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Abstract

We consider the dynamical super-resolution problem consisting in the

recovery of positions and velocities of moving particles from low-frequency

static measurements taken over multiple time steps. The standard appro-

ach to this issue is a two-step process: first, at each time step some static

reconstruction method is applied to locate the positions of the particles

with super-resolution and, second, some tracking technique is applied to

obtain the velocities. In this paper we propose a fully dynamical method

based on a phase-space lifting of the positions and the velocities of the par-

ticles, which are simultaneously reconstructed with super-resolution. We

provide a rigorous mathematical analysis of the recovery problem, both

for the noiseless case and in presence of noise. Several numerical simulati-

ons illustrate and validate our method, which shows some advantage over

existing techniques.

We then discuss the application of this approach to the dynamical

super-resolution problem in ultrafast ultrasound imaging: blood vessels’

locations and blood flow velocities are recovered with super-resolution.

Key words. Super-resolution, dynamic spikes, ultrafast ultrasound imaging,
fluorescence microscopy, blood flow imaging, total variation regularization.
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1 Introduction

It is well-known that the resolution of any wave imaging method is limited
by the diffraction limit [3]. Super-resolution is understood as any technique
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whose resolution surpasses this fundamental limit, which is of order of half
the operating wavelength. More precisely, the super-resolution problem can
be stated as follows: given low frequency measurements of a medium, typically
obtained with a convolution by a low pass filter, reconstruct the original medium
with a resolution exceeding the diffraction limit. Since high frequencies are
completely lost in the measuring process, it is impossible to solve this problem
in the general case. It is then natural to focus on the particular case when the
medium is made of a finite number of point sources, with unknown locations
and intensities. This framework finds applications in many imaging modalities,
from the pioneering work on super-resolved fluorescence microscopy [19, 16, 8,
20, 27] (Nobel Prize in Chemistry 2014 [1]) to the works on super-focusing in
locally resonant media [5, 6, 4, 21, 22] and the more recent findings in ultrafast
ultrasound localization microscopy [15, 18].

In mathematical terms, each point source is represented as a Dirac delta
wiδxi

, with unknown locations xi ∈ X ⊆ Rd and intensities wi ∈ C. We have
the sparse spike reconstruction problem: recover

µ =

N
∑

i=1

wiδxi

from the measurements y = Fµ, where

F :M(X)→ R
n (1)

is the measurement operator from the set of Radon measuresM(X) defined on
X. Since M(X) is infinite dimensional, F is not injective, and therefore one
has to use regularization to recover µ. The common choice in this context is an
infinite dimensional variant of the ℓ1 minimization:

min
ν∈M(X)

‖ν‖TV subject to Fν = y. (2)

Mathematical theory on this problem has greatly advanced over the past years.
It includes stable reconstruction of spikes with separation in one and multiple
dimensions [11, 10], robust recovery of positive spikes in the case of a Gaussian
point spread function with no condition of separation [7], exact reconstruction
for positive spikes in a general setting [12] and the corresponding stability pro-
perties [14, 25].

Whenever the dynamics of the medium is relevant, as in the case of blood
vessel imaging, the super-resolution problem for dynamic point reflectors µt

arises. In this case, at each time step one measures Fµt and needs to reconstruct
both the locations of the spikes and their dynamics: we call this problem the
dynamic spike super-resolution problem (see Figure 1). The current approach
for this problem is to perform a static reconstruction at each time step (using the
method discussed above), and then to track the spikes to obtain their velocities
[18]. This approach suffers from three main drawbacks: first, a lot of data
are discarded whenever static reconstruction cannot be performed because of
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particles being too close, second, the information from neighboring frames is
ignored in the first step of the reconstruction and, third, tracking algorithms
are computationally expensive.

In this paper we propose a new method for this dynamical super-resolution
problem based on a fully dynamical inversion scheme, in which the spikes’ loca-
tions and velocities are simultaneously reconstructed. After assuming a (local)
linear movement of the spikes, we lift the problem to the phase space, in which
each spike becomes a particle with location and velocity. The super-resolution
problem is then set in this augmented domain, and the minimization performed
directly with the full dynamical data. We provide a theoretical investigation of
this technique (the analysis shares some common aspects with the one presented
in [17] for a similar problem), including exact and stable recovery properties,
as well as extensive numerical simulations. These simulations show the great
potential of this approach for practical applications, far beyond the predictions
of the theory, which we believe can be further developed.

As mentioned above, one of the main motivations and applications of this
work is ultrafast ultrasound localization microscopy [15, 18]. Ultrafast ultraso-
nography is a recent imaging modality based on the use of plane waves instead
of the usual focused waves [23, 26, 13]. The resolution of ultrafast ultrasound
is determined by the wavelength of the incident wave, and by other factors
such as the length of the receptor array and the range of angles used in an-
gle compounding [2]. Due to diffraction theory, the highest resolution is half
a wavelength, which is of the order of 300µm. Thus, in blood vessel imaging,
blood vessels separated by less than 300µm cannot be distinguished. As in
fluorescence microscopy, randomly activated micro-bubbles in the blood may
be used to produce very localized spikes in the observations, giving rise to a
dynamical super-resolution problem [18], in which both the locations and the
velocities of the bubbles are of interest (the velocities are also used to estimate
the thickness of the blood vessels). This is a framework when our approach can
be immediately applied.

This paper is structured as follows. In Section 2 we describe the dynamical
super-resolution problem and discuss the method introduced in this paper: the
phase-space lifting. In Sections 3 and 4 we study the exact recovery issue in
absence of noise, while in Section 5 we prove a stability result for noisy measure-
ments. In Section 6 we provide several numerical simulations which validate the
method and the theoretical results. In Section 7 we discuss the applications of
this technique to ultrafast ultrasound localization microscopy. Finally, Section 8
contains some concluding remarks and future perspectives.

2 Setting the stage

2.1 The space-velocity model

Let us now introduce our model for super-resolution of dynamic spikes. Instead
of considering a single measure µ, we consider a time-varying measure µt, where
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(a) Position and velocity of the particles: the dots correspond to the positions of particles in
the middle frame (t = t0), and the arrows to the displacement of the particles from the first
frame to the last one.

t−2 t−1 t0 t1 t2

(b) Corresponding measured sequence {yk}k.

Figure 1: Illustration of the dynamic spike super-resolution problem, with para-
meters d = 2, N = 2 and K = 2 and F is a convolution operator by a Gaussian
point spread function.

t ∈ [−δ, δ], and δ > 0 defines our observation window. Since δ is expected to be
small, we can approximate the dynamics of each point linearly. Therefore we
model each point source as a particle displacing with a constant velocity:

µt =

N
∑

i=1

wiδxi+vit, t ∈ [−δ, δ],

where vi ∈ R
d. The measurement vector is then composed of uniform samples

in the observation window tk = kτ for k ∈ {−K,−K + 1, . . . ,K − 1,K}, with
K = δ/τ ∈ N (where N denotes the set of all positive integers):

yk = Fµtk , k ∈ [−K,K].

Figure 1 illustrates the space-velocity model in two dimensions.
In this work, we show that under certain conditions, we are able to recover

the positions xi, the velocities vi and the weights wi simultaneously with infinite
precision, using a sparse spike recovery method.

From now on we will assume that the phase space particles, understood as
positions xi and velocities vi, lie inside the domain

Ω =
{

(x, v) ∈ R
2d : x+ kτv ∈ [0, 1]d, ∀k ∈ [−K,K]

}

, (3)

that is the space-velocity domain in which, for all the considered time samples,
the locations of the particles stay inside [0, 1]d. Let T = {(xi, vi)}

N
i=1 denote the
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set of particles. Furthermore, the set of associated weights wi will be considered
in K, where K can be either C or R.

The measurement operator F :M([0, 1]d)→ Cn is assumed to be of the form

Fν = (〈ν, ϕl〉)
n
l=1 , ν ∈M([0, 1]d),

where {ϕl} is a family of test functions defined on [0, 1]d and 〈ν, ϕl〉 =
∫

[0,1]d
ϕl dν.

Applying F to the measures µk := µtk for every time step k ∈ {−K, . . . ,K}
gives

Fµk = (〈µk, ϕl〉)
n
l=1 =

(

N
∑

i=1

wiϕl(xi + kτvi)

)n

l=1

.

By construction, these measurements are composed of a vector of size n for
each time sample k. We now describe how to express these measurements via
an operator defined on measures on the phase space. Consider the measure
ω ∈M(Ω) and the family of test functions ϕl,k ∈ C(Ω) given by

ω =
N
∑

i=1

wiδxi,vi , ϕl,k(x, v) = ϕl(x+ kτv),

and the measurement operator

G :M (Ω)→ R
n×(2K+1), Gλ = (〈λ, ϕl,k〉)l,k . (4)

With these objects we can write (Fµk)k = Gω, and so the measurements are
given by

y = Gω. (5)

The dynamical reconstruction problem is now set in the phase space, and
consists in the recovery of the sparse measure ω from the measurements (5).
Following the approach for sparse spike recovery, we pose this inversion as a
total variation (TV) optimization problem, in which we seek to reconstruct
positions and velocities simultaneously by minimizing

min
λ∈M(Ω)

‖λ‖TV subject to Gλ = y, (6)

where the TV norm of a measure λ ∈M (Ω) is defined as

‖λ‖TV := sup

{
∫

Ω

f dλ : f ∈ C(Ω), ‖f‖∞ ≤ 1

}

.

We will call (6) the dynamical recovery, whereas (2) will be called the static
recovery. The aim of this section is to determine conditions under which exact
recovery holds, namely when ω is the unique minimizer of (6). In this way, the
recovery of the measure ω from the data y reduces to a convex optimization
problem.
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2.2 The perfect low-pass case

Instead of studying the general framework outlined so far, in order to highlight
the main features of this approach we prefer to focus on the particular case
of low-frequency Fourier measurements, which represents a simplified model
for many different applications. Thus, the theoretical analysis discussed below
refers only to this situation, even though most parts may be extended to the
general case of a convolution operator.

The low-frequency Fourier measurements are expressed by the complex si-
nusoids ϕl(x) = e−2πix·l for l ∈ Zd with ‖l‖∞ ≤ fc, where fc ∈ N is the highest
available frequency for the considered imaging system. The static measurements
are given by

(Fν)l =

∫

[0,1]d
e−2πix·l dν(x), l ∈ {−fc, . . . , fc}

d
.

With dynamical data, for k ∈ {−K, . . . ,K}, we have ϕl,k(x, v) = e2πi(x+kτv)·l

and so

(Gω)l,k =

∫

Ω

e−2πi(x+kτv)·l dω(x, v) =

∫

Ω

e−2πi(x,v)·(l,kτl) dω(x, v). (7)

This expression shows that our data consist of low-frequency samples of 2d-
dimensional Fourier measurements restricted to the d-dimensional subspaces
{(ξ, kτξ) ∈ R2d : ξ ∈ Rd} for k ∈ {−K, . . . ,K}. Thus, our problem is in
principle harder than the one considered in [11], in which one measures all low-
frequency Fourier coefficients, and not only

{

(l, kτ l) : l ∈ Z
d, ‖l‖∞ ≤ fc, k = −K, . . . ,K

}

, (8)

and different from the one considered in [17], in which the Fourier transform is
sampled along lines. For a visual representation of this restriction in the case
d = 1, see Figure 2.

3 Exact recovery in absence of noise

3.1 Dual certificates

As it is standard in convex optimization, it is useful to consider the dual problem
to study the exact recovery for (6). In order to do this, we need to introduce
the concept of dual certificate. We use the notation sgnKN = {η ∈ KN : |ηi| =
1 for every i = 1, . . . , N}.

Definition 1 (Dual certificate). Let T = {(xi, vi)}i=1,...,N ⊆ Ω be a configura-
tion of particles and η ∈ sgnKN . A dual certificate of the dynamical recovery
problem (6) is a function

q(x, v) =

K
∑

k=−K

∑

‖l‖
∞

≤fc

ck,le
i2πl·(x+kτv), (9)
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Figure 2: The allowed frequencies for the full low-frequency case (left) and in
our case, when d = 1, fc = 3 and K = 2.

where ck,l ∈ C, obeying

{

q(xi, vi) = ηi, i ∈ {1, . . . , N},
|q(x, v)| < 1, (x, v) ∈ Ω \ T.

(10)

In the following, we shall say that a function of the form (9) has dynamical
form.

In Figure 3, we present an example of a dual certificate for the dynamical
recovery problem, which was computed using a predefined kernel as in [11].

The existence of a dual certificate guarantees exact recovery for the minimi-
zation problem (6). More precisely, we have the following result (for a proof,
see [11, Proposition A.1]).

Proposition 2. Suppose that for every η ∈ sgnKN there exists a dual certificate
for the dynamical recovery problem, and let ω̂ be a minimizer of (6). Then
ω̂ = ω.

With this proposition in hand, our problem reduces to finding conditions
under which dual certificates exist. As mentioned above, the static recovery
problem was treated in [11], but their methodology cannot be transferred di-
rectly to our case since the static dual certificates are constructed with all low
frequency coefficients, whereas in our case we have access only to the frequencies
given by the set (8).

The particular structure of functions with dynamical form (9) allows for a
simple decomposition

q(x, v) =
1

|K|

∑

k∈K

qk(x, v), qk(x, v) =
∑

‖l‖
∞

≤fc

ck,le
i2πl·(x+kτv),
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Figure 3: Example in d = 1 of a dual certificate for N = 5 particles (inside
the red circles) with real weights. The parameters are K = 1, fc = 20 and
τ = 0.025. The positions, speeds and weights were selected at random.

where K ⊆ {−K, . . . ,K} is a subset of the time samples that is used to construct
the dual certificate. Observe that the functions qk are constant along the d-
dimensional subspaces parallel to {(x, v) ∈ R2d : x + kτv = 0}. Thus, in
principle they can be seen as functions of [0, 1]d ⊆ Rd instead of Ω ⊆ R2d. More
precisely, we write

qk(x, v) = q̃k(x+ kτv), q̃k(y) =
∑

‖l‖
∞

≤fc

ck,le
i2πl·y.

Consider the values of these functions on the location of the particles at each
time

γi,k := qk(xi, vi) = q̃k(xi + kτvi), i ∈ {1, . . . , N}, k ∈ {−K, . . . ,K}. (11)

The functions qk(x, v) are constant along the affine spaces

Li,k := {(x, v) ∈ Ω : (x− xi) + kτ(v − vi) = 0},

which contain the particle i. This implies that the constants γi,k propagate
along them, namely

qk(x, v) = γi,k, (x, v) ∈ Li,k.

In other words, the values of the dual certificate on Li,k are completely deter-
mined by γi,k. Moreover, by (10), these values must satisfy the conditions

1

|K|

∑

k∈K

γi,k = ηi, i ∈ {1, . . . , N}. (12)

In Figure 4 we present an example in d = 1, with three static particles (N = 3)
and three time measurements (K = 1). The values of q are fixed by γi,k on
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(a) For a single particle (x1, v1), the re-
spective lines L1,k and the values γ1,k
that add up to the value η1 in (x1, v1).

x

v
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•

x2
•
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•
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©← γ1,−1+γ2,0+γ3,1
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γ
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(b) A configuration of three static par-
ticles, located in (x1, 0), (x2, 0) and
(x3, 0), with the values γi,k propagating
along the lines Li,k.

Figure 4: The geometries of the problem for some simple configurations in one
dimension (d = 1) with three time measurements (K = 1) and K = {−1, 0, 1}

.

each line Li,k, and in particular in their points of intersection. As we shall see
below, the problematic points are those where several lines (or d-dimensional
affine subspaces) intersect, as in the two circled dots in the figure.

A natural way to build dual certificates for the dynamical problem is to
consider dual certificates for the static problems at each time step in K and
then to average them. In particular, we make the choice γi,k = ηi for every i
and k. More precisely, we have the following definition.

Definition 3 (Static average certificate). Take T = {(xi, vi)}i=1,...N ⊆ Ω. Let
η ∈ sgnKN and K ⊆ {−K, . . . ,K} with |K| ≥ 3. Assume that for every k ∈ K
there exists a static dual certificate, i.e. there exists q̃k(x) =

∑

‖l‖
∞

≤fc
ck,le

i2πl·x

such that
{

q̃k(xi + kτvi) = ηi, i ∈ {1, . . . , N},
|q̃k(y)| < 1, y ∈ [0, 1]d \ {(xi + kτvi)}

N
i=1.

(13a)

We call the function q(x, v) defined as

q(x, v) =
1

|K|

∑

k∈K

qk(x, v) =
1

|K|

∑

k∈K

q̃k(x+ kτv) (13b)

a K-static average certificate.

If static dual certificates exist for every time sample k ∈ K, we can immedi-
ately build a static average certificate q(x, v) by using (13b). By construction,
it satisfies

{

q(xi, vi) = ηi, i ∈ {1, . . . , N},
|q(x, v)| ≤ 1, (x, v) ∈ Ω \ T.

(14)
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This function almost satisfies (10), except that it may happen that |q(x, v)| = 1
for some (x, v) ∈ Ω \ T . Take as example the configuration of points given
in Figure 4b with η1 = η2 = η3 = 1 and K = {−1, 0, 1}. The static average
certificate will value 1 in each of the particles and by construction γi,k = 1. As
a consequence, q will have value 1 also in the circled points, in which |K| = 3
lines Li,k intersect, hence breaking condition (10).

In order to ensure that the configuration of particles {(xi, vi)}i admits a dual
certificate, we characterize these conflictive points.

Definition 4 (Ghost particles). Let {(xi, vi)}i=1,...,N ⊆ Ω be a configuration of
particles and K = {k1, . . . , km} be m = |K| time samples. A point (g, w) ∈ Ω is
a ghost particle if there exists a set of different indexes i1, . . . , im ∈ {1, . . . , N}
such that

m
⋂

p=1

Lip,kp
= {(g, w)}.

To give the intuition behind the definition of ghost particles, recall that the
elements of Ω represent the trajectories of moving objects in [0, 1]d: given a
time k, a particle (x, v) ∈ Ω describes an object located in x + kτv. From
this we notice that the set Li,k represents all possible moving objects in [0, 1]d

that at time k would be placed at the same location as the particle i, since
x + τkv = xi + τkvi. Therefore, ghost particles can be understood as possible
objects that at every time sample share their location with a given particle. In
the example presented in Figure 4b, the highlighted ghost point on top of the
particles represents an object moving from left to right, that for k = −1, 0, and
1, would be located in x1, x2 and x3 respectively.

3.2 Main result

We are now ready to state the main result of this section. Several comments on
the assumptions are given after the proof.

Theorem 5. Let T = {(xi, vi)}i=1,...,N be a configuration of N particles, w ∈
KN and K ⊆ {−K, . . . ,K} be such that |K| ≥ 3. Let

ω =
N
∑

i=1

wiδ(xi,vi) ∈M(Ω)

be the unknown measure to be recovered. Assume that:

(1) for every k ∈ K and η ∈ sgnKN there exists a static dual certificate q̃k(x)
satisfying (13a);

(2) and the configuration does not admit ghost particles.

Then ω is the unique solution of the dynamical recovery problem (6), where G
is given by (7).
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Proof. By Proposition 2, it is sufficient to construct a dual certificate for the
dynamical recovery problem. Thanks to assumption (1), for every η ∈ sgnKN

we can build a K-static average certificate q(x, v). By (14) and assumption (2)
it is enough to prove that

|q(x, v)| = 1 =⇒ (x, v) ∈ T ∪G,

where G is the set of all the ghost particles of the configuration.
Note that for k1 6= k2 and any two i, j ∈ {1, . . . , N}, the set Li,k1

⋂

Lj,k2

has at most 1 element. In particular, we notice that Li,k1

⋂

Li,k2
= {(xi, vi)}.

This observation will be useful below.
Suppose |q(x, v)| = 1. Since q(x, v) is defined as an average of terms qk(x, v),

where each of them satisfies |qk(x, v)| ≤ 1, a necessary condition for |q(x, v)| = 1
is that for every k ∈ K we have |q̃k(x+kτv)| = |qk(x, v)| = 1. By definition that
happens exclusively if for every k ∈ K, (x, v) ∈ Li,k for some i ∈ {1, . . . , N}. In
other words, there exists a family of indexes ik ∈ {1, . . . , N} such that

{(x, v)} =
⋂

k∈K

Lik,k.

There are two cases: if some of these indexes repeat (i.e. ik1
= ik2

, for k1 6= k2),
then we know that (x, v) must be equal to particle ik1

. In the case none of the
indexes ik repeats, then by definition (x, v) is a ghost particle.

3.3 Comments on the hypotheses of Theorem 5

Let us now comment on assumptions (1) and (2), and show why these are easily
satisfied. Let us start from assumption (1), namely the existence of static dual
certificates.

Remark 6. Take k ∈ {−K, . . . ,K}. There exists a static dual certificate q̃k(x)
satisfying (13a) in any of the following situations.

(a) The particles at time step kτ are sufficiently separated, namely

‖(xi + kτvi)− (xj + kτvj)‖∞ ≥
Cd

fc
, i 6= j, (15)

and fc ≥ C ′
d, where Cd, C

′
d > 0 are constants depending only on the

dimension1 [11].

(b) The weights wi are all positive and the particles at time step kτ are divided
into groups, and within each group a minimum separation condition like
(15) is satisfied [24] (this holds in the discrete setting).

(c) The weights wi are all positive, d = 1 and fc ≥ 2N [12]. (It is remarkable
that in this case no minimum separation condition is required.)

1Several bounds are known for these constants, for instance Cd = 2 if d = 1 and K = C,
Cd = 1.87 if d = 1 and K = R, and Cd = 2.38 if d = 2 and K = R. More precise estimates
may be derived, which yield slightly better constants.
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There are reasons to believe that (c) should be sufficient also if d > 1 [25],
but as far as we are aware a rigorous proof of this fact is still missing.

Let us now turn to assumption (2), and show that it is satisfied almost surely
if the particles (xi, vi) are chosen uniformly at random.

Proposition 7. Assume |K| ≥ 3. Let {(xi, vi)}
N
i=1 be independent random

variables, drawn from absolutely continuous distributions µi supported in Ω.
Then almost surely there are no ghost points.

Proof. To simplify the notation denote Pi = (xi, vi) ∈ Ω and TN = {Pi}
N
i=1.

Set m = |K|. Let G(Tn) denote the set of ghost particles of a configuration
Tn of n particles. We now define the potential ghost particles G̃(Tn−1) of a
configuration Tn−1 of n − 1 particles. We say that (g, w) ∈ G̃(Tn−1) if there
exists a particle Pn ∈ Ω such that (g, w) ∈ G(Tn−1 ∪ {Pn}), namely

G̃(Tn−1) :=
⋃

Pn∈Ω

G(Tn−1 ∪ {Pn}).

By definition of ghost points, we have that if (g, w) ∈ G̃(Tn−1) then there exist
m − 1 distinct time samples k1, . . . , km−1 ∈ K and m − 1 distinct particles
Pi1 , . . . , Pim−1

∈ Tn−1 such that

(g, w) ∈
m−1
⋂

p=1

Lip,kp
.

Notice that G̃(Tn−1) is always finite. This stems from the fact that for any
k1 6= k2 in K, the intersection of the sets Li,k1

, Lj,k2
are singletons for any

i, j ∈ {1, . . . , n}. Since m ≥ 3 and Tn−1 and K are finite sets, we have a
finite number of sets Li,k to intersect, leading to a finite number of elements in

G̃(Tn−1).
Now we prove that, for any configuration of particles Tn−1 such that there

are no ghost points, the set of new particles Pn that would generate a ghost
point has zero measure. More precisely, if G(Tn−1) = ∅ then

µn ({Pn ∈ Ω : G(Tn−1 ∪ {Pn}) 6= ∅}) = 0. (16)

In order to prove this, notice that if G(Tn−1) = ∅ we have

G(Tn−1 ∪ {Pn}) ⊆ {(g, w) ∈ G̃(Tn−1) : ∃k ∈ K, (g, w) ∈ Ln,k}.

Thus, since (g, w) ∈ Ln,k means (g − xn) + τk(w − vn) = 0 we obtain

{Pn ∈ Ω : G(Tn−1 ∪ {Pn}) 6= ∅}

⊆
⋃

(g,w)∈G̃(Tn−1)

⋃

k∈K

{Pn ∈ Ω : xn + τkvn = g + τkw}.

Since this is a finite union of affine subspaces of dimension d, it has zero Lebesgue
measure. By the absolute continuity of µn, we derive (16).
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For n ∈ {2, . . . , N}, fix a configuration of Tn−1 particles. Denoting dPi =
dxidvi, fi =

dµi

dPi
and 1S = 1 if S is true and 1S = 0 if S is false, we have

∫

Ω

1G(Tn) 6=∅fn(Pn) dPn =

∫

Ω

(

1G(Tn−1) 6=∅ + 1G(Tn−1)=∅1G(Tn) 6=∅

)

fn(Pn)dPn

= 1G(Tn−1) 6=∅,

where in the last equality we used (16) and that
∫

Ω
fn(Pn)dPn = 1. Using this

property N −m+ 1 times for n = N,N − 1, . . . ,m and setting µ = ⊗N
i=1µi, we

obtain

µ({(P1, . . . , PN ) : G(TN ) 6= ∅}) =

∫

Ω

· · ·

∫

Ω

1G(TN ) 6=∅

N
∏

i=1

fi(Pi)dP1 . . . dPN

=

∫

Ω

· · ·

∫

Ω

1G(TN−1) 6=∅

N−1
∏

i=1

fi(Pi)dP1 . . . dPN−1

= · · ·

=

∫

Ω

· · ·

∫

Ω

1G(Tm−1) 6=∅

m−1
∏

i=1

fi(Pi)dP1 . . . dPm−1

= 0,

where the last equality follows from 1G(Tm−1) 6=∅ = 0, since there cannot be any
ghost particles if there are more time samples than particles.

On the other hand, if ghost particles do arise, the conclusion of Theorem 5
may not be true, even if a minimum separation condition is satisfied at all
time steps (so that assumption (1) is satisfied). Even though the probability
of a random configuration of particles to produce ghost particles is zero, it is
worth considering it since the stability of the problem will deteriorate for nearby
configurations (see Section 5).

In Figure 5 we provide an example of this case, with three time measure-
ments (K = 1), three particles P1, P2 and P3 and three ghost particles G1,
G2 and G3. The configuration is constructed in such a way that, at each time
step, the positions of the ghost particles coincide with those of the physical
particles, thereby producing the same measurements. In other words, we have
G(
∑

i δPi
) = G(

∑

i δGi
) and ‖

∑

i δPi
‖TV = ‖

∑

i δGi
‖TV , and so the minimiza-

tion problem (6) has multiple solutions.
In the following result, we generalize this observation to more general confi-

gurations.

Proposition 8. Take w ∈ Rm
+ , with m = |K| ≥ 3, and let {(xi, vi)}

m
i=1 ⊆ Ω

be a configuration of m distinct particles admitting m distinct ghost particles
{(gj , wj)}

m
j=1 ⊆ Ω. Let ω =

∑m
i=1 wiδ(xi,vi). Suppose that for every k ∈ K and

every i ∈ {1, . . . ,m} there exists a unique ghost particle (gj , wj) in the affine
space Li,k, i.e.

gj − xi + kτ(wj − vi) = 0.

13
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Figure 5: In the case of three time measurements, a configuration of points
and speeds that allow multiple reconstructions. The lines in the left diagram
represent Li,k for each time sample k and particle i. On the right hand side we
can observe the relative position of each particle at each time step.

Then the minimization problem in (6) admits infinitely many solutions.

Proof. Consider the measure

h =

m
∑

i=1

δ(xi,vi) −
m
∑

j=1

δ(gj ,wj) ∈M(Ω).

First notice that h 6= 0. If we had h = 0, each particle would be a ghost particle.
By definition of ghost particle, we would have (g, w) ∈ Li1,k1

∩ Li2,k2
for some

k1 6= k2 in K, and so

(g, w), (xi1 , vi1) ∈ Li1,k1
, (g, w), (xi2 , vi2) ∈ Li2,k2

.

Since (xi1 , vi1) and (xi2 , vi2) are two different ghost particles, either Li1,k1
or

Li2,k2
would contain two ghost particles, contradicting the hypotheses.

The measure h is undetectable, since it belongs to the kernel of the operator
G defined in (4), as we now show. We readily compute

(Gh)l,k = 〈h, ϕl,k〉 =
m
∑

i=1

ϕl(xi + kτvi)−
m
∑

j=1

ϕl(gj + kτηj) = 0.

Indeed, by our hypothesis on the ghost particles, we have that at every time
sample k, for every position xi+kτvi ∈ Ω there exists only one ghost point such
that gj + kτwj = xi + kτvi. Therefore, each term of the first sum cancels out
with one term of the second sum, as desired.
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For β ∈ [0,mini wi], consider the measure

ωβ = ω − βh =

m
∑

i=1

(wi − β)δ(xi,vi) + β

m
∑

j=1

δ(gj ,wj).

Since Gωβ = Gω and ‖ωβ‖TV =
∑

i(wi − β) +
∑

j β =
∑

i wi = ‖ω‖TV , we
obtain that ωβ is a solution to (6) for every β ∈ [0,mini wi].

It is worth observing that the non-uniqueness of solutions arises also if there
exists a subset of the particles satisfying the conditions of Proposition 8.

4 Other constructions of dynamical dual certi-

ficates

In this section we show that the construction of dynamical dual certificates as
static average certificates, although natural and efficient, is not the end of the
story. In other words, exact recovery may be guaranteed even if assumptions (1)
and (2) of Theorem 5 are not satisfied. More precisely, we provide alternative
constructions of dynamical dual certificates for configurations that either do not
allow static dual certificates (assumption (1)) or have ghost particles (assump-
tion (2)). In particular, the first case shows an advantage of our space-velocity
model over applying static reconstructions at each time sample. This aspect
will also be investigated in Section 6 below.

4.1 Dual certificates with no static separation condition

The following example of dual certificate is purely numerical, but shows the pos-
sibility of constructing a dual certificate in cases in which static reconstructions
are expected to fail.

The chosen configuration is presented in Figure 6a, where we consider the
one-dimensional case (d = 1), five time measurements (K = 2), two static par-
ticles barely separated enough to allow a reconstruction and a third moving
particle. We give positive weights wi to the static particles, and a negative
weight to the moving one. Since this third particle is at each time measurement
close to another particle and has a different sign, it is not possible to localize
it with a static reconstruction at any point. We recall that fc is the maxi-
mum imaging frequency, and 1

2fc
is far below the optimal minimum separation

distance (see Remark 6 and [11, Section 5]).
In Figure 6b we can see a dual certificate for this configuration (with fc =

20). To obtain this dual certificate, we followed the construction done in [11]
for the two dimensional case, but considering only the frequencies available in
our setting given by the set (8).
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(a) This diagram represents two static
particles and a moving particle at each
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-1

-0.5

0
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1

Static particles

Moving particle

(b) A valid dual certificate of the confi-
guration, visualized in the space-velocity
plane.

Figure 6: An example of a dynamical dual certificate whithout a static minimum
separation condition.

4.2 Dual certificates in presence of ghost particles

As we saw in Figure 4b, in the presence of ghost points the static average dual
certificate constructed in (13) is not a valid dynamical dual certificate if the
values ηi have a constant sign. Indeed, the static average dual certificate will
have absolute value equal to 1 in the ghost particles, since the values γi,k on
Li,k are simply set to ηi so that 1

|K|

∑

k∈K γi,k = ηi (see Figure 7a). However, by

making a slightly different choice for γi,k it is possible to have simultaneously
q(xi, vi) = ηi and |q(g, w)| < 1 on every ghost particle, thereby obtaining a valid
dual certificate (see Figure 7b).

This construction is formalized in the following result.

Proposition 9. Take d = 1, fc ≥ 128, K = 1 and ∆x ∈ [ 1.87fc
, 1). Consider 3

particles with locations (−∆x, 0), (0, 0) and (∆x, 0). Then for every η ∈ sgnK3

there exists a dual certificate.

Proof. If η is not a constant vector, the static average certificate (whose exis-
tence is guaranteed by Remark 6a) given by (13) is a valid dual certificate, and
the result is trivial. Without loss of generality, suppose now that η = (1, 1, 1).
Set x−1 = −∆x, x0 = 0 and x1 = ∆x.

We construct the dual certificate q(x, v) using the notation of §3.1 with
K = {−1, 0, 1}. More precisely, we write

q(x, v) =
1

3

1
∑

k=−1

qk(x, v) =
1

3

1
∑

k=−1

q̃k(x+ kτv),

where the functions q̃k are constructed as follows. The quantities γi,k defined in
(11) need to satisfy (12), but also to keep the absolute value of q below 1 in the
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(a) The static average dual certificate
(corresponding to ε = 0) is not a valid
dual certificate since it has value 1 in the
two ghost particles.
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Ghost part.

(b) The valid dual certificate constructed
as a perturbation of the static average
dual certificate by taking ε = 0.08.

Figure 7: Dual certificates for the configuration of particles of Figure 4b.

ghost particles. In view of the geometrical configuration (see Figure 4b), these
conditions are:

γi,−1 + γi,0 + γi,1 = 3, i ∈ {1, 2, 3},

|γ1,1 + γ2,0 + γ3,−1| < 3,

|γ1,−1 + γ2,0 + γ3,1| < 3.

To take a family of solutions, for ε ∈ (0, 1) set

γi,−1 = γi,1 = 1− ε, i ∈ {1, 3},

γi,0 = 1 + 2ε, i ∈ {1, 3},

γ2,−1 = γ2,0 = γ2,1 = 1.

For each k ∈ K, let q̃k(x) =
∑fc

l=−fc
ck,le

2πilx be the low frequency trigonometric
polynomial such that

q̃k(xi) = γi,k, q̃′k(xi) = 0, i = −1, 0, 1,

constructed in [11], whose existence follows from ∆x ≥ 1.87
fc

(the construction

works also if |γi,k| 6= 1).
The final step is to ensure that q(x, v) =

∑

qk(x, v) satisfies |q(x, v)| < 1 for
every (x, v) ∈ Ω that is not a particle. When ε = 0, q̃k is strictly concave in xi

for every i [11]. Furthermore, the map ε 7→ q̃k is affine, hence every derivative
of q̃k is continuous in ε. Therefore, since q̃′k(xi) = 0, the local concavity of
q̃k is preserved for ε small and, consequently, the local maxima of q̃k are the
interpolation points xi. This is enough to prove that q(x, v) attains local maxima
in the particles (xi, 0) and in the ghost particles (0,∆x) and (0,−∆x). Finally,
by continuity of q(x, v) with respect to ε, there exists an ε sufficiently small
such that |q(x, v)| < 1 for every element in Ω that is not a particle.
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The methodology presented in the proof of Proposition 9 can be applied to
more general examples and it can be iterated to deal with the ghost particles
one by one. The only requirement is to have a direction in which there are no
ghost particles, so it can be used as a “sink of mass”. In the example considered,
these directions are described by L1,0, L3,0, L2,−1 and L2,1.

5 Stable reconstruction with noise

Following the analysis done in [11] for the static case, we present a stability
result for the dynamical problem. We will review their setting and adapt it to
our case under the same hypotheses: one dimensional case (d = 1), discrete
setting and a specific type of noise model with bounded total variation norm.

Let us consider a discrete grid Ω# with space width ∆x > 0 and velocity
width ∆v > 0, namely

Ω# = ((∆x ·Z)× (∆v ·Z)) ∩ Ω,

and we will assume throughout this subsection that our particles are located
on the grid, i.e. T ⊆ Ω# and ω ∈ M (Ω#). We also recall from [11] the super-
resolution factor in space:

SRFx =
1

∆xfc
,

which can be understood as the ratio between the desired space resolution and
the permitted resolution given by the diffraction limit.

We consider, instead of (5), the following input noise model:

y = G(ω + z), ‖PGz‖TV ≤ δ,

where z ∈ M (Ω#) and PG = ∆xG
∗G stands for the projection over the fre-

quencies described by (8). The reason of this projection is that all the other
frequencies are filtered out by the measurement process of G. We consider a
relaxed version of the noiseless problem (6)

min
λ∈M(Ω#)

‖λ‖TV subject to ‖Gλ− y‖1 ≤
δ

∆x‖G∗‖ℓ1→M
, (17)

where ‖G∗‖ℓ1→M is the operator norm of G∗.
By strengthening the hypotheses of Theorem 5, we obtain the following

stability result.

Theorem 10. Let fc ≥ 128, d = 1 and ∆x,∆v > 0 be such that

∆2
x ≤

K(K + 1)

3
τ2∆2

v. (18)

Let T = {(xi, vi)}i=1,...,N ⊆ Ω# be a configuration of N particles, w ∈ KN and

K = {−K, . . . ,K}. Let ω =
∑N

i=1 wiδ(xi,vi) ∈ M(Ω) be the unknown measure
to be recovered.

Suppose that
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(i) for every k ∈ K, the minimum separation condition (15) holds;

(ii) and for all (x, v) ∈ Ω \
⋃N

i=1 Bi we have

1

2K + 1

K
∑

k=−K

min
{

min
i∈{1,...,N}

|xi−x+ kτ(vi− v)|2,
0.16492

f2
c

}

≥ ∆2
x, (19)

where Bi = {(x, v) ∈ Ω : |x− xi|+Kτ |v − vi| < 0.1649/fc} are neighbor-
hoods of each particle in T .

Let ω̂ be a minimizer of (17). Then we have the following stability bound for
the error:

‖ω̂ − ω‖1 ≤ C(SRFx)
2δ

for some absolute constant C > 0.

Remark 11. The stability condition (19) can be understood as an extension of
a condition to prevent ghost particles. As we can notice, if (x, v) is a ghost
particle, the sum in the left-hand side values 0.

Proof. Take η ∈ KN with |ηi| = 1. Let q(x, v) be the static average dual
certificate given in (13), where the each static dual certificate q̃k is constructed
as in [11] for every k ∈ K, thanks to assumption (i). With an abuse of notation,
set q = qi,j = q (i∆x, j∆v). Let PT denote the projection onto the space
of vectors supported on T , namely, (PT q)i,j = qi,j if (i∆x, j∆v) ∈ T and 0
otherwise.

In view of [11, Theorem 1.5], using the same proof we have the following
stability bound for the error:

‖ω̂ − ω‖1 ≤
4δ

1− ‖PT cq‖∞
. (20)

It remains to bound ‖PT cq‖∞ in our discrete grid, namely the values of qi,j
outside the set of particles T . In order to do so, we shall use the following
estimates from [11, Lemma 2.5]:

|q̃k(t)| ≤ 1−C1f
2
c (t− (xi + kτvi))

2, when |t− (xi + kτvi)| ≤ C2/fc, (21)

and

|q̃k(t)| ≤ 1− C1C
2
2 , when min

(xi,vi)∈T
|t− (xi + kτvi)| > C2/fc, (22)

where C1 = 0.3353 and C2 = 0.1649.
Take (x#, v#) ∈ Ω# \T , we want to bound the maximum of |q(x#, v#)|. We

deal with two cases: when (x#, v#) is close to some particle, i.e. (x#, v#) ∈ Bi

for some i, or when it is not.
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Fix i such that (x#, v#) ∈ Bi, then we can write (x#, v#) = (xi+nx∆x, vi+
nv∆v) with (nx, nv) ∈ Z×Z \ {(0, 0)}. From the definition of Bi, we have that
we can use estimate (21) for every k ∈ K. Therefore

|q(x#, v#)| =
1

2K + 1

∣

∣

∣

∣

∣

K
∑

k=−K

q̃k
(

xi + kτvi + (nx∆x + kτnv∆v)
)

∣

∣

∣

∣

∣

≤
1

2K + 1

K
∑

k=−K

(

1− C1f
2
c (nx∆x + kτnv∆v)

2
)

=
1

2K + 1

K
∑

k=−K

(

1− C1f
2
c

(

n2
x∆

2
x + 2kτnxnv∆x∆v + k2τ2n2

v∆
2
v

))

= 1−
C1f

2
c

2K + 1

((

(2K + 1)n2
x∆

2
x +

K(K + 1)(2K + 1)

3
τ2n2

v∆
2
v

))

≤ 1− C1f
2
c∆

2
x(n

2
x + n2

v)

≤ 1− C1f
2
c∆

2
x,

where we used (18) and that n2
x + n2

v ≥ 1.
In the case where (x#, v#) 6∈ Bi for every i, we take for each k ∈ K, ik =

argmini∈{1,...,N} |xi − x# + kτ(vi − v#)| and Ik = xik − x# + kτ(vik − v#).
Hence, by (22) we have

|q(x#, v#)| =
1

2K + 1

∣

∣

∣

∣

∣

K
∑

k=−K

q̃k(xik + kτvik − Ik)

∣

∣

∣

∣

∣

≤ 1−
C1f

2
c

2K + 1

K
∑

k=−K

(

I2k 1(−∞,0]

(

|Ik| −
C2

fc

)

+
C2

2

f2
c

1(0,+∞)

(

|Ik| −
C2

fc

)

)

≤ 1−
C1f

2
c

2K + 1

K
∑

k=−K

min
(

I2k , C
2
2/f

2
c

)

≤ 1− C1f
2
c∆

2
x,

where the last inequality is precisely the stability condition (19).
Therefore we have that ‖PT cq‖ ≤ 1 − C1f

2
c∆

2
x ≤ 1 − C/SRF2

x, for some
absolute constant C > 0. By inserting this bound into (20), we conclude the
proof.

6 Numerical simulations

6.1 Methods

Solving minimization problem (6) in all its generality is not an easy task, since
it is nonlinear and infinite dimensional. It is possible to use an analogue dis-
crete problem, where the locations and velocities are fixed on a grid whose size
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determines the resolution we want to obtain. However, this methods becomes
intractable for a fine resolution.

In this work, we seek to validate our approach using a reconstruction method
in the continuum. In [11], an algorithm with solutions in the continuum is
presented in the one dimensional case, but we require a method for higher
dimensions. In [9], the authors develop an algorithm to solve the following
problem for any linear operator F from the space of positive punctual measures
to R

n:
min
µ̃
‖F µ̃− Y ‖22 subject to ‖µ̃‖TV ≤M. (23)

Albeit the proposed algorithm is limited to positive weights, this is a realistic
expectation in the case of many physical signals, for instance those generated
by micro-bubbles in ultrafast ultrasound imaging. Clearly, a minimizer of (23)
will be a minimizer of (6) provided that the initial total variation is known.

Lemma 12. Assume that µ is the unique solution of (6). Then µ is the unique
solution of (23) with M = ‖µ‖TV .

Proof. Since (6) admits a unique minimizer, every µ̃ 6= µ such that F µ̃ = Y
verifies ‖µ̃‖TV > M . Therefore, µ̃ is the unique minimizer of (23).

The codes of the simulations of this paper are available at https://github.
com/panchoop/dynamic_spike_super_resolution.

6.2 The measurements

We consider the perfect low-pass filter described in Section 2.2 with d = 1
as forward measurement operator, where the measured Fourier frequencies are
{−fc, . . . , fc} for some fc ∈ N and the number of time samples are 2K+1 with
sampling rate τ . The considered parameters for the simulations are:

fc = 20, K = 2, τ = 0.5. (24)

Each simulation contains a random number of particles, between 4 and 10.
Furthermore each particle is generated uniformly in Ω and has an associated
random weight taken uniformly between 0.9 and 1.1. In total, we made 18, 000
simulations.

In order to validate our dynamic spike super-resolution approach, we com-
pare dynamical and static reconstructions and study the stability of our setting.
Dynamical reconstruction refers to the recovery of positions and velocities in the
space-velocity domain Ω ⊂ R2, whereas by static reconstruction we mean the
recovery of the positions of the particles in [0, 1] at some fixed time.

Since we are simulating and reconstructing particles’ locations and velocities
in the continuum, there are natural associated numerical errors and we require a
criterion to call a reconstruction either a success or a failure. Let ∆x,∆v,∆w > 0
be the maximal accepted errors in the reconstruction of position, velocity and
weight, respectively. More precisely, if we consider a single particle wiδ(xi,vi)
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and its associated reconstruction w̃iδ(x̃i,ṽi), then we say that the particle was
successfully reconstructed if

|xi − x̃i| ≤ ∆x, |vi − ṽi| ≤ ∆v, |wi − w̃i| ≤ ∆w.

We consider a configuration successfully reconstructed if, for each particle, there
exists a unique successfully reconstructed particle and there are no additional
reconstructed particles. These criteria are analogue for static reconstructions.

Notice that in the case of space and velocity, the error values scale with
respect to the maximal imaging frequency (fc in space and Kfcτ in velocity),
thus it is natural to consider the super-resolution factors

SRFx =
1

fc

1

∆x
and SRFv =

1

fcKτ

1

∆v
,

which will be set appropriately in each simulation.
Let us introduce the following measure of separation of a configuration of

particles T = {(xi, vi)}i ⊆ Ω:

∆dyn(T ) =
3

max
k∈{−K,...,K}

min
i 6=j
|xi − xj + τk(vi − vj)|, (25)

where
3

max is the third highest element of the set. The quantity ∆dyn represents
condition (1) of Theorem 5, for any subset of measurements K ⊆ {−K, . . . ,K}
with |K| = 3. We will evaluate the simulated reconstructions against this mea-
sure of separation, which will be scaled by 1

fc
, as the theoretical allowed reso-

lution depends on this value (see Remark 6a). Condition (2) of Theorem 5 on
the absence of ghost particles could also be considered, but a formula for that
purpose is extremely complicated and in view of Proposition 7 we believe it is
not necessary to include it for the following analysis.

6.3 Results

6.3.1 Comparison of dynamical and static reconstructions

For a given configuration of particles, we consider three reconstruction proce-
dures.

• The dynamical reconstruction: we take the whole data and recover both
positions and velocities of all particles.

• The static reconstruction: we perform static reconstruction of the po-
sitions at each time step independently, and we call it a success if the
reconstruction is successful for at least one time step.

• The static 3 reconstruction: we perform static reconstruction of the po-
sitions at each time step independently, and we call it a success if the
reconstruction is successful for at least three time steps. The rationale of
this case is that with three successful static reconstructions, it would be
possible to use some tracking technique to reconstruct the velocities after-
wards. This case also encodes the theoretical limit given by Theorem 5.
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Figure 8: Successful reconstruction rates for the cases described in Section 6.3.1,
with SRFx = SRFv = 1000 and ∆w = 0.01. In the horizontal axis we consider
the measure of separation (25) scaled by 1/fc.

In Figure 8 we present the rates of successful reconstructions for each of the
three cases for randomly generated particles. We observe that the dynamical
reconstruction has a much higher reconstruction rate than the static recon-
structions for small values of ∆dyn, namely for configurations of particles that
are never well-separated. This gives a big advantage of dynamical over static
reconstructions, and shows that the assumptions of Theorem 5 are in fact too
strict: in practice, successful recovery happens much more often than the cur-
rent theory predicts. For larger values of ∆dyn, the dynamical reconstruction
rate remains slightly below 1: this could be explained by the presence of ghost
particles, or by numerical issues of the minimization algorithm.

6.3.2 Robustness to noise

We now study the stability of the dynamical reconstruction method and compare
it to the stability for the static approaches. We consider a measurement noise
model, given by a normally distributed noise scaled by a factor α ≥ 0. More
precisely, for a frequency l and time sample k, our measurements are

(Gω)l,k =

N
∑

i=1

wie
−i2πl(xi+kτvi) + α (Nl,k,1 + iNl,k,2) ,

where Nl,k,j are independent standardized normal random variables. In Fi-
gure 9a we plot the reconstruction rate for different values of α. To understand
the noise level, we remind that wi ∈ (0.9, 1.1). The desired super-resolution
factors and the weight threshold are larger in these experiments, since in the
presence of noise we do not expect infinitely resolved reconstructions.

We observe that the dynamical reconstruction method is stable to measure-
ment noise, and this stability is similar to the one of the static reconstruction,
as we can see in Figure 9b.
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(a) Successful dynamical reconstruction
rates under different intensities of noise.
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(b) Successful reconstruction rates for
the cases described in Section 6.3.1, with
a fixed noise level α = 0.075.

Figure 9: Reconstruction rates for the measurement noise model described in
Section 6.3.2, with SRFx = SRFv = 40 and ∆w = 0.05.

6.3.3 Robustness to curvature of trajectory

We study how the reconstruction algorithm fares when instead of a constant
velocity, we consider a curved trajectory for the imaged particles. For this
purpose we consider the following dynamics for a particle δxi,vi :

x(t) = xi + vit+
a

2
t2 = xi + vit(1+

a

2vi
t).

We consider β = a
2vi

τK as measure of curvature. In Figure 10a we present one
example of a considered curvature for a trajectory, and in Figure 10b we present
the dynamical reconstruction rates for different values of β.

For the presented examples, we relaxed the super resolution factors to 1,
since the algorithm is reconstructing some position and velocity, but reasonably
it is not located exactly in the target (xi, vi); similarly, we relaxed the weight
threshold condition. Nonetheless, we notice that the stability of the method
with respect to changes in the curvature of the trajectories is quite poor. This
may be explained by a not optimal choice of the parameters of the minimization
algorithm (which should take into account that the forward model is not exact)
and by the difficulties for a linear model to capture nonlinear movements. In
any case, higher order models are expected to solve this issue and represent an
interesting direction for future research.

7 Applications to ultrafast ultrasonography

In this section, we describe a protocol to apply our method to the problem of
super-resoluted imaging of blood vessels arising from ultrafast ultrasonography,
as mentioned in the Introduction. The setting is the following: we have a se-
quence of images of a medium containing blood vessels, in which point reflectors
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(b) Successful dynamical reconstruction
rates for different levels of curvature.

Figure 10: Reconstruction rates with the curvature model described in
Section 6.3.3, with SRFx = SRFv = 1 and ∆w = 0.2.

are randomly activated during a small time interval. These reflectors are mo-
ving inside blood vessels and their velocity are approximately the same as that
of blood in the blood vessels.

We assume that we can filter out clutter signal coming from other sources
than these reflectors. The recorded images are then convolutions of these point
sources by the point spread function (PSF). The PSF of ultrafast ultrasound
imaging was derived in [2], but filtering out clutter signal changes the shape
of the PSF, which is here approximated by a Gaussian function. However,
the analysis of [2] allows for a precise derivation, which we leave for future
investigation.

7.1 Fully automated imaging protocol

The blood vessels are not necessarily straight lines, and we therefore restrict
to a few frames during which the movement of the point reflectors can be ap-
proximated by a straight line. We must also make sure that the reconstruction
algorithm works in this sequence, and that reflectors do not appear or disappear
in a chosen sequence. Given all these remarks, we propose the following imaging
procedure, which fully automatically produces a super-resoluted image of blood
vessels with velocities. It is composed of two steps:

Choosing reconstruction intervals. In order to apply our dynamical re-
construction algorithm to this problem, we have to select consecutive frames
during which the particles do not appear or vanish from one frame to another.
One way to ensure this condition is to select time intervals during which the
ℓ2 norm of the observations is constant. Particles appearing or vanishing make
the ℓ2 norm jump, whereas close particles will make the ℓ2 norm vary slowly.
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Figure 11: Graph of the ℓ2 norm of the simulated measurements in each frame.

Figure 11 illustrates the variation of ℓ2 norm as a function of frame number
(dashed line), and the selected intervals (red solid line), for the case presented
in the numerical experiments below.

Reconstructing position and velocities. We then propose to reconstruct
positions and velocities using the algorithm presented in the previous sections,
using the PSF of ultrafast ultrasound, in each of the intervals chosen in the
previous step. By aggregating all positions obtained using this algorithm, we
obtain a super-resoluted image of the blood vessels.

7.2 Numerical experiments

7.2.1 Setting

In order to test this procedure, we generate images using a toy example, in which
we have two vertical blood vessels that are slightly separated, with particles
flowing upwards and downwards in their respective vessel. The speed of the
particles depends linearly on their position and their weights are set to 1. The
considered parameters are such that they are similar to the experimental ones:

• Domain size: 1mm× 1mm.

• Pixel size: 0.04mm× 0.04mm.

• Vessel separation: 0.04mm.

• Point spread function: (x, y) 7→ e−(x2+y2)/2σ2

, σ = 0.04.

• Maximum and minimum particles’ speeds: 15mm/s, 5mm/s.

• Sampling rate: τ = 0.002 s−1

• Total acquisition time: 2 s.
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Figure 12: Three different measurements with ultrafast ultrasound of the simu-
lated particles.

Since in ultrafast ultrasound microbubble imaging the particles are activated
and deactivated randomly, we simulate this behavior in the following fashion.
The activation of a single particle is modeled as a Bernoulli random variable
on each time sample, whereas the deactivation time is modeled as a Poisson
random variable. Further, we include measurement noise as in Section 6.3.2,
with α = 0.01.

7.2.2 Results

In Figure 11 we present the ℓ2 norms of the measurements at each time step.
As an illustration, in Figure 12 we show three frames of the simulated measu-
rements. In Figure 13a we present the B-mode image, i.e. the average signal
intensity over all the frames, which shows that the resolution does not allow for
separation of the two vessels. Figure 13b present the reconstructed position and
velocities using the algorithm described in this work. The results show that the
procedure can reconstruct the positions and the velocities very accurately.
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(a) B-mode image of the vessels, taken
over 2 seconds of measurements.
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(b) Super resolved reconstruction of the simu-
lated particles; the colors represent the velo-
city in the vertical direction.

Figure 13: Simulated vessels’ reconstructions.
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8 Conclusion

In this paper, we have introduced and studied a new framework for dynamical
super-resolution imaging, which allows for super-resolved recovery of positions
and velocities of particles from low-frequency measurements. The presented the-
oretical results are validated by extensive simulations, related to low-frequency
one-dimensional Fourier measurements and to two-dimensional ultrafast ultra-
sound localization microscopy.

In fact, the numerical experiments show that this approach works much
better than what the current theory predicts, and so there is a need of further
theoretical investigation. Indeed, the arguments presented in this paper are
still based on the static reconstruction, while ideally one should consider the
dynamical problem directly. Further, it would be nice to generalize this method
to higher order models, in order to relax the assumption of linear trajectories.
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[21] Fabrice Lemoult, Nadège Kaina, Mathias Fink, and Geoffroy Lerosey. Wave
propagation control at the deep subwavelength scale in metamaterials. Na-
ture Physics, 9(1):55, 2013.

[22] Geoffroy Lerosey, Julien De Rosny, Arnaud Tourin, and Mathias Fink.
Focusing beyond the diffraction limit with far-field time reversal. Science,
315(5815):1120–1122, 2007.

[23] G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink. Coherent
plane-wave compounding for very high frame rate ultrasonography and
transient elastography. Ultrasonics, Ferroelectrics, and Frequency Control,
IEEE Transactions on, 56(3):489–506, March 2009.

[24] Veniamin I. Morgenshtern and Emmanuel J. Candès. Super-resolution of
positive sources: the discrete setup. SIAM J. Imaging Sci., 9(1):412–444,
2016.
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