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Fig. 1.1: Typical geometry of a cross section of a composite scatterer for L = 3.

1 Introduction

1.1 Model Problem for a Composite Scatterer

We consider scattering of an incident electromagnetic wave at an obstacle
occupying the bounded region of space Ω∗ ⊂ R

3. The obstacle is composed
of several parts corresponding to open subdomains Ωi ⊂ Ω∗, i = 1, . . . , L,
that form a partition of Ω∗ in the sense that Ωi ∩Ωj = ∅ for j 6= i and Ω∗ =⋃L

i=1 Ωi. Both Ω∗ and all Ωi are supposed to be connected curvilinear Lipschitz
polyhedra. This is also true of the unbounded complement Ω0 := R

3 \Ω∗. The
generic situation that we have in mind is sketched in Figure 1.1. There, ni

denotes the exterior unit normal vector field for Ωi, i = 1, . . . , L. We denote the
common interface of Ωi and Ωj by Γij = ∂Ωi∩∂Ωj , i 6= j, i, j ∈ {1, . . . , L}. We

call skeleton Σ the union of all interfaces Γij : Σ :=
⋃

0≤j<i≤L

Γij =
⋃L

i=0 ∂Ωi.

The (lossless) materials of the parts of the scatterer and in Ω0 possess dif-
ferent dielectric properties, reflected through different constant wave numbers
κi ∈ R, i = 1, . . . , L, prevailing in Ωi. Defining a piecewise constant coefficient
function κ ∈ L∞(R3) by κ |Ωi

:= κi, the total electric field E will solve1 (in a
weak sense)

curl curlE− κ(x)2E = 0 in R
3 . (1.1a)

1 When referring to the composite, piecewise constant wave number, we are going write
κ(x) to emphasize the dependence of the wave number κ on x ∈ Rd.
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In addition, the scattered field Esc = E − Einc must fulfill the Silver-Müller
radiation conditions

lim
r→∞

∫

{x∈R3|‖x‖=r}

∣∣∣curlEsc(x)×
x

r
− iκ0Esc(x)

∣∣∣
2

dS(x) = 0 , (1.1b)

where Einc denotes a given incident field satisfying (1.1a) for κ(x) ≡ κ0 in R
3.

Existence and uniqueness of solutions of (1.1) is well established [23].
We point out that (1.1a) implies the following transmission conditions in

the sense of distributions on Γij for all i, j ∈ {0, . . . , L}, i 6= j:

(curlEj)
∣∣
∂Ωj

× nj + (curlEi)
∣∣
∂Ωi

× ni = 0 ,

nj ×
[
Ej

∣∣
∂Ωj

× nj

]
− ni ×

[
Ei

∣∣
∂Ωi

× ni

]
= 0 ,

(1.2)

where we used the notation Ej := E |Ωj
, j = 0, . . . , L, and ni is the exterior

unit normal for Ωi, see Figure 1.1.

Remark 1.1 An important aspect in the setting of the composite scatterer is
the presence of material junction points and edges (marked as in Figure 1.1),
i.e. points and edges where three or more subdomains abut. In those regions
some subdomains Ωi will inevitably have non-smooth boundaries.

1.2 Boundary Integral Equations

To provide the foundation for a numerical treatment of the electromagnetic
transmission problem (1.1) we transform it into Boundary Integral Equations
(BIEs). Among others, a rationale is that BIEs can easily accommodate un-
bounded domains, as long as the scatterer is bounded. Then we are going to
use the Galerkin Boundary Element Method (BEM) to discretize the BIEs in
variational form.

We will aim for a specific type of BIEs in variational form, so-called single-
trace formulations (STF). The term single-trace refers to the class of single-
trace spaces, on which the formulation is posed. Single-trace spaces are con-
structed in such a way that they contain the skeleton traces of all functions
satisfying the transmission conditions (1.2). They will be defined precisely in
Section 3.

The first-kind single-trace formulation is widely used and also known
as Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) scheme [11, 33, 39].
The formulation for a homogeneous scatterer (L = 1) was analyzed in [9,10]. Its
extension to composite obstacles is straightforward and is covered in [5]. Low-
order Galerkin BEM for first-kind STFs yield ill-conditioned linear systems on
fine meshes.

Nowadays, matrix compression techniques like Adaptive Cross Approxi-
mation (ACA) [2] or Fast Multipole Methods (FMM) [18, 34] are indispens-
able for competitive implementation of the BEM. They entail the use of it-
erative solvers. As a consequence, slow convergence of iterative solvers for
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ill-conditioned Galerkin matrices becomes a major concern and precondition-
ing of the linear Galerkin systems arising from the first-kind STF becomes
mandatory. Apparently, for composite scatterers with junction points/edges,
the widely used so-called Calderón preconditioning techniques [25, 37] cannot
be applied [14, Section 4], [15, Section 1]. It takes profound modifications of
the integral equations in the form of so-called multi-trace formulations [14,15],
to pave the way for Calderón preconditioning.

In this article we pursue a different policy, the so-called second-kind
single-trace formulation. In contrast to first-kind BIEs, low-order Galerkin
BEM for second-kind boundary integral equations generally yield linear sys-
tems for which iterative solvers converge fast, rendering preconditioning un-
necessary. For electromagnetic scattering at a homogeneous object (L = 1),
second-kind BIEs are well-known, see [31,38,40], and they are sometimes called
Müller formulation. For a long time it remained unclear how to extend them to
composite scatterers, i.e. geometric arrangements that feature edges or points
where more than two materials abut. Only recently, in [12,17] and the parallel
work [22], a breakthrough was achieved for acoustic transmission problems.

1.3 Novelty and Outline

Based on our work for acoustic scattering covered in [12,16,17] and the results
for a homogeneous scatterer (L = 1) from [31, 38, 40], we extend the second-
kind STF to composite electromagnetic scattering. In Section 2, we give a
brief introduction to the relevant boundary integral equations. Appropriate
spaces for boundary integral equations in the context of a composite scatterer,
namely single- and multi-trace spaces, are explained in Subsection 3. In Sub-
section 4.2, we derive the second-kind STF based on a so-called multi-potential
representation formula for the scattering solution, see Corollary 4.1.

Instead of working in classical energy trace spaces, in Subsection 4.3 we
consider the second-kind STF in the space L2

t
(Σ) of square-integrable tan-

gential vector fields on Σ. This is possible, because all the involved operators
are continuous in L2

t
(Σ). The advantage of working in L2

t
(Σ) is, that it paves

the way for switching to an interface-based variational formulation, see Sec-
tion 4.4. It also provides more flexibility in choosing the trial and test spaces
for Galerkin discretization, for instance, one may use simple piecewise con-
stant vector fields on a given quasi-uniform and shape regular mesh of Σ, see
Section 5.

Section 6 concludes the article with a presentation of numerical results,
which indicate that the accuracy of the second-kind Galerkin solution can
compete with the classical first-kind results. We observe that the spectra of
the second-kind Galerkin matrices cluster around 1 and fast, almost mesh-
independent convergence of GMRES.
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2 Traces, Potentials and Boundary Integral Operators

On the boundary of Ωi, we define the following space of tangential, square
integrable vector fields:

L2
t
(∂Ωi) :=

{
u ∈ L2(∂Ωi) : u · ni = 0 a.e. on ∂Ωi

}
. (2.1)

It is endowed with the inner product [u,v]∂Ωi
:= 〈u,v〉∂Ωi

, where 〈u,v〉∂Ωi
:=∫

∂Ωi
u · vdS.

Next we introduce local trace operators and potentials associated with
a subdomain Ωi, i ∈ {∗, 0, 1, . . . , L} and appropriate spaces on which the
operators are well-defined. Writing D(Ωi) := C∞

comp(R
3)
∣∣
Ωi

we define the local

(interior) tangential trace operators

γi
× :
(
D(Ωi)

)3
→ L2

t
(∂Ωi) , U 7→ U× ni |∂Ωi

,

γi
t
:
(
D(Ωi)

)3
→ L2

t
(∂Ωi) , U 7→ ni × (U× ni) |∂Ωi

.

The presentation of BIEs for electromagnetic fields entails understand-
ing the meaning of traces acting on functions in the “electromagnetic energy
spaces” 2

H loc(curl
2, Ω) :=

{
U ∈ H loc(curl, Ω)

∣∣ curl curlU ∈ L2
loc(Ω)

}
,

H loc(curl, Ω) :=
{
U ∈ L2

loc(Ω)
∣∣ curlU ∈ L2

loc(Ω)
}
.

(2.2)

We are not going to give details and just recall some of the result from [4],
borrowing all notations from that paper, among them the spaces

H− 1

2 (curlΓ , ∂Ωi) :=
{
u ∈ H

− 1

2

× (∂Ωi) : curlΓ u ∈ H− 1

2 (∂Ωi)
}

,

H− 1

2 (divΓ , ∂Ωi) :=
{
u ∈ H

− 1

2

t
(∂Ωi) : divΓu ∈ H− 1

2 (∂Ωi)
}

,

both endowed with the respective graph norms. We call them electric and mag-

netic trace spaces and use the shorthand notations Tel(∂Ωi) := H− 1

2 (curlΓ , ∂Ωi)

and Tm(∂Ωi) := H− 1

2 (divΓ , ∂Ωi).
These two spaces are dual to each other when taking the extended the

bilinear form 〈·, ·〉∂Ωi
as duality pairing [6, p. 43]. For more information about

the surface divergence divΓ and the surface curl curlΓ , we also refer to [8]. We
summarize [6, Thm. 5.4], [8, Thm. 4.1] in the following trace theorem.

Lemma 2.1 (Electric and Magnetic Trace Operators) The eletric trace
operator γi

el := γi
t

and magnetic trace operator γi
m := γi

× ◦ curl can be ex-
tended to bounded surjective mappings

γi
el : H loc(curl, Ωi) → Tel(∂Ω) , γi

m : H loc(curl
2, Ωi) → Tm(∂Ω) .

2 The spaces H(curl2, Ω), H(curl, Ω) are defined analogously by dropping the subscript
loc everywhere in (2.2).
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As a compact notation we use the total energy trace space

T (∂Ωi) := Tel(∂Ωi)× Tm(∂Ωi) , (2.3)

which is self-dual with respect to the skew-symmetric pairing3

〈〈u,v〉〉T (∂Ωi)
:= 〈u,ϕ〉∂Ωi

−〈v,ν〉∂Ωi
, u :=

(
u

ν

)
, v :=

(
v

ϕ

)
∈ T (∂Ωi) .

A related compact notation is the total trace operator γγγi
tot

γγγi
tot : H loc(curl

2, Ωi) → T (∂Ωi) , γγγi
tot U :=

(
γi
el U

γi
m U

)
. (2.4)

Next, we introduce local potentials associated with a subdomain Ωi, i ∈
{∗, 0, . . . , L}, see [9, Section 4], [10, Section 3.3], [27, Section 4.3]. For suf-
ficiently regular scalar and vector valued functions on ∂Ωi, ϕ and ϕ, respec-
tively, the scalar and vector single layer potentials are given by the improper
integrals

Vi[κ](ϕ) =

∫

∂Ωi

Φκ(‖x− y‖)ϕ(y)dS(y) , x ∈ R
3 \ ∂Ωi ,

VVVi[κ](ϕ) =

∫

∂Ωi

Φκ(‖x− y‖)ϕ(y)dS(y) , x ∈ R
3 \ ∂Ωi ,

(2.5)

based on the fundamental solution for the Helmholtz operator [35, Rem. 3.1.3]

Φκ(ξ) =
exp(iκξ)

4πξ
, ξ ∈ R \ {0} . (2.6)

For any s ∈
(
− 1

2 ,
1
2

]
, they provide continuous linear operators [35, Sect. 3.1.2]

Vi[κ] : H
s− 1

2 (∂Ωi) → H1+s
loc (R3 \ ∂Ωi) ,

VVVi[κ] : H
s− 1

2 (∂Ωi) → H1+s
loc (R3 \ ∂Ωi) .

These potentials enter the definition of the Maxwell single and double layer
potentials

SSSi[κ](ϕ) := VVVi[κ](ϕ) +
1

κ2
gradVi[κ](divΓϕ) , (2.7)

DDDi[κ](v) := curlVVVi[κ](ni × v) . (2.8)

which give rise to continuous operators [9, Thm. 5]

SSSi[κ] : H
− 1

2 (divΓ , ∂Ωi) → H loc(curl
2,R3 \ ∂Ωi) ∩H loc(div 0,R

3 \ ∂Ωi) ,

DDDi[κ] : H
− 1

2 (curlΓ , ∂Ωi) → H loc(curl
2,R3 \ ∂Ωi) ∩H loc(div 0,R

3 \ ∂Ωi) .

3 Fraktur font is used to designate functions in the total energy trace space, whereas
Roman typeface is reserved for electric traces, and Greek symbols for magnetic traces.
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where

H loc(div 0,R
3 \ ∂Ωi) := {V ∈ L2

loc(R
3)
∣∣ divV ≡ 0 on Ωi ∪ R

3 \Ωi} .

Moreover, the electric Maxwell single and double layer potentials supply
solutions of the homogeneous Maxwell equation (1.1a) with constant wave
number κ on Ωi ∪ R

3 \ Ωi. They also satisfy the Silver-Müller radiation con-
ditions (1.1b).

These potentials permit us to state the fundamental Stratton-Chu represen-
tation formula, which is the starting point for boundary integral equations for
electromagnetic scattering, see [9, Theorem 6], [32, Theorem 5.5.1], [19, Sec-
tion 6.2], [30, Section 9.2]:

Lemma 2.2 (Local Stratton-Chu Representation Formula)
Every solution E ∈ H loc(curl

2, Ωi)∩H loc(div 0, Ωi) of curl curlE−κ2E = 0

in Ωi (that satisfies the Silver-Müller radiation conditions, if i = 0,) fulfills

GGGi[κ](γγγ
i
tot E) =

{
E on Ωi ,

0 on R
3 \Ωi ,

where the local total potential is defined by

GGGi[κ](u) := −DDDi[κ](u) + SSSi[κ](ν) , u :=

(
u

ν

)
∈ T (∂Ωi) .

Off ∂Ωi the potentials are regular enough to accommodate total traces
from both sides of ∂Ωi. They satisfy the jump relations [9, Thm. 7]

(γγγi,c
tot −γγγi

tot)GGGi[κ](u) = −u for all u ∈ T (∂Ωi) , (2.9)

where γγγi,c
tot means the trace onto ∂Ωi with normal vector field ni but taken

from outside Ωi (from inside its complement).

3 Multi- and Single-Trace Spaces

3.1 Energy Trace Spaces

The space containing all local traces of functions in H loc(curl
2, Ωi), i ∈

{0, . . . , L} is given by the skeleton multi-trace space, see also [13, Sections
3&4].

Definition 3.1 (Multi-Trace Space) The skeleton multi-trace space MT (Σ)
is defined as the product of local total energy trace spaces from (2.3):

MT (Σ) :=
L

×
i=0

T (∂Ωi) ∼=
L

×
i=0

Tel(∂Ωi)×
L

×
i=0

Tm(∂Ωi) .
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It owes its name to the fact that on each interface Γij a function u ∈ MT (Σ)
comprises two pairs of electric and magnetic traces, one contributed by the
subdomain on either side.

Next, we define the skeleton multi-trace operator γγγΣ
tot. It collects the total

traces from (2.4) for all i ∈ {0, . . . , L}. Hence, it maps H loc(curl
2,R3 \Σ)

into the multi-trace space MT (Σ) and is given by

γγγΣ
tot :

{
H loc(curl

2,R3 \Σ) → MT (Σ) ,
E 7→ γγγΣ

tot E := (γγγ0
tot E, . . . , γγγL

tot E) .
(3.1)

Self-duality of MT (Σ) is induced by the L2
t
-type skew-symmetric bilinear

pairing

〈〈u,v〉〉 :=
L∑

i=0

〈〈ui,vi〉〉T (∂Ωi)
,

u = (u0, . . . ,uL)

v = (v0, . . . ,vL)
∈ MT (Σ) . (3.2)

For sufficiently smooth functions we can rewrite (3.2) using the fact that each
interface is visited twice when summing integrals over all subdomain bound-
aries:

〈〈u,v〉〉 =
∑

0≤j<i≤L

∫

Γij

ui ·ϕi − νi · vi + uj ·ϕj − νj · vj dS , (3.3)

where we used the notation ui = (ui,νi), vi = (vi,ϕi) for ui,vi ∈ T (∂Ωi)
from (3.2).

We introduce the subspace of MT (Σ) compatible with the transmission
conditions (1.2).

Definition 3.2 (Skeleton Single-Trace Space) The skeleton single-trace
space ST (Σ) is defined as

ST (Σ) :=
{(

(u0,ν0), . . . , (uL,νL)
)
∈ MT (Σ)

∣∣ ∃U ∈ H(curl,R3)

ui = γi
t
U, ∃V ∈ H(curl,R3), νi = γi

× V, ∀i ∈ {0, . . . , L}
}
.

The skeleton single-trace space collects all possible skeleton multi-traces of
solutions of (1.1a) in MT (Σ):

E solves (1.1) ⇒ γγγΣ
tot E ∈ ST (Σ) . (3.4)

The following polar set characterization of ST (Σ) as a subspace of MT (Σ),
see also [13, Prop. 3.1], [14, Thm. 3.1], will play an important role when de-
riving the single-trace formulations.

Lemma 3.1 (Polarity Property) The single-trace space ST (Σ) is a La-
grangian subspace of MT (Σ)

ST (Σ) = {u ∈ MT (Σ) : 〈〈u,v〉〉 = 0, ∀v ∈ ST (Σ)} .

The proof uses the same ideas as used to verify [12, Proposition 2.1] in the
acoustic setting. As an immediate corollary, the single-trace space is closed in
MT (Σ).
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3.2 L2
t

trace spaces

Since we aim for formulations in L2
t
, we need L2

t
-counterparts of the spaces

from the previous subsection.

Definition 3.3 (L2
t
-Multi-Trace Space) The skeleton L2

t
-multi-trace space

MLt(Σ) is the Hilbert space

MLt(Σ) :=
L

×
i=0

(
L2

t
(∂Ωi)×L2

t
(∂Ωi)

)
∼=
( L

×
i=0

L2
t
(∂Ωi)

)
×
( L

×
i=0

L2
t
(∂Ωi)

)
.

The bilinear pairing from (3.2) extends naturally to the L2
t
-setting. Moreover,

in contrast to the classical energy trace setting, the restriction operator to an
interface Γij is well defined in MLt(Σ). Hence, on MLt(Σ) we can redefine
(3.2) as follows.

〈〈u,v〉〉 =
∑

j<i

∫

Γij

ui ·ϕi − νi · vi + uj ·ϕj − νj · vj dS , (3.5)

with u = (u0, . . . ,uL), ui = (ui,νi) ∈ L2
t
(∂Ωi)×L2

t
(∂Ωi) and v = (v0, . . . ,vL),

vi = (vi,ϕi) ∈ L2
t
(∂Ωi)×L2

t
(∂Ωi), i ∈ {0, . . . , L}.

The subspace of functions in MLt(Σ) complying with the transmission
conditions (1.2), i.e. the analogue to the classical single-trace space ST (Σ),
can be defined as follows:

Definition 3.4 (L2
t
-Single-Trace Space) The L2

t
-single-trace space SLt(Σ)

is given by

SLt(Σ) :=
{((u0

ν0

)
, . . . ,

(
uL

νL

))
∈ MLt(Σ)

∣∣∣

uj |Γij
= ui |Γij

, νj |Γij
= − νi |Γij

∀j < i ∈ {0, . . . , L}
}
.

Note that the constraints in Definition 3.4 encode the transmission condi-
tions (1.2).

As in the case of the classical single-trace space ST (Σ), there is a La-
grangian subspace characterization of SLt(Σ) as a subspace of MLt(Σ):

Lemma 3.2 (Polarity Property) The L2
t
-single-trace space SLt(Σ) can be

identified as its own polar set in the L2
t
-multi-trace space MLt(Σ)

SLt(Σ) = {u ∈ MLt(Σ) : 〈〈u,v〉〉 = 0, ∀v ∈ SLt(Σ)} .

The proof is analogous to the one from [17, Lemma 4.1], see also [36, Lem. 6.2.7].
Again, it is immediate that SLt(Σ) ⊂ MLt(Σ) is closed.
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4 Second-Kind Single-Trace Formulation

4.1 Preface: Homogeneous Scatterer L = 1

For the case L = 1, that is, a simple homogeneous scatterer, there is only
a single interface Γ01 = ∂Ω0 = ∂Ω1. In this setting the second-kind Müller
formulation is well known [31, § 23], but we recall it to fix ideas and guide the
reader gently towards our generalization derived in the next two subsections.
Lemma 2.2 provides the following potential representation for the solution E

of (1.1):

E =

{
Einc −DDD0[κ0](γ

0
el(E−Einc)) + SSS0[κ0](γ

0
m(E−Einc)) in Ω0 ,

−DDD1[κ1](γ
1
el E) + SSS1[κ1](γ

1
m E) in Ω1 .

(4.1)

To streamline notations, we write {γ}Γ for the arithmetic average of interior
and exterior traces onto Γ := Γ01 for some trace operator γ. For instance,
{γel}Γ returns the average of the electric trace for a vectorfield defined on both
sides of Γ . Moreover, we write γx for the pointwise restriction of a function
to Γ . Taking electric and magnetic traces of E onto Γ from both sides, using
the definition (2.7) of SSSi[κ], the identity γi

mDDDi[κ](v) = κ2γi
×VVVi[κ](ni × v) −

curlΓVi[κ](curlΓ v) [24, Lemma 5.3], and applying the jump relations (2.9)
yields boundary integral equations:

γ1
el E =− {γel}Γ DDD1[κ1](γ

1
el E) + 1

2 γ
1
el E+ {γel}Γ VVV1[κ1](γ

1
m E)

+ κ−2
1 gradΓ {γx}Γ V1[κ1](divΓ (γ

1
m E)) ,

γ1
m E =+curlΓ {γx}Γ V1[κ1](curlΓ (γ

1
el E)) + κ2

1 {γ×}Γ VVV1[κ1](γ
1
el E× n1)

+
{
γ1
m

}
Γ
VVV1[κ1](γ

1
m E) + 1

2 γ
1
m E ,

γ0
el E =− {γel}Γ DDD0[κ0](γ

0
el E) + 1

2 γ
0
el E+ {γel}Γ VVV0[κ0](γ

0
m E)

+ κ−2
0 gradΓ {γx}Γ V0[κ0](divΓ (γ

0
m E)) + . . . ,

γ0
m E =+ curlΓ {γx}Γ V0[κ0](curlΓ (γ

0
el E)) + κ2

0 {γ×}Γ VVV0[κ0](γ
0
el E× n0)

+
{
γ0
m

}
Γ
VVV0[κ0](γ

0
m E) + 1

2 γ
0
m E+ . . . .

Here the ellipsis . . . stands for terms involving Einc, which we do not state
for the sake of clarity. They will enter the right hand sides of the boundary
integral equations. Below we specify them for the general formulation. Notice
that by the transmission conditions γ1

el E = γ0
el E and γ1

m E = − γ0
m E. We

use this fact and add the electric traces, weighted with κ2
i :

1
2

(
κ2
1 + κ2

0

)
γ1
el E = − {γel}Γ

(
κ2
1DDD1[κ1]− κ2

0DDD1[κ0]
)
(γ1

el E)

+ {γel}Γ
(
κ2
1VVV1[κ1]− κ2

0VVV1[κ0]
)
(γ1

m E)

+ gradΓ {γx}Γ
(
V1[κ1]− V1[κ0]

)
(divΓ (γ

1
m E)) + . . . .

(4.2a)
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Note that DDD0[κ] = −DDD1[κ] due to the opposite orientation of normals. We can
also subtract the magnetic traces and get

γ1
m E = + curlΓ {γx}Γ

(
V1[κ1]− V1[κ0]

)
(curlΓ (γ

1
el E))

+ {γ×}Γ (κ2
1VVV1[κ1]− κ2

0VVV1[κ0]
)
(γ1

el E× n1)

+
{
γ1
m

}
Γ

(
VVV1[κ1]−VVV1[κ0]

)
(γ1

m E) + . . . .

(4.2b)

Thus, we arrive at two boundary integral equations for the two unknown traces
γ1
el E and γ1

m E. Yet, the key benefit of the above special linear combinations
is that they lead to differences of single layer potentials that differ in wave
number only, marked with red in (4.2). There cancellation of the leading sin-
gularities of their integral kernels will occur. Thus, the difference potentials
will be strongly regularizing. More precisely, according to [35, Lemma 3.9.8],

they map continuously H−1(∂Ωi) → H
5

2

loc(R
3 \ ∂Ωi) in both the scalar and

vectorial case.
We conclude that the boundary integral operators in the third line of (4.2a)

and the first and third line of (4.2b) will be bounded and even compact in
L2

t
(Γ ). The same holds true for the vectorial single layer boundary integral op-

erators highlighted in green in (4.2). Moreover, as explained in [9, Lemma 11],
for any κ the boundary integral operators {γel}Γ DDD1[κ] (printed in blue in
(4.2)) feature Cauchy-singular kernels and are continuous in L2

t
(Γ ). If Γ is

smooth, they will even turn out to be compact in that space. Summing up,

(4.2) can be rescaled to the form (Id − T)
(
γ1

elE

γ1
mE

)
= . . . with T continuous on

L2
t
(Γ )×L2

t
(Γ ), a typical 2nd-kind boundary integral equation.

Remark 4.1 (Fredholmness of Index Zero) The integral operator T underlying
(4.2) is Fredholm of index zero in L2

t
(Γ ) × L2

t
(Γ ), see [38, Lemma 4.1], [38,

Lemma 4.6] (for the case of a C1-domain), and [28, p. 155ff., “An alternative
proof of xix in Theorem 5.1”] or [29, Theorem 1.1] for merely Lipschitz Γ . Since
uniqueness of solutions of (4.2) can be established by standard arguments,
existence of a solution in L2

t
(Γ )×L2

t
(Γ ) is guaranteed and it will supply the

traces (γ1
el E, γ1

m E).

4.2 Second-Kind Formulation in Energy Trace Spaces

For L > 1 the key idea underlying the derivation of the second-kind single-trace
formulation is a multi-potential representation formula. For acoustic scattering
this was given in [17, Def. 3.3]. For electromagnetics an additional judicious
scaling is needed in order to cope with the division by κ2 in the Maxwell single
layer potential SSSi[κ] from (2.7).

Definition 4.1 (Scaled Multi-Potential) The Maxwell multi-potential is
defined as the sum of all (possibly scaled) local potentials GGGi[κi], i = 0, . . . , L:

MMM[θ,α] :

{
MT (Σ) → H loc(curl

2,R3 \Σ) ,

u = (u0, . . . , uL) 7→
∑L

i=0 α
2
iGGGi[θi](ui) ,
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with θ := (θ0, . . . , θL) ∈ R
L+1
+ representing a wave number vector and α =

(α0, . . . , αL) ∈ R
L+1 a scaling parameter vector.

The special wave number vector κ collects the given wave numbers pre-
vailing in the subdomains: κ = (κ0, . . . , κL). Then, an immediate consequence
of the local Stratton-Chu representation formula from Lemma 2.2 is the fol-
lowing.

Corollary 4.1 (Global Representation Formula) A solution E of the
transmission problem (1.1) satisfies for any α ∈ R

L+1
+

L∑

i=0

α2
iχΩi

E− α2
0χΩ0

Einc =MMM[κ,α]γγγΣ
tot(E− χΩ0Einc

) , (4.3)

where χΩ stands for the characteristic function of a domain Ω.

Corollary 4.1 provides the starting point for the derivation of the second-
kind BIE for composite scatterers. Taking the cue from the linear combination
used in Section 4.1, we fix the scaling parameter vector to be α = κ when
taking the electric trace and use α = 1 := (1, . . . , 1) in the case of the magnetic
trace. To keep notations short, we introduce the global compound boundary
integral operator MMM[θ] for any θ ∈ R

L+1
+ by

MMM[θ] :





MT (Σ) → MT (Σ) ,

u 7→

(
γΣ
elMMM[θ,θ](u)

γΣ
mMMM[θ,1](u)

)
,

(4.4)

where γΣ
el U := (γ0

el U, . . . , γL
el U), γΣ

mU := (γ0
m U, . . . , γL

m U). Taking the
skeleton multi-trace γγγΣ

tot on both sides of the global representation formula
from Corollary 4.1, we obtain

(Idκ −MMM[κ])γγγΣ
tot E = (Idκ −MMM[κ]) einc,0 , (4.5)

where the scaling operator Idκ : MT (Σ) → MT (Σ) is defined as

Idκ

((
v0

φ0

)
, . . . ,

(
vL

φL

))
:=

((
κ2
0v0

φ0

)
, . . . ,

(
κ2
LvL

φL

))
(4.6)

and einc,0 := (γγγ0
tot Einc,0, . . . ,0).

Remark 4.2 (Notation) in the sequel, for the sake of brevity, we write MMM and
MMM instead of MMM[κ,κ] and MMM[κ]. When we refer to a setting where all L+1 wave
numbers are equal to θ ∈ R+ and all scaling coefficients agree with α ∈ R, we
write MMM[θ, α] =MMM[(θ, . . . , θ), (α, . . . , α)] and MMM[θ] =MMM[(θ, . . . , θ)].
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Remark 4.3 (Right-hand Side) By assumption, Einc solves the electromagnetic
scattering problem in Ω∗ = R

3 \ Ω0 for κ = κ0. Hence, we obtain from the
Stratton-Chu local representation formula from Lemma 2.2 that

GGG∗[κ0]{γγγ
∗
tot Einc} =

{
Einc on Ω∗ = R

3 \Ω0 ,

0 on Ω0 .
(4.7)

Since Einc ∈ H loc(curl
2,R3), it holds that (γγγ0,c

tot −γγγ0
tot)Einc = 0, which means,

since Ω∗ = R
3 \Ω0,

γ∗
elEinc = γ0

elEinc , γ∗
mEinc = −γ0

mEinc . (4.8)

Hence we can rewrite (4.7) as

GGG0[κ0]{γγγ
0
tot Einc} =

{
−Einc on Ω∗ = R

3 \Ω0 ,

0 on Ω0 .
(4.9)

Using this intermediate result, we can now simplify the right hand side of
(4.5) to

(Idκ −MMM[κ]) einc,0 = Idκeinc,0 − Idκ0
γγγΣ
totGGG0[κ0]{γγγ

0
tot Einc}

(∗)
= Idκeinc,0 − Idκ0

(0,−γγγ1
tot Einc, . . . ,−γγγL

tot Einc)

= Idκ0
γγγΣ
tot Einc ,

where einc,0 =
(
γγγ0
tot Einc,0, . . . ,0

)
and for (∗) we applied (4.9) together with

Ωi ⊂ Ω∗ for all i ∈ {1, . . . , L}. Hence, a simplified version of (4.5) reads

(Idκ −MMM[κ])γγγΣ
tot E = Idκ0

γγγΣ
tot Einc . (4.10)

We choose the skeleton trace e = γγγΣ
tot E ∈ ST (Σ) of the total field as

unknown, insert (4.10) into the bilinear form 〈〈·, ·〉〉 from (3.2) and test with
v ∈ MT (Σ). This yields the following BIE in variational form 4:

Formulation 4.1 Seek e ∈ ST (Σ) such that

〈〈(Idκ −MMM)e,v〉〉 = 〈〈Idκ0
einc,v〉〉 , ∀v ∈ MT (Σ), (4.11)

where einc := γγγΣ
tot Einc.

The next lemma paves the way for a regularized version of Formulation 4.1.

Lemma 4.1 (Regularization) For all κ, α > 0 holds4

MMM[κ, α]{u} = 0 ∀u ∈ ST (Σ) . (4.12)

4 See Remark 4.2 for notation policies.
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The proof starts with the key observation that for arguments u ∈ ST (Σ)
and identical scaling parameters the multi-potential satisfies the transmission
conditions (1.2), because all jumps across interfaces cancel. Details of the proof
can be found after [13, Lemma 4.1], see also [36, Lemma 6.3.11]. In the end of
Section 4.4, we will see that the choice of κ > 0 does not actually matter.

Using Lemma 4.1, we can add zero to (4.11) in the form of

MMM[κ](u) =

(
γΣ
elMMM[κ, κ](u)

γΣ
mMMM[κ, 1](u)

)
= 0 , u ∈ ST (Σ) , κ > 0 .

This gives us a regularized formulation.

Formulation 4.2 (Regularized Second-Kind Formulation in Energy Trace Spaces)
For some fixed κ > 0 seek e ∈ ST (Σ) such that

〈〈(Idκ − (MMM−MMM[κ])) e,v〉〉 = 〈〈Idκ0
einc,v〉〉 , ∀v ∈ MT (Σ).

We now examine the difference operator of Formulation 4.2 more closely
in order to justify the attribute “regularized”. For u = (u0, . . . ,uL) ∈ ST (Σ),
ui = (ui,νi) ∈ T (∂Ωi), mainly using definitions, we find

(MMM−MMM[κ])(u)

=




γΣ
el

L∑
i=0

(κ2
iGGGi[κi]− κ2

GGGi[κ])(ui)

γΣ
m

L∑
i=0

(GGGi[κi]−GGGi[κ])(ui)




=




γj
el

{ L∑

i=0

(−κ2
iDDDi[κi] + κ2

DDDi[κ])(ui) + (κ2
iVVVi[κi]− κ2

VVVi[κ])(νi)

+ grad(Vi[κi]− Vi[κ])(divΓνi)
}

γj
m

{ L∑

i=0

(−DDDi[κi] +DDDi[κ])(ui) + (VVVi[κi]−VVVi[κ])(νi)
}




L

j=0
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=




L∑

i=0

{
γj
el(−κ2

iDDDi[κi] + κ2
DDDi[κ])(ui)

+ γj
el(κ

2
iVVVi[κi]− κ2

VVVi[κ])(νi)

+ γj
el grad(Vi[κi]− Vi[κ])(divΓνi)

}

L∑

i=0

{
−γj

× grad(Vi[κi]− Vi[κ])(curlΓ ui)

+γj
×(κ

2
iVVVi[κi]− κ2

VVVi[κ])(ui × ni)

+ γj
× curl(VVVi[κi]−VVVi[κ])(νi)

}




L

j=0

=




L∑
i=0

γj
t

(
δDi(ui) + δVi(νi) + δWi(νi)

)

L∑
i=0

γj
×
(
−δWi(ui × ni) + δVi(ui × ni) + δCi(νi)

)




L

j=0

,

(4.13)

where we used the following abbreviations for “difference potentials”:

δDi(ui) := (−κ2
iDDDi[κi] + κ2

DDDi[κ])(ui) ,

δVi(νi) := (κ2
iVVVi[κi]− κ2

VVVi[κ])(νi) ,

δWi(νi) := grad(Vi[κi]− Vi[κ])(divΓνi) ,

δCi(νi) := curl(VVVi[κi]−VVVi[κ])(νi) .

,
ui ∈ Tel(∂Ωi) ,
νi ∈ Tm(∂Ωi) ,
i ∈ {0, . . . , L} .

(4.14)

The color code has been borrowed from (4.2) to underscore similarities of
(4.2) and (4.13). The reader is encouraged to verify that Formulation 4.2 boils
down to (4.2) for L = 1 and κ = κ0. Again, in (4.13), we have ended up with
differences of boundary integral operators which reward us with the benefits of
a cancellation of some leading singularities of their kernels as in Section 4.1. In
particular, Formulation 4.2 remains meaningful in L2

t
; it is genuinely 2nd-kind.

Theorem 4.3 (Continuity of Differenced BIOs in MLt(Σ)) For any
real valued κ > 0, the linear operator Idκ − (MMM−MMM[κ]) can be extended to a
continuous mapping MLt(Σ) → MLt(Σ).

The proof of Theorem 4.3 can be found in [36, Proof of Thm. 6.3.13]. The
assertion can also be concluded from considerations in Section 4.4 below.

Remark 4.4 (Fredholmness of Index Zero) When trying to generalize the result
stated in Remark 4.1 to the multi-domain setting, we face problems at triple
points, see [36, Remark 6.3.14]. Hitherto it remains open, whether the bound-
ary integral operator of Formulation 4.2 is Fredholm with index 0. Further-
more, the question of existence and uniqueness of solutions of Formulation 4.2
has no answer yet.
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4.3 Second-Kind Single-Trace Formulation in SLt(Σ)

As a consequence of Theorem 4.3, the bilinear form on the left-hand side
of Formulation 4.2 remains continuous on MLt(Σ) × MLt(Σ), since the
pairing 〈〈·, ·〉〉 extends naturally to L2

t
. This leads to the lifted version of For-

mulation 4.2.

Formulation 4.4 Fix κ > 0 and find e ∈ SLt(Σ) such that

〈〈(Idκ − (MMM−MMM[κ])) e,v〉〉 = 〈〈Idκ0
einc,v〉〉 , ∀v ∈ MLt(Σ) .

Remark 4.5 Electric or magnetic traces of the solution of (1.1) may fail to
belong to Lt(Σ), but they will certainly be contained in some Sobolev space
H−δ

t
(Σ) of low-regularity tangential vectorfields from some 0 < δ < 1

2 [20].

This suggests that we consider Formulation 4.4 in H−δ
t

(∂Ωi)×Hδ
×(∂Ωi). Since

this does not make any difference algorithmically, we are not going to elaborate
on this. In any case, Formulation 4.4 will provide an outer approximation of
γΣ
tot E.

There is a glaring mismatch of trial and test space in Formulation 4.4
and Formulation 4.2, respectively, A remedy is suggested by the following
consequence of Lemma 3.2 (similar to [12, Proposition 5.1] in the acoustic
case).

Theorem 4.5

〈〈(Idκ − (MMM−MMM[κ]))u,v〉〉 = 0 , ∀u ∈ SLt(Σ), ∀v ∈ SLt(Σ) ,

The proof of the this theorem runs parallel to the proof of the corresponding
result for acoustic scattering, see [36, Thm. 6.3.19] for details.

Theorem 4.5 implies, together with the polarity property from Lemma 3.2,
that the variational equation from Formulation 4.4 is trivially satisfied for all
test functions v ∈ SLt(Σ). Since SLt(Σ) is a closed subspace of MLt(Σ), it
is sufficient to test with elements in any complement space SL

c
t
(Σ) of SLt(Σ)

in MLt(Σ). For the sake of easy implementation we choose SL
c
t
(Σ) :=

SL
⊥
t
(Σ), the L2

t
-orthogonal complement space. It has the following simple

characterization:

Corollary 4.2 (Orthogonal Complement of L2
t
-Single-Trace Space)

The orthogonal complement of the skeleton L2
t
-single-trace space is given by

SL
⊥
t
(Σ) :=

{((
u0

ν0

)
, . . . ,

(
uL

νL

))
∈ MLt(Σ)

∣∣∣∣

uj |Γij
= − ui |Γij

, νj |Γij
= νi |Γij

, ∀j < i ∈ {0, . . . , L}
}
.

Remark 4.6 (Polarity Complement of Energy Single-Trace Space) Since
Theorem 4.5 also holds in MT (Σ), in Formulation 4.2 it would be possible to
test with elements in any complement space ST

c(Σ) of ST (Σ) ⊂ MT (Σ).
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A polarity-complement using the polarity property from Lemma 3.1 seems to
be the best choice. But there is no simple representation like the one provided
by Corollary 4.2 for the orthogonal complement space SL

⊥
t
(Σ) of SLt(Σ).

The reason for the lack of such an explicit representation is that restriction to
interfaces is in general not well-defined in MT (Σ). Thus Corollary 4.2 reveals
a crucial advantage of the L2

t
-setting.

Replacing the test space from Formulation 4.4 by the L2
t
-orthogonal com-

plement space, we obtain the following formulation.

Formulation 4.6 For κ > 0 find e ∈ SLt(Σ) such that

〈〈(Idκ − (MMM−MMM[κ])) e,v〉〉 = 〈〈Idκ0
einc,v〉〉 ∀v ∈ SL

⊥
t
(Σ) .

4.3.1 Second-Kind Formulation in L
2
t
(Σ)

The definitions of the skeleton spaces SLt(Σ) and SL
⊥
t
(Σ) suggest an iden-

tification of the spaces with the so-called interface based L2
t
-skeleton space

L
2
t
(Σ) :=×

j<i

(
L2

t
(Γij)×L2

t
(Γij)

)
∼= L2

t
(Σ)×L2

t
(Σ) . (4.15)

The identification ∼= is provided by the restriction of tangential vectorfields
to interfaces, which is well defined in L2

t
(Σ), and an additional reordering.

Definition 3.4 immediately provides the isomorphism J : L2
t
(Σ) → SLt(Σ),

J

(
(uij)j<i

)
:=

((
u0

ν0

)
, . . . ,

(
uL

νL

))
,
ui |Γij

:= uij ,
νi |Γij

:= νij ,

uj |Γij
:= uij ,

νj |Γij
:= −νij .

(4.16)

for i, j ∈ {0, . . . , L}. We also introduce an isomorphism J⊥ : L
2
t
(Σ) →

SL
⊥
t
(Σ) that identifies elements in SL

⊥
t
(Σ) with elements in L

2
t
(Σ) by

J⊥
(
(uij)j<i

)
:=

((
u0

ν0

)
, . . . ,

(
uL

νL

))
,
ui |Γij

:= −νij ,
νi |Γij

:= uij ,

uj |Γij
:= νij ,

νj |Γij
:= uij .

Moreover, it is immediate that

〈〈Ju, J⊥v〉〉 = 2Ju,vK
L2

t
(Σ) , u,v ∈ L

2
t
(Σ) , (4.17)

where Ju,vK
L2

t
(Σ) refers to the inner product of L

2
t
(Σ) which for u = (uij ,

νij)j<i,v = (vij ,ϕij)j<i ∈ L
2
t
(Σ) is given by

Ju,vK
L2

t
(Σ) :=

∑

j<i

(
[uij ,vij ]Γij

+ [νij ,ϕij ]Γij

)
.

For the simple proofs we refer to [36, eq. (3.34), (3.35)ff.].
Using the above isomorphisms, Formulation 4.6 can be rewritten in such a

way that the trial and test functions belong to L
2
t
(Σ).
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Formulation 4.7 (Final Second-Kind Formulation)
Seek e ∈ L

2
t
(Σ) such that

〈〈(Idκ − (MMM−MMM[κ])) Je, J⊥v〉〉 = 〈〈Idκ0
einc, J⊥v〉〉 ∀v ∈ L

2
t
(Σ) .

Finally we have found a formulation whose Galerkin discretization is straight-
forward, see Section 5 below.

Remark 4.7 Theorem 4.3 implies only that the operator Idκ − (MMM−MMM[κ]) is
continuous. We pointed out that a proof for Fredholmness of index zero is
known in the case of L = 1, while it is not clear how to generalize the proof
to the multi-domain setting L > 1. This means that apart from the ques-
tion of uniqueness of solutions of Formulation 4.7, we cannot guarantee that
the operator on the left hand side of Formulation 4.7 is Fredholm of index
zero. Thus, well-posedness of the above formulation remains an open problem.
Nevertheless, the numerical results provided in Section 6 are promising.

4.4 Interface Based Boundary Integral Equations

Assembly of boundary element Galerkin matrices relies on explicit integral
representations of the boundary integral operators occurring in (4.13). Thus,
we study the difference potentials from (4.14) for arguments in L2

t
(∂Ωi).

– By simple calculations we find [9, Eq. (35)] for x 6∈ ∂Ωi

δDi(ui)(x) =

∫

∂Ωi

(−κ2
iKD,i[κi](x,y) + κ2KD,i[κ](x,y))ui(y) dS(y) ,

with Cauchy-singular kernel matrices (x 6∈ ∂Ωi, y ∈ ∂Ωi)

KD,i[κ](x,y) = ni(y)gradx(Φκ(‖x− y‖))⊤+

(grady(Φκ(‖x− y‖)) · ni(y))I3 ∈ C
3,3 ,

behaving like ‖KD,i[κ](x,y)‖ ∼ ‖x− y‖−2 for y → x.
– Immediately we get the weakly singular integral expression (x ∈ R

3)

δVi(νi)(x) =

∫

∂Ωi

(κ2
iΦκi

(‖x− y‖)− κ2Φκ(‖x− y‖))νi(y) dS(y) .

– To manipulate δWi we introduce the entire function δΦi(ξ) := (Φκi
−

Φκ)(ξ), ξ ∈ R, and apply integration by parts on ∂Ωi and differentiation
under the integral (x ∈ R

3):

δWi(νi)(x)
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= gradx

∫

∂Ωi

δΦi(‖x− y‖)(divΓνi)(y) dS(y)

= −gradx

∫

∂Ωi

(grady δΦi(‖x− y‖)) · νi(y) dS(y)

=

∫

∂Ωi

(
∂2δΦi

∂ξ2
(‖x− y‖)

(x− y)(x− y)⊤

‖x− y‖2

+
∂δΦi

∂ξ
(‖x− y‖)

( I3

‖x− y‖
−

(x− y)(x− y)⊤

‖x− y‖3

))
νi(y) dS(y)

=

∫

∂Ωi

(KW [κi](x− y)−KW [κ](x− y))ν(y) dS(y) , (4.18)

where KW [κ](x) ∈ (C∞(R3 \ {0}))3,3 is a weakly singular integral kernel
matrix.

– Even more straightforwardly, we obtain the representation (x ∈ R
3)

δCi(νi)(x) =

∫

∂Ωi

−
∂δΦi

∂ξ
(‖x− y‖)

y − x

‖x− y‖
× νi(y) dS(y)

=

∫

∂Ωi

(KC [κi](x− y)−KC [κ](x− y))νi(y) dS(y) ,

(4.19)

with a bounded kernel matrix KC,κ(x) ∈ (C∞(R3 \{0}))3,3∩ (L∞(R3))3,3.

A more detailed presentation of these kernels including series expansions
for x ≈ y can be found in [36, Appendix A]. In fact, the above manipulations
confirm Theorem 4.5, because no hypersingular kernels occur so that boundary
integral operators spawned by applying tangential traces to difference poten-
tials can take arguments in L2

t
(∂Ωi).

Remark 4.8 In Formula (4.18) all derivatives have been shifted off the argu-
ment function νi. This was made possible by our regularization, which intro-
duced more regular differences of singular kernels that allow differentiation.
Hence, the regularity of divΓ (ni × u) and divΓν becomes irrelevant. As re-
gards boundary element Galerkin discretization, divΓ -conformity of the trial
and test spaces is no longer required!

Thanks to the regularity of their kernels the difference potentials can
be considered on parts of a subdomain boundary, in particular on inter-
faces Γij . We pick u = (uij)j<i ∈ L

2
t
(Σ), uij =

(
uij

νij

)
∈ L2

t
(Γij) × L2

t
(Γij),

i, j ∈ {0, . . . , L} and, by switching to summation over interfaces, convert (4.13)
into

(MMM−MMM[κ])Ju =
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


γn
t

∑
j<i

(
δDi(uij) + δVi(νij) + δWi(νij)

+δDj(uij)− δVj(νij)− δWj(νii)
)

γn
×
∑
j<i

(
−δWi(uij × ni) + δVi(uij × ni) + δCi(νij)

−δWj(uij × nj) + δVj(uij × nj)− δCj(νij)
)




L

n=0

.

The signs of the difference potential contributions are derived from (4.16). We
point out that an extension by zero of uij and νij to both ∂Ωi and ∂Ωj has
been tacitly assumed here.

Next, we exploit cancellation due to opposite orientations of the normals
ni = −nj on Γij . We make the surprising discovery that all contributions due
to the regularizing operator MMM[κ] can be dropped: Eventually, the choice of
κ > 0 does not matter!

δDij(uij) := δDi(uij) + δDj(uij)

= −κ2
iDi[κi](uij) + κ2

Di[κ](uij)− κ2
jDj [κj ](uij) + κ2

Dj [κ](uij)

= (−κ2
iDi[κi]− κ2

jDj [κj ])(uij)

=

∫

Γij

(−κ2
iKD,i[κi](·,y) + κ2

jKD,i[κj ](·,y))︸ ︷︷ ︸
=:δKD,ij(·,y)

uij(y) dS(y) ,

δVij(νij) := δVi(νij)− δVj(νij)

= κ2
iVi[κi](νij)− κ2

Vi[κ](νij)− κ2
jVj [κj ](νij) + κ2

Vj [κ](νij)

= κ2
iVi[κi](νij)− κ2

jVj [κj ](νij)

=

∫

Γij

(κ2
iΦκi

(‖ · −y‖)− κ2
jΦκj

(‖ · −y‖))
︸ ︷︷ ︸

=:δKV,ij(·,y)

νij(y) dS(y) ,

δWij(νij) := δWi(νij)− δWj(νij)

=

∫

Γij

(KW [κi](· − y)−KW [κj ](· − y))︸ ︷︷ ︸
=:δKW,ij(·,y)

νij(y) dS(y) ,

δCij(νij) := δCi(νij)− δCj(νij)

=

∫

Γij

(KC [κi](· − y)−KC [κj ](· − y))︸ ︷︷ ︸
=:δKC,ij(·,y)

νij(y) dS(y) .

Note that among these difference potentials δDij(uij) is the only one that may
be discontinuous across Γij , because from the jump relations (2.9) we conclude
(i, j,m ∈ {0, . . . , L}, j < i)

γi
elδDij(uij) =

1
2 (κ

2
i − κ2

j )uij + δDi
ij(uij) on ∂Ωi ,

γj
elδDij(uij) =

1
2 (κ

2
j − κ2

i )uij + δDj
ij(uij) on ∂Ωj ,

(4.20)

γm
el δDij(uij) = δDm

ij (uij) on ∂Ωm ,m 6∈ {i, j} , (4.21)
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where the boundary integral operators δDm
ij : L2

t
(Γij) → L2

t
(∂Ωm) are defined

as

(δDm
ijuij)(x) :=

∫

Γij

πt,m(x)δKD,ij(x,y)uij(y) dS(y) , x ∈ ∂Ωm , (4.22)

with πt,m(x) designating the orthogonal projection onto the tangent plane of
∂Ωm in x. In a similar fashion we introduce the boundary integral operators
listed in the following tables along with their kernels

BI-Op. δDm
ij δVm

ij δWij

kernel πt,m(x)δKD,ij(x,y) πt,m(x)δKV,ij(x,y) πt,m(x)δKW,ij(x,y)

BI-Op. δW̃m
ij δṼm

ij δCm
ij

kernel π×,m(x)δKW,ij(x,y) π×,m(x)δKV,ij(x,y) π×,m(x)δKC,ij(x,y)

Table 4.1: Boundary integral operators and their kernels

where π×,m(x) stands for the action of −nm(x)×πt,m. Using these bound-
ary integral operators and the jump relations (4.20) we can recast

(MMM−MMM[κ])Ju

=




γm
t

∑
j<i

(
δDij(uij) + δVij(νij) + δWij(νij)

)

γm
×
∑
j<i

(
−δWij(uij × ni) + δVij(uij × ni) + δCij(νij)

)



L

m=0

=




m−1∑
j=0

1
2 (κ

2
m − κ2

j )umj +
L∑

i=m+1

1
2 (κ

2
m − κ2

i )uim

+
∑
j<i

δDm
ij (uij) + δVm

ij (νij) + δWm
ij (νij)

∑
j<i

−δW̃m
ij (uij × ni) + δṼm

ij (uij × ni) + δCm
ij (νij)




L

m=0

(4.23)

This formula can be inserted into the variational equation of Formulation 4.7
using

〈〈w, J⊥v〉〉 =
∑

l<k

∫

Γkl

wk · vkl + ωk · φkl +wl · vkl − ωl · φkl dS ,

for w =
((

w0

ω0

)
, . . . ,

(
wL

ωL

))
∈ ML(Σ) and v =

((
vkl

φkl

))
l<k

∈ L
2
t
(Σ), which

follows from (3.3). This implies an interface-oriented way to express the left-
hand side of Formulation 4.7:

〈〈(Idκ − (MMM−MMM[κ])) Ju, J⊥v〉〉
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=
∑

l<k

∫

Γkl

(κ2
k + κ2

l )ukl · vkl dS

+
∑

l<k

∑

j<i

∫

Γkl

(
(δDk

ij + δDl
ij)(uij)

+ (δVk
ij + δVl

ij)(νij)

+ (δWk
ij + δWl

ij)(νij)
)
· vkl dS

+

∫

Γkl

(
(−δW̃k

ij + δW̃l
ij)(uij × ni)

+ (δṼk
ij − δṼl

ij)(uij × ni)

+ (δCk
ij − δCl

ij)(νij)
)
· φkl dS

=
∑

l<k

∫

Γkl

(κ2
k + κ2

l )ukl · vkl dS

+ 2
∑

l<k

∑

j<i

∫

Γkl

(
δDk

ij(uij) + δVk
ij(νij) + δWk

ij(νij)
)
· vkl dS

+

∫

Γkl

(
− δW̃k

ij(uij × ni) + δṼk
ij(uij × ni)

+ δCk
ij(νij)

)
· φkl dS .

(4.24)

For Galerkin discretization this is the most appropriate form of Formula-
tion 4.7.

5 Galerkin Discretization

For the Galerkin discretization of the variational problem from Formulation 4.7
it remains to specify finite dimensional boundary element spaces VM ⊂ L

2
t
(Σ)

and sets of basis functions. This is done in the next Section. In Section 5.2,
we explicitly state the Galerkin system corresponding to Formulation 4.7 for
a simple geometric arrangement with L = 2.

5.1 Boundary Element Spaces

We rely on a mesh partition TM of Σ, compatible with the interfaces in the
sense that the closure of each interface Γij is the union of some (closed) cells
of TM . For each cell τ of TM we assume the existence of a polygonal reference
cell τ̂ ⊂ R

2 and a C1-diffeomorphism Φτ : τ̂ → τ .

Definition 5.1 (Piecewise polynomial Tangential Vector Fields) For
k ∈ N0, we define the space of TM -piecewise polynomial tangential vector fields
of degree ≤ k by

Vk
TM

(Σ) =
{
v ∈ L∞(Σ)

3
∣∣∣v
∣∣
τ
∈ Ft,τ

(
(Pk(τ̂))

2
)
, ∀τ ∈ TM

}
,
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where Ft,τ denotes the covariant transformation

Ft,τ{p}(x) := DΦτ (x̂)(Gτ (x̂))
−1p(x̂) ,

Gτ (x) := (DΦτ (x̂))
⊤DΦτ (x̂) , x̂ = Φ−1

τ (x) , x ∈ τ ,

and Pk(τ̂) is the space of polynomials of degree ≤ k on τ̂ .

Then, as trial and test space for Formulation 4.7 we may choose

VM := Vk
TM

(Σ)× Vk
TM

(Σ) ⊂ L
2
t
(Σ) . (5.1)

Now we restrict ourselves to approximation by piecewise constant vector fields,
that is, k = 0. In this case, writing M for the number of cells of TM , we can
use the basis {χi

M}i∈{1,...,2M} of V0
TM

(Σ), whose elements are given by

χ
2(i−1)+1
M (x) =

{
Ft,τi

((
1
0

))
x ∈ τi ,

0 x /∈ τi ,

χ
2(i−1)+2
M (x) =

{
Ft,τi

((
0
1

))
x ∈ τi ,

0 x /∈ τi ,

τi ∈ TM := {τ1, . . . , τM} ,
i ∈ {1, . . . ,M} .

(5.2)

Thus we obtain a basis for VM = V0
TM

(Σ)× V0
TM

(Σ), namely

BM := {bqM}
dimVM

q=1 =
{(

χ1
M , 0

)
, . . . ,

(
χ2M
M , 0

)
,
(
0, χ1

M

)
, . . . ,

(
0, χ2M

M

)}
.

(5.3)

5.2 Galerkin Matrices

For the sake of lucidity, we will discuss the linear system of equations arising
from the Galerkin discretization of Formulation 4.7 with TM -piecewise con-
stant vectorfields (VM = V0

TM
(Σ)× V0

TM
(Σ)) only for special situation of two

hemispherical subdomains, see Figure 5.1 for a cross-section. This situation is
sufficiently general to convey all key considerations.

We order the cells of TM according to their occurrence in the interfaces
Γ21, Γ20, and Γ10 and use the basis (5.3), designating the basis functions by
bqM , q = 1, . . . , 2M . We can represent an element eM ∈ VM ⊂ L

2
t
(Σ) as

eM =
∑dimVM

q=1 eq,MbqM with a coefficient vector −→e M ∈ C
2M . The interface-

aware ordering of mesh cells and the corresponding ordering of basis functions,
induces a partitioning of the coefficient vector according to

−→e M = (−→e 21,M ,−→e 20,M ,−→e 10,M ,−→ϕ 21,M ,−→ϕ 20,M ,−→ϕ 10,M ) , (5.4)

where −→e ij,M ∈ C
2Mij is the 2Mij-vector of expansion coefficients, Mij ∈ N

the number of mesh cells ⊂ Γij , belonging to basis functions supported on Γij .
We point out that the colors indicate the interface to which sub-vectors are
associated. They match the colors in Figure 5.1.
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Ω0

Ω1

Ω2

n20

n21

n10

Γ10

Γ21

Γ20

Fig. 5.1: Cross-section of the model geometry (L = 2) for studying the imple-
mentation of the second-kind formulation.

Inserting the ansatz into Formulation 4.7 and using the the interface-wise
representation of its left hand side from (4.24) yields the following linear system
of equations:

GMeM = fM ,

with fM ∈ C
2M and the Galerkin matrix GM ∈ C

2M,2M ,

fM :=




2κ2

0
M21

21
0 0 0 0 0

0 2κ2

0
M20

20
0 0 0 0

0 0 2κ2

0
M10

10
0 0 0

0 0 0 2M21

21
0 0

0 0 0 0 2M20

20
0

0 0 0 0 0 2M10

10







einc21,M

einc20,M

einc10,M

ϕinc21,M

ϕinc20,M

ϕinc10,M




,

where (einc21,M , einc20,M , einc10,M ,ϕinc21,M ,ϕinc20,M ,ϕinc10,M ) ∈ C
2M repre-

sents the coefficient vector of the interpolant of J−1
einc = J

−1 γγγΣ
tot Einc in VM

and

GM =




(κ2

2
+ κ2

1
)M21

21
0 0 0 0 0

0 (κ2

2
+ κ2

0
)M20

20
0 0 0 0

0 0 (κ2

1
+ κ2

0
)M10

10
0 0 0

0 0 0 2M21

21
0 0

0 0 0 0 2M20

20
0

0 0 0 0 0 2M10

10



−

2




δD21

21
δD21

20
δD21

10
δV 21

21
+ δW 21

21
δV 21

20
+ δW 21

20
δV 21

10
+ δW 21

10

δD20

21
δD20

20
δD20

10
δV 20

21
+ δW 20

21
δV 20

20
+ δW 20

20
δV 20

10
+ δW 20

10

δD10

21
δD10

20
δD10

10
δV 10

21
+ δW 10

21
δV 10

20
+ δW 10

20
δV 10

10
+ δW 10

10

δṼ
21

21 + δW̃
21

21 δṼ
21

20 + δW̃
21

20 δṼ
21

10 + δW̃
21

10 δC21

21
δC21

20
δC21

10

δṼ
20

21 + δW̃
20

21 δṼ
20

20 + δW̃
20

20 δṼ
20

10 + δW̃
20

10 δC20

21
δC20

20
δC20

10

δṼ
10

21 + δW̃
10

21 δṼ
10

20 + δW̃
10

20 δṼ
10

10 + δW̃
10

10 δC10

21
δC10

20
δC10

10




.

The Galerkin interface mass matrix for Γij is given by

M
ij
ij :=

(∫

Γij

χq
ij,M · χs

ij,MdS

)

s,q∈{1,...,2Mij}
,
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and the block matrices δDkl
ij , δV

kl
ij , δW

kl
ij , δṼ

kl

ij , δW̃
kl

ij , δC
kl
ij ∈ C

2Mkl,2Mij

have the entries

(δDkl
ij )s,q :=

∫

Γkl

δDk
ij(χ

q
ij,M

) · χs
kl,MdS , (δCkl

ij )s,q :=

∫

Γkl

δCk
ij(χ

q
ij,M

) · χs
kl,MdS ,

(δV kl
ij )s,q :=

∫

Γkl

δVk
ij(χ

q
ij,M

) · χs
kl,MdS , (δṼ

kl

ij )s,q :=

∫

Γkl

δṼk
ij(χ

q
ij,M

× ni) · χ
s
kl,MdS ,

(δW kl
ij )s,q :=

∫

Γkl

δWk
ij(χ

q
ij,M

) · χs
kl,MdS , (δW̃

kl

ij )s,q :=

∫

Γkl

δW̃k
ij(χ

q
ij,M

× ni) · χ
s
kl,MdS .

In each case s ∈ {1, . . . ,Mkl}, q ∈ {1, . . . ,Mij}, and χr
mn is the r-th piecewise

constant basis function according to (5.2) on the interface Γmn. The definitions
of the involved boundary integral operators can be found in Table 4.1 and
(4.22).

6 Numerical Results

In numerical experiments we study the convergence of Galerkin solutions of
Formulation 4.7.We also compare their accuracy with that of Galerkin solu-
tions obtained with the the PMCHWT formulation based on classical low-
order curlΣ and divΣ-conforming edge elements, also known as Nédélec and
Raviart-Thomas elements, respectively, see e.g. [36, Form. 6.4.2].

All computations were done by the C++ boundary element software BETL
[26], employing the transformation techniques from [35, Chapter 5] to treat
singular integrals combined with high order numerical quadrature whose im-
pact is likely to be negligible. Numerically stable formulas for difference kernels
were used, see [17, Section 5] or [36, Section 3.5.2]. Computations of Euclidean
condition numbers or spectra of matrices were done in MATLAB.

6.1 Model Problems

We discuss four different scattering problems based on the two different ge-
ometries depicted in Figure 6.1 and Figure 6.2, respectively.5 More numerical
experiments can be found in [36, Section 6.6].

Experiment I. We solve the electromagnetic scattering problem with incident
plane wave Einc(x) = p exp(iκ0d · x) , x ∈ R

3, propagating into direction
d = (1, 0, 0)⊤ with polarization p = (0, 1, 0)⊤, impinging on a ball-shaped
scattering object Ω∗ := B0.5(0) of radius r = 0.5, centered at the origin. A
picture of the geometry is given in Fig. 6.1. The scatterer is split into two
hemispheres Ω1 and Ω2 and the wave numbers are chosen as (κ0, κ1, κ2) =
(2, 3, 1).
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Fig. 6.1: Geometry for Experiment I. Shown is the amplitude of the imagi-
nary part of the electric trace of the total field E, solving the electromagnetic
scattering problem.

Fig. 6.2: Geometry for Experiment II. Shown is the amplitude of the imagi-
nary part of the electric trace of the total field E, solving the electromagnetic
scattering problem.

Experiment II. The exciting field Einc is an incident plane wave with direction
of propagation d = 1√

2
(1, 0, 1)⊤ and the polarization vector p = (0, 1, 0)⊤. As

shown in Figure 6.2, the scatterer consists of two hemispheres Ω2, Ω3 with
radius 1

2 plus another medium occupying Ω1 := Q \ B0.5(0), where Q :=
{(x, y, z)⊤ ∈ R

3 : −0.7 < x < 0.7 , −0.7 < y < 0.7 , 0 < z < 0.7 }. We use
the wave number vector (κ0, κ1, κ2, κ3) = (2, 3, 1, 4).
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Fig. 6.3: Convergence of the discretization error in L2
t
(Σ)- and

H
− 1

2

t
(Σ)-norm for a sequence of “uniform” triangular meshes. The error

graphs are annotated with estimated rates of convergence.

6.2 Convergence of Discretization Error

By uniform refinement we create sequences of nested meshes {TM}M of Σ, TM
comprising M flat triangular cells. The results of [35, Chapter 8] suggest that
the error introduced by our polyhedral approximation of Σ will not dominate
the Galerkin discretization error for trial/test spaces of piecewise constant
vector fields. The global mesh width hM of TM is the maximal diameter of

its cells. We monitor the behavior of the error in L2
t
(Σ)- and H

− 1

2

t
(Σ)-norms

as a function of hM . The H
− 1

2

t
(Σ)-norm is computed via the inner product

(ϕ,ν) 7→ 〈γi
elVVVi[0]ϕ,ν〉∂Ωi

, where VVVi[0] was defined in (2.5). The equivalence
of norms follows from continuity properties and the ellipticity of γi

elVVVi[0] in

H
− 1

2

t
(Σ), shown for instance in [7, Proposition 2]. As a reference solution

we use the discrete solution calculated with the second-kind formulation on
a mesh obtained by one more step of refinement. In order to calculate the

error H
− 1

2

t
(Σ)-norm, we project the first-kind approximation onto the space

of piecewise constant vector fields.
We use M ∈ {44, 176, 704, 2816, 11264, 45056} for Experiment I, and

M ∈ {140, 560, 2240, 8960, 35840} for Experiment II, respectively. The vari-
ous estimated errors are plotted in Fig. 6.3 and indicate algebraic convergence

5 The meshes were generated with Gmsh [21] and for visualization of the computed data
(see Figures 6.1 and6.2) we used ParaView [1].
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Fig. 6.4: Convergence history of GMRES applied to diagonally scaled
first and second-kind Galerkin systems. The reddish colors correspond to the
results for the second-kind system.

of the Galerkin solutions for both traces in all norms. Rates are difficult to
predict due to the presence of strong edge singularities of the fields. In both
experiments we observe that the accuracy of the second-kind results matches
that of the first-kind results.

6.3 Convergence of GMRES and Conditioning

Figure 6.4 displays the convergence history of the GMRES iterative solver
when applied to the linear systems arising from the Galerkin discretization of
first-kind and second-kind BIE for the two experimental setups. As initial guess
the vector x0 = (1, . . . , 1)⊤ is used. We observe that GMRES convergence for
the second-kind system

– does not deteriorate on fine meshes,
– and is consistently significantly faster than for the first-kind system.

In order to study the dependence of the convergence of GMRES on wave
numbers we fix two of them in the setting of Experiment I and vary the third,
tracking the number of GMRES iterations required for a reduction of the
residual r0 by six orders of magnitude in the process. Concretely, for κ1 = 10,
κ2 = 1, we consider κ0 ∈ {2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25}, and for
κ0 = 10, κ2 = 1, we choose κ1 ∈ {2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25}.
Again, throughout, the number of required iterations is substantially smaller
for the second-kind Galerkin system compared to that for the first-kind ap-
proach. In both cases we observe a very similar pronounced dependence of the
number of iterations on the wave number, which hints that it may be caused
by an underlying physical instability.

Though the convergence of GMRES is not directly determined by the con-
ditioning of a linear system [3], we also plot the Euclidean condition numbers
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Fig. 6.5: Convergence of GMRES for varying wave numbers for the
first and second-kind Galerkin systems for Experiment I.
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Fig. 6.6: Euclidean condition numbers of diagonally rescaled Galerkin
matrices for a sequence of meshes.

of several (diagonally scaled) Galerkin matrices with respect to the mesh size
in Figure 6.6.

We observe that the conditioning of the second-kind matrices is indepen-
dent of the mesh width, whereas or the first-kind Galerkin matrices the condi-
tion numbers grow like roughly like O(h−2

M ). Admittedly, the condition num-
bers of the second-kind matrices can be rather large, nevertheless. They will
also strongly depend on the wave numbers and the geometry.

The spectrum of the system matrix, in particular its separation from 0, is
more relevant for predicting GMRES convergence. Therefore, in Figure 6.7 we
plot the spectra of the (diagonally scaled) Galerkin matrices in the complex
plane. We see that the spectra of the second-kind Galerkin matrices are clus-
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Fig. 6.7: Distribution of the spectrum: The eigenvalues λi of the (diag-
onally rescaled) first-kind (right plot) and second-kind (left plot) Galerkin
matrices are plotted in the complex plane for a sequence of meshes.

tered around 1 and well separated from 0, while the spectra of the first-kind
Galerkin matrices form clouds around 0.

7 Conclusion

We derived a new second-kind boundary integral equation (BIE) formulation
for electromagnetic scattering at penetrable composite objects. Though its
rigorous theoretical analysis is still incomplete, its Galerkin boundary element
discretization (BEM) performs well in numerical tests. Firstly, it delivers about
the same accuracy as a popular first-kind BIE approach. Secondly, it gives
rise to linear systems of equations for which GMRES enjoys fast and mesh-
independent convergence, on fine meshes considerably faster than for first-kind
Galerkin BEM. Dependence on wave numbers persists, however.
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