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Abstract

Understanding active electrolocation in weakly electric fish remains a

challenging issue. In this article we propose a mathematical formulation

of this problem, in terms of partial differential equations. This allows

us to detail two algorithms: one for localizing a target using the multi-

frequency aspect of the signal, and antoher one for identifying the shape

of this target. Shape recognition is designed in a machine learning point

of view, and take advantage of both the multi-frequency setup and the

movement of the fish around its prey. Numerical simulations are shown

for the computation of the electric field emitted and sensed by the fish;

they are then used as an input for the two algorithms.

1 Introduction

In order to build a proper artificial electric sense, it is essential to understand
how it works in biology. In this regard, the study of active electrolocation
in weakly electric fish is crucial. Indeed, from an electric potential of about
1mV oscillating at about 1–10 kHz, weakly electric fish are able to recognize an
object in their surrounding (for a review, see [37] and references therein). Hence,
they are undoubtly a source of great inspiration for neuro-ethology, underwater
robotics, signal processing, as well as applied mathematics.

Several species of fish share this remarkable sense. They are classified in
various families, all belonging to two different orders: Gymnotiforms in South
America, and Mormyriforms in Africa. Moreover, according to the time repre-
sentation of their Electric Organ Discharges (EODs), they are also divided into
two types: wave-type species (such as Apteronotus albifrons) and pulse-type
species (e.g. Gnathonemus petersii). Known for several centuries, the electro-
genesis and electroreception abilities of the wider set of species called electric
fish have been studied extensively [25]. In 1958, Lissmann and Machin showed
that for the weakly electric fish, this ability is used for electrolocation instead
of hurting preys [32]. Furthermore, they gave the physical principles on which
relies this electric sense: using cylinders in the water tanks of their Gymnar-
chus niloticus, they showed that these objects disturb the self-emitted electric
field like an electric dipole. The electroreceptors allow the fish to distinguish
such a difference, which in turn is a clue for electrolocation. However, one im-
portant question remains: how to estimate the location of the object from the
measurement of this difference?
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Experimental, modelling and numerical approaches have been carried since
this discovery by Lissman and Machin. From behavioral studies, we now know
that these fish are able to estimate the distance [48], recognize the shape [47],
and the electric capacitance and conductivity [46] of an object in their surround-
ing. In these studies, a fish is placed in front of two doors, each one hiding a
different object. The fish is then trained to chose one of the two objects, in a
reward/punish setup. More theoretically, the electric dipole formula has been
investigated in more details. Indeed, Bacher in 1983 [13] argued that the electric
dipole formula given by Lissmann and Machin did not explain the phase shift
observed when the electric premittivity of the object differs from the electric
permittivity of the water, although this phase difference is measured acurately
by some species such as in the Eigenmannia genus [41]. Then, in 1996 Ras-
now [39] solved this issue by considering a complex-valued conductivity; he also
extended the range of shapes on which the dipolar approximation can be ap-
plied. From the numerical simulation point of view, various works have been
carried since the 70’s, for example finite differences schemes in 1975 by Heili-
genberg [26] and finite elements in 1980 by Hoshimiya et al. [27]. In the latter,
a simplified geometry of fish was used: it was represented as an ellipse, divided
into two areas (the low conductive and thin skin, and the body). Their aim was
to optimize the non-uniform values of the skin’s conductivity, and by optimizing
it according to experimentally measured field, they conclude that the tail region
is more conductive than the head region. These models were then improved,
as can be seen in [12, 33, 36]. Finally, in the 90’s Chris Assad considered a
boundary element method to solve this numerical simulation issue [10]. His
model took into account the highly resistive and thin skin, as well as the time
dependance of the EOD. He compared his model to several in vivo experiments
involving different species of fish [40].

Those advances in the field of neuro-ethology inspired researchers in robotics
to develop underwater probes and sensors in order to effectively navigate with
the help of this electric sense. Mainly two teams gather the most research
about this stimulating subject: one in Nantes lead by Frédéric Boyer [16], and
another in Chicago lead by Malcolm MacIver [34]. Just to mention a few of their
studies, they face important challenges such as target location [30, 43], shape
recognition [14, 29], autonomous (or reactive) navigation [18], or docking [17].
We leave the interested reader to these articles and the references therein for
a more complete review of this area. Let us mention however that for these
works, there is a need for more quantitative assessments of the electric sense:
how precisely an object disturb the electric field, and how to compute back its
location and shape.

Mathematically speaking, this is called an inverse problem, as opposed to a
forward problem. The latter would be to compute the electric field surround-
ing the fish, knowing everything about the object (position, shape, material).
On the contrary, the inverse problem here is to recover as much information as
possible about the object from the knowledge of the electric field at the surface
of the fish’s skin. Given the low frequencies of emission (see Section 2.1), this
problem lies in the domain of Electrical Impedance Tomography (EIT). EIT
is a non-invasive imaging technique in which an image of the conductivity or
permittivity of a medium is inferred from surface electrode measurements. It is
studied as a non-invasive imaging technique, in particular for medical imaging,
non-destructive testing, or geophysical probing (see reviews in [15, 22]). In the
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mathematical literature it is also known as Calderón’s problem from Calderón’s
pioneer contribution [21]. This type of problem is ill-posed, in the sense that
existence, uniqueness, or continuity of the solution is not guaranteed [45]. The
resolution of the inverse problem is often formulated as a minimization prob-
lem, which consists in minimizing the error between the measured data and
the synthetic data obtained by solving numerically the forward problem with a
candidate object. It requires careful discretization and regularization and some-
times numerically intensive calculations, however, it is known to be sensitive to
noise and to have poor spatial resolution [15, 19].

Since 2010, our team has been working on the mathematical modelling of
active electrolocation. Indeed, having heard about that the electric fish are able
to solve – in some way – the Calderón’s problem raised our curiousity. In other
words, the problem of recovering the object from what the fish can feel is a
very difficult problem, thus making it even more fascinating as the fish seem to
perform better than the most recent medical EIT devices which typically consist
of a few tens of electrodes only. Hence, we wanted to have equations governing
the electric field surrounding the fish (i.e. a model of the forward problem), so
that we could imagine original solutions of the inverse problem. Our inspiration
largely took its source in the aformentioned works, and relevent references will
be done throughout the text. The aim of this article is to summarize our works
on target location estimation [1] and shape identification [3], as well as making
connections between our theoretical studies and what it is intended to model.
We will show that it is possible to extract some information about the object
in a quite robust and straightforward manner, even with less than one hundred
electrodes. We wanted to make accessible some mathematical concepts that
could be useful to researchers in biology and robotics, in order to engage further
discussion and collaboration.

The outline of this paper is as follows. In Section 2, we derive the equations
governing the electric field emitted by the fish and show numerical simulations.
In Section 3, we explain the localization (Section 3.2) and shape recognition
(Section 3.3) algorithms, which both rely on a formula called dipolar approxi-
mation (Section 3.1).

2 Forward Problem

Let us consider the model depicted in Figure 1. The body of the fish is modelled
as a domain Ω ⊂ R

d, where d ∈ {2, 3}. For the sake of clarity, we plot the
results for d = 2 in this paper. This mathematical model is of course extremely
simplified compared to the complexity of a fish revealed by biology, but our
objective is to extract the few ingredients that are sufficient to explain the fish
electric sense, as was done for example in the numerical simualtions of Hoshimiya
et al. [27].

The goal is to recover the object D, another set of Rd which is away from
Ω. The localization is explained in Section 3.2 whereas the shape identification
is shown in Section 3.3.

In this section, we focus on the so-called forward problem: what are the
equations governing the transdermal electric current (E −E0) · ν on ∂Ω (Sec-
tion 2.1 and Section 2.2), and how can we compute it numerically (Section 2.3)?
The results presented here can be found with more mathematical details in [1].
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Figure 1: Problem considered here: knowing the electric current (E − E0) · ν
at the surface of the skin ∂Ω, how can we determine the target D?

2.1 Quasi-Static Approximation

In this subsection we show that, given the low frequency of the electric field, it
can be derived as a complex-valued electric potential.

From this point, let us precise that we will work in the frequency domain, so
that time derivatives will be simplified by Fourier transform. It has an impact of
what we are modelling exactly, i.e. from now on we can only discuss about wave-
type species such as Apteronotus albifrons. For example, after discretization, we
would have a discrete set of frequencies (the fundamental and its harmonics), see
for example [24, fig. 12.3] for such a transform in Eigenmannia virescens. These
frequencies are known to remain centred on a specific frequency unless their
dominance status changes, or the temperature or pH of the water varies [23].

Having this in mind, let us start with the Maxwell system:

∇ ·E =
ρ

ε
, (2.1)

∇ ·B = 0, (2.2)

∇×E = −iωB, (2.3)

∇×B = µ(ji + js + iωεE), (2.4)

where ε (resp. µ) is the electric permittivity (resp. the magnetic susceptibility)
of the medium and ω is the frequency. The sources are ρ (density of electric
charges) and js (density of electric current). Whereas the former are null, the
latter need to be considered carefully. Indeed, the current density comes from
the electric organ of the fish. It is usually a long filament at the posterior part
of the body [37]. In any case, it can be modelled as a distribution contained
into the body: supp(js) ⊂ Ω. Finally, the electrical current ji in (2.4) is the
one induced by Ohm’s law,

ji = σE, (2.5)
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where σ is the conductivity of the medium.
The electro-quasistatic (EQS) approximation states that, if the wavelength

λ is large compared to the typical length of the problem L, then E can be
considered as irrotationnal, i.e. the right-hand side of (2.3) is neglected [28]. In
other words, if λ ≫ L, then ∇ × E ≈ 0. In nature emission frequencies are
always below 10kHz [38], which means that λ is always larger than 10km, which
is much larger than L if we consider it as the typical size of the fish; indeeed, the
electrolocation range is known to be one body-length at maximum [37]. Hence,
the EQS approximation is very well suited in our case and thus we can write
∇ × E = 0 instead of (2.3). Then, it follows that there exists a frequency-
dependent, complex-valued potential u such that

E = ∇u. (2.6)

Taking the divergence of (2.4), we finally obtain

∇ ·
(

k(ω)∇u
)

= f, (2.7)

where we have defined f = −∇·js as the source coming from the electric organ,
and k(ω) = σ + iεω as the complex-valued conductivity; this complex-valued
conductivity is the same idea that was used by Rasnow in [39].

To conclude, the equation (2.7) is the one governing the transdermal electric
current. If we note U the potential associated to the background electric field
(E0 = ∇U), the transdermal electric current stated in Figure 1 is translated
into

(E −E0) · ν =
∂u

∂ν
−

∂U

∂ν
. (2.8)

2.2 Boundary Conditions

Now that we have the partial differential equations governing the electric field,
given in (2.7), let us focus on the boundary conditions. They strongly depend on
the distribution of the conductivity, k(ω), which can be modelled as piecewise
constant: kw in the water, kD in the object, kb in the body of the fish, and ks
in the skin. Note that since the water, the body, and the skin are not dielectric
materials, we have

ℑ(kw) = ℑ(kb) = ℑ(ks) = 0.

Hence, two boundary conditions appear to matter: at the surface of the object
∂D and over the skin ∂Ω.
1) The boundary conditions at the surface of the object can be addressed easily.
Indeed, the piecewise constant conductivity imposes the following jump relations
for x ∈ ∂D [4]

u(x−) = u(x+), (2.9)

kw
∂u

∂ν
(x−) = kD(ω)

∂u

∂ν
(x−). (2.10)

The notation x± means the inner/outer limit at the boundary of ∂D. More
precisely, for a function w defined on R

d, one has

w(x±) = lim
h→0

w(x± hν), x ∈ ∂D, (2.11)
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where ν is the outward normal unit vector of ∂D.
2) The boundary conditions over the skin are a bit more complicated (see Fig-
ure 2). This is due to the fact that, compared to the water which has a conduc-

Figure 2: Boundary conditions over the skin.

tivity of the order of 0.01S ·m−1 [35], the skin is very resistive (10−4S ·m−1 [20])
and the body is very conductive (1S · m−1) [42]. In other words, one has

ks ≪ kw ≪ kb. (2.12)

Futhermore, the skin is very thin: if we denote its thickness by δ, we have [49]

δ ≈ 100µm ≪ L,

where L was defined as the body length in Section 2.1. In [1] we have shown in
the case d = 2 that, when δ/L ≪ 1 and ks/kw ≪ 1 , but δkw/(Lks) is of order
one (or smaller), we have the following effective relation for x ∈ ∂Ω:

u(x+)− u(x−) = ξ
∂u

∂ν
(x+), (2.13)

where ξ = δkw/ks is called the effective thickness in Assad’s work [10]. Indeed,
equation (2.13) is exactly the same as the one used in his model. On the other
side the limit kb/kw ≫ 1 gives

∂u

∂ν
(x−) = 0. (2.14)

To get a well-posed problem, we should add the far field condition u(x) =
O(|x|1−d) as |x| → ∞, if the problem is formulated in an open medium, or any
prescribed condition corresponding to the experimental configuration.

2.3 Numerical Simulations

Taken altogether, we have to solve a system composed by the partial differential
equation (2.7) with boundary conditions (2.9), (2.10), (2.13), and (2.14). Hence,
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u is solution of the following system

∇ ·
(

k(ω)∇u
)

= f, (2.15)

u(x−) = u(x+), x ∈ ∂D (2.16)

kw
∂u

∂ν
(x−) = kD(ω)

∂u

∂ν
(x−), x ∈ ∂D (2.17)

u(x+)− u(x−) = ξ
∂u

∂ν
(x+), x ∈ ∂Ω (2.18)

∂u

∂ν
(x−) = 0, x ∈ ∂Ω (2.19)

and the background solution U is given by

∇ ·
(

k̃(ω)∇U
)

= f, (2.20)

U(x+)− U(x−) = ξ
∂U

∂ν
(x+), x ∈ ∂Ω (2.21)

∂U

∂ν
(x−) = 0, x ∈ ∂Ω (2.22)

where k̃(ω) is equal to kb in the body of the fish Ω, and kw outside, i.e. in the
water.

Using layer potential representations for the solutions of the systems (2.15-
2.19) and (2.20-2.22), we have developed a MATLAB script for their numerical
approximations1, using boundary element methods like in Assad’s thesis [10].
In Figure 3, we have plotted the solutions u and U when d = 2, the body Ω is
an ellipse, the object D is a disk, and the source f is a dipole.

3 Inverse Problem

In the previous section, we have derived the equations governing the transdermal
electric current at the surface of the skin, and we have shown results of numerical
simulations. In this section, we show the two main results of our studies: how
to localize the object D based on the knowledge of ∂u

∂ν
− ∂U

∂ν
(Section 3.2), and

how to recognize its shape when the fish has already memorized several objects
(Section 3.3). These methods are based on a dipolar approximation of the
solution u, which is explained in Section 3.1.

3.1 Dipolar Approximation

The dipolar approximation states that if D is small enough, the difference u−U
can be expressed as the electric potential coming from an electric dipole centered
in D. In this subsection we only present this result numerically, in order to
make things more intuitive. For a complete proof of the formula in this context,
see [1]; for a more detailed review of the dipolar approximation in general, see
the book [5].

Let us get back to the example in Section 2.3. In Figure 4, we have plotted
the difference u−U . Qualitatively, we can see that this electric potential looks
like the one emitted by an electric dipole coming from D.

1This script is now part of the package SIES (Shape Identification in Electro-Sensing),
which can be found at https://github.com/ens2013/SIES/
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Figure 3: Numerical simulations for the background electric potential U - system
(2.20-2.22), upper image - and for the perturbed electric potential u - system
(2.15-2.19), lower image.

Quantitatively, we have shown in [1] that, if D is small enough and suffi-
ciently away from Ω, then the fish feels a distorsion that is similar to the one
produced by a dipole pD. More precisely, we have

∂u

∂ν
(x)−

∂U

∂ν
(x) ≈ pD · ∇G(x− z), x ∈ ∂Ω, (3.1)

where z is the center of mass of D and G is the Green function for the Lapla-
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Figure 4: The difference between u and U , taken from Figure 3.

cian in R
d (for instance G(x) = log(|x|)/(2π) in dimension d = 2 or G(x) =

−1/(4π|x|) in dimension d = 3). The vector pD is called the equivalent dipole,
and it is given by

pD ≈ M(kD(ω), D)∇U(z), (3.2)

where M(kD(ω), D) is a d× d complex-valued matrix that depends only on the
shape D of the object and its complex conductivity kD(ω), called the first-order
polarization tensor [5]. This matrix maps the illuminating electric field ∇U(z)
to the equivalent dipole pD. When the conductivity kD(ω) is real, in other
words when ℑ(kD(ω)) = 0 and thus ω does not play any role anymore, one can
find an ellipse or ellipsoid E such that

M(kD(ω), D) = M(k, E). (3.3)

This means that the equivalent dipole would always be the same as the equiva-
lent dipole of this ellipse or ellipsoid E . This latter is then called the equivalent
ellipse [5]. Note, however, that when kD(ω) is frequency-dependent, the infor-
mation that can be extracted is much richer. For single-frequency data, it is only
possible to identify a few characteristics of the object. When multi-frequency
data are available, it is possible to get a lot of information about the object from
the frequency dependence of the observed first-order polarization tensors. The
need for multi-frequency data that we exhibit is in agreement with the complex
emission patterns (pulse and wave) by fish.

3.2 Localization

In this subsection, we show that the multi-frequency aspect of the measurements
are sufficient to localize an object with precision. For the sake of simplicity we
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focus our attention on the example that gave Figures 3-4 in dimension d = 2.
Indeed, the particular case of D being a disk is easier since we have [5]

M(kD(ω), D) = |D|
kD(ω)− 1

2kD(ω) + 1
I2, (3.4)

where |D| denotes the volume of D and I2 is the identity matrix.2 Hence,
equation (3.1) becomes

∂u

∂ν
(x, ω)−

∂U

∂ν
(x, ω) = |D|

kD(ω)− 1

2kD(ω) + 1
∇U(z) · ∇G(x− z), (3.5)

which is equivalent to Lissman-Machin [32] or Rasnow [39] formulas, showing
that (3.1) is a generalization of these latters. Hence, from (3.5) we can easily
extract ∇U(z) · ∇G(x − z). The reason why we can recover the location z of
D is that the function z 7→ ∇U(z) · ∇G(x − z) is one-to-one. Therefore, it is
possible to build an imaging functional from the measured data, i.e. a function
zs 7→ I(zs) that has a strong peak at zs = z (see Figure 5).
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Figure 5: From the example shown in Figures 3-4, plot of the imaging functional
presented in [1].

3.3 Shape Recognition

Once the object D is located (i.e. we know z), we would like to extract M(kD(ω), D)
from the measurements. Indeed, we know that this polarization tensor contains
all the necessary information about the shape of D [7]. More precisely, the
function ω 7→ M(kD(ω), D) uniquely determines D in some class of domains.

2In R
3, we have a similar formula, i.e. M(kD(ω), D) is proportional to identity [5, p. 83].
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However, it is not straighfoward to determine D from M(kD(ω), D). In other
words, the shape recognition problem has been reduced to a simpler, however
still difficult, inverse problem: determine the shape of the object from the ob-
served first-order polarization tensors.

To solve this inverse problem we got inspired by the behavioral studies (for
example [48]) described in the introduction. Indeed, instead of trying to compute
a shape from the measurements, we wanted to use classification and machine
learning techniques. For example, let us suppose that the fish has already
encountered several shapes Dl, p = 1, . . . , L (such as the shapes plotted in
Figure 6), and that it knows all the polarization tensors M(kDl

(ωj), Dl), where
ωj are the different frequencies emitted by the electric organ.
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Figure 6: A dictionnary of shapes, used to identify the object D. The dis-
tance units here are arbitrary. Note that these shapes are often encountered in
experimental studies [47] showing that the fish are able to recognize shapes.

It is not possible to extract M(kD(ω), D) from one single measure of ∂u
∂ν

− ∂U
∂ν

;
instead, we use the fact that the fish actively swim around their prey when
hunting, leading to particular swimming patterns called probing motor acts [44].
Extracting M(kD(ωj), D) from (3.1) measured for several fish’s positions is then
a simple linear system [3]. Hence, D can be identified as

D = argmin
Dl

∑

j

‖M(kD(ωj), D)−M(kDl
(ωj), Dl)‖. (3.6)

In Figure 7, one can see the performance of this technique in terms of robustness
against measurement noise. Note that the number 64 of electrodes is not very
large in the numerical simulations, but 10 frequencies and 20 different positions
of the fish around the object are exploited: the different positions allow for
good extraction of the polarization tensors, and the different frequencies allow
for good classification of the object given the estimated polarization tensors.
That is how robustness is achieved, and this remark may be of interest for the
design of EIT devices.

4 Conclusion and Perspectives

In this short review, we aimed at summarizing our main results on the mathe-
matical modelling of active electrolocation. After deriving the partial differential
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Figure 7: Performance of classification with respect to measurement noise. Each
point represent the probability of correct detection, infered after 105 realisations
of the same experiment, consisting of the fish swimming around the object on
a circular trajectory. The first-order polarization tensors M(kD(ω), D) were
extracted for 10 frequencies (from 1kHz to 10kHz). Then these tensors where
compared to the dictionnary presented in Figure 6. On the x-axis, the strength
of the measurement noise is indicated, in percentage of ‖∂u

∂ν
− ∂U

∂ν
‖. Measurement

noise was modeled as a white Gaussian random process for each point, with
standard deviation as what we call the strengh. Originally published in [3].

equations and their boundary conditions, we have shown numerical simulations
of the forward problem. Then, based on the dipolar approximation, we have
detailed our localization algorithm and our shape recognition process. These
latters are made possible thanks to multi-frequency measurements. Moreover,
shape recognition additionally needs movement of the fish.

Note that our model is an extremely simplified version of what actually hap-
pens in real life; our aim was to extract the relevant features of the problem
in order to be able to make a generalization for other topics, such as medical
imaging or robotics. More realistic simulations and algorithms of target location
active electro-sensing can be found for example in [12, 11, 31]. Shape identifi-
cation remains an open challenge, although some algorithms begin to emerge in
the robotic community [14, 29].

Since the publication of our two algorithms, several directions of research
have been taken. First, we have extended the shape recognition algorithm to
the time-domain formulation of the problem [9], and to the echolocation problem
(as observed in dolphins and bats for example) [8]. Then, we have used wavelets
methods in order to improve the accuracy of recognition [6]. And finally, we
have raised the question of tracking a moving object [2].
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