has a macroscopic effect on wave propagation. Based on the concept of
hybridized resonators, a tunable metasurface can be designed. Hence, it can be trans-
formed into a tunable component that allows shaping waves dynamically in unprece-
dented ways [14, 20, 21]. The mechanism is based on the very general concept of
hybridized coupled resonant elements whose resonant frequencies can be tuned by
adjusting the coupling strength. The idea from [20] is to design a metasurface that
can be either resonant or not resonant at a given operating frequency. In the first case,
the collective resonant behaviour of the subwavelength resonators provides a change
of the boundary condition while in the second case, the metasurface is transparent to
the incident wave. To that aim, one can take as unit cell of the metasurface a system
made out of two individual subwavelength resonators: one static resonator (referred to
as the main resonator), whose frequency is fixed to the operating frequency and one
tunable parasitic resonator (referred to as the parasitic resonator) whose frequency
can be wisely adjusted by a given tunable mechanism. In the first case, the resonance
frequency of the parasitic resonator is different enough from the resonance frequency
of the main resonator, so that the two resonant elements do not couple. At the op-
erating frequency, the metasurface is then resonant. In the second case however, one
sets the resonance frequency of the parasitic resonator to match that of the static res-
onator. In that case, the subwavelength resonators hybridize to create a dimer whose
eigenfrequencies are respectively under and above the initial resonance frequency.

In this paper, we mathematically and numerically model the physical mechanism
underlying the concept of tunable metasurfaces. We consider Helmholtz resonators.
We show that an array of Helmholtz resonators behaves as an equivalent surface with



Neumann boundary condition at a resonant frequency which corresponds to a wave-
length much greater than the size of the Helmholtz resonators. Analytical formulas
for the hybridized resonances of coupled Helmholtz resonators are also derived. Nu-
merical simulations confirm their accuracy. We also propose an efficient approach
to characterize the Green’s function of a cavity with mixed (Dirichlet and Neumann)
boundary conditions. The use of tunable metasurfaces allows us to find a criterion en-
suring that modifying parts of a cavity’s boundaries turn it into a completely different
one. We provide a new and simple procedure for maximizing the Green’s function
between two points at a chosen frequency in terms of the boundary conditions. Our
algorithm is a one shot optimization algorithm and can then be used in real-time to
focalize the wave on a given spot by maximizing the transmission between an emit-
ter and a receiver through specific eigenmodes of the cavity or on the contrary, to
minimize the field on a receiver.

The paper is organized as follows. Section 2 is devoted to give preliminary results
on the so-called Neumann functions, which play a key role in proving the results in
Sections 3 and 4. We first introduce the quasi-periodic fundamental solutions to the
Helmholtz equation and recall in Lemmas 2.2-2.4 some key results from [6]. Then,
we consider the Neumann functions, which depends crucially on certain remainder
functions, for which we provide exact formulas in Lemmas 2.9-2.12.

In Section 3, we look at one periodically repeated Helmholtz resonator above a
ground plate. After treating them with an incident wave, we obtain a scattered wave,
whose resonant values are discussed and its behavior at the far-field are examined.
We show in Theorem 3.2 that the structure behaves as an equivalent surface with
Neumann boundary condition at the resonant frequencies characterized in Theorem
3.1. The proof uses a combined technique of [10] and [6].

Section 4 has the same objective as the previous section, but this time we have
two periodically repeated Helmholtz resonator above a ground plate. As shown in
Theorem 4.1, the strong coupling between the periodically repeated pair of resonators
leads us to hybridized resonances. It is shown in Theorem 4.2 that at only these
hybridized frequencies the structure behaves as an equivalent surface with Neumann
boundary condition.

Section 5 is devoted to the derivation of an asymptotic formula of the Green’s
function of a cavity with mixed boundary conditions in terms of the size of the part
of the cavity boundary where the boundary condition is switched from Dirichlet to
Neumann. A closed form of the derivative of the Green’s function with respect to
changes in the boundary condition is given in Theorem 5.4.

In Section 6, we consider the problem where we have a source in a bounded domain
and we want to determine whether we activate a small part of the boundary to be
reflecting or not in such a way the signal at a given receiving point is significantly
enhanced. Based on Theorem 5.4, we propose a simple strategy aiming to maximize
the norm of the Green’s function by nucleating Neumann boundary conditions. The
basic idea follows the concept of topological derivative. The switching of parts of the
boundary from Dirichlet to Neumann where the topological derivative of the norm of



the Green’s function is positive allows for an increasing of the transmission between
the point source and the receiver. Finally, we present some numerical experiments to
show the applicability of the proposed methodology.

2 Preliminaries

In this section, we introduce the quasi-periodic fundamental solutions to the Helmholtz
equation. The explicit formula derived in [6] will be helpful for us. Then we consider
the Neumann functions and their remainders.

2.1 Quasi-Periodic Fundamental Solution to the Helmholtz Equation with
Dirichlet Boundary Conditions

Let k := (ki,k2)T € R? and k = [k| :== (K2 +K3)!/2 € [0,00), where T denotes the
transpose. Then for k € (0,00) we define I* : R?\ {0} — C as the fundamental
solution to (A + k2) T*(x) = dy(x) satisfying the Sommerfeld radiation condition. For
k = 0 we define T” : R?\ {0} — C as the fundamental solution to AT%(x) = Jo(x).
For k € [0,0), we define T¥(z, x) := I'*(z — x). For x € R?\ {0} we have that
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where 7 is the Euler-Mascheroni constant.
The quasi-periodic fundamental solutions F;‘ : R2\ {(np,0)Tn € Z} — C and

% :R2\ {(np,0)T|n € Z} — C are defined by

r(x) = Y T < + ("f)) —

nez

i = L (v (7)) .

nez



F;‘ and T’ are solutions to

(A+R)TE(x) = Y e 5, (),
nez
(A + k2) I—-k EZZe+zk1np5( o)t ( )

Using Poisson summation formula, this leads us to the following formulas [6, Lemma
3.2]:

Lemma 2.1 For the case k = 0 we have

1

r(x) = 0% = 2l i) 22)
[:=2mnn/p

If k satisfies k> < inf{|l — k|*|] .= 27tn/p, n € Z\ {0}}, we have
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Using Lemma 2.1 we can expand ng and T2¢ with respect to § near 0 and obtain
5 1
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where the kernels Flo"ﬁ and FIO‘/* for n > 1 can be computed explicitly and shown to be

smoother than Fl&ﬁ and 1"151*, see [8, Chapters 7.3, 7.4]. For the zeroth kernel we have
with Equation (2.2), for k # 0, that

k1x

op (2.5)

We define Fé‘(z, X) = Fif(z —x) and T'¥(z, x) := I'(z — x). Consider that Fi‘ and T'* are
not symmetric for k # 0 in general, that is Fjlj‘(z, x) # l"jli‘(x,z).

We define the parity operator P : R?> — IR? as

P(x1,x2) = <_x1 ) . (2.6)

X2



We introduce the quasi-periodic fundamental solutions to the Helmholtz equation
with Dirichlet boundary condition TX, TX : {(z,x) € R”Z x R?|~(In € Z : |z1 — x1| =
npAzy=x)} — Cby

% (z,x) = Fi‘(z,x) - Fjlj‘(z,P(x)), X (z,x) =T*(z,x) — T¥(z,P(x)). (2.7)

From Lemma 2.1, we see that for z € dR% or x € dR%, we have that I (z,x) = 0
and 1"1; (z,x) = 0. Moreover, l"l_ﬁ and Fl; are not symmetric, in general, and l"l_j and I“IQ
are not translation invariant in general, that is TX (z, x) # I’ (z — x,0). The following
results hold from [9].

Lemma 2.2 T9X and TX admit the expansions of the form

I%%(z,x) = Fﬁ/o(z,x) +) (5”Fﬁln(z,x), %(z,x) = Fl;,n (z,x)+ ) (5”F1;,n(z,x),

n=1 n=1

where

I% (z,x) =T o(z,x) = T o(z,x)

= % [log <sinh (7;(22 - x2)>2 + sin (7;(21 - x1)>2>
— log <sinh <7;(zz + x2)>2 + sin <7;(z1 — x1)>2>} . (2.8)

Lemma 2.3 Let z, x € R?, such that xo > zp > 0, and let k be small enough, then

™ (2,0) = T% , (2,0) + T ,(2,),

where
k — M i(kpxa—k1(z1—x1))
1"+,p(z,x) = kop e ,
ei(lfk1)(zlfx1) 5 B
rl—(k,e(zlx) = Z > 2sinh( \l—k1|2—k222> e—mxz.
nezvoy \PV I —ki|> —k
I:=2nn/p

We also have that

VI (2, x) =ikTY ,(z,x),

—i(l _kl) > ei(l—lq)(z]—x])

v rk e Z,X) = — < <
I:=2ntn/p
.sinh< |l —k1’2 —k222> emh) )
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Lemma 2.4 Let z,x € R?, such that zp > xp > 0, and let k be small enough, then

FE(Z,x) = rlfhp(zrx) + ri,e@/x) ’

where
k — M i(kazo—ki(z1—x1))
l"+,p(z,x) = kop e ,
eil=k1)(z1—x1) —
Fﬁle(z,x) == E — sinh ( |l — kq]? — k2 x2> e—WZz _
nezvoy \PVII—ki|* —k
[:=2nn/p

We also have that

iky

K _ _@Sir‘(kaZ) i(kozo—ki(z1—x1))
VaTS (2, %) (—;cos(kzxz> ‘ '

—i(I — k1) sinh I — k2 —k2x
: neZ\ {0} T — k1|2 — K2 cosh ( T~k -k xz)
I:=2nn/p

eil=k1)(z1—x1) e_\/mzz )
1=k |? — k2

2.2 Layer Potentials

Let E C IR? be an open, bounded, simply connected Lipschitz domain. Then we define
the double-layer potential SX. : #~1/2(9E) — H!/2(R?) and the Neumann-Poincaré
operator K& : H/2(9E) — H1/2(3E) as

Stelol() = [ T*(xy) ply)doy,

Khelol (x) = s, 30T (9) 9ly)dey,

where ‘p.v.” denotes the principal value. K%, is a bounded function and if E has a
C%-boundary, K5, is a compact operator. Moreover, we have the following result ([8,
Propositions 2.5 and 2.6]):

Lemma 2.5 The operator (—%) T + KX, is invertible if and only if k is not a Neumann eigen-
value of the operator — A. Then, ((—%) T + KX.)~1 has a continuation to an operator-valued
meromorphic function in C. Also, all Neumann eigenvalues of the operator — /\ are character-
istic values of the operator (—3) T + KX

We define now the double-layer potential and the Neumann-Poincaré operator on
a periodic structure. Let 1,92 € R2and let E € {y € R?||y1| < q1/2and 0 < y < g2}



be a open, bounded, simply connected domain. We define Q := U, cz E + (ng1,0)!
and with that let &, : H~/2(0E) — H/?(R?) and KX, , : H'/*(9E) — H'/?(9E)
be defined as

Skolol(®) = | T (xy) o(w)dor,
Kb [0)(x) = o3, T (x,) p(y)dor .
We know that if E has a C?>-boundary, then IC%)‘Q,X is compact. We also have the

following standard result (see [8, Lemma 7.4]):

Lemma 2.6 The operator 3 T + Ko v HY2(JE) — H/2(JE) is invertible.

2.3 Neumann Functions and their Remainders

Let kg min A be the first non-zero eigenvalue of the operator —/A with Neumann con-
ditions on the boundary 9E of an open bounded domain E C IR?. We now can define
the following functions:

Definition 2.7 Let E C R? be a open, bounded, simply connected C*-domain. Let 0 #
k| < kgmin,a/2. Then we define N& : ExXE\{(z,x) € R”2xR?|z = x} — C and
NS :0E x E\ {(z,x) e R x R?|z = x} = Cuas

1

k

= 71 —

N (z, x) 5 108 |z — x|+

1 1
N&-(z,x) == Elog |z — x|+
where |E| denotes the area of E and NX and NE_ are solutions to
(Ay +K)NE(z,x) = do(z —x)  for x €E,
0, Nk (z,x) =0 for x € JE,
where z € E is fixed and where v, denotes the outside normal on oE with respect to x, and
(Ay +K)NEL(z,x) = dp(z—x)  for x€E,
9, NEL(z,x) =0 for x € dE,
where z € OE is fixed.

With this definition the function NX is a solution to the Helmholtz equation with o (z —
x) on the right-hand side and has a vanishing normal derivative on the boundary. The
same is valid for the function NX ., although the source point z is on the boundary. The
remainders RE(z, ) and RS, (z, -) are smooth enough. We refer to [8, Chapter 2.3.5.].



Definition 2.8 Let 1,90 € R2and let E € {y € R? | |y1| < q1/2 and 0 < y» < g2}
be a open, bounded, simply connected C*>-domain. Let 0 # |k| < kpminn/2. We define
Q = Upez E + (ng1,0). Then we define

le(),Jr {(zx) € (R%r\ﬁ) X (]R%r\Q)’ﬁ(E’” €EZ:z1—x1=n1 Nz =x)} = C,
Nla‘QIJr :{(z,x) € 9Q) x (]R%r\ﬂ)h(ﬂn €Z:z1—x1=nq1 Nz =x2)} = C,

as
NE,4 (2, %) =T%(z,x) + RS . (2,%),
NaQ’Jr (z,x) = 21"1_‘F (z,x) + RaQIJr (z,x),
with R, ., Ry, , being solutions to

(Ay + kZ)Rl(‘),Jr (z,x) = for xeRL\Q,
BVXRB, L(zx) = avrr (z,x)  for x€0Q,
Rl{wr (z,x) =0 for x € dRZ,

where z € R?. \ Q) is fixed, where vy denotes the outside normal on Q) with respect to x, and

(Ax+ k)RS 4 (z,x) =0 for xeRL\Q,
aVXRaQ,+ (z,x) = —2avxrﬁ(z,x) for x €0Q),
RgQJr(z,x) =0 for x € 0RA.

Here, z € 9Q) is fixed, and RY " Rla‘Q o satisfy the outgoing radiation condition (see [16]),
thus in particular

Iasz‘é,+ (z,x) — iszI(‘)IJr (z,x)| =0 for xp, — oo
Analogously, we define Ng, ., N, R, and RY, .
For the remainder functions we have the following formulas:

Lemma 2.9 Lef z, x € R?, such that z, > g2 and xp € OE then

R (%) = = [ Ny (5,)9,T% (2,y)doy.

Lemma 2.10 Let z,x € oF and k # 0, then

(31 K500 ) [Rén 2] () = S [-200T5 )] o0

Lemma 2.11 Let z,x € 0E and 0 # k < kg min /2 then

(3155 ) [Rse(ar] (== [ (26810 + 3 ) Py + S (20,11 o)
Lemma 2.12 For z € oE we have that

/<y;\> - logk dy—z/ 9y, I Zy)*IOg(k)day (2.9)

10



3 One Periodically Arranged Helmholtz Resonator

In this section, we look at a bounded, connected, domain D, which has height h.
Additionally, D has a gap A at its boundary, which allows the incident wave U} to
pass through. The incident wave rebounds inside D and leaves at the gap A, which
then leads to the scattered wave U¥. We repeat the geometry with periodicity p along
the xq-axis and scale it by a factor .

We look for an accurate approximation of the resonance as well as the scattered
wave in the far-field. We will see that, this approximation satisfies the Helmholtz
equation with a Robin boundary condition at the x;-axis which approximates a Dirich-
let boundary or a Neumann boundary depending on the magnitude of the incoming
wave vector k and J.

3.1 Mathematical Description of the Physical Problem
3.1.1 Geometry

N ug 96:U5(D+n(§>> "
N U
T Fueen)
- a "\o /
D ;
i —opl | JCOCOmOCIC L

—58p/2 —36p/2 —dp/2 op/2

(b) Macroscopic view of our periodically ar-
ranged Helmholtz resonators, with periodicity ép.
All Helmholtz resonators have the form of the

35p/2 1

(a) Microscopic, mnon-periodic view of our
Helmholtz resonator. The Helmholtz resonator is
contained in the unit cell (—p/2,p/2) x (0,1). It

has a gap A of length 2e, which is parallel to the x,
axis and centered in (0,h)T, where h € (0,1). uf
denotes the incident wave. D has not to be rectan-
gular in shape.

Helmbholtz resonator depicted in (a), but are scaled
with the factor 6. UJ denotes the incident wave.
Q) is the collection of all Helmholtz resonators and
59 is the collection of all gaps.

Figure 1: The physical setup. In (a) we have the microscopic, non-periodic view. In (b) we
have the macroscopic, periodic view.

Before we consider the periodic and macroscopic problem, we first define the ge-
ometry of our Helmholtz resonator in the unit cell. Let D € (—p/2,p/2) x (0,1) be
a open, bounded, simply connected and connected domain, where p € R and p is
close enough to 1. For sake of simplicity we assume that D is a C*>-domain. We define
A C 9D to be the gap of D, where A is a line segment parallel to the xj-axis. A is
centered at (0,/)T, where h € (0,1) is the height of A, and A has length 2¢, where
e € (0,1) and it is small enough. To facilitate future computations we assume that
h/p>1/2.

11



Let us define the macroscopic view. We define the collection of periodically ar-
ranged Helmholtz resonators ()°, with period ép, and the collection of gaps of those
Helmholtz resonators E°, where a single gap has length 24¢, as

Q= nLer(S (D+n (5))
=0 = nLejzé <A+n <g>>

Let k := (kq, kz)T € R? be the wave vector. We will fix the direction of the wave vector,
that is, k1 /k and ka/k, where k := |k| := (k2 + k3)!/2 € [0,0), but let the magnitude k
vary. With that, we define the function U(’]‘ :R?2 > C as

3.1.2 Incident Wave

Ug(x) = gge” F¥1p=ikaxa

where 4y € R denotes the amplitude. US will be our incident wave.
From (2.6), it follows that

U’é oP(x) = age” xipikaxs
and
(U5 — UkoP)(x) = —2iage™® 1 sin(koxy).
We will also need the following equation

—2a0k16_”‘1x1 Sil’l(kzXz) >

k_ gk - ,
V(Up — UyoP)(x) <—2ia0kzelk“‘1 cos(kaxz)

Consider also that US and UfoP are quasi-periodic with quasi-momentum —k;p, that

is,
g (” @) = e U (),
Ukop (x + <g>> = e FPLEoP(x).

3.1.3 The Resulting Wave

With the geometry and the incident wave, we model the electromagnetic scattering
problem and the resulting wave U : R% \ 9Q° — C by the following system of equa-

12



tions:
(A+K)U =0 in R%\aQY,

uk|,—u*|_-=0 on Z,

Uk, —a,U"|_=0 on =27,

o, Uk, =0 on 90°\ Z, G.1)
o,U|_=0 on 00°\Z,
uk =0 on 8]R2+,
where - |; denotes the limit from outside of Q% and - | denotes the limit from inside

of 0%, and 9, denotes the normal derivative on 9Q). Similar to diffraction problems
for gratings, the above system of equations is complemented by a certain outgoing
radiation condition imposed on the scattered field UX := U* — (U§ — UkoP) and quasi-
periodicity on uk. More precisely, we are interested in the quasi-periodic solutions,
that is,

uk (x + <g>> = e hPUR(x) for x € RZ,

and solutions satisfying the outgoing radiation condition, thus we have

Ay, UF —ikoUK| — 0 for x; — co.

Then the outgoing radiation condition can be imposed by assuming that all the
modes in the Rayleigh-Bloch expansion are either decaying exponentially or propa-
gating along the xp-direction. Since in our case we assume that the period of the
resonator structure p is much smaller than k, the outgoing radiation condition takes
the following specific form:

(UF — UE) (x) ~ ae"Txigikax2 a5 x, — oo,

U (x) ~ (a4 1)e himehx2 a5 x; — oo,

for some constant amplitude a € R.

As a remark, in the general case where U} is a superposition of plane-waves, we
can decompose U using Bloch-Flocquet theory [25, 8]. We obtain a family of problems
to solve, each one with its own outgoing radiation condition. The final solution is then
the superposition of all these solutions.

Consider also that in absence of Helmholtz resonators the solution to (3.1) is given
by Uk — UfoP.

3.1.4 The Resulting Wave in the Microscopic View

Given the resulting wave U (x), the function 1% (x) : R2 \ 9Q! — C, u®*(x) == U*(éx)
represents the resulting wave, but where the Helmholtz resonators are scaled-back
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and thus are of height 1 and not 5h. u°* satisfies

([ (A+ (KA u* =0 in RZ\3Q,
wk|,—u*|_ =0 on &I
9, u’k | +— 9, 1%k |- =0 on =!, (32)
0,u’*| . =0 on o0\ EZ!, '
0,u’*| =0 on o0\,
L u’k =0 on E)Ri,
where - | denotes the limit from outside of Q! and - | denotes the limit from inside

of 0!, and 9, denotes the normal derivative on 9Q)!.
We can adopt the quasi-periodicity from the macroscopic view and obtain

u’k (x + (g)) = e Py (x) for x € R2.

Defining ul* := u®* — (u3F — udkoP) we also get that

0y, ulk — i5kyulk

— 0 for xp, — oo.

We see that u°* solves the same partial differential equation like U* in the rescaled
geometry, but with the scaled wave vector 5k. We will see that we can express u°f as
an expansion in terms of § and we will give an analytic expression for the first order
term.

3.2 Main Results

We assume that 6k € K := {k € R|0 # |k| < kp min,a/2 and |k]> < inf{|] — ke |?|] :=
2ntn/p, n € Z\ {0}}}, where kp min a is defined as the first non-zero eigenvalue of
the operator — /A with Neumann conditions on the boundary 9D . If we would extend

the domain K to K¢ = {k. € C| vkiks < kpmin,a/2}, we would obtain following
resonance values for our physical problem:

Theorem 3.1 We have exactly two resonance values in K¢ for U. These are

D D 1
Ko :kgu“(" [z alDl 2 14 (c?”) ,

25 ¢ 26 ¢4
L %) D 15} D 1
R L LT IR

be . 1/2._ —
K= &=\ 21Dl Tog (e/2)
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where wg and wy are given by

o8 (1) () e () 2+ 208 (5) 7 (s (G2

(3.3)

oo (8)-(0) o (2)-():

We have the following approximation for the resulting wave U*:

Theorem 3.2 Let V, := {z € R? |z > r}. There exist constants C(3.5),6(3.5) > 0 such that

|- (s, U+ Ul HLw(v,)+HV [k (U + U + Uy ) | Hmv,) (35)

5 1 1 ) —C 2
<C — + +oe+ e 0"+ 467 ),

for 6, e small enough and r large enough, where

U, (2) = —eterha 2 [ y)doy,

0
u%*( ) kzZz kiz1) / /aD an y (y, )VZU' (1) da‘wdgy’

. : i5k1y1
Uls, (2) =0 [ [ autu P><y>~°’m<5";;j;;e 7

lk1
Sk Sk % sin(dkpwy ) -
/ap /E)D (" = OP)(y)le v (prlz cos(Skyw;) e doydoy |

and where, for y € A, we have

(5k( )_ 1 - f()k( ) 1 _ 1 fék( )
P a2 \4IDI(og(e/2)7 ki — ok \ok—ok  ok— ok " 2log(e/2) )
with the constant f°¥(0) € R being given by

5k (0 — ke~ sin(Skaya) '\ ok 0
f°%(0) = 2iag sin(dkyh) 2a05/ vy - <ik2€i5klyl cos(6kays) Nao+ (g, )Y doy .
We see from Theorem 3.2 that the function

Uk (2) =(U§ — UEoP) (2) + U, (2) + Uk (2) + Uis  (2),

gives an accurate approximation of U* in the far-field. Moreover, it satisfies the
Helmholtz equation in R with the boundary condition

UL, (2) + dcipcdz, UK, (z) =0,  forz € OR%,
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and U;‘pp — Uk satisfies the outgoing radiation condition. The boundary condition is
called 'Impedance Boundary Condition” and for cjgc = 0 it yields a Dirichlet boundary
condition while for cjgc > 1 it approximates a Neumann boundary condition for U,
Using Theorem 3.2, we can express cipc as follows.

aPP

Theorem 3.3 The constant in the impedance boundary condition is given by

CIBC = S ks C( ) T O0),

where COX € R is defined as

(3.6)

h 1 0
Clhey =~ ’ /A ¥ (y)doy + ’ /A /BD K (yINSG (v, w )vw-(1> do,doy,

Sin(ékzyz) elok1y
+ [ o~ or)y) e (3.6)

Zkl k
- [ v sin(0ka2) )
/BD /BD (g’ — oP)(y)le < ( ;17 cos(Skywy) ¢ dodoy .

3.3 Proof of the Main Results

We want to proof Theorems 3.1 — 3.3. First, we express the resulting wave outside the
Helmholtz resonators and the resulting wave inside the Helmholtz resonators through
operators acting on the resulting wave, but restricted on the gap. This leads us to a
condition with the linear operator A%ke whose solution is the resulting wave on the
gap up to a term of order §2. We solve this linear system based on the procedure
given in [10]. We will see that it is solvable for a complex wave vector near 0 except in
three points, two of which are the resonances of our system. With this we obtain the
resulting wave on the gap. Then we recover the resulting wave outside the resonators
up to a term of order 62. We will see, that we can split the resulting wave into a prop-
agating wave and an evanescent one. The propagating one leads us to the impedance
boundary condition constant cipc.

3.3.1 Collapsing the Wave-Informations on the Gap

Let us consider the resulting wave #°f in the microscopic view described in Subsection
3.1.4. We will keep the microscopic view until Subsection 3.3.6. We define the main
strip Y := {y € R% | |y1] < p/2}. D is the Helmholtz resonator on that strip and A the

gap on dD. Furthermore, we fix k1 /k =: e; and ky/k =: e; and assume that Jk € K :=
{k € R|0 # |k| < kpmina/2and k|* < inf{|l —kei|*|I == 2rtn/p, n € Z\ {0}}}.
Consider that u°f is continuous on the gap A, thus u%(z) is well-defined for z € A.

Proposition 3.4 Let NII‘J be as in Definition 2.7. Let z € D, then we have

/ 3,1’ ()N (z,y)do, .
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Let z € A. Then we have
/ dut® ()NS5 (2, y)doy, . (3.7)

Proposition 3.5 Let NQ +, NIE)/X be as in Definition 2.8. Let z € Y \ D. Then it follows that

= [ ot (NG, (2 )y — [0, (uff — uf o P) ()N , (2, )l
Let z € A. Then we have

2= [ NGy zdoy— [ o, — 0P (N (2 y)dey . (38)

Using that u°f is continuous on the gap we can deduce from the following propo-
sition a necessary condition for 9, 1ok | A- Assume we can obtain a solution 9, 1% from
that condition, then from Propositions 3.4 and 3.5 we can recover the resulting wave
onY.

Proposition 3.6 (Gap Formula) Let z € A then

[ 0 (8 )

/aD 0, (1" — ' 0 P) (1)Nghy, (2, y)doy — (uff — uf 0 P) (). (3.9)
Consider that the right-hand side in (3.9) does not depend on u%f and it is com-

putable.

Proof (Proposition 3.4) Let us look at (3.7) first. Let z € dD then using Green’s for-
mula with (A + k%) u% = 0 we have

wh(z) = [ ut(y) (B + ) NS (2, y)dy

= [ @), Nib (= )y — [ 2™ (NS (= v)doy.

Using that BVyNg’b(z,y) = 0on dD and 9,u°(y) = 0 on D \ A we obtain the desired
equation. We get the other equation analogously. n

Proof (Proposition 3.5) Let us first look at (3.8). Let r > 0 and U, := {y € R*\ D |

lyil < p/2N0<yy <r}, U, o:={y € U, |y =0}, oU,,_ :=={y € U, |y1 = —p/2},
ou, == {y € dU, |y1 = +p/2} and 9U,, := {y € oU, |y, = r}. Then

uf(z) = lim | ul(y)(Dy + NG (2, y)dy.

r—o0 u’
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Using Green’s formula, we have

u3'(z) = lim ( /u (A +K)ugf(y) N3y (z,y)dy (3.10)
_/au )0y, Ny, (z,y dCTy-i-/ 9,13 (y)NSG:  (2,y)doy (3.11)
+ [, 1 W2 NGGy (2 y)dey / o, NG (2 ), (3.12)
+ Ly W8N (2 y)dey - / L Al )Ny (2, y)doy (3.13)
+/aur+ (y)auyNaﬂl (z,y)day—/aur/+8 (y)NaOl (z,y)doy, (3.14)
¥ L @3N (2 y)dey — [ u”ayu%)Nam Gude,).  G15)

The right-hand side in (3.10) vanishes because u%f satisfies the homogeneous Helmholtz

equation. The left term in (3.11) vanishes because le has a vanishing normal

derivative on 00)'. Both terms in (3.12) vanish because of the Dirichlet boundary. The
terms in (3.13) and in (3.14) cancel each other out because of the quasi-periodicity with
quasi-momentum —k;p for ul* and the quasi-periodicity with quasi-momentum k;p
for Ng’él . together with the explicit expression for the normal on dU,, which is
(—1,0)T, and the explicit expression for the normal on 9U,, ., which is (1,0)T. Thus
we are left with

ulk(z, x) / o, ulk( y)NaOl (z,y)doy

+ lim (/au (y)BVyN801+(z y)doy — /au avugk(y)Nagl (z,y)d@) . (3.16)

r—»00

Using that u% and Nggl

Nggl (z,y) = 11128 Nglél (z,y) +0(1) and 9,,ul*(y) = ikoul*(y) +0(1) for yo — .
With' that we can ehmmate the integrals within the limes.

Finally, using that 9, u°¢ | ap\a = 0 and the definition of ulk, we proved (3.8).

We get the other equation analogously. n

satisfy the outgoing radiation condition, we can write

Proof (Proposition 3.6) Using that u°f is continuous at A we have that u* |, (z) — u%*|
_(z) = u®*(z) — u%*(z) = 0, for z € A. From (3.8) and (3.7), we obtain (3.9). [ |

3.3.2 Expanding the Gap Formula in Terms of ¢
We define f' %k . A — C as the right-hand side of the Gap Formula 3.6, that is,

FHE) = [ o — i o P) )Ny L (2 y)dey — (W —ufoP)(2). (317)

We identify fo%(t) with f%((t,h)T), for T € (—¢,e).
Let us define the following operator spaces and their respective norms:
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Definition 3.7 Let ' represent the distributional derivative of y. We define

A= {P‘ € Lz((—s,e))‘/s Ve — 2|u(t)Pdt < oo},
€ N 1/2
Il = ( mwwdt) ,

Vo= {ueC[—¢e)) |y € X},

/2
)

I#llye = (llpl% + Hﬂ |

Consider that for y € X*®

/V t)dt = /Pi

because of the L>-Cauchy-Schwarz inequality.

< VT pll e s (3.18)

Definition 3.8 Let p € X and a > 0. We say y = Oyx:(a) for & — 0 if % is bounded
as x — 0.

With those spaces we can define the following operators:

Definition 3.9 The following operators are defined as functions from X*¢ to Y¢. Let n €
IN \ {0}, then

L) = [ ) log(| — t))at

p
B, () = / wor (7). (1)) e

Akl () =2 2ol ) 4+ T ke o),

where T, is given in Lemma 2.2.
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Later, we will show that
avuﬁk ‘ A= (A(Sk’s)fl[f&k] + 0(52)‘
Proposition 3.10 Let 2e < p, let T € (—¢,¢€), then
AR, A](T) + Y 6" 2T [0, u® | A)(T) = £ (T, )T).
n=1
Proof Letz:= (t,h)T € A. From Proposition 3.6, it follows that

) 1 2/|D 5
[ 2 ) (20 a) + Ry, (o) 4 o == ]+ 2+ R () ) oy = 12

Using Lemma 2.2, we can rearrange the last equation and obtain

sk 0 1 _ 1/|D|
2 ) (202 )+ og = =1+

+RIK L (zy) + R (zy) + Zé”ﬂin(z y)>d0’y = f*(z). (3.19)

n=1

Using that A is a line segment parallel to the x;-axis, we have that do, = dt, by
writing y = (t,h)T. Using (2.8) for I'%.(z,y) and using that the expansion in ¢ (see
Lemma 2.2) is uniform, we can interchange the infinite sum and the integration. Let
u(t) == 9,u’*(y), we have that

F4(2) / ut6) | Lo et 4 Lt (sin (Te)) ) 4 ) 4R 2

_E log (sinh (Zz h>2+sin (Z(T—t))zﬂdt + % - gé” 2T, 1] (7).
(3.20)

Now consider that for 2e < p, we have

%log <Sin <7;(T_ t)>2> = %log (Sin Z(T— t)’)

—ll T +llo ’T—t|+110 in
= _log ; —log —log | sinc

Tir—1) D (321)
p
Inserting the last equation into (3.20), we obtain that
2 € £ K T - n 7k,€
2 Lo (0RO [ 1)+ B Ly 5 B () = £,
n=1
With that we have proven Proposition 3.10. |
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Let us show that £L¢ is bijective and let us consider its inverse.

Proposition 3.11 Let 0 < & < 2. The operator L° : X — Y¢ is linear, bounded and
invertible and has the inverse

ey Ve — T) Cely]
(L)) =~ s 82_t2/ L ’7 dr+mog(€/§>’7 —
where
Celn] ¢=77(r)—£€[ - gz_tz / V :25'7 ds (3.22)

is a constant depending on 1 and it is linear in 1.

Proof The proof for invertiblity is given in [26, Chapter 11.5], the exact formula is
derived in [8, Chapter 5.2.3]. |

Lemma 3.12 We have that

e [t - 821_#} (1) = rlog(e/2), (323)
L1)(t) = —2e+ (e+71)log(e+T)+ (e — T)log(e — T), (3.24)

¢ t
L [m] (1) = — T, (3.25)
(£ [1)(1) = : . 3.26)

rtlog(e/2)ve? — 12

Proof Equations (3.23)—(3.25) follow from straightforward calculations and (3.26) fol-
lows using Proposition 3.11. |

From Lemma 3.12, we also readily compute the following lemma:

Lemma 3.13 We have that

ey — 1
|97 = Fricgran
[, =

Since R, and Rglél

that i/f R‘Sk'g is a Fredholm operator of index zero. Hence, for the operator A%k
extending the domain K to the complex numbers in a disk-shaped form, we will see
that A% is invertible except for a finite amount of values of dk. Some of those values
are the resonances of our physical system. To that end, we will need the following
result.

are continuous, R%"¢ is a compact operator. Thus we have
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Lemma 3.14 Let R be the integral operator defined from X¢ into V* by
€
Rlul(x) = [ R(z,t)n(t)at,
—e

where R(T,t) is of class C¥ in T and t, for 0 < 5 < 1. There exists a positive constant Ciar)
independent of €, such that

C
H (ﬁg)_lnucwe,xs) = ] 10(;??) K (3.27)

where L(X¢, X*¢) denotes the space of bounded linear operators from X to X,
Proof The proof is given in [8, Lemma 5.4] |

3.3.3 Characteristic Values of 4% and the two Resonance Values

Let us first look at the characteristic values of

Ok,e ._E € ICS[.M]
Q™) = — LU + 55

where p € X¢ and 6k € K¢ = {k. € C|Vkiks < kpminn/2}. Let (+,-) be defined as
the L2((—e¢,¢)) inner product.

Lemma 3.15 Q%% has exactly the two characteristic values ikg’S where both have the char-
acteristic function ‘ug’g, with

(27;(3((58)1[1],1)g)1/2 _ % (—M)l/z,

c_ (L)'
M= TD] (k)

0,
ky" =

Sl

after imposing (u,1), = 1.
Consider that kg’e is real and positive.
Proof We are looking for y € X such that
Q™ [u] = 0.
Since (£f)71[0] = 0, the last equation is equivalent to

2 1 (L)) _
et e =0, (3.28)
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Applying (-,1), on both sides yields

e\ —1
Wﬂk(i+ﬁaaﬁkggﬂk>zo. (3.29)

If (4,1): = 0, then L[] = 0, because of the condition Q%%¢[u] = 0, and then u = 0,

since L¢ is invertible and linear. But 0 cannot be a characteristic function, by definition.
Hence (y,1) # 0. Thus the second factor in (3.29) has to be zero. This leads us to

8 = — (£, 1)
21D (e mn),
Using Lemma 3.12, we can calculate that ((£¢)71[1],1), = logé 73 and obtain the
characteristic values.
As for the characteristic functions, we rewrite (3.28) as
poo_om (£97M]
(w,1)  2[D[ (k)2
Imposing the normalization on u we have proven our statement. n

To facilitate future expressions we define
s T

“aDlTog e/2) — 2p] (£ e

Ce =

Next we will look at the characteristic values of A%¢. Denote £o%¢ = (¢ + %Rék'g
and S%¢ = %(ES)_lR‘Sk'S, where we fixed the angles of the incoming wave vector,
but let the magnitude be complex. Using that R is in CV1, for y € (0,1), and L°
invertible and using Lemma 3.14, we can apply the Neumann series, whenever ¢ is
small enough, and thus we have

(=89 Le) ™, (3.30)

e

(E(Sk,e)fl — (I_{_S&k,s)*l(ﬁs)fl —

=0

where 7 denotes the identity function in A*. We then define

MM:—ﬁiQE%4mJ>. (3.31)

€

Lemma 3.16 The characteristic values of A°%¢ are zeros of the function 6°k? — A% and we
have the asymptotic formula

8K = (0ky°)* + 5*0(cd), fore — 0.

Proof We prove that the zeros of 62k? — A%%¢ are the characteristic values in the same
way as in the proof of Lemma 3.15, but substitute £¢ with £°%¢. In order to derive the
asymptotic formulas, we use (3.30) and Lemma 3.14. |
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Proposition 3.17 There exist two characteristic values, counting multiplicity, for the operator
A%# in K. Moreover, they have the asymptotic expansions

Sk = 0K + 60 (ce), fore — 0.

Proof Recall that the operator-valued analytic function Q¢ is finitely meromorphic
and of Fredholm type. Moreover, it has two characteristic values ikgk’g , and has a
pole at 0 with order two in Kc. Thus, the multiplicity of Q%% is zero in K¢. Note
that for ok € K¢ \ {0, :i:(Skg’g}, the operator Q% is invertible, because it is of Fredholm
type and because it is injective due to Lemma 3.15. With that,

N e
(Q(Sk,e)ferJk,s — % (i[I_ (E(s)ZklIC ) S(Sk,s‘

Thus, (Q‘Sk's)*lR‘Sk'gH Clxexs) = O(c;) uniformly for 6k € dK¢. By the generalized
Rouché’s theorem [8, Theorem 1.15], we can conclude that for ¢ sufficiently small, the
operator A% has the same multiplicity as the operator Q°%¢ in K¢ , which is zero.
Since A% has a pole of order two, we derive that A%k€ has either one characteristic
value of order two or two characteristic values of order one. This completes the proof
of the proposition. [ |

Now, let us give an asymptotic expression for those resonances. We recall that

«p and «q, defined in (3.3) and (3.4), are used in the decomposition of Rk, that is,
ROk = RY + R + R, with

Rt;k,e []/l] 3:lX0( 1", 1)8 , (3.32)

RO (u] =0k ay (p,1)e, (3.33)

R[] (1) = / H(t) (TORH(T, 1) + RN (T, 1) + 6% 5§k2R5"(T,t)) di,  (3:34)

with R5k(T, t) denotes the kernel of R%E see Definition 3.9, and 9 denotes the deriva-
tive part of the remainder in Taylor’s theorem in the Peano form.

Lemma 3.18 For all 6k € K¢, RS satisfies the estimate

H(ﬁ)*lngkf = O(e- e + e - 0%K2) . (3.35)

L£(Xe,xe)

Proof Using that (£f)~! is linear we divide the proof according to the three terms in
(3.34). The proof for the term with 6%k? in it, can be seen immediately using Lemma
3.14.
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€
For the [ u(t)td;R%(t,t)dt =: 5(T) term we have

ey—1 Il ) Cﬁ[’?]
H(ﬁ) 77’2(_ nz,/sz_tzj/v' t—T B mlog(e/2)Ve — 12|
ve2 — 2 1'(7) |Celn]|
< /n2 ez—tzt—r)dT og(e/2) (3.36)

Let us consider the left term first. We split n'(7) = 5'(t) + ('(t) — #'(¢)) and thus can
split the principal value integral into an principal value integral with #'(f) and into a

. . ’ ’ . L a2
normal integral with #(t) — 5’ (t). Using gf« ¥*~*-ds = 7t and that
—&

[5=

NI dt < Cizarjeve,

where C(337) is independent of ¢ and ¢, see also [8, Proof of Lemma 5.4], we can
estimate the left term in Inequality (3.37) to be smaller or equal to

ﬂ’t‘ H’7,(T) Hco([_ag]) + C(:’>.37)8 \/g |77/(T) }60,1/2([_&8]) . (3-37)

As for the right term in Inequality (3.36), consider that

1/ \/ - 7'(7)
\/— t—7

Similarly to the argumentation above and using |77(0)| < ¢, we can infer that

Cen]l < [ (0)] + £°

dz| (0).

/ 1 t / 2 12 /
(Celall < e+ [ HOBLDVE (sl /(0w + Cloampe Ve I (7))

2¢ log(2¢
= o+ 2 (Ctog(2e) + 1) (0|0 + 2B iy e ()
&
thus we have shown with the term in (3.36) the desired estimation for [ p(t)t 0;R%* (T, t)dt.

—¢

For the term [ u(f)t 0;R%*(1,t)dt, we can use the same argumentation, where this
—&

time |77(0)| = 0. This concludes the proof. [ |

Let [ > 1 be an integer, we define

Sflk),e — _2’7TD’ ((_Sék,s)l(ﬁs)—l[l] ’1)

€
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Because of (3.31), we can write
ok, __ - dok,e
A% = cﬁ—ng(l) .

We want to give a second order analytic expression for

S((si(jg = ﬁ (Z(L8)IRke(LE)11], 1),. To this end, we define
. T (T, pen e en
Su) = 5D (E(ﬁ) TRV (LF) 1[1]’1)5’ (3.38)
oke 7T E e\N—1pdokes pey—1
5(1,2) ~ 2|D] (2 (£°)" "Ry (LF) [1]/1)£ , (3.39)
. T (TT, e e en
S5 = 3[p] (F(£ " RE“(e) ') ) (3.40)

We obtain that second order analytic expression with the following lemma:
Lemma 3.19 For all | € IN, we have that
ok,
St I =0(c™),

S‘Eﬁ) —woc?|D|,

S‘(Sfé) =y 0k c?|D|,
Sfi(’g) =0(ec? 4 2 5°K?).

Proof The proof follows from straightforward calculation using Lemma 3.14 and the
expressions in (3.35), (3.32)—(3.34) and (3.38)—(3.40). |

Now we can deduce that
A% = ¢, + wg 2|D| 4 a1 5k 2|D| + O(ec? 4 2 6%K?) .

Now we are able to solve for the zeros in 62k? — A%~#, and thus get the characteristic
values of A%<, To this end, consider that v/1+x =1+ 3x — O(x?) for |x| < 1, thus

ARE = Adke = | /e, (1 + c£%|D| + ok cg%]D| + O(ece + ce 52k2)) , (3.41)
which leads us to the factorization,
8U* — A%F = (5k — AS) - (Sk + AZFF).

Thus, the roots for 62k% — A% are those for ok — A% and k + A%,
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Proposition 3.20 There are exactly two characteristic values for the operator A% in Kc.
Those are approximated by

D D

SkoE = 5kg'g + “0£ | cg’/z + “g | cf + (’)(cf/z) ,
D D

(5k§€ = —5k3’8 — lxog | c§/2 + 061£ | cg + O(CS/Z) ’

Se . 172 . -
Oky =c/ " = 1/—2|D|log w2

oke . @ ﬁ
Ak = \/a(1+c£ D]+ dkees \D\) .

*

Proof We define

For & small enough, the zeros of 5k — Aik{o) are exactly the zeros of 5k — Aik’s, up to a

term in O(c2/?). This follows readily from Rouché’s Theorem.
As for the zeros of 6k — Aik(’f]), we obtain them through the approach

Sk = y1ct/? + yack + 3¢/ + yac?.

Inserting the approach into Aik(’f)) and solving Jk — Aik(’o) = 0, we obtain
_ w|DJ w1 |D|
== M=

An analogous argumentation leads to the zeros of Jk + Aik(f)) .

=1 72=0,

With Proposition 3.20 we immediately obtain Theorem 3.1.

3.3.4 Inversion of A% - Solving the First Order Linear Equation

We know now that A% is invertible for dk € Kc, except at the characteristic values
k = kff‘ and k = k% and at the pole, k = 0. Let us examine, how we can express
(A%E)~1[£oK], where fF is given by (3.17).

First consider that we already know that the equation A%%¢[u] = f°f is equivalent
to

2 (e, De(£%) 1]
=Dl

= (L)1), (342)

Applying (-,1), on both sides, we obtain

Ok,e _
010 (1 g ) = 5 (B 1% 1.

And thus

K T skey -1y ok
(1, 1)e = s3im— e 5 (L) ] e (3.43)
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Lemma 3.21 For 6k € K¢ and ¢ — 0 we have that

1 1
= 14+ O(ce)) .
82k% — A%ke (5 — k%) (5k — 5k°F) ( (ee))

Proof Recall that 62k — A%¢ = (8k — A%*)(6k + AS). Let us first investigate the
function 6k — A, We already established that it has the unique root (Sk‘_sp£ in the set
K¢, for e small enough. Thus 6k — Aik’g can be written as

ok — ASRE = (8k — SK%F) (1 + g5(0K)), (3.44)

where ¢° is an analytic function in K¢, for e small enough. Considering the definition
of A%¢ (3.41), and of (5k‘_5f, Proposition 3.20, we can conclude that g¢° is smooth with
respect to /c.. By the Taylor expansion, we can write ¢° in the form

8°(0k) = g0(0k) + 81(5k)v/ce + g2(0k, v/ce)ce,

where go and g; are analytic in dk and the function g is analytic in the first variable
and is smooth in the second one. By comparing coefficients of different orders of
\/Ce on both sides of (3.44), we can deduce that go(dk) = g1(dk) = 0. Hence, we can
conclude that g°(0k) = g2(dk, \/c¢)ce = O(c,). Similarly, we can prove that

Sk + A%E = (8k — k) (14 O(ce)).

Thus, we can conclude that

1 B 1 1
(SZkZ _ A(Sk,& _6k— Aik,e 5k+Aik,£
B 1 1
(8k — 0K°) (0k — 6k>*) (1 + O(ce)) (1 + O(ce))
1

= Gk — ok ok — o) L T Ol

which completes the proof of the lemma. n
Lemma 3.22 We have
(L)1) =0 (L) M L] + O(6)Oe () + O(8) Oe () ,
(L)L) =(£5) 7 1] + Owe(ed)
for e = 0 in the X norm and § — 0.
Proof We write f%(7) = f°¥(0) + 7 g% (1) with a smooth function g’ € CV1/2([—¢,¢]).
We readily see that ¢ = O(6) and g% = O(5). Recall that

(_Sék,s)l (ﬁe)—l )

agk

(Z{Sk,e) -1 _

I=0
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Using that [|S%* Hﬁ vy = O(c.) and according to Lemma 3.13, ||(£5) 1],
O(ce), we have for n € ]N that

=0(ct™),

XE
= o) || () [rg™ (o))

Xe

(%]
(s (ee) e g (x|

e

Consider that ¢ = O(cl), thus it is enough to show

| g )

So, let us show that. Using Proposition 3.11 we have

= 0(5)0(e).

X¢E

(e e

/\/ —tz‘ (£5) V[rgd )]) dt (3.45)

ﬁa (tg™ (1)) Celtg™ (1) |
/ — dr+mog(£/2)m dt
(3.46)

:/m

—&

T2 82 — {2

Using (a + b)? < 2(a? + b?) and pulling the /€2 — 2 term inside, we obtain that the
term in (3.46) is smaller or equal to

2
(7| VE -2 a(tgt(n) Ce[tg’ ()2 / 2
/ o / e dr +(10g(€/2))2 T |4 69

€
Using [ 1/+/e2 —s?ds = 7 and C[tg*(7)] is a constant, the term is equal to
—&

2
S 1/ m? VeZ — 12 9. (1g% (1)) Ce[rg®™ (1)]?
/ Je—p / F—t e | ar+ (1§g(§/2))2n' (3.48)

Let us estimate both terms in the sum.
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Observe that

/v 2 -T2 0c(18%(7))

t—t

T

/\/ﬁa (tg%k (#) d 4_/\/fr2 (tg% (T ))—at(fgék(t)))d

t—t1 t—t1

Ve2 — 12 |9, (g% ( ))—at(fgék(tde
VIt—1] ViE=1]

9 (18%(7))

< 7t [or (1™ (1)) + /

- (18%(1)) , (3.49)

COVA([—e4])

CO([—ese])

€
where we used that pf V&=’ ds = rtt, and that [ \/tvjzt’_f'dr < C.49)8V/e, With Ciz 49
—¢

being independent of e and t, see [8, Proof of Lemmab.4].
With that, we can estimate the left term in (3.48) to be smaller or equal to

1/m? 20,12 ok 2 sk 2
e <7T 1 o (r8™(0) CO<[—s,1>+C<349) o1 (T))cormus,s])) a
€
) 2 2C2 2
5k (349) 3 Sk
e, 2 g (], G50

€
where we used that f s2/\/€2 — s2ds = €271 /2.
—&

Let us consider the right term in (3.48). To compute C.[t¢°*(7)] we can pick any
T € (—¢,¢). We pick 7 = 0. Thus,

; 1 [ Ve — 72 0y (tgk(t

Cr[re(1)] =0+ £ ! \//L Tt_f (T))d%] 0). (3.51)

With the observation in Inequality (3.49), we can infer that
& 1 2
sl < [ B (i oetes o], ot (D))
2 log(2
= 2 (C10g(20) + 1) e ()|, + B2 ey e Ve for(rg ()]
(3.52)

where we used that

/ log(|t]) ]/ v/e2 — 2 = 2¢(— log(2¢) + 1)
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and where we assumed that ¢ is small enough, so that |log(|t|)| = —log(|t|). Thus,
we have

Celrg™ (D)2 _ 82 (1Hog(2e) ) s P>, 2Ca9)® log(2e) ) s P2
log(e/2)%m S? log(e/2)? |aT(Tg (7)) o 3 log(e/2)? d-(187(7)) co1/2”
(3.53)

Combining Inequality (3.53) and Inequality (3.50) and using that ||0. (tg%(1))|| .0 =
O(6) and |9+ (1g% (7)) | o172 = O(8), we have shown that

| g o)

= 0()0)

and proved Lemma 3.22. |

Proposition 3.23 Let 6k € K¢ \ {0, 5kig, 6k}, there exists a unique solution to the equation
A%£[u] = ok, Moreover, the solution can be written as y = y + p~, where

e f24(0) (£9) (1] 1 1 T ok 1
* = - +5£40) (£ ],
MU e ek \ok— ok ok— ok 2O

1 B 1
Sk — 6k%F 6k — ok

p~ =0(0) (Oxs(cg) ( ) + Oxe(c?) + OX€(€)> :

Proof From A%%¢[u] = o we get that

2 (D)

Vi D[ 62k2 = (L) (3.54)

After rearranging, see (3.42), we derive

K> T, ke
(,1)e = mz((ﬁok’ ) 1)

Then, we obtain by applying Lemma 3.21 that

52Kk?

T ~
,1)e == ((L%)71£9%] 1 — (14 0(c,)) .
(e =3 (N e e e (06
Using that m = alfb (- — 1), we have
T, 5%k? 1 1
,1)e == (L%~ £24 1 — 1+ 0(c)) .

(3.55)
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To get the the solution we use (3.54), but insert (3.55) into it to arrive at

g o z((fékf‘“f)*l[f&k],l)g (Eo‘k,e)fl[l] 1 - 1
G |D| (6K — 5k™*) Sk — 6k% ok — 5k°*
+ (Zék,s)fl[fék] ]

Then from Lemma 3.22 it follows that
Ey _  ((PH0)(£5) T, D) + O(6¢2) + O(S¢)) - ((£9) 1] + Oxe(c}))

) (1+0(ce))

o2 |D|(5K% — 5K%)
| <5k—15k‘_5f - 5k—1(sk‘i€> (14 O(ce)) + fHO) (L) (1] + Ouer(6F) + O (0)
o RO T D) (£9) 1] + Oe (66) + O (Jec)
2D 0K — oK%
| <5k—15k‘_5f - 5k—1(sk‘i€> (L4 Ofee)) + FHO) (L) T 1]+ Oue (867) + O (8¢)
—7 RO L) (L) ] (1 1 o
:2|17Drlf o 53&&[—]&%8( = <5k—5k‘1€_5k—5k‘i€> HOE) T

+O(6)0x:(c2) < L L

- + O(8)Oxe(c2) + O(8)Oxee) .
(Sk—ékiﬁg (Sk_(5k§,£> () X( ) () X()

With that, and using ((£f)7![1],1), = 2|D| ¢, the proof for Proposition 3.23 readily
follows. u
3.3.5 Asymptotic Expansion of our Solution to the Physical Problem

In Proposition 3.10 we established

A3, A1 (1) + Y 62T Byt | ] (1) = £5(T), (3.56)
n=1

and we know that for 6k € K¢ \ {0, 5k‘i£, 6k°} that A% is invertible, see Proposition
3.23. Then for § small enough we can use the Neumann series and obtain

~1
(A(Sk,s + Z 25" fl_(sn)fl — (I—i— (Aék,s)fl Z 25" flf,n) (Aék,s)fl

n=1 n=1

— Z ( A&ks -1 22511 rklg,n) (A(Sk,s)fl

m=0 n=1
(o) [ee) m
— Z <Z _D A(Ske) 1f1j:n> (Aﬁk,e)—l
m=0 \n=1

—(A%E) T 25(A%E)TITRE 4 O(62) O p e ey (1) -
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Thus we have from solving (3.56)
avuék’A — (Aék,e)—l[fék] + 0(52) ,

where we use that f% = ©(9), that T* Y is linear, and the formula for (A%#)~!. With
Proposition 3.23 we split (A%€)~1[f%*] into xSk and u* and thus we have for t € (—¢, €)

o (1)) = 150+ () + 0,

and we see from Proposition 3.23 also that 9,u%* |, = O(6).
Now we want to calculate the first order expansion term in ¢ for the solution in the
far-field. Let z € R?, where z, > 1. The following asymptotic expansion holds.

Lemma 3.24 We have for z € R%, z; > 1,

ud(z) = uglyss , (2) + URkss o (2) + S, 0,4 | A] (2) + S, [0,u% | 4] (2)
+ T2, 0™ [ Al (z) + TYE [P [ A)(z) + O(8%), (3.57)

where for p € X*¢

%) = [ p)rE, G y)doy,
S = [ nr(zy)do,

T == [ | pNgy 0,02, 1%, (2 w)doudoy
TAE) == [ [ NGy (0,00, T, (2, w)dordey

and

i85 (ko2 sin(bkyys ) ek
iyl =k | [ gt - uff op) ) SO gy

KL gin(Skows)
= o 208~ R INGE (- (plk e 40, dory |

5 cos(dkpwy)

@) = | = [ Al i om) ()T (2 ey

# [ 0 = iR N 000, T 2 )y
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Proof We define uf[k(z) = u(z) + f(z) = ulk(z) — u¥;s(z). Then we have from
Proposition 3.5 that

%*(z) = /Aal,u‘”‘( Ng‘1+(z,y)d(7y

= /A 9™ (y)T% (2, y)doy + /Aavu‘”‘(y)R?{l,+(ny>d‘Ty
= S0, u’*| o] + T ,u* ] A].

Using the splitting Fk = Fk p T+ I”lfhe, see Proposition 2.4, we already obtain Si’fp and
Sﬁ’fe. To study the terms uf{‘HS and 7%, consider that

RE,.(zy) = = | N (v,0)3,, % (2 w)dew,

from Proposition 2.9. Thus

/ O (YRS (2, )dey = [ [ (NG (1,002, T (2, w)dordoy

/a 0, (uf —ufoP) (v) R, . (2, )dey
D
=~ [ [ au(uf —uf o P)(y)NG,, . (v,)3,, T 2, w0)derdey . (358)

Using again the splitting VI'X = Vl"l}r,p + VTX , and the explicit formula for l"l_‘hp and
Vl"l_‘hp we obtain the formulas in Lemma 3.24. n

Let us approximate S% and 7. Let z, > 1. We define
i(0kpzo—0k1z 1
S0l (z) = — elPamh ”; /A y2u(y)doy,
i 1
Seolnl(2) =e “”‘121< /A KTz y)doy + /A yzﬂ(}/)%)

= —e¢ = / wy) ), |1”e”(zly1)elIZZ sinh(|l|yz)dey,,  (3.59)
A nez\{o} P
I:=2ntn/p

and

0
Tohalul(a) = et [ [ N, w)uw-(l) do,day,
Toholul(2)i= —e 0 ([ [ uNg L 0,19 (2 w)dedey

Tt <z>) |

34



Lemma 3.25 There exist C(340) > 0, C361) > 0, C362) > 0 and Cz63) > 0 such that, for
all z € R3 with z; > 1 and all y € X¢, it holds that

8%, —8%,0) (=2 V (8%, —8%,0) 1(z)| <Cig0) llpll e8>, (3.60)
‘( 5

S, —8%.0) (2 V (8%, —8%.0) 1(2)| <Cier) Il 46, (3.61)
(5

and
T =T [H)(2) +ilv —T2%,0) 1(2)| <Cie2) Il 2 6, (3.62)
’( )
T = T%0) [M](2) i\ —T%0) [1(2)| <Ciaeay 11l ye - (3.63)
)( ) ) )

Proof Let us consider S% first. Using the following splitting for I%*(z,y), which is
given in Proposition 2.4, we have

rék(z y) - rikp(z x) +r+e(z x)
where

I, (zx) = - W@i“kmklmewklxl , (3.64)

[, (z,7) —e ¥

neZ\{0}
I:=2nn/p

.sinh (\/’l _ (5k1‘2 — 52k2 x2>> 67‘/“*‘57“‘2*527‘“2 . (3.65)

_eil(z]fx1)+i25k1x1
p\/|1— 0ki [ — 62K2

Sik,p,o is the zeroth order term of the Taylor expansion with respect to § of F‘ik,p(z, x),
but without the ¢?(2%2~%171) term, and Sik,e,o is the zeroth order term of the Taylor
expansion with respect to 6 of B T e(z, ), but without the e~ k121 term, which is located
before the evanescent sum in (3.65). To see that, write S¢ ok 0 using

L gita—m)g-llle ginh(|1]xy), (3.66)

which is given through (2.2) for z; > 1, and rewrite [, 9,u’*(y)I'% (z,y)do, with it.
Then we see that the sum in (3.66) is exactly the zeroth order term of the Taylor
expansion. With that, we obtain the formula in (3.59).

Inserting these exact formulas into the expressions in Lemma 3.25 and using

[ s90a = [ o0 Y E=Euwat < gl Il v,
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where ¢ € C%([—¢,¢]) and where we used the L2-Cauchy-Schwarz inequality, yields
the desired estimations for S¢. For 72F it works analogously. n

We define

oF
ui(2) @)
. (2) = T2 o 1] (2),
i (2) = TE o 2)

We then have the following proposition:

Proposition 3.26 Let V, := {z € R} |zy > r}. There exists a constant C 3 67, > 0 such that

ok ok ok ok ok ok ok
u — (UG U cx U Uy u u
s —( sp+ St 7, +tUT.+URps T RHS,¢) Lo (V)

1
+3 H V[ (ks )| HLW(V | (3.67)

1 1
3 2 1 2
= Cloen <5C€ <5k — k% Sk — 5k‘5'8> petoe e ) ’
+ -

for 6, € small enough and r large enough.

Proof According to (3.57), we have
”gk - ”%{S,p - uglhs,e = (Sik,e + Silip + ﬁf{e + T—Efp) [”5k|A] + 0(52) :

With Lemma 3.25 and the fact that u% | , = ud* + uf + O(8?),
ok
(28

1|4 = O(8) and
+e = O(9), we readily proved Proposition 3.26. [ |

Proof (Theorem 3.2) We see that ug’}, u‘f}} and ”is{li{s,e are exponentially decaying in z

and are of order O(4), thus their L*(V,)-norm is of order de~“" for some constant
C > 0. Then with Proposition 3.26 and the change into the macroscopic view with
U (x) = u’*(x/6), we obtain Theorem 3.2. [ |

3.3.6 Evaluating the Impedance Boundary Condition

We switch back to the macroscopic variable U*(x) = u’*(x/5). We approximate our
solution in the far-field with the function

Uk (2) =l — udfoP) (2/6) + u (2/8) + ki (2/6) + ufliss  (2/)

. T S i(kpzo—Fk1z ok
— _ 21&106 121 SIIl(kzZz) _|_e( 222—k121) C(3.68) ,
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where

1 0
C5§68 / e (y)doy + P/A/BD P‘ik( aol (v, w)vy <1> doy,doy,
sin(dk elokiy
+ /a 5 3y (uF — udk o P)(y) ( ;Zj; do, (3.68)

Z'E sin(ékows )

- .l P 10k w
/3D /BD (15" — ufoP) (y)N; aol B ( lcoS((5kzwz) > ‘ dowdoy .

p

Consider that Cg‘ég) O(6) since uk = O(6) and (udf—udkoP) = O(6) and the other

factors are of size O(1).

We want that Uz’;pp satisfies the impedance boundary condition, that is Ué‘pp( z) +

dcIBCOz, Uapp( ) = 0 at 9R? . From (3.3.6), we obtain the condition
e~z C‘(Sé‘_ég) + 5CIBC(—2ia0kze_iklzl + i kpe~m C?§.68)) =0, forallz € R.

After rearranging the terms, we obtain

CtSk

Ce = (3.68)
IBC = .

1 (5k2( C(éf 68) 2110)
Using that 1+O( g =1- O(6), we have

Cék
(3.68)
CIBC = Diag ok +O(9).

This proves Theorem 3.3.

3.4 Numerical Illustrations

In this subsection we compute the impedance boundary condition constant cjgc with
numerical means using Theorem 3.3. We use two geometries, both rectangles, but with
different sizes and for each geometry we have different ranges for the wave vector k
and the gap length ¢. This is because the resonance value K = ko * is proportional
to the square root of the geometry area, and the same holds for the width of the
resonance peak of cjgc. However, we do not have to consider different values of §,
since according to Theorem 3.3 all computations are done with the input Jk, thus a
different § would only scale the first coordinate axis, but would not change the shape
of the curve itself. We fix § = 0.01.

We implement Fi‘ using Edwald’s Method see [17] or [8, Chapter 7.3.2]. We imple-
ment the remainders using Lemmas 2.10, 2.11 and 2.12.

The first geometry has the following set-up. It is a rectangle with length 0.9 and
height 0.9. The period is p = 1 and h = 1. The amplitude of the incident wave
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is a9 = 1. The number of points, with which we approximate the boundary of the
rectangle, is 200. For the wave vector k = ky, we take 341 equidistant points on the
interval [30,200]. For ¢ we pick 5 values, those are {0.1,0.05,0.03,0.01,0.001}. The
result can be seen in Figure 2.

The second geometry has the following set-up. It is a rectangle with length 0.2
and height 0.3. The period is p = 1 and h = 0.5. The amplitude of the incident
wave is a9 = 1. The number of points, with which we approximate the boundary
of the rectangle, is 200. For the wave vector k = ky, we take 301 equidistant points
on the interval [100,400]. For ¢ we pick 5 values, those are {0.1,0.05,0.03,0.01,0.001}.
Consider that the case ¢ = 0.1 means that the whole upper boundary of our rectangle
is the gap. The result can be seen in Figure 3.

Geometry 1, § = 0.01

300
e =0.1 KX =60+3i
e =0.05 k%S =57+2i
250 e =0.03 k%S =55+2i
e =0.01 k%S =52+1i
e =0.001 k&5 =45+41i
200
e
@ 150
=l
100
50 f
0 — | i L |
0 50 100 150 200

k

Figure 2: The plot of the absolute value of the variable cipc depending on the wave vector k
for the first geometry. For every value of ¢, the rounded value of the resonance value k%% is

displayed.

Consider that in Figure 2, for ¢ < 0.01, the resonance splits, so we get two peaks,
due to the geometry, which is large enough that the neighbouring resonators have an
effect on the main one. In the second geometry however, it seems the resonators have
a large enough distance from each other with respect to their width, such that no the
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neighbouring resonators do not affect the main one. See Figure 3.

Geometry 2, § = 0.01

4.5 r
—— e =0.1 k£ =278+6i
4r € =0.05 k% =253-4i
€ =0.03 K =239+3i
3.5+t ——— e =0.01 k%S =215+42i
' e =0.001 kJ< =181+1i
3 -
_l_J 2.5 B
©
|-
— 2 [
1.5
1 -
0.5
0 pmr—— 1
100 150 200 250 300 350 400

Figure 3: The plot of the absolute value of the variable cipc depending on the wave vector k
for the second geometry. For every value of e, the rounded value of the resonance value k2, is

displayed.

4 Two Periodically Arranged Helmholtz Resonators

In this section, we look at two domains D; and D, both bounded and simply connected
domains, which have the same height h. We repeat D; U D; periodically along the x1-
axis, with period p and scale the whole geometry by a factor of 6. Additionally, Dy
and D, have each a gap called A; and A; on their boundary, which allows the incident
wave U(’)‘ to pass through. The incident wave rebounds inside D; and D, and leaves at
the gaps, which then leads to the scattered wave U¥.

We will have a good approximation of the scattered wave in the far-field. Moreover,
this approximation satisfies the Helmholtz equation with a Robin boundary condition
at the xq-axis which approximates a Dirichlet or a Neumann boundary condition de-
pending on the magnitude of the incoming wave vector k and 4.
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4.1 Mathematical Description of the Physical Problem
411 Geometry

)
length(A;) = 2¢ L =
length(As) = 2¢ Uy length(A1) = 2e k
fength{Az)=2¢ 6
A 1 \ Q' =])s (u. UDyHn (ﬁ))
X7 h ” 1X9 ngz 7
. . = P
D, D, = 7”L_:§ (A\,quAn (”>)
o, 9D, OAL Y OA
@ (I L1 sD [
o2 * 0 : P12 oD, 2
—6p/2 %€ 0 % op/2 )

(a) Microscopic, non-periodic view of our two
Helmholtz resonators. The Helmholtz resonators
are contained in the unit cell (—p/2,p/2) X
(0,1). They have the gaps A1 and A, both of
length 2e, which are parallel to the x1 axis and
centered at (—& h)T respectively (&, h)T, where
h € (0,1). uf denotes the incident wave. Dy and
Dy have not to be rectangular in shape.

(b) Macroscopic view of our periodically ar-
ranged Helmholtz resonators, with periodicity op.
All Helmholtz resonators have the form of the
Helmholtz resonators depicted in (a), but are
scaled with the factor ¢. U’é denotes the incident

wave. QF is the collection of all Helmholtz res-
onators and E is the collection of all gaps.

Figure 4: The physical setup. In (a) we have the microscopic, non-periodic view. In (b) we
have the macroscopic, periodic view.

Before we consider the periodic and macroscopic problem, we first define the ge-
ometry of our Helmholtz resonators in the unit cell. Let D1, D, € (—p/2,p/2) x (0,1)
be two open, bounded, and simply connected domains, such that D; and D; do not in-
tersect and where p € R is close enough to 1. We assume that D; U D is a C2-domain.
We define A; C 9D and A, C 9D to be the gap of D; and D, respectively, where A;
and A; are both line segment parallel to the xj-axis. A; is centered at (—¢, h)T and Ap
is centered at (&, )T, where h € (0,1) and ¢ € (0,p), and A; and A, have both length
2¢, where € € (0,1) small enough. To facilitate future computations we assume that
h/p>1/2.

Now we define the macroscopic view, that is, we shrink our domain by the factor
J € (0,00). We define the collection of periodically arranged Helmholtz resonators o,
with period dp, and the collection of gaps of those Helmholtz resonators E°, where a
single gap has length 24¢, as

Q= U5<D1UD2+n<g>>,

neZ

0. U5<A1UA2+n<g>>.

nez

[z
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4.1.2 Incident Wave

Let k := (kq,k2)T € R? be the wave vector. We will fix the direction of the wave vector,
that is k1 /k and kp/k, where k := k| := (k2 + k3)1/2 € [0,0), but let the magnitude k
vary. With that, we define the function U(’)‘ :R?2 — C as

Ulg(x) = goe~ *x1p=ikax2

where 49 € R denotes the amplitude. U} will be our incident wave. We define the
parity operator P : R?> — IR? as
_ ([
P(x1,x2) = (—X2) .

With this we have the reflected incident wave
UK o P(x) = age~F1x1eikon2,
Moreover,
(U5 — UkoP)(x) = —2iage ™17 sin(koxy).
We will also need the following equation

_ —ik1X1 o}
v(ug B USOP) (x) _ ( 2[10](16 1X1 51n(k2x2) > ‘

—2ia0k2€_ik1 1 cos (kzXz)

Consider also that UX and UfoP are quasi-periodic with quasi-momentum —k; p, that

1S
g (x i (75)) = e UG (),

Ukop (x + <g>> = e~ FPLEop(x).

4.1.3 The Resulting Wave

With the geometry and the incident wave, we model the electromagnetic scattering
problem and the resulting wave U : R2 \ 9Q° — C by the following system of
equations:

( (A+K*)U*=0 in R%\aQY,
uk|,—uf|_=0 on =,
o, Uk —o,Ur|_ =0 on &°
U, =0 on 00°\Z,
U =0 on o0\ =,
uk=0 on oRZ%,

(4.1)
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where - |, denotes the limit from outside of Q% and - |_ denotes the limit from inside
of O, and 9, denotes the normal derivative on 9Q’. Similar to diffraction problems
for gratings, the above system of equations is complemented by a certain outgoing
radiation condition imposed on the scattered field U¥ := U* — (U¥ — UkoP) and quasi-
periodicity on U*. More precisely, we are interested in the quasi-periodic solutions,
that is

uk (x + <g>) = e FPUR(x) for x € RZ,
and solutions satisfying the outgoing radiation condition, thus

axZUé‘ - ikzllé‘ — 0 for xp — oo.

Then the outgoing radiation condition can be imposed by assuming that all the
modes in the Rayleigh-Bloch expansion are either decaying exponentially or propa-
gating along the x,-direction. Since in our case we assume that the period of the
resonator structure 6p is much smaller than k, the outgoing radiation condition takes
the following specific form:

(UF — U) (x) ~ ae"™31gk22 a5 x; — oo,
UK(x) ~ (a+1)e hmek22 a5 xy — oo,
for some constant amplitude a € R.

Consider also that in absence of Helmholtz resonators the solution to (4.1) is given
by Ug — UéoP.

4.1.4 The Resulting Wave in the Microscopic View

Given the resulting wave U*(x), the function u%*(x) : RZ \ 9Q! — C, u%*(x) := U (dx)
represents the resulting wave, but where the Helmholtz resonators are scaled-back
and thus are of height  and not 6h. u°f satisfies

(A+ (k) u*=0 in RL\0Q!
wk|,—u*|_ =0 on EI,
9, u’k |+ — 9,1’k |- =0 on =!,
2,u*| =0 on o0\ Z!
9, u’k |-=0 on 00!\ E!,

w =0 on IRZ,

(4.2)

where - | denotes the limit from outside of Q! and -|_ denotes the limit from inside
of 0!, and 9, denotes the normal derivative on 0Q!.
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We can adopt the quasi-periodicity from the macroscopic view and obtain

oK (x + <g>> = e WRPyk(x) for x € RZ.

Defining ul* := u®* — (u3F — udkoP) we also get that

0, ulk — i5kyulk Xy — 0.

We see that u°F solves the same partial differential equation like U* in the re-scaled
geometry, but with the scaled wave vector ék. We will see that we can express u’* as
an expansion in terms of § and we will give an analytic expression for the first order
term.

4.2 Main Results

We assume that ok € K := {k € R|0 # [k| < kD,UD,,min,A /2 and k|2 < inf{|l —
kei|?|1:=2nn/p, n € Z\ {0}}}, where kp,(p,minn is defined as the first non-zero
eigenvalue of the operator —A with Neumann conditions on the boundary 0D; UdD .

If we would extend the domain K to K¢ = {k. € C | Vkiky < kp,up,minna/2}, we
would obtain the following resonance values for our physical problem:

Theorem 4.1 There exists exactly four resonance values in K¢ for U¥. These are for j € {1,2}

3
2
Sk} =ok? (1 + (”jf) ef (Y50 A, 1)(Ys,) ) +0(?),

3
2

ok :5ki;§<—1+( Z) FOY) AL ) (Y. )>+0( %),

where
T 1 1 2 172
‘Skh =\ 5t <2 Sl T Kom) + [4 (K — Koma)” — ki,det] ,
I 1 1 2 1/2
kigz =\ 5% < K1+ Kom) — [4 (K — Koma)” — ki,det] ,

1 (a(0) )1,17T¢¢ 1 (a(0) )227c
£ e _
k*,trl - \/W ( + 4 ’ k*,trz \/W 1+ 4 ’

. 722 (Toy)12(T(0))21 -1

AT (/D /D)) log(e/2)”
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Here, Y5 , = [(Y5.)1, (Y5, )2, with (Y5 ,); being the normalized eigenvector to the eigen-
value (5k‘58 of A, where AS, is given in (4.43) and A, p, A, o) and A, ) are given in

Lemma 4. 15 where (T(1))21, (T1))12, (T(0))21, (Toy)12, (®(1))22, (®(1))1,1, (&(0))22 and
(&(0))1,1 are given in (4.33)-(4.40).

We have the following approximation for the resulting wave uk:

Theorem 4.2 Let V, := {z € R? |zp > r}. There exist constants C(4.3),6(4_3) > 0 such that

|

F- (U U+ U, )Y [ugf—(uf;ﬁu%&u{;mp)] .. @

v

4 Sknpdky —1 4 )
< *3)"
< Cus) <| log ()2 <H(M+M—) H)+ og (@) +oe+8e Cud’ 4§

for & small enough, where

i(kozo—kqz h
Uy (z) = —emkans y L iwday,

pje{lz}
Z ya 0
LI%*( z) =¢ i(kyzz—k121) Z / /8D Nglél (y,w)vw-<1) do,doy,
116{12}
- : sk
K _id(kyzr ) sk ok sin(Skay2) €1
Ugpss p(2) =e |:je{212} /31)]- 9y (U — u3* o P)(y) Skap doy

lk] 5k )
_ _ Nk | vk sin(dkaw, ik,
]62{1:2} /BD /azj uo uo oP)(y) 001, % v, w)va ( %Cos(ékzwz) ¢ dowday | -

Here, fory = ((t1 — & )Y, (t2 + & h)T) € Ay x Ay, we have

y ﬁ(c%Z(AD(YiI*)(M‘SkM‘Sk) Y0 8 fz‘%ﬂT)ﬁ%Cef%ﬁ)
w\y) = s
ﬁ(c%Z(AD(Yi,*)(M‘SkM‘Sk) ) f%’;r)ﬁ%f%’;)

where fﬂi , ‘Sk € C are given by

. i ke~ Ry sin(kay, ) —Z

5k . ok 1 2Y2 Sk

fDl =2iao sin(Okzh)e™ 1~ 2000 / i (ikze_i5k1y1 cos(5k2y2)> Nanl’+ << h ) ’y) oy
dD1UdD,

. ; ke~ %1 sin(5koyy) ¢

ok . SkiE ) 1 2Y2 5k

f, =2iaosin(Ska/)e — 2a05 / g <ikze_i‘5k1y1 cos(5k2y2)> Moo+ ((h) ,y) -
dD1UdD,
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Here, Y5 , is given as in Theorem 4.1 and

S N
T ok 0 Aok | Ok — oKy 0
* 0 Sk—oky | 0 ok — oKy |
1/|D1] 0 }
An =
’ { 0 1/|Dy|

We see from Theorem 4.2 that the function

Uk (2) = (U — UoP) (2) + U, (=) + U (2) + Uy (2),
gives an accurate approximation of U in the far-field. Moreover, it satisfies the
Helmholtz equation in IR with the boundary condition

u{a(pp( ) + (SCIBCazz uapp( ) =0, forze oR? ,

and U;‘pp UK satisfies the outgoing radiation condition.

Using Theorem 4.2 we can express cipc as follows.
Theorem 4.3 The constant in the impedance boundary condition is given as
1
€IBC 21&05’(2 (4'4) * ( )

where C’F . € R is defined as

(44)
Sin((Skzyz) ok

h
ij;A):_f y /(y* y)do, + ¥ / (it =t op) () TR Ty

P iefray/n je{12)
0
=Y / /aD anl (y, w)ve <1> doy,doy, (4.4)
jjei1,2}
iky s
_ | vk sm(ékzwz) i5ky10;
6%2} /aD /8D MO uo )(]/)N301 (y,w)vw (;cos(cSkzwz) ‘ dUWde‘

4.3 Proof of the Main Results

We want to proof Theorem 3.1 - 3.3. First, we express the resulting wave outside
the Helmholtz resonators and the resulting wave inside of the Helmholtz resonators
through operators acting on the resulting wave, but restricted on the gap. This leads
us to a condition with the linear operator ,A’*¢, whose solution is the resulting wave
on the gap up to a term of order 62. We solve this linear system based on the procedure
given in [10]. We will see that it is solvable for a complex wave vector near 0 except
in five points, two of which are the resonances of our system. Then we recover the
resulting wave outside the resonators up to a term of order 5. We will see, that
we can split the resulting wave into a propagating wave and a evanescent one. The
propagating one leads us to the impedance boundary condition constant cipc.
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4.3.1 Collapsing the Wave-Informations on the Two Gaps

Let us consider the resulting wave u’f in the microscopic view, recall Subsection 4.1.4.
We will keep the microscopic view until Subsection 4.3.6. We only look on the main
strip Y := {y € R% ||y1| < p/2}. D is the Helmholtz resonator on that strip and A the
gap on dD. Furthermore, we fix k1 /k =: e; and ky/k =: e; and assume that Jk € K :=
{k € R|0 # |k| < kp,upymin /2 and [k|?> < inf{|] —ke;|?|I :=2rn/p, n € Z\ {0}}}.
Consider that u°* is continuous on the gap A; U A, thus u’f(z) is well-defined for
z € A1 UAs.

Proposition 4.4 Let j € {1,2} and let Nij be as in Definition 2.7. Let z € Dj. Then,
/ 9, u’* N‘”‘ (z,y)doy .
Let z € A;. Then,
= _/A,- avuék(ngIl(Dj(zry)d‘Ty‘ (4.5)

Proposition 4.5 Let Nk le},x be as in Definition 2.8. Let z € Y \ D. Then,

0,4/

whz) = [ NG L Gy)de — [ o (b —uf o P) ()N, , (2, y)doy.

1UA, D1UdD,

Let z € A. Then,

ulk(z) = /A o, * ()N . (z,y)doy — /aDluaDzav(uék—uék P)(y)Njey (2, y)doy, .
(4.6)

Using that u’f is continuous on the gap we can deduce from the following propo-
sition a necessary condition for 9,u% | 5. Assume we can obtain a solution 9,u°* from
that condition, then from Propositions 4.4 and 4.5 we can recover the resulting wave
onY.

Proposition 4.6 (Gap-Formula) Let j,j € {1,2},j # jand let z € A; then

201 9) (NS, )+ Ny 29)) oy + [ 0t (NG, (2 )
]

_ ok _ ok sk, ok
B aDluapzaV(uo Ho )(y)Nanl (z,y)doy — (uy —uy oP)(z). (4.7)

Consider that the right-hand-side in (4.7) does not depend on u’f and it is com-
putable.
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Proof (Proposition 4.4) Let us look at (4.5) first. Let z € dD; then using Green’s for-
mula with (A + k2) u®f = 0 we obtain that

wh(z) = [ u(y) (Ay + )N (2 y)dy
]
= [ w@)ay NG zy)dey — [ (y)Ngh (2, v)doy
Using that avyNg’gj (z,y) = 0on dD; and 9,1 (y) = 0 on dD; \ A; we obtain the desired
equation.
We get the other equation analogously. |

Proof (Proposition 4.5) Let us look at (4.6) first.
Letr >0and U, == {y € R\ D1UD; ||y1| < p/2A0 < ya < r}, U0 := {y €
ou, |y, =0}, oU,— = {y € oU, |y; = —p/2}, dU,+ := {y € U, |y1 = +p/2} and
ou,, = {y € oU, |y, = r}. Then

u(z) = lim [ ul(y)(Dy +K)Njey , (2, y)dy,

r—00 ur

because of the Dirac measure. Using Green’s formula, we have

ulk(z) = lim </u (A + ) ulk(y) N"01+(z y)dy 4.8)

_ (19, N (2 )d 3, u’k ()N d 4.9

Lo 0N oy [l (NS (2 )y (@9)

+ [ u()a,NE, | (z,y)doy, — / 3, ulk (y)NZK (2, y)do, (4.10)
.aLI,,O aur,O

[ e Ny (zy)dey— [ )Ny, )y (411)

+ [ )Ny Lz ydey — [ )Ny (2, )doy @12)
U, , au, .

0, uk (y)Na01 L (z y)d@) . (4.13)

The right- -hand-side in (4.8) vanishes because ul* satisfies the homogeneous Helmholtz
equation. The left term in (4.9) vanishes because N¢ . has a vanishing normal deriva-

+/ ulk( y)BVyNanl+(z y)do, — /au

r,r

0L+
tive on 9Q!. Both terms in (4.10) vanish because of the Dirichlet boundary. The terms
in (4.11) and in (4.12) cancel each other out because of the quasi-periodicity with
quasi-momentum —k;p for ul* and the quasi-periodicity with quasi-momentum k;p
for Nggl L together with the explicit expression for the normal on dU,,_, which is
(—1,0)T, and the explicit expression for the normal on dU,, ., which is (1,0)T. Thus
we are left with

§k(z x) = /E)DluaDz 9, u’ u? (y)Naﬂl (z,y)doy,

wtim ([ 0N ey~ [ dt NG (2)dey ) 818

r—>00
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: ok ok
Using that u¢® and Njg, |

Noi 4 (29) = 705, N58 |, (2,y) +0(1) and 9y, ul(y) = ikoud*(y) +o(1) for yo — co.
With that we can eliminate the integrals within the limes.
Finally, using that 9,u% | aD;UaD,\AUA, = 0 and the definition of ulk, we proved

(4.6).

satisfy the outgoing radiation condition, we can write

We get the other equation analogously. ]
Proof (Proposition 3.6) Using that 1°F is continuous at A; we have that u®* | (z) — u’¥|
(z) = u®*(z) —u*(z) = 0, for z € A,j. Inserting (4.6) and (4.5) we obtain (4.7). [ |

4.3.2 Expanding the Gap-Formula in Terms of Delta
We define fg& : A1 U Ay — C as the right-hand-side of the Gap-Formula 3.6, that is

fggl (z) = /BD b 9y (udk — udk o P)(y)Ng’;ﬂ,Jr (z,y)doy — (udF — ugfopP)(2). (4.15)
1 2

We define [ (1) as fog,((t—¢,h)T) and 5 (1) as fo5, ((T+ &, h)T), for T € (—¢,¢).

Let us define the following operator-spaces and their respective norms:

Definition 4.7 Recall Definition 3.7, we define

XE = X x XE,
[l e = Il e + 2l ye,  for p= (g1, p2) € X7,
V=V x ),

[#llye =l llye + lp2llye,  for p= (p1,p2) € Y°.

Definition 4.8 Let y € X and a > 0. We say y = O =(a) for « — 0 zf% is bounded
as x — 0.

With those spaces we can define the following operators:

Definition 4.9 The following operators are defined as functions from X¢ to Y or from X*¢ to
Ve Let n € N\ {0}, and p = (p1, p2) € X* then

LEp)(7) = o O] [m] (1) = [Cg[ﬂl]<T)] ,

L 0 L& |u2 L[] (1)

[ 1(1)
ICE(p](T) = ’Ci[ﬂl](’f)] _ J ﬁlDﬂdt

|5 [ (7) j; "%(2? N
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ok,e Ok,e
R[] () = [R};Sg R};?g] H (x),
Ryt Ros | M2

o)
— %log (sinh <7;2h>2 + sin (Z(T— t)>2> ]dl‘,

Ry ] (1) =R ) (7)
ol ((59)-(5)) s () ()
Ryl (7) = [ a(t)NGy ( Tf) : (”,; 5)) dt,

st = e ((75 ) (157)) o

‘ / 1 1
Rg{(é [11] (1) 32/#1(0 [ﬂlog (Z) + Elog (smc

where TX_, is given in Lemma 2.2.

For T € (¢ ¢€)?, we also define

F() = [ffv’i(fl)] . (®.16)

I ()

Later, we will show that

ok
o] = a1 o),

49



Proposition 4.10 Let 2¢ < p, let T € (—¢,¢)?, then

A [ ] )+ Eoram, [0 ] ) = 6o

9, u’k

Proof Let z := (T h)T € Aj, where j,j € {1,2}, j # j. From Proposition 4.6 we
have

/ 9, u’k anl (z,y) —I—NaD (z, y) doy + /Ahavu‘Sk(y)Nam (z,y)doy = fo5:(z).
j
Using Lemma 2.2 we can rearrange the last equation and obtain

1 1/|Dj]
z)Z/Alavu‘”‘(y><zri(zly>+nloglz—yH s TR (2y) + R3p (2, y)
]

+Y 5 2rﬁ,n(z,y)>day+ /A 5avu5’<(y)Ng’;)1+(z, y)doy,. (4.17)
]

n=1

Using that A is a line segment parallel to the x;-axis and writing y = y; = (t — &, h)T,
on the gap Ay, and writing y =y = (f + & h)T, on the gap Az, we have that do, = dt.
Using (2.8) for I'Y. (z,y) and using that the expansion in § (Lemma 2.2) is uniform, we
can interchange the infinite sum and the integration. Let y;(t) := 9,1 ()| Aj,» We have
that

fg’;ll(z)z_/: Hi(t) th log |T—| —l—%log <sin <Z(T—t)>z)

2 2
_%log (sinh <7;2h) +sin <7;(T—t)> ) —l—Rg'(‘)l (z, y])—f—RaD (z,yj)|dt

Kelp](7)

- R;sl;g [74;] (1) + 52k2 + ; 6" Zfljfn L”j] (7). (4.18)

Now consider that for 2e < p, we have

L (5050} - s (e

— Liog (7) + Liog|r — | + Liog ( sin
= _log ; —log —log | sinc

r—1) D (4.19)
p
Inserting last equation into (4.18) we obtain that

2 € ok, ok,e ]C£[ n ks

2 e ()4 R () + R (7)o +Z«5 P4, 1] (1) = o (2)
With Definition 4.9 we have proven Proposition 4.10. |
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From Lemma 3.11 we readily get that for 0 < & < 2, the operator L® : X* — Y* is
linear, bounded and invertible and has the inverse

e = | Ll 420)

Since RS and Rgls(]l . are continuous, R%# is a compact operator. Thus we have
] ;

that 2£° + R is a Fredholm operator of index zero. Thus for the operator A%,
extending the domain K to the complex numbers in a disk-shaped form, we will see
that LA’ is invertible except for a finite amount of values of k. Some of those values
are the resonances of our physical system. To that end, we will need the following
result.

4.3.3 Characteristic Values of .A°%¢ and the four Resonance Values

Let us first look at the characteristic values of

2 ... K
ol = 2o+ 0,

where y € X and 6k € K¢ = {k. € C|Vkiks < kp,uDymina/2}. For u,A € X° we
define (g, A)eae == (p1,A1)e + (42, A2)e, where (-, ), is the L?((—e¢, €)) inner-product.
We also define 1:= [1,1]T € X, e; := [1,0]T € X and e, == [0,1]T € X"

Lemma 4.11 Q" has exactly the four characteristic values j:k}s/’(‘; for j € {1,2} with the

characteristic functions yf’g, where

1/2 1/2
S,e _1 o T e\—1 _1 _L
Kio =3 ( 2|Dj] <(‘C) [1]'1>£> 0 < 2|Dj\10g(€/2)> '

yo— ]
02Dl (a2

after imposing (pu1,1)e =1, (p2, 1) = 1.
Consider that ki’g is real and positive.
Proof We are looking for p = [p1, p2]* € X* such that
Q™ fu] =0,

Since (L£°)71[0] = 0, the last equation is equivalent to

2 (LK

i =, (421)
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Applying once (-, e1)eqe and once (-, ep)cee on both sides, we obtain

2 1 (L)AL _ .
(1, 1)e (7_[ + ;) (5k)2 =0, forje{1,2}. (4.22)
If (#j,1)e = 0, then L[] = 0, because of the condition Q% ¢[y] = 0, and then uj =0,
since LF is invertible and linear. But 0 cannot be a characteristic function, by definition.
Hence (yj,1) # 0. Thus the second factor in (4.22) has to be zero. This leads us to

52K = 2|D‘((£S) 1], 1)8, for j € {1,2}.

Using Lemma 3.12, we can calculate that ((£¢)71[1],1), = and obtain the
characteristic values.
As for the characteristic functions, we rewrite (4.21) as
Wi (£ ‘
=— , forje{1,2}.
(i, 1e 2|Dj| (oK)

Imposing the normalization on u we have proven our statement. n

1
log(e/2)”

Let us look at the characteristic values of A%¢. Denote £ = £ + TR and
Soke . Z ([,8)*17'\’,‘5"’8, where we fixed the angles of the incoming wave vector, but let
the magnitude be complex. Using that R°*¢ is in C1/, for € (0,1), and L invertible
and using Lemma 3.14, we can apply the Neumann series, whenever ¢ is small enough,
and thus we have

~ 0k,e

(L™= (T +8%) 7 i —8% s, (4.23)

where Z denotes the identity function in A*.
We then define the R?*2-matrix A% as

1
A%E) o= — 8% e, e;) = —=—((£)'R*1],1),, 424
(A=~ (%) el ey) 2D]|<< )R] 1), (@24
for j,j € {1,2}.
Lemma 4.12 Any characteristic value of A% is a characteristic value of the R>*2-matrix
52k2T, — A%k,

~ ok,
Proof Suppose (5k)? is a characteristic value of A’"¢. Substituting £° with 2™ in
Lemma 4.11, we readily see that

2 (E™) K]
e g =0, (4.25)
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Applying (-, e1)cwe on both sides, we obtain

20y, 4 D (ET R e o, 1) (C)REFI D) _
n T D (0k)? | D2 (0k)? '
(4.26)
Thus,
2 _ _ﬂ(.ulll)e e\ —1pdk,e N 7-[(;42/1)8 e\ —11dk,e
((Sk) (l’lll]‘)g - 2|D1| ((E ) Rl,l [1]’1)8 2‘D2| ((‘C ) Rl,z [1]’]‘)5‘
Analogously,
(982 e 1) = = e () R, ) TR e () RE ) ).
7 £ 2|D1| 2,1 7 £ 2‘D2| 2,2 ’ €
Thus,
/1)8 ) (,ul /1)6
5k)2 (1 } _ Aék,s[ _
607 (i (12, 1)
Hence, if (6k)? is a characteristic value of ,A’®* then it also is a characteristic value of
(6K)2 — A%ke, ]
We define
€ 1= 1
~ log(e/2)°

Proposition 4.13 There exist four characteristic values, counting multiplicity, for the operator
A function in K. Moreover, they have the asymptotic

5k = +0KF 4 60(ce), fore —0.

Proof Recall that the operator-valued analytic function Q% is finitely meromorphic
ok,
kj,Oe ,
pole at 0 with order two in K¢. Thus, the multiplicity of Q%€ is2in K¢. Note that for
ok € K¢ \ {0, iék‘ls’f), +0k, }, the operator Q%* is invertible, because it is of Fredholm

type and because it is injective due to Lemma 4.11. With that,

_ —1
(Q(Sk,s)flR(Sk,s — % (ZI— (£€) 1’C8> 851(,8‘
7T

and of Fredholm type. Moreover, it has four characteristic values + and has a

T 62k2

Thus, ||(Q°%F¢)- 1R e O(ce) uniformly for ék € dK¢. By the generalized

Rouché’s theorem [8, Theorem 1.15], we can conclude that for ¢ sufficiently small,
the operator A% has the same multiplicity as the operator Q% in K¢ , which is 2.
Since A% has a pole of order two, we derive that A% has four characteristic values
counting multiplicity. This completes the proof of the proposition. |
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Let us give an asymptotic expression for those characteristic values.

Let [ > 1 be an integer, we define the R2*2-matrix S‘(S;()’g as

7
ede

(S‘(Slk)re)j,f = _2|7[Dj’ ((_Sék,e)l(ce)—l [ej] ) ej)

for j,j € {1,2}. Because of (4.23), we can write

1
7T
A = e [l%l'

> ok,e
+z:215(” )

|D,|

We want to give a second order analytic expression for

(887 = 2B (30£5) 7 R¥ (L) e e;) .+ To this end, we define
(Sffﬁ))j,; = 2|7;j‘ (g(ﬁs)flniks( £5) Yej] ,e]e) o (4.27)
(Sffji))j,f = 2|71T7j\ (g([«s)*lﬂgkﬁ( £ e)] ,e;) e (4.28)
(Sff’;))j,f = 2‘71;]‘ (%(ﬁs)*lngk,s(ﬁ)fl[ej] ,e;) e (4.29)

where

REGIE = (1010 ) (a1 -
Rl = o e as
(’Réks ]] pt] /y] tatR5k (T,t) + 70 R‘Sk(r b+ 52k2§(25kR;.5’]]§(T,t)) dt. (432)

Here, Rf’]‘(r t) denotes the kernel of (R%%*). . ;7» see Definition 4.9, and 9 denotes the

derivative part of the remainder in Taylor’s theorem in the Peano form and where

ot () () ()9

2
+ %log <7;> — % log (sinh <;[2 h) ) , (4.33)
k=, () (3) + R () (7))
1 T 1 . T 2
+ ;log <P> — 5 log (smh <P2 h) ) , (4.34)



i =2ardo, () () +aubns ((3F). (5F)) . wo
(a(1))22 =0sRYp, <<g> , <;€>> + 95k R) <<g> , (g)) , (4.36)
_\0

, (4.37)

)
(T(0))21 =Njg: <( > , (4.38)
(T1))12 =9skNyey | (<_h(:) , (2 >) , (4.39)
(Tey)a1 =0aN5ey . ((f) : (f)) : (4.40)
We define
&gy = :<“(0))161/’D1\ ) 22/|D2]]
To = :<T<o>)z(,)1/rDlr o 12/|qu

_ [(&@y)11/]Dn|
&) = I 0 “(1) 2/|D2
0 (T(l))12/|D2|:|
T = ! .
™ = (Tay)21/|D1 0

We obtain the second order analytic expression with the following lemma:

Lemma 4.14 For all | € IN, we have that

s —0(e),

and for S‘Sk . S‘(Sk S) and S‘(Sk ), we have

ke _7T2 2
San) =5 (@0 +T(),
Ske o,
5(1,2) =0k ot (0‘(1) + T(1)) ,
S5 =0lec + ¢ 6%K).

Proof The proof follows from straightforward calculation using Lemma 3.14 and the
expressions in (4.30)-(4.32) and (4.27)-(4.29). For S‘(Sk E) we can use the argument in
(3.35). |
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Now we can deduce that

1 2
Ak :ECE [D1| 0

1

Lemma 4.15 There exists a R2*2-matrix A% such that A%%¢ = (Aik"g)2 and

- TTe Okre
A = \/2T (A*,D T At Ty

where

- 0
|Dy|

A*,D - 0 1 ’

i VD2

(e

A 0 = 2 ‘Dl‘
<0 | (T(0))201/1D21/1D1]

V/ID1l++/1Da|
(e

A = 2 ‘Dl‘
<) 7| (Tay)2a1/1D21/1D4]

L /ID1]++/1D2|

Proof We use the following approach:

A = A+ A+ A% + 2l + O().

Thus,

AN = (AJ)? = (A%, + Al + AN + ALY, + O()?
= (Ailfl)zcs + (AilflAi’,(z + Ai’,(zAﬁlfl)Cg/z + ((Ailfz)z + Ai’flAi]fa' + Ail,%Aiﬁ)cg

2

A*,(l)) + O(328%K%) + 0(27?),

(T(o))124/ID1]/|D2| ]

v/ |D1|++/|D2|

((0))2,2
24/|Dy|

(Tay)12v/ |D1l/|D2| ]

v/ |D1]++/|D2|

(2(1))22
24/|Da

5k a0k Sk a0k Sk A0k 5k a0k
+ (ATLAL) + ASTAT, + ATL AT + ATSAY,) + O(cd).

Comparing this equation to (4.41), it follows that

2
(AilﬁAi],{z + Ai]szil,cl) =0,

(adh)? =7 ['Dl

1 ]
0

T 2 T 2 2, 2272
+ Tcg(tx(o) +T(0)) —|—5ch€(a(1) +T(1)) —|—O(8CS —|—C£5 k )

(4.41)

712
((a%)? + 4% A% + A% A%) =7 (k) + Ti)) + Ok(aqry + Tary) ) + O(6%2),
(A% A% + A A% + A% A% + AYA%) =0,
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which implies

1

Sk T D
ALy = 2 ‘0 ! 1 ’
v |D2|
A% =0,
s (&(0y)1,1+0k(w())11 ((T(0))12+6k(T(1))1,2)4/ |D1]/|D2|
_m 24/|Dx| V/ID1l++/|D2| 2,2
A%k — 1 O(0°k%),
*3 24/2 | (T0))21+6k(Ta))21)+/ D2l /| D1 (e(0))2,2+0k (o (1))2,2 +0( )
v/ |D1|++/|Dz] 24/ |Da|
A%
*,4 .

This leads us to

1 0 (x(0))11 (T(0))124/|D11/|Da
Adke — Ec |Dy | _,_E 24/|D1] v/ ID1l++/|D2|
* 2°¢ N 2 | (T(oy)21+/|D2| /D] (&(0) )22
’ V/IDil+/1D| 2/|Da]
5 (e)1a (Tay)124/|D1l/ Do
TTCe 24/|D4| V/ID1l++/]D2| O(3/2 5212 5/2
c'c ok Ofc .
T | o/ I (k2y)22 +0(e )+0(")
v/ |D1|++/|D2| 24/|D2|

]
—_

(4.42)
]

With A%® we can write 62k, — A%¢ = (Okll, — Afk’g)(ék]lz + Aik’g), thus it is
enough to find the characteristic values of (6kl, — A%*) and (8kI, + A%) to get the

characteristic values of 62k2I, — A%~
We define

T TTe
A, =5 (A*,D + TSA*,(O)) . (4.43)
Consider that AJ* = A2, + MA*@ + O(3/2 4 372 52k2)

Now for ¢ small enough, A¢ | is diagonalizable with A5 , = Y5 M (Y5 ,) ! where
Yo, = [(Y5 )1, (Y, )2], with (Y5 )1 being the normalized eigenvector to the eigen-
value 5ki’fl of A% , and (Y , )2 being the normalized eigenvector to the eigenvalue 5ki’f2
of Af ,, and for ¢ small enough, but not zero, 5k‘i’j and 5ki’fz are distinct, since A, (o) is
not zero and thus Af | is not similar to I[,. Then we sort (5k5*’£1 and (5ki”£2 such that the
real part of 5ki’i is greater or equal to cSki’E and

5K 0
M = *,1 s .
b [ 0 5k*:‘§]

We can explicitly compute those values:
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Lemma 4.16 We have that

A 1 1 ) 1/2
5ki,,gl =4/ TTC <2 (k* trl + k* trZ) [4 ( i,trl - ki,trZ) - ki,det] Y

1 1 ) 1/2
5ki,,82 =4/ TTC <2 (k* trl + k* trZ) [4 (ki,trl - ki,trZ) - ki,det] Y

where

. 1 (&(0y)1,17TCe
L = (14O
SRRVAIOY 4
)

1 (&(0))2,27Tce
kKoo =—r—= 1+ —""FT—],
,tr2 |D2| ( 4

. 122 (T))12(T(o))21

w4 (/D] + /D)

With this lemma we especially see that 5k‘i’j = O(c}/?) and (5ki’§ = O(cl/?).

Proposition 4.17 There exists exactly 2 characteristic values for each of the matrix-valued
functions 6kl — A% and Sk, + A, For j € {1,2}, these are

3
2
Sk, _5k58<1+ ("jf) ef (YL,) 1A, ) (Y5, )>+0( 2’2y, (4.44)
%
oKy~ :5k‘iﬁ§< -1+ (njf) (Yi,*)_lA*,(l)(Yi,*)j> + 07, (4.45)

Proof Step 1: Non-perturbed characteristic values. Let us find the characteristic
values and the corresponding vectors for the matrix-valued function dk — A% By
definition,

(Y5 ) H(OkI, — AS )Y, = 6k — ME

Thus we see that the characteristic values of (okl; — AS,) are Ko +p and kiz with the
characteristic vectors (Y5 ,); and (Y{,)2 and similarly we see that the characteristic
values of (okll; + AS ) are —K% 1 and kigz with the characteristic vectors (Y5 ,); and
(Yi,*)z'

Step 2: Existence of the perturbed characteristic values near the unperturbed ones.
We now apply the generalized Rouché’s theorem to obtain the existence of the charac-
teristic values for 5kl[2—A5k’g Observe that (kI — A%, )1 =Y, , (6kI—ME ,) " 1(Y5 ),

,_x

where HY H = ), because of the normalization, thus H k‘s S»IIZ—A H =0(c, E .

We define the domains W; := {k € K¢ | |k — 1| < Cic2} and W, = {k € K¢ |
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|k — k‘i’fz < Cyc2} where Cy, C; > 0. Since A% — AL, = 6kO(3/?) + O(c2/2 + 2/ 5%k?)
and k‘i’j and ki’fz are pairwise different, we can conclude that for ¢ sufficiently small,
there exists C; such that the following inequality holds

| oK1y — A5,) 7 (a0 - a¢ )

<1 forke oW,

and the same holds for C,. Then the generalized Rouché’s theorem yields that there
exists exactly one characteristic value k‘i’j_ and one kg’i in the domain W; U W, for

Skl — A%, thus kf’jr = ki’j + O(¢?) and kg:i = ki’,; + O(c?). For & small enough,
W1 UW, C K¢ and with Proposition 4.13, k‘i:i and one kg:ﬁr are two characteristic

values of the four of A% in K¢. We can apply the same argument for 6k + A%,
Step 3: Expansion of the characteristic vectors. Let Y{ and Y5 be the characteristic

vectors to 6k — A% to the characteristic values k‘ls’i and kgj_ We show that

Yi = (Vi) + O(Vee)
for j € {1,2}. Indeed, note that
SRS T — A | ois = Sk — A5+ O(c7),
since AJ — A%, = O(0k/?) + O(c2/2 + 2/2 6°k?) and k‘ls'i = ki’j + O(¢?) and
Ky = k25 4+ O(d).
Using that 6k — A%, =Y (6kI, — M5, )(Y5,) ! we get
(8K 1, — ME,)(Y:,)1YE = O(&).

Using again that k‘ls',i = ki’j + O(¢c?) and kgﬁr = ki’fz + O(¢2) and the definition of MY ,
we see with (Y5,)71 = (Y2,)TY5,.)~1 (Y5.)T and |[((¥:,,)T¥5,,) || = O(1) that

(YL)1Yi=0(1), (Y5013 = 0(¢'?),
(Y5,02Y1 = O(¢'?), (Y5,)2Y5 = 0(1).

It follows that Yf can be written as
Y5 = (Y5,)) + /25 )+ Ofee) - (4.46)

Step 4: Expansions for the characteristic values
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Using k;.s,’i = ki’j + O(c?), we obtain that

s ok,e N 0,€ € € Ok,e .
Oy — AL | jope = 0Ky — A+ AL — AT e

3

_ TTCe) 2

=Y (0 TV )(vs,) ok T4 oy 2w )
>
=Y (o - M) (v ) - ek T e (v a7t o)
5K (1) ?
o H &

=Y. <a‘k;?;i112 -M;, - *'J4<Yi,*)—1A*,<1)Yi,*> (Y507 +0().

+ O(ce) we have

. 5, ok, _ _ 412
Since ((Sk]./g+ — AY £|k:kf;i)Y§ =0and Y§ = (Y5,)j +c YS )

NI

Ok~ (7rce)
<5k;‘5,'j.][2 - Mi,* _#(Yi,*)ilA*,(l)Yi,* (Yi,*)il ((Yi,*)] + Cg/ZY;(l) +O(c€))

+0(3?) =0 (4.47)

We can rewrite this as

<5kf,’i]lz - Mi,*) (5,0 ((Yi,*) j+ Y g+ (f)(cs))

NI —

Ok~ (7rce)

= T T () A (Y1) O() . (448)

Consider that (Y5,) 1 (Y:,)1 = e :== [1,0]" and (Y5 ,) " 1(Y%,)2 = ez := [0,1]". This
results in

3
TTee)2 -
(ks — %) =k T2 (v )1, ) (v, + O(E2).
Thus
(mc.)2
TTc -
oK) = ok (1 + 48 e/ (Y,.) 1A*,(1)(Yi,*)]-> +0(?).
By a similar procedure, we can prove (4.45). n

434 Inversion of A°%¢- Solving the First Order Linear Equation

We know now that LA’ is invertible for 6k € Kc, except at the characteristic values
k = k% and k = k‘?’f and at the pole, k = 0. Let us examine, how we can express
1+ 1, p p

AR 110K where fOF is given by (4.16), which uses (4.15).
g y
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First consider that we already know that the equation A%“[u] = £ is equivalent

to
2, (B U] ke
;PH_W_( )

Similar to the proof of Lemma 4.12, we get that
~ 0k,

2127 Abke (p1,1)e _ 02 (£ )_1[f5k]/e1)£€98
=4 )hﬂzfl)e]_Z(M)[((Z”"S>-1[f5k],ez>g@j'

We define

g [ eese] o _ [BO)
c (Nak,g)il[fék]/eZ)s@e , o gZ(O) ‘

Lemma 4.18 The inverse of 62k*I, — A% has the following representation:

(822 — A%) 1 = (¥, ) (M) (Y5 )71+ MO

rest 7
where
[ 5k — ok~ 0 ok — okO* 0
Mk — 1,+ Mk — 1,
N 0 sk—okyS | 0 ok — ok |7

[ O | O o) | o)
Moke — Sk—0kyS T Sk—okyS ok—okYS, T Sk—okyS

rest O@?) | 0?0 O(ct’?)
| ok—oky",  ok—okyT  ok—okyS  ok—okyS

Proof As we know,
ST, — A% = (5k — ASF) (6k + AZ).

Since (5ki{ T, — A

e _ 0,8 e _ Adke e
" )Y]- = 0, thus 0k}” YS = A} ‘k:k;?ij' hence

2
| k=K I+

ATEYS = K Y 4+ O(el?),

we have then with (4.46)

(4.49)

(4.50)

(6k — AV = (0k — 0k ) (Y5 + O(el/?)) = (8k — k) (Ye,)i+ O(e’?),

which implies

(6k — ALY = ((Ys,,) + O(e"2) )M,
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that is,
(6k — AL)E = ((YS,0) + Oe")) (M) TH(YS,) + O(’?) 7,
and analogously we get
(6k + AZ)7H = ((YS,0) + Oe"?)) (ME) (VS ) + O(/?)) 7
This leads us to
(K%L — A%) 71 = ((YE,) + O(e2) (M) TH(YS,) + O(e"?)) !
((Y5,0) +O(e"2)) (ME) TH((YE,) + O("?)) . (451
Using
(Y5, +0(e"2) 1Y) + O(e"?)) =T + 0( %),
((Y5) +0(e) " =(Y.) ' +0(e"?),
we proved Lemma 4.18. m

Proposition 4.19 Let 6k € K¢ \ {0, sz‘i i, (5kgi, (Ské ¢ <5k‘S © }, there exists a unique solution

to the equation A°**[u] = f°. Moreover, the solutzon can be written as p = p,. + p~, where
2
e e Skngoky—1 (ye Sk U pey—17 6k
e =cory (69710 (A (v I o)) ) |5 TR,
e =0(0) ((O(e22)+ 00 (0) (IOMEM) | [ MEL] )+ (O (2)+0:(0) ).

where

_ |1/[D] 0
Ap = [ 0 1/!D2\]

Proof From (4.50), we get that

(52k2][2 _A(Sk,s) [Eg;:iij — g((SZkZ)fzk

Thus, Lemma 4.18 gives that

(1) (o ety v i T8

Note that similarly to Lemma 3.22, we have
( ) [fék] fDl (O) ) [1] (5)<OX£<C )+OXE(€))
R (0)(£) 1] + O(8) (Oe(c2) + Oxe (e))
=(L) ] + O(0)(Oxe(e2) + Oxe(e)) -

2
€
2
€
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From (4.49), it follows that
Ok,e

PO 1 g
”:_ZW+2( 6k8) [fék]
=~ e ) [An(0) (M) s, ) I T () 2]
+ )
7.[2

==L (A (0 M) v ) M) ) |
(14 0ae(e) + One(e)) + 5 (£ + O(0) (O (2) + Oe(e)) ) -

Consider that

|

B = —eefif+ 0(0)(0(2) +0(e)).
This lea%s us to
p== g (070 (p (oM v ) ) £E) |

+ ((Oae(el) + Oe(e)) [ (£ 7 11] (Ap ((¥5,0) (MEME) 7 (¥

+0(8)(Oe(@) + O 6)) + Oeled) [AoMEifE]

7T
+ )R
D7

Ok,e ok
M) )
rest L ili=12

T2

=y (€97 (Ap () I ) ) ) |5 ()T A
+O(0) (O () + Oeece) ([} (MFM™) 1) + | MEZ] )
+ O(0)(O:(2) + Oe(e)) + O(B) O (2'%) [ME

e 2 [(29) 1) (An (06, (M) 1 (v:,) ) F) ]t 3 e
+O(6)(Oe(22) + Oe(2)) (IMEMZ) | + | MEEI)

+ O(6)(Oxe(c?) + Oxe(e)) .
This proves Proposition 4.19. ]

4.3.5 Asymptotic Expansion of our Solution to the Physical Problem

In Proposition 4.10 we established
A&ks + Z Fi) l—-k,s avuék | N (T) — fék(T). (4.52)
a 1ok +n avuék ’ As

On the other hand, we know that for 6k € K¢ \ {0, 6k . ok L (5k‘5 ¢ 5k‘5 ¢ 1 that A%

invertible, Proposition 4.19. Then for J small enough we can use the Neumann series
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and obtain .

(Aék,e + Z 25" ’fljsn)—l _ (I+ (Aﬁk,S)—l Z 25" flifn) (A(Sk,S)—l
n=1

n=

I
e

(_(A(Sk,E)l Z 25" fﬁfﬂ) (A(Sk,e)fl
0 n=1

m

Il
agk

(Z _o (Aék,e)—lfljfn> (A(Sk,e)—l
m=0 \n=1

(A% — 25 (A TITE + O(6%) O e ey (1) -

Thus we have from solving (4.52)

[avuék’A1:| — (Aék,s)fl[fék] + 0(52)’

avuék ’ AZ

where we use the formula for (LA%*)~! and the facts that f* = O(8) and f’fl is linear.
With Proposition 4.19 we split (LA%¢)~1[f%] into u%* and u* and thus we have for

te (—e,e)
oL, (15 5)) = i+ 60 + 08,

We also see from Proposition 4.19 that 9,1 | A= 0(0).
Now we want to calculate the first order expansion term in ¢ for the solution in the
far-field. Let z € R2, where z, > 1.

Lemma 4.20 We have for z € R%, z; > 1,

ugk (Z) = uf{kHS p( ) + ”%{s,e (Z) + (Sf)&-k,p + st&-k,e) [avuék | A1UA2] (Z)

+ (Tﬂ{p + Tf:fce)[avuék | AyuA, ] (2) + (9(52) , (4.53)

where for y € X¢

S ] :/1qu Y (z,y)doy,
SEelr(z) 1= /AMZ ()T (2, y)doy,
//\1qu /BDanDz 301,>< 2 w)avwrffip(z, w)do,doy,
B /AlUAZ /3D1U8D2 Bﬂl,x (%w)avwfikle(z,w)dawdgy,
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and

. : l§k1y1
Sk _is(kyzrdyz) / ok ok o py(y) S(GK2y2) e
s, (2) = o, et om) () T g

ik Sil’l(ékzZUz) :
- / / dy (ugk - uO OP)(y>NE)Ql (]/; w)Vw ) (plkzcos((Skzwz) el&klﬂ)ldgwdo-y ’
9D,UdD, 9D;UdD, b

H%—ISe( ) = [— /8D1uaD2 Ay (ut — udk o P) ()T, (z,y)doy
+ / / 9y (1l — uf oP)(y)NaQ1 (y,w) avwl“ikle(z,w)dawday] .
0D1UdD;, 0D1UdD,

Proof We define uf(k(z) = u®(z) + f25,(z) = ul¥(z) — uff;(z). Then we have from
Proposition 4.5 that

ufz) = [ 0 (y)NG, , (2 y)doy

- / 3,u* ()T (z,y)do, + 9’ ()R . (z,y)doy
AUA

AN UA,
= Sfrk [avuék | A1UA2] + Tfk [avuék ’ A1UA2] :

Using the splitting TX = Fl_ﬁ pt Ik ,, see Proposition 2.4, we already obtain Si’fp and
S9,. To study the terms ufi, and 77*, we consider in view of Proposition 2.9 that

RE(zy) = = | N (4,0)3,T% (= w)dow

Hence
dD,UdD,
/ oyl (y)RQl L (zy)doy = — // avu‘Sk(y)N‘snl L(y,w )val"‘z‘(z,w)dcrwday,
AUA; ALUA,
and

a ok p R 4
/3D1U<9Dz (uo MOO )(]/) Ql, +(Z y) oy

=— Oy (uff —ulfop , )y, T°F(z,w)doydoy, . (454
Lo o, 20— w8 0P NGy (3, )20, T (2, ) ey . (458)

Using again the splitting VI'X = Vflfhp + VTX , and the explicit formula for Flfhp and
VF{‘W we obtain the formulas stated in Lemma 4.20. |

65



Let us approximate S and 7%, Let zp > 1. We define

; 1
— i(0kozp—0k1z
Stpalil(z) =~ ) 1 [ you(y)der,

. 1
= 715k1Z1 rO d 7/
Stalpl@ e o ([ wr Gade -+ [
' 1
_e—zéklzl/ 11(21 yl)e
/\1U/\2‘u(y) neZE\{O} P|l\
I:=2rtn/p

and

vap (y)d0y>

22 sinh(|l|y2)doy, (4.55)

_i(Skazo—kyz1) Sk 0
Toholil(e) = e L [ [ )N o) (1) deudey,

— —i5k121 N(Sk , a]/. 1“0 , d d
Toalul(2) = —e (/A1UA2/aDMD2”< S (1,00, (2, ) doudey

e BT u)(2)).

Lemma 4.21 There exist C(y56) > 0, Ca57) > 0, Cy58) > 0 and Cys9y > 0 such that, for

all z € R% with zy > 1 and all p € X*, it holds that
(82, = 88,0) ()| + ; H|V (52, - S%,0) I1)(2)

8%, —8%0) Ml(2) V(S —8¥%0) M(2)
5

and
(72 = 7o) b !+§\v(nﬁ 7o) (12
T = T ) [H)(2) ilv (T — 72k 0) 1) (2)
1)

<Ca56) 71| e 5, (4.56)

<Clsy) lullxed,  (457)

<Ciyss) #ll 30, (4.58)

<Clas9) 1l xe 8- (4.59)

Proof Let us consider S first. Using the following splitting for T%%(z,v), which is

given in Proposition 2.4, we have

[%¥(z,) = T, (2,0) + T%,(2,2),

(4.60)

where
Sk _ sin(0kaX2) iskyzy—kyzy) ,ick
I¥p(zx) =~ Wel o)t
. _ il(21*X1)+i(5k1x1
F(-Sf,e(Z,X) —e~i0k1z ( e B
nezgoy \ PV Il — ki[> — 62k
I:=2nn/p

.sinh <\/]l _ 5k1|2 — 52)2 x2>> eV |1—6k; |2—02k2 2, . (4.61)
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85" po is the zeroth order term of the Taylor expansion with respect to o of ok p(z x),
but without the e(2z2—k1z1) term, and Sik,e,o is the zeroth order term of the Taylor
expansion with respect to 6 of Tﬂ‘ .(z,x), but without the e~¥M171 term, which is located
before the evanescent sum in (3.65). To see that, write S o0 using

1 .
MEx)=-2- Y Wef’@l*xﬂe*'l‘zz sinh(|I]x2), (4.62)
P wezvioy P
I:=2nn/p
which is given through (2.2) for z; > 1, and rewrite [, 9,u% (y)I')(z, y)do, with it.
Then we see that the sum in (4.62) is exactly the zeroth order term of the Taylor
expansion. With that, we obtain the formula in (4.55).
Inserting these exact formulas into the expressions in Lemma 4.21 and using

[ 0o = /4’ mﬂ( )t < [lglleo ll1llx V7T,

where ¢ € C%([—¢,¢€]) and where we used the L2-Cauchy-Schwarz inequality, yields

the desired est1mates for S. For T2F it works analogously. n
We define
ul (2) = STpaln(2),
ik (2) 1= ST 1] (2),
ug(2) =T 0[] (2),
ug(2) = Tol](2)

We then have the following proposition:
Proposition 4.22 Let V, := {z € R3 |2y > r}. There exists a constant C (4 3 > 0 such that

ok ok ok ok ok ok ok

L2(V)

5 |9 [ o i )] (4.63)
< Cugs) (02 (IMEMH) 1) + 62 + 6¢' + %),
for & small enough.
Proof According to (4.53), we have
ud — uRss p — URhis,e = (Sik,e + 8%, + T+ Tﬁp) 1% A un,] + O(6%).
With Lemma 4.21 and the fact that u®* | 5, ua, = pf + p2 + O(82), ||| o = O5)
and ||p%|| .« = O(8), we readily proof Proposition 4.22. [ |

67



Proof (Theorem 4.2) We see that 1} S*, “T* and uRHS . are exponentially decaying in z,

and are of order O(4), thus their L®(V,)-norm is of order de~“" for some constant
C > 0. Then with Proposition 4.22 and the change into the macroscopic view with
U*(x) = u’*(x/6), we obtain Theorem 4.2. [ |

4.3.6 Evaluating the Impedance Boundary Condition

We switch back to the macroscopic variable U*(x) = u%(x/§). We approximate our
solution in the far-field with the function

Unpp (2) 1=(ug — 13" oP) (2/8) + ug; (2/8) + uFs (2/8) + ks  (2/9)

= — 2igge 121 sin(kpzp) + €' i(kaza—k121) C?ﬁ@) (4.64)

where

h 1 0
Cok ::_7/ 5 (10d 7/ / ok W w'()dwd
(4.65) v Jaun, we (v) ‘Ty+p AUA, JaDyuaD, K (y) anl (y, w)v 1) 4wty
Sk ok sin(Skyya) ey
n /a o, 2008 o) () TR, (4.65)

iky s
B sk N sin(dkyws) 6k,
/ / dy (MO MO OP)(y) an (y/ )Vw ( 1 (5k2w2) e dU'de'y .

- COS
0D1UdD; aD1UdD,

p

Consider that Cfi‘65) O(6) since pk = O(6) and (u3f—ugfoP) = O(5) and the other

factors are of size O(1).

We want that U;‘pp satisfies the impedance boundary condition, that is U;‘pp( z) +

dc1pCOyz, Llapp( z) = 0 at IR2. By (4.64), we obtain the condition
p—ikiz C‘(Z‘()S) + (SCIBC(—ziaokze’iklZl + i kpe~m C?i‘.és)) =0, forallz; € R.

After rearranging the terms, we obtain

C5k

S (4.65)
IBC = .

1 (Skz( C(i( 65) 26!0)
Using that 1+(9( y=1- O(6) we have

Cok
(4.65)
C1BC = 2iaq Sko +0(9).

This proves Theorem 4.3.
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4.4 Numerical Illustrations

In this subsection we compute the impedance boundary condition constant cjgc with
numerical means using Theorem 4.3. We use two geometries, both build up upon
rectangles, but with different sizes and for each geometry we have different ranges for
the wave vector k and the gap length e.

We fix 6 = 0.01.

Again, we implement Fjlj‘ using Edwald’s Method see [17] or [8, Chapter 7.3.2]. We
implement the remainders using Lemmas 2.10, 2.11 and 2.12.

The first geometry has the following set-up. There are two rectangles both with
length 0.9 and height 0.9, whose gaps are centered at (—0.5,1)T and (0.5,1)7, respec-
tively. The period is p = 2 and h = 1. The amplitude of the incident wave is a9 = 1.
The number of points, with which we approximate the boundary of each rectangle,
is 200. For the wave vector k, we take 341 equidistant points in the interval [30,200].
For ¢ we pick 5 values, those are {0.1,0.05,0.03,0.01,0.001}. The result can be seen in
Figure 5.

The second geometry has the following set-up. There are two rectangles both
with length 0.2 and height 0.3, whose gaps are centered at (—0.5,1)T and (0.5,1)T,
respectively. The period is p = 2 and h = 0.5. The amplitude of the incident wave
is ap = 1. The number of points, with which we approximate the boundary of each
rectangle, is 200. For the wave vector k, we take 301 equidistant points in the interval
[100,400]. For € we pick 5 values, those are {0.1,0.05,0.03,0.01,0.001}. Consider that
the case ¢ = 0.1 implies that the whole upper boundary of both rectangles are gaps.
The result can be seen in Figure 6.

Consider that the first geometry is the same geometry as in the one resonator case
up to a translated origin and thus Figure 5, has the same appearance as Figure 2.

5 Changing a Small Part of the Boundary from Dirichlet to
Neumann

Let us consider a bounded domain, we can think of it as a cavity, where there is put
up a source point, which emits a wave. On the boundary, we have mounted a device,
which we can toggle to act like the other part of the boundary or to act in a reflecting
manner. As shown in the previous sections, such a device can be constructed using
arrays of Helmholtz resonators. Given a receiving point in the domain, we want to
be able to decide, which of the two options for the device give the higher signal at a
given receiving point.

After establishing a mathematical set-up for the above described environment, we
give the first order expansion term for the difference of the signal between the two
option in terms of the size of the device. To this end, we establish the invertiblity
of an operator, which emerges from Green’s formula, and compute then the inverse
of that operator. Most of the results in this section are inspired by [7], where layer
potential techniques were first introduced for solving the narrow escape problem of a
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Geometry 1, § = 0.01

900

e =0.1 K, =88-10i k)¢, =57+8i

800 € =0.05 kit =T78-Ti k), =b546i

€ =0.03 K. =72-5i k<, =54+5i

700 | € =0.01 A}, =64-3i k)*.. =50+3i

-~ e =0.001 &y, =52-1i k), =4542i
600
_(_) 500 N

@
1=
— 400
300
200
100
0 1 L S|
0 50 150 200

Figure 5: The plot of the absolute value of the variable crgc depending on the wave vector k for

the first geometry. For every value of €, the rounded values of the resonance values kfﬁes = kifl
and kg:f,es = k‘ifz are displayed.

Brownian particle through a small boundary absorbing part. It is worth emphasizing
that, in the narrow escape problem, the small part of the boundary is absorbing while
the remaining part is reflecting. Because of such a difference, the derivation of an
asymptotic formula for the Green’s function here is technically more involved than in
[7]. We refer the reader to [4, 1, 2, 22, 15] for the analysis of the mixed boundary value
problem and the evaluation of the associated eigenvalues and eigenfunctions.

5.1 Preliminaries

5.1.1 Statement of the Problem

Let Q) be an open, bounded, and simply connected subset of R> with a C?-boundary.
Let 0() be partitioned in two open intervals dQ)x and dQ)p such that dQy is a line
segment with length 2e, where ¢ > 0, and with center (O,O)T € R2. For simplicity,
we assume that () is rotated so that d(Q)y is parallel to the first coordinate axis, all
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Geometry 2, § = 0.01

4.5 r
——— e =0.1 K¢, =318-37i k)", =275+38i
4 ———— € =0.05 K", =282-24i k) _ =252+425i
€ =0.03 K", =263-19i k) _ =237+20i
35k € =0.01 K, =232-12i kJ*_ =214412i
€ =0.001 k7C, =191-6i kyt =1814+6i

I<gcl

0
100 150 200 250 300 350 400

Figure 6: The plot of the absolute value of the variable cigc depending on the wave vector
k for the second geometry. For every value of €, the rounded values of the resonance values

b, . 10 Se . 10 .
K res = K5y and k5 = k&5, are displayed.

points on dQy have height 0, and the normal on 9Qy is (0,1)!. Then we fix two
points, one is the source point xg € () and the other the receiving point xg € Q.
We are looking for an asymptotic expansion of the following function in terms of ¢
and an analytic expression for the first order term. This leading order term gives the
topological derivative of the Green’s function of the cavity with respect to changes in
the boundary conditions. In other terms, it describes the nucleation of a Neumann
boundary condition.
Let u% : O\ {xs} — C be the solution to

(Ay + kz) ul,‘(:(y) =do(xs —y) in Q,

Ui (y) =0 on 3Q0p, (5.1)
vau’;':(y) =0 on 9Oy,

where we assume that k € (0, o) is not an eigenvalue to — A with the above boundary
conditions, and thus u'§§ is uniquely solvable.
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X2

Figure 7: This picture depicts Q) C R? with the two disjoint boundary components 0Qp and
0QN. We have a source point point at xg and a receiving point at xg.

Next, we need the function, which satisfies the above partial differential equation
but has the Dirichlet condition on the whole boundary. It is often denoted as the
Dirichlet function Gf,(z,-) : Q\ {z} — C and satisfies

(Ay + kz) G’E)(z,y) =do(z—y) in Q, 52)
G&(z,y) =0 on 0dQ), '

for k € (0,00) not an eigenvalue to — A with the above boundary condition.
We will see that we can express ul,‘cs8 as

u];';(xR) = GK (xs,xR) + O(e) .

5.1.2 The Dirichlet Function
We have the following formula for the Dirichlet function:

Proposition 5.1 Let z € Q, x € Q\ {z} and k not be an eigenvalue to — /\ with the
boundary condition given in PDE (5.2), then we have

Gh(2,%) = T(z,%) + R q(2,%),
where R]é,n is the solution to

(D + ) RE(z,x) =0 in Q,
R’é/o(z,x) = TKzx) on Q.

The uniqueness and existence of R’é’Q in Proposition 5.1 is a standard result. We
are especially interested in a formula for 9,, Gk (z, x), for z € Q, with a smooth enough
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remainder. To this end, we use GX (z,x) = I'*(z,x) + Rlélﬂ(z, x), then from (2.1) we can
extract the first two spatial, singular terms, that is - log(|z — x|) and z2k*log(k|z —
x|)|z — x|?, and obtain a formula with a smooth enough remainder:

Proposition 5.2 Let z € (), x € 0Q) and k not be an eigenvalue to — /\ with the boundary
condition given in PDE (5.2), then we have

1 ve-(x—2z 1
31, Gl (z,x) = 27”(_‘) — R ve- (v —2)(2log(klz — x|) + 1) + Rig (2 %),

where RSG/Q(Z,') c H2(Q).

5.2 Main Results
We define

X = {u € Lz((—s,e))‘/s Ve — 2|u(t)|Adt < oo},
€ - 1/2
e = ([ VE—Eurar)

o= {pel([-ee))|p € X},
) \1/2
lallye = (el + 115 )
Viv={n € V°| p(—e) = p(e) =05 .
We define the operator £f : X* — V¢ and the operator J°¢ : V5 — A,

L) = [ (e log(T—t)at, T (—¢e),

where the 'H.f.p” denotes a Hadamard-finite-part integral. L¢ is invertible and the
inverse is given in Proposition 3.11. J¢ is invertible and the inverse is given in Propo-
sition 5.10. We then have the following result:

Theorem 5.3 Let ¢ > 0 be small enough, o, > 0. The operator —aJ* + BL® : Vi —
X¢ is linear and invertible and the inverse is given in Proposition 5.11. The exact function
(—aJ€ + BLE) Y1) is given in Lemma 5.12.

Theorem 5.4 Let € > 0 be small enough and let k € (0, c0) not be an eigenvalue to — /\ with
the boundary condition given in PDE (5.1) as well as with the boundary condition given in
PDE (5.2). The value ul,i’;(xR) is determined through

ulf (xr) =Gy (xs, &) + G (xs, xr) + G{3) (x5, X)), (5.3)
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where

&
ke . k t -1 e k2 € -1 T
Gl (x5, xR) = _/aVyGQ (xR, (0>) (EJ +E‘C> 0,.Gh (x5, (o) ) | (Bat,
—¢

ke o e k,e _ &2
where G(l)(xs,xR) = O(W) and G(z)(xs,xR) =0 (W)

(e/2)]

5.3 Proof of the Main Results

The idea of the proof is inspired by [7] and is as follows. Using Green’s formula we
readily establish that u];; is a small perturbation of Gf, (xs, -). We see that the difference
0¥ == ub* — Gk (z, ) satisfies the following two conditions:

0¥ (x) = /E)Q avyG]f)(X,y) U]Z(’g(y)ddy, for x € Q),
N
0,05 (x) = —9,,G&(z,x), for x € 9Oy,

where the first one comes from Green’s formula and the second one from the partial
differential equation for ub* and Gk (z,-). Combining both leads us to the condition

1 k?

) €

+ o (logk) +1) [ o< (r)a +/ o8 (12, Rhg 0 ((0) : (5)) dt.

—&

The key now is to invert the operator ;—;j €+ %ﬁs [v%] and proving that the integrals
over (—e¢, ¢) with integrand 0% are then of lower order. The proof for invertiblity uses
a result given in [26, Chapter 11]. For finding the inverse, we use that [J¢ is of the
form 0;H¢, where H¢ is the finite Hilbert transform, and that (ﬁg)*1 is of the form
(H)*[9¢] + C, where (H¢)' is the inverse of H¢ on ker(#¢)*. This, together with

(- +pL) ™ = (L) (BT —aT (L)),
leads us to the inverse. For the estimates we adapt the technique used in [8, Lemma

5.4]. To this end, we have to compute some integrals. To determine them, we use the
mathematics tool Mathematica [19].

5.3.1 Condition on the Gap
Proposition 5.5 Let z € Q and x € O\ {z} then

b (x) = Gh(z,2) + [ 0, Gh(xy) (1) - Gh(z,)) doy.
0N
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Proof With Green’s formula we have
Ul (x) = /Q (A + k) GG (x,y) ub* (y)dy
:/ GK(x,y) (A+k2) uk* (y)dy
a G ks
/ Q(x y)u 50

=GK(x,z +/ amGk (x,y) ks(y)day 0.

G (x,y) avyu “(y)doy,

We claim that for z,x € Q, z # x, we have that G, (z, x) = Gk (x,z). With that claim
we conclude then

Wb (x) =Gh(z, ) + [ 3,Gh(x) ¥ (y)dey
Qn
—GE (2,%) + /a N 84,G (x, ) b () dor, — /a N 3,,G5 (x, ) G (z,y)doy

=Ghlzx)+ [ 2Ghiny) (1)~ Gh(zy)) doy.
Thus the proof follows. To prove the claim, consider that with Green’s formula
Gh(z,x) = /Q (A +K) G (x,y) G (z,y)dy,
_ /ch(x,y) (A +12) Gh(z,y)dy +0+0,
= GIE) (x, 4 ) ’
which is exactly what we wanted. |

Let us define v¥*(x) == uf*(x) — GK (2, x). Thus we see that v¥* satisfies the partial
differential equation

(Ax + K)o (x) =0 in Q,
ob (x) on 09Qp, (5.4)
0,,0%(x) = —9,,G&(z,x)  on 90y,

and from Proposition 5.5 we have for x € O\ {z}
f(x) = / E)VVG’f)(x,y) vl;'g(y)d(fy. (5.5)
N0y

Combining (5.4) and (5.5) we obtain the following condition for UIZ“S:

Lemma 5.6 Let z € Q) and x € 0Qy then

9, Gh(z,%) = v Iim Ve[ | 9, Gh(%y) o¥(y)dey |,
g Yeow

where v, is the outside normal at x.
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Using Proposition 5.2, we have

Vi / BVyG’(‘)(x,y) ks(y)day = Vx/
EIoY

a0y |27 [y — x|?

[1 Y2 — X2
— 5.k (y2 = x2)(2log(Kly — x[) + 1) + Rign(x, y)] “(y)doy . (5.6)

Using that dQ)y is a line segment of length 2¢ with center (0,0)T, we further com-
pute that the right-hand-side in the last equation is

Vx/: [2171(t—x_1;c22+x2_8nk2( )(210g<k (t—x1)2+x§)+1>

+R&@uxgmﬁlﬁﬂu@fmt (5.7)

Pulling the V-operator inside the integral, then pulling the limes in Lemma 5.6 inside
the integral, wherever possible, and considering that d,, = d,,, we obtain

€
, —1((t—x)2 —h)o¥(t) Ko (b)
i o e R st x4
—&

+ 0¥ (£)04,REg (%, (t,O)T)] dt, (5.8)

where we identified ¥ (t) with o¥((t,0)T). This leads us to

—1 (= x)? — k)b (p)
9, G (z, x) e }lgr(\)/ (T dt t3 / t)log |t — x1|dt (5.9)
—&

2 €

+ ;T(Zlog(k) +1) /v’z"s(t)dt—f—/vlg’s(t)axZRSG/Q(x, (t,O)T)dt.

—&

Consider that for i1 > 0

[ ((F—x1)2 —h) o(1) Xy —t
.{ (—xp+np U= [ mh+0—xn}

€

€
(t— x1) O0¥° (1)
t8+/‘(ﬁ—mV+h d.

Using that 0 (—¢) = 08 (¢) = 0, because of the Dirichlet boundary, we can readily

compute that

()2 —hykE) 0% (1) )
;115%% ((t—1x1)2+h)2 dt =— % 1—td_/€'(1_t)2dt’
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where the last integral is the Hadamard-finite-part integral.

Definition 5.7 We define the operators H® : X¢ — X¢and J° : Vi — X*®as

J*E []l] (T) = /f-p- (T‘ufti)zdt'

Remark 5.8 From the discussion above we especially obtain formulas for the operators H® and
JE for p € X*¢ and y € Yy, respectively. These are:

/V d = fim [ T=D BB 4
o) (1= 12+
0—e

o —t)2—h
Tl :_]f ! ”‘(ryfti)zd = —H (] =,g§_s (((T(T _t)t)z +),f)§t)dt.

With Definition 5.7 and (5.9) we then obtain the following proposition:

Proposition 5.9 Let z € Qand T € (—¢,¢), then

o k T _ _L er,.k,e Lz er..ke
uCh (= (§)) = = g ¥+ 4l
k2 T t
+ - (2log(k) +1 / Be(t)dt + / £)0:,RéG 0 <<0>(0>> dt,

where L¢ is defined in Definition 3.9 and v, denotes the outward normal at (t,0)T.

5.3.2 Hypersingular Operator Analysis

We know that £ : X* — V¢ is an isomorphism, where the inverse is given in Propo-
sition 3.11. From [26, Chapter 11.5] we get that J° : V}; — AX® is an isomorphism.
Moreover, we have the following formula for the inverse.

Proposition 5.10 Let 0 < & < 2. The operator J¢ : Vi, — X°¢ is linear and invertible and
has the inverse

(T (1) = —

t—T

Ve =12 [T op(t)dE
! (;/ Joen(®) dt+tCr1+ Cya |,

77



where

are constants depending on y and they are linear in 1.

Proof The proof for invertibility is given in [26, Chapter 11.5]. Thus for every u € YV
there exists exactly one 7 € X such that J¢[u| = 7. Using the fact that the Hadamard-
finite-part integral can be expressed as J¢[u| = 9:H[u], and that H* is isomorphic
up to a one dimensional kernel of the form ker(H¢) = span{(e?> — t*)~1/2}, and the
inverse on ker(#¢)+, which we call (H¢)%, is of the following form (see for instance in
[23]; it is also used in [8, Chapter 5.2.3])

1) = s / VeI g,

we can rewrite J¢[u] =17 as He[u] = [+ C and then write

ey =yt | [T veg] + o
! (% Y dr+/ VETTC ,7), (5.10)

Ny t—7 t—7
—&
N
=— ! % f_SWdT—HttC'—nzC , (5.11)
22 — 12 t—1 J 7
—¢&

where we computed }f o _TZ dt = 7t, see [8, Chapter 5.2.3].
—&

Let us find explicit expressions for the constants C; and C . Consider that the part in
between the brackets in (5.11) has to be zero for the values t = € and t = —¢, so that
we can satisfy the condition u € Vf;. This leads us to the system of equations

Vet T (/ ;7> dr+ meCp— G, =0,
VE—T —& .

/\/; (/ q)d’r—nscf—nzcnzo.

8—|—T
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After solving this, we obtain

Ch_ 1 2e /T dr
I =" 2en " T2 \ )T ’
—&

€
1 27 T
—€
This proves Proposition 5.10. n

Let us consider the operator ——j €+ i‘; LE.

Proposition 5.11 Let ¢ be small enough, «, B > 0. The operator —aJ¢ + BL" : Y — X¢ is
linear and invertible and for y € X¢, the inverse is given by

(~a g+ BLY (1) = (£ [u](1), 65.12)
where
\/BT
() C(513)1e Cisa Ve
\/BT _VEs
/ 2\/7 7€17(S)€ vids, (5.13)

where C(513)1 € C and C(5.13),2 € C are given through solving the system of equations

Ve+ Tantl T) T B
/ e T oy G =0, (5.14)
Ve = Tau(T) 4 T 0. (5.15)

etz 7 logle/2) Crefp) =

Proof From [26, Chapter 11.1] we have that —aJ¢ 4+ BL? is a Fredholm operator with
index 0. Thus we only have to show that it is injective.

Let us show that —aJ* 4 BL® is injective. To this end, consider that with Fubini’s
theorem we have

/log ’T — t| dt /Hs C(5.16) P (516)

where Cs16) = — [ log(|e + t|)u(t)dt. Then we get that
—&
(=T + BL)[H](T) = —a dHE [ (T) + B / HE 1) (£)dT — BCs.16) -
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Now, let u € ker(—aJ* + BLF), it follows that y satisfies

~5 O H () + [ M) = Cng. (5.17)

Deriving both sides, we obtain

—g 2 HE ] () + He[u] (1) = 0.

With the substitution M = H*[u] we obtain a second-order linear ordinary differential
equation with the solution

M(7) = Cs18),1 exp <\/\/B&T> + C5.18),2 €Xp (‘ {;{) . (5.18)

Inserting M into (5.17), we obtain

o E AR
—Cisaspie VP +Ciigpe VP = ﬁc(s.w) : (5.19)

Equation M = H¢[u] has the general solution

v/ &2 _TZM ) »
p(t) = — Yy €2t2< At = Cu |,

compare the proof of Proposition 5.10. We insert this expression into C(5 1) and obtain

C(5.16) =C(5.18), /log le +t|) (/ Ve — 12 exp <£T>dr) dt

+ Cis.18)2 /log le +t|) — — (%\/Texp(\/gr)dr) dt

(5.20)

N

1
— Cum /10g(’€+t|) dt.
2 __ 42
ko Ve —t

Consider that y € Y[, this implies that the expression inside the brackets in (5.20)

has to be zero for t = € and t = —e. This leads us to the system of equations
\/T N -
e TE e+Te Vo
dT—l—C /—d —m*Cp =0, 5.21
Cs18), / (5.18),2 \/ﬁ T—71"Cpm (5.21)
\/e— \f \/
5 18 / £ re dT —+ C(5.18), et T dT — 7T CM =0. (522)
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Using the power series of the exponential function, we have

Vet+Te 7 \ferc
/ N dr—snj:\/& 5 +0(&),

We can compute that

/log (le+1¢]) ﬁdt—nlog( )

With the mathematics tool Mathematica [19] we can further compute for c € R

€
27.[2

; 1 Ve 12
/log(\s + t])\/ﬁ (% ‘:;exp(cr)dT) dt = em? — ch +0().

—&

Using (5.19), (5.21), (5.22), we get a 3 x 3 system of equations, whose only solution
is C518)1 = C5.18)2 = Cm = 0, for € small enough. We conclude y = 0 and that
—aJ*¢ 4 BLE is an injective Fredholm operator of index 0, hence it is invertible.

Let us find the inverse of —aJ* + BLE.

Now that we know that —aJ° + BLF is invertible, we can reformulate the inverse
of the operator as

(—a + BL) = (e (L) +BTIL) N = (L) (BT —aT (L))

where BZ — aJ¢(Lf) ! is an operator from L¢(Y§) to X¢, and it is invertible, because
—aJ* 4+ BLf and LF are, and where 7 denotes the identity operator on X*. Consider
that

e mex ettt oare Lo Cely]
TL) " n) =9:H [(H ) e] + nlog(S/Z)MI

=327 +0,

where (#¢)' is discussed in the proof of Proposition 5.10. Now the general form of
the solution to (BZ — ad?)[u] = 17 is

VBt _ /Bt
pi(t) :C(523) 1€ Ve +Csozpe V&
\/Bs \/,Et

/Bt
2\/7 “/_8’7“) zf .

Then the solution of (LS — aJ¢)[u] = 7 is given through u = (L£¢)"![u,], where the
constant C53)1 and Cs3), are chosen such that (£5)~Yu,) € Y&, which results in
solving a 2 x 2 matrix. |

_ /s
17(5) e Vads. (5.23)
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Lemma 5.12 Let € be small enough, and «, p > 0. We have that

(—aJ®+pL)TA(H) =

B

(58) 1] = Cz00)(£5) 7" [C03h<

t)] . (5.24)

B
where
1 1
Clso4) =7
P (1 L elog(e/2) — 1)) + 0<e3>)

7

RN

)

Using the power series of cosh, the difference between C(s 54y (£) ™ [cosh <
and %(ES)_l[l] yields a term in O(e/|log(e)|).

Proof Using the notation in Proposition 5.11, we have 1 = 1, thus

VBt _ /B
#i(t) =Csos)1€ V% +Csos)0€ V°
N 1 7\\//@ /t \/Bs 1 \\//fit t 7\/\/:5(1 (5.25)
e Ve C e Ve e Veds .
2 /ap —e 2 /ap —e
EL RVZIN|
:C(5.26),1 e Ve 4 C(5.26),2 e Ve 4 B . (526)
Thus
VBt B _ VBt
Orphu(t) = ﬁc(&%),l eve — \\/f;c(azé),ze Ve

Let us solve the system of equations (5.14), (5.15). We readily see that

€
728(97%&)&[ =0.
J /2 — 2

Using the mathematics tool Mathematica [19], we obtain that f f;gdt = mlp(ec),

for ¢ € R, where I, is the modified Bessel function of the first kmd This leads us to

v

B
0 =C(526)1 lo(e g) — C526)2 lo(—¢ Vi
Since I is even we have Cs5)1 = C(526)2- Thus

o, (t) = \\/fEC(S'm sinh (ﬁt) ) (5.27)
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Now we solve

\/£+Tafy[ T B
./ = Jar - iog(e72) Cevinl =0

Then, we obtain

S+T
_/ d = ﬁcwzﬂg 7TI1 (S@)
and

€ VE 2 — 12 aTVl( )

Crepp) =p(0) = £ [— N Sz_tz/ — —d }(0),
y )
_c + +i log |¢| '\/s T ary,(r)drdt’
(5427) \/71{_2 — T

4

_c [ loglt
—-627) zxnz \/gZ_tZP' t—1
—&

Using the power series for the sinus hyperbolicus, we have

e ve2 — 12 sinh <\/BT> 3
loglt] [ ) qear = VPET (ﬂ e L o)
Ve 64 !

e vVe2 — 12 sinh (‘\/fﬁr)
drdt)

Jve-el -t Va4
and
VB _VBe  (VB) &

We infer that

2
Cs, 27)\\/fm ( ﬁ; n O(é)) _log(7:/2) Cis27 (1 n g% + O

This leads us to

7T

1
) log(e/2) B

s B, s

1 ) 1
Cis27) ( T log(e/2) a2t (1- 210g(£/2)> +0( )> = log(e/2) B
Thus

Cs.27) (1 + O(S)) = _;-

Hence, we proved Lemma 5.12.
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Lemma 5.13 Let € be small enough, and «,

Vi into X¢ by

B > 0. Let R be the integral operator defined from

-~ /R(T,t) u(t)dt

where R(t,t) is of class C%/2 in T and t.

For € small enough, there exists a positive constant

C(5428)/ independent of €, such that for all y € Yf;, we have

H (—aJ* + BLY)

TRy

C(5.28)
xe ~ [log(e)]

IRl oz [l xe - (5.28)

Proof We define 7 := R[u]| and use then the notation in Proposition 5.11. It follows

with Fubini’s Theorem that

VB! _ VBt
wi(t) =Cgs, 29) 16 Ve +Ciogpe Vo
\/Et/ ( ) \/\/Esd 1 \GEI‘ /t ( ) _\\asd
i e Vo ds — « S * das
2\/ —817 ° 2\/06156 —577 ¢
C @H: L R (5.29)
= e va e « — x P .
(5.29),1 (5.29),2 5 \/@ H
where
e t \/B(sft) e t _\/E(S*f)
— [ [Rep ™ ugydsdg— [ [Ris.q)e = u(g)dsdg

—& —¢

_/ (/2qu smh(

—& —¢&

)> dS) u(q)dq

VB (s —

NG
i/&meWd
—€
Let us examine those constants. They are given through solving the following system:
Ve+T nyl T) T B
/ e AT ey G = 0, (5.30)
[ ¢ A1, (T)

————~dt = 0. 5.31

| vem= (5.31)
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We compute using L¢[(£¢) 1] = Z and L£[1/+/e2 — #2](0) = —mlog(e/2) that

€ - 281’1
cﬁe[u/1—u<>+£[7ﬂm/v S o),

L
2 Jap e R
€ \/ET
1 .. Ve2—12 (/B eve
2L % Cs2017 =
Vi t

=C520,1 + C(520)2 +

o
N
N
Yo
- Nl
[ ;\
r~]
v
Q.
,.]
| IS
~~
o
N—

=C520,1 1+ C529)2 +

2 \ﬁcmn* (1]

+ Ve, (ﬁiﬁm >> Y cisma (—?iﬁm >>

=C(529),1 <1+£x€2+0( >+C529 2<1+£ +O(e ))

e
2,/ap LE[Ro[pl] -
and for c € R
2 3
/ﬁexp CT)dT: 7rs+7rcs——|—7rc28——|—0(s4),
Ve—1 2 2
and .
exp(c 1) 2

_ 28 4
SZ_TZdT—n+7Tc 5 + O(€%).
—¢&

This leads us to the 2 x 2 system of equations

“iogiery) T O —iglermy TO) <C(5.z9),1>
%n + O(€?) —%n + O(&?) C(529),2

B —
2\} o ( arR [ (D) (5:32)
Tk [UIT
| et dt

—€

Let us give an expansion in ¢ for the right-hand-side. According to see Equation (3.18),
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€
we have that [ pu(q)dg < /7 ||u| y.. Hence, we establish that
—e

€

R [p](t) = —/ (/2R s,q) cosh (W) ds) p(q)dq

_IIRlloof‘ ( €+f>‘f!|ﬂllxw

Then we have

[ <RI 2 /!;4 Yo (e ) an
2[ £3e T
<2 Rl rrmm( B o)

=70 | Rl 1] e (367 + 0<e4>) .

Next we have that

€ e . \/B
sinh (Y= (e +t)
afﬂ)d <n2fumrwumus/s LRCrD)

2 f IRl 1] e ( ﬁww)) .

Finally,

log e+t /7T R[] (T) — 0 R[] (t)
/ ﬁ _/ Ve - P drdt

1/7'( [ VI 0 R (x )dT] -

€

+/10g€+t/7‘[ /\/7773* ddt

—&

1 t
< / Wc533 rre/e dt (3R (1] oo (5.33)
8 J—
—&
log(e +t)/m?
+ / =S LT 4 dt |9 R
J m || [ ]HCO
=C(5.33) log(e/2) ev/e |0 R[] |corsn + € |0 R [p]ll oo (5.34)
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€
where we used that [ Y&=Zdr <C 7t ey/e. We readily see that
fg N (5.33) y

10 R [p]l o1z < Cisas) IR |conre || e
[0: R [p]llco < €Cis36) IRl o 1]l e

(5.35)
(5.36)

where C535 = O(1), and C(535 = O(1), for ¢ —+ 0. Now we can solve (5.32), and

obtain that
C5.20)1 <Cs37) € [|Rl[coarz [l xe (5.37)
C529),2 <C538) € IRl corrz |1l e (5.38)
for e small enough, where C(537) = O(1) and C(533) = O(1), for & — 0.
We have examined the constant. Now we estimate || (£%) ! [p,]|| .. We have
ey—1 e\—1 VB ey—1 /L
(L) () = Cs9)1 ||(£5) [‘3 Ve ] + C(s29)2 ||(£°) [‘3 Ve }
X¢ Xe
1
—— (LR . (5.39
vl Wl .- 639
Consider that for ¢ € R, we have that
H(Ee)_1 [e”] ‘ =151 /e“lds (5.40)
X JooomVe = ¢ v
C 1
(5.41)
5.41
_‘log(‘c’)’ HTFVEZ—SZ X ( )
C
(5.42)
= . (5.42)
[ log(e)|
where we used Lemma 3.14. Then
£V-11R. ]l — [ VT 0R[ul(r) Crefruln]
m2\/e2 — 12 J t—7 nlog(e/2)Ve? —t

In (5.34) we already found out that Creg, [y = O(
consider that

/v 2= T R[] (7)
= 82—t2

— logg(s/Z) )

dt
t—7

U [ ORI — AR (1)
\/71?2 t—T dt

7
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thus

/ \ _T a R*[ ]( )dT
T2 s2—t2 t—1
XE
. 2
1/m — 0 R [](1) — 3R [ (1)
<
< m /\/ t—T dt| dt
—&
2
~|—/ 1/71 E) R* 4
1/7T4 V € 2
S_S \/Sz_tz \/|t— dT dtHaR [ ]HCO'I/Z
1 Ve?
+/ U / “dr dtHatR*[ 110
SZ_tZ
<y o ratm onsse + 5 HaR (1] 1o -

We conclude that

e 0] = VR0 (0 g ) +© raga) + 0 40 (Ggerae)
= IRl O 1553y )
This proves Lemma 5.13. |

5.3.3 Solution to the Main Problem

We know from Proposition 5.9, that

—anG’E) <z, <g>> = (_ ije + k2£8> [v’;e]
+/ e ( ( (2log(k) +1) + 9, RAG <<S> ) (é))) dt.

In the last subsection we saw that the operator (—aJ*+ L), with B = and X = %,
is invertible, thus we have

obe(t) =( - %JE + iﬁf) - [— 3,,Gk, (z, (g)) ] ()
~(- 5= Loy 4; )—1 {/ ok (1) <§72T(210g(k) +1) + 05Rk ((g) , <é>>> dt} .

—&
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Then Proposition 5.5 yields

b (x) = Gh(z,%) + [ 8, Gh(x)o¥ (r)doy
N

2

_ ok _ k L Byt
=Gh(z,x) /aQNavyGQ(xf]/)( 2n‘7+47r£>

2

k ;1 € L € -1
+/BQN aV’J’GQ(x'y)(%rj + 47T£>

() () o

from where we obtain G]("f) and G]("S) in Theorem 5.4.

With Lemma 5.13, that is H —aJt 4 BLE)™
with the simple reformulation

»ﬂ%eewzzﬁﬁ%e@»nﬁafh
6 (-(0)

Consider that f u(t)dt < /7| |pt| ye, see Equation (3.18). Hence we conclude for

y 2
[ ohet0) (g 21og(k) + 1)

—&

€C5m
| log(e

o7 IRllco ([l e and

we can infer

C
< €L (5.43)1
re [ log(e)]

k,e
z

ke

v z

eC5.43)2 ‘
€01/2 |log(e)|

e (5.43)

z,x €O,z # xthat

eC
GY (z,x)| < — (54 (5.44)
Gy (=0l < Jiog(e)

ke & C5.45)

4 < — .
|G(2)(Z,X)’ — |10g(€)’2 (5 45)

6 Nucleation of the Neumann Boundary Condition

In this section, based on Theorem 5.4, we derive a simple procedure to maximize the
norm of the Green’s function. The main idea is to nucleate the Neumann bound-
ary conditions in order to increase the transmission between the point source and
the receiver. By considering a disk shaped cavity, we illustrate by some numerical
experiments the applicability of the proposed approach.
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6.1 The Disk Case

Let Q) be the unit disk and let the source and the receiver be respectively xg = (x,y)
and xg = (&, ). Suppose that the opening dQy is an arc centered at (1,0) with length
2¢.

Denote by p = /x%+ y? the distance between x5 and the origin, and by § =
\/€2 + 12 the distance between x and the origin. Define § = arctan(y/x), and § =
arctan(r/¢). It is well known that the Green’s function in the unit disk is given by

G](‘)(xg,xR)——iH (k|xs — xg|) +ZL Z An(k, 0)]u(kp)e™ =0, 6.1)

n=-—oo
Recall that the cylindrical wave expansion of the free-boundary Green’s function is

— 1H (k|x5 —xg|) = —- Z Jn(kp<)H. HY )(kp>)ei”(9_9), (6.2)

1’17—00

where p- = min(p, ), p~ = max(p, p). Substituting (6.2) into (6.1) yields

[ee]

G\ (xs, xR) 2 AnJu(kp) = Ju(kp<)Hy) (ko ))e®=9). (6.3)

Imposing the Dirichlet boundary condition on (6.3) gives

(1)

where [, is the Bessel function of first kind and order n.
Hence the Green'’s function is

;oo (1)
GI(()(XS/ XR) = _EH (k]xs — XR| + Zl s W}n(kﬁ), (64)

and its normal derivative on dQ)y is

aGk, AN N LY 5 1—pcos(6 — )
op (xs, (1)> o 7kHO (k\/p 1= 2pcos(6~ o)) VP2 +1—2pcos(6 — 6y)

i & Julko)HS (k)
(6.5)
with arctan 6y = 1/t.

Define

I := /2 9y, G& <xR, G)) (—%j“r :;B)—l [ancg (xs, <i)>] (t)dt.



By Proposition 5.11, we have

(—ad®+ BL)THFIE) = (L) ] (1),

where

Cle\[ + Cre \Ft \/j/ f(s)

/ F(s)e Vosds,

and C;, C; are constants determined by (5.14) and (5.15). Therefore,

u;(r):\/E<C e\/i — Cge i 2\/> _e )2cosh(\/E(s—T))ds>.

By Taylor expansion,
uj(t) — uy(0)
Z\/E(Cle\/gT - Cze_\/gT (C1—C)) — —/ f(s) 2cosh(\/B(s —7))ds

f() (cosh(\/g(s—r)) cosh(\/Es)> ds
\/>< \/>+C \/>>r+ ()3/2 _ o) 66)

5 (21O 7O+ B0~ Lo + o)
- (Brrcar-1ro+ fr02) -

3/2
+ (; (&) - 5ro- ;izf(o)€> 24073,

where O(¢g, T,3) denotes the infinite sum of terms of the form C¢" T, where n + m >
3. Denote by

1
c,=Pare) - Lo+ Lo 67)
and by

3/2
=3 () - 50~ Lo 69
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For u;(0) we have

M;(O) :\/E <C1 —C

(C1—G)

1 o . ,B ! u IB ﬁ : IB
— NG (f(O)\/;smh(\/;f:) +f (O)E (—1 + cosh(\/;z?) — 8\/;smh(\/;£)> +O(e3)>
:\/E(Cl - C) — %f(o)s + %f’(o)s2 +0(&%),
while for #;(0) it holds that

0(0) = Co+ G+ —— [ f(s)(eV 5 —eVEoya
s Z\ﬁ - (6.10)

=C+C+ &f(o)(—%é) +0(e%)

2\F/€f 2cosh\/§)ds>

(6.9)

Recall the formula for (£f)~! and Cg:[u;] in Proposition 3.11. Since Cge[u] is a con-
stant, we can simply evaluate it at x = 0. We find that

CUWA:umm—=ﬁ[7ﬂ¢g_tL[€V S LPRID
= u;(0) +/,£ %S nz\/ﬁ & t__TZTM;(T) log |t|dTdt.

From (6.6), we obtain

€ re 1 &2 — T2u)(7)
Ls .lg/v;s 24/e2 — 12 t—

e \/ﬁ(u;(O)+C$IT+C,%ZT2—|—O(£3))

e %enzm t—1

log |t|dTdt

log |t|dtdt

2
-]
=u)(0 /,E n2\/£277rtlog|t|dt+C / \/j > + 7tt) log |t|dt

+C51/8n2m(—£ it + 72t%) log [t|dt + O(e*)

1 2
:f¢<—§<—nmg§»—ien<1+zmg D) +0+ 0
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Here, we have used the fact that

€ /2 _ 2 2
% WVE T =T L a2
¢ t—1 2

¢ log|t| B 2
/_gmdt— nlog<€>,

¢ Ploglt] ,, 1, 2
. \/ﬁdt = —48 7T <—1 +210g <£>> .

Therefore, the following estimation holds:

and

1

Cre[ug] = up(0) + C4“’s2 +0(eh). (6.11)

We now compute C; and C; from (5.14) and (5.15). Applying (6.6) to (5.14), we get

€ E+T / 1 2 o 3 _L B
/_S \/:(”1(0)+Cu,T+Cu,T +O(7%))dt og(e/2) Cre[u] =0,

which implies that

2 3 cl
/ 1 E 2 T S 2 4 _
u(0)me + C,, > +C, 2 " Tog(e/2) (u;(0) + 1¢ )+ 0O(e*) =0.
Combining the last equation together with (6.10) and (6.9), it follows that

3

<\/§(c1 -G — %f(o)e + O(52)> e + c;,”f + cﬁl% +0(e)

) ct (6.12)
_ 4l _ 4 2 4y, sw 2
log(e/2) <C1+Cz 2(Xf(0)€ + O(e*) + 1 e) 0.
Thus,
B B B 1
\/ZS(Cl C2) 7105;(8/2) (Cl + CZ)
_ 1 2 Cllll 2 Cﬁl 3 1 1 2 Cllll 2 4
= &f(O)s R ~ log(e/2) ﬂf(O)s — ¢ + O(€*).
(6.13)
Similarly, from (5.15) we obtain
o SPeci—cy - L
\/;s:(Cl ) log(e/2) (G +G)
— 1 2 Cllll 2 Cﬁl 3 1 1 2 Cblli 2 4
(6.14)
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Therefore,

1 Cu\ o, G 2 3
CG+C = <2“f(0) - 41> e+ 7’10g(s/2)s +0(¢), (6.15)
and . .
C—C= \/T?f(o)s — 2\/§C5,82 + O(&?). (6.16)

Combining together (6. 7) with (6.15) gives

(0)log(e/2)e* + 5 f(0) | 3,
— L log(e/2) + 82 oios (6.17)

= — 5 F(0)log(e/2)€ + 2 F(0) + O(e loge)

c+cz2“

and
cl = —lf(o) +F —if(o) log(e/2)e* + if(o):s2 + O(e?loge) (6.18)
”’ It a\ 2« 4n ’ '
while combining (6.8) and (6.16) together leads to
Ci—Cr = ——£(0)e (0)2 +O(), 6.19)
1—GQ=—F= .
\ /[x 4, /
and . ,
2 g 'y 2 3
Cul - lef (0) + 80(2f (0)8 +O(€ ) (6'20)
Now, we are ready to estimate (£¢)~![u;](t). From Proposition 3.11, we know that
Ve — 2y
(ﬁg)il[ul](t) / U ( )dT—i— Cﬁf[ul]
7T2\/£2 — 12 )¢ t—1 mlog(e/2)Ve? — 12
B Ve —2(u)(0) + CL T+ C2 12 + O(t ))d
nzm /,g t—T !
Cpe[uy]
4 6.21
rlog(e/2)Ve? — 12 (62D
_ 1 TN Ci, 1o, 1,
= Ot (gt
CE‘I 1 2 3 4
Plugging « = 1/(27) and B = k?/(47) into (6.9), we get
S
o €
Cra=r IO
- 21t7~ <—f(0)t2 — f(0)mt + f(0)e* + %f’(O)ezm‘ + %f/(O)szt + O(£3)>
8 —
(6.22)
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Therefore,

e 2

(o o ) v00)

s (SO F O £ FO)F + 57 Ot + 3£ 0)2+O() ) dt

_ (avyc’g) <xR, (2)) +O(£1)> (f(o)in —f(0)827I+O(s3)>

=~ £(0)2¢%3,,Gh <xR, G)) +0(&).
(6.23)

Recall in our setting that f(s) := 9,,Gk, (xs, (i) ) Thus,

€ 2 -

o 0h (30 (1)) (-omr o) [k (5. (5))]

e 1 o 47 o 1 (6.24)
e, s (1)) 2 o () 000

6.2 Numerical Illustrations

Now, two numerical experiments are presented in order to verify the applicability of
the proposed methodology. In each one, the topological derivative is evaluated to
detect the parts of the boundary where a Neumann boundary condition should be

nucleated.
Denote by
oGk 0
Fs(0) := =2 <x5,< >) (6.25)
(9) op 1
and by
oGk 0
R(0) := Q<x<>> (6.26)
RO =52 (x5

Our goal is to maximize ]ul,ﬁ; 2, i.e., the norm of Green function at the receiver. We

plot y(0) := ?R(nava’(‘) <x5, ((1)>> avyc’g) (xR, <(1)>>) as a function of 0.

Set the wave number to be k = 200, the distance between the source and the
origin to be p = 0.4, the distance between the receiver and the origin to be p = 0.2,
the angle difference from the receiver to the source to be 71/3. We divide the whole
boundary into N = 10000 parts, and set N /1000 = 10 parts left and right of each local
maximal point of y(0) to be a Neumann part. Figure 8 presents y(6). Figure 9 gives
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Figure 8: Plot of y(0) as a function of 6.

the corresponding configuration of the boundary, where the red part corresponds to a
Neumann boundary condition and the blue part corresponds to a Dirichlet boundary
condition. The implementation shows that the norm of the Green function G¥, with
Dirichlet boundary at xg is 0.067875, while the norm of the Green function u’fcse with
modified boundary at xg is 32.403610.

7 Conclusion

In this paper, we have established a mathematical theory of micro-scaled periodically
arranged Helmholtz resonators and derived expansions of the scattered fields at the
subwavelength resonances in terms of the size of the gap opening. We have high-
lighted the mechanism of the Neumann and Dirichlet functions to exploit the intrinsic
properties of the wave behaviour near and away from the gaps. With this knowledge
we were able to answer both question; how can we model an array of Helmholtz res-
onators and how can we enhance the signal at a receiving point inside the cavity by
switching the boundary conditions from Dirichlet to Neumann on specific parts of the
cavity boundary.
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rho=0.4, trho=0.2, angle_dt=n/3

0.8r \

06

0.2

0r Source —+

0.2 Receiver — =

0 0.2 0.4 0.6 0.8 1

Figure 9: Nucleation of the Neumann boundary condition.

Our approach opens many new avenues for mathematical imaging and focusing
of waves in complex media. Whereas the results in Sections 3 and 4 are important
for industrial objectives, the results in Sections 5 and 6 can lead to enhanced commu-
nication between devices, like cell phones by improving the transmission between a
source and a receiver through specific eigenmodes of the cavity. However, many chal-
lenging problems are still to be solved. For instance, how to optimize some specific
cavity eigenmodes or how to design broadband metasurfaces which allow for broad-
band shaping and controlling of waves in complex media. These challenging problems
would be the subject of forthcoming works.
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