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Abstract

Last decade saw the creation of a number of directional representation dictionaries
that desire to address the weaknesses of the classical wavelet transform that arise due
to its limited capacity for the analysis of edge-like features of two-dimensional signals.
Salient features of these dictionaries are directional selectivity and anisotropic treatment
of the axes, achieved through the parabolic scaling law. In this paper we will examine
the adequacy of such dictionaries for the detection of edge- and corner-like features of 2D
regions through a comprehensive framework for directional parabolic dictionaries, called
the continuous parabolic molecules. This work builds on a family of earlier studies and
aims to give a broader perspective through the level of generality.

1 Introduction

The problem of detecting edges and other geometrical discontinuities of a function is a
topic of fundamental interest for many problems in image analysis, numerical solutions
of partial differential equations and approximation theory. For example, many existing
techniques of digital medical imaging, such as magnetic resonance imaging, encode a
signal by digitising it with the Fourier transform. The image is then obtained by one of
many methods of Fourier reconstruction [1, 2], which ought to take into account that due
to various imperfections that exist in the signal acquisition process, the data might be
noisy and incomplete. In many cases, to reach a useful diagnosis it is sufficient to know
only the shapes that outline and separate the areas of interest, rather than the fine details
of the image. Therefore, robust methods of edge detection are vital.

Due to its importance in a host of applications, this topic has naturally received a lot of
attention over the years. The majority of contemporary high-dimensional edge detection
methods are essentially one-dimensional, that is, they rely on the computation of the
singular support of a given function through an application of one-dimensional detection
schemes in each coordinate direction. This is due to the fact that singular support of a
distribution consists of points ξ where f̂(ξ) does not decay rapidly as ‖ξ‖ Ñ ∞. Therefore,
we can say that the information regarding the discontinuities of an image is encoded in
its high-frequency content, which can be extracted with high-pass filters [1, 3].

Let us look at a simple example. Assume that the input image can be modelled as
the indicator function of the unit ball, f(x) = χB0(1)(x). The singular support of f, and
the boundary of the image, is then the unit sphere tx : ‖x‖= 1u. In order to recover the
boundary curve, the standard approach would consist of two steps: a computation of
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the points that lie on the boundary and an application of the algorithm that connects the
computed points into the desired boundary curve.

The reconstruction of the original curve from the computed points of discontinuity
is mired with many practical issues. For example, the set of computed points could be
inundated with spurious information if the initial image contains noise, which results in
a poor reconstruction. Furthermore, assuming the original image consists of two close by
closed curves it might be exceedingly hard to tell the two boundaries apart and associate
the points to the correct boundary curve.

We can try to rectify, or at the very least improve, this predicament by using additional
information provided by the geometry of the underlying image. The type of information
that would be apposite in the context of edges are the directions of the normals at points
on the boundary. In terms of microlocal analysis, this would equate to computing the
wavefront set of the image, instead of the singular support, since it simultaneously uncov-
ers the points on the boundary and the respective normals. For example, the wavefront
set of the unit ball is given as

WF(χB0(1)) = t(θ, (cos(θ), sin(θ))) : θ P [0, 2π)u.

Knowing both the locations and the directions of the points of discontinuity would
help mitigate the issues that arise in practical applications. Firstly, it is highly unlikely
that the directions of normals of spurious points would be consistent with the directions
of normals of the points on the actual boundary curve. Hence, this additional geometrical
datum can be used to essentially denoise the signal and consequently dispose of any
spurious data before we proceed with the reconstruction. Furthermore, the normals of
points that lie on the same part of the boundary curve will not deviate too much, thus
separating disjoint boundary curves and properly associating each point to its respective
part of the boundary will be easier to conduct.

1.1 Generalised Parabolic Dictionaries

Recent years saw the creation of a new generation of dictionaries that try to address the
limititations prevalent in classical transforms such as the wavelet analysis. The inher-
ent flaw of classical transforms lies in the fact that they are not adapted for addressing
the tasks needed for the analysis of multi-variate signals [4], which is often attributed to
their inability to resolve directional features. This led to the development of curvelets [5],
shearlets [6], contourlets [7], and other transforms, all of which infuse their architectures
with the parabolic scaling law width „ height2 and directional sensitivity. Whereas these
dictionaries are fundamentally similar, the specifics of how are parabolic dilations of the
variables and the reorientations of the generators executed can be vastly different. Nev-
ertheless, the adherence to anistropic directional dictionaries has over the years proved to
be useful for many practical (astronomical [8] and seismical [9] imaging, denoising [10],
etc.) and theoretical topics (analysis of hyperbolic differential equations [11]).

On account of the similarity in approximation properties and needless repetitions of
ultimately bespoke proofs, a framework of parabolic molecules was recently established
[12, 13]. Parabolic molecules attempt to be broad enough to encompass the existing
parabolic directional dictionaries, and yet specific enough to answer questions of inter-
est.

The adequacy of parabolic directional dictionaries for topics in microlocal analysis has
been long established. For example, Candés and Donoho [14], and Kutyniok and Labet
[15] showed that the wavefront set of a distribution can be revealed through the decay
of the frame coefficients with respect to second generation curvelets and classical, band-
limited. shearlets. These, and other select results in microlocal analysis have later been
extended to all admissible parabolic molecules [13]. By the preceding argumentation, this
feature of parabolic dictionaries is clearly a valuable asset for edge detection. At the heart
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of these investigations lies the investigation of rates of decay of frame coefficients with
respect to the dilation parameter. For example, the seminal work on second generation
curvelets [5] includes a brief investigation of the singularity features of sets in R2, though
the relevant analysis is restricted to polygons and similar objects. The same type of analy-
sis was later performed for band-limited shearlets [15], and then extended to more general
sets [16]. A related study was recently conducted for specific constructions of compactly
supported shearlets in [17]. On the other hand, Greengard and Stucchio [3] constructed a
family of high-pass filters, whose relationship between angle and radial filters satisfy the
parabolic scaling law, in order to detect edges of images ,though the focus of the work is
somewhat different.

Our goal is to extend and generalise these considerations in the framework of (contin-
uous) parabolic molecules. The methods we shall develop are somewhat of an amalgam
of the ideas from [5], [15] and [16], while the discussion in Section 5 was in large part
motivated by [18]. The primary contribution of our work lies in the level of generality. In
other words, our results on corner and edge detection hold for parabolic dictionaries that
satisfy some rather mild assumptions. Most importantly, we pose no assumptions on how
are those families constructed (be it in the frequency or in the space domain) nor do we
assume anything about their supports. Consequently, the results obtained herein can be
applied to general parabolic dictionaries.

Let us summarise our results. We distinguish between edge and corner points. When
p P BΩ is (just) an edge point of Ω we will show that if a molecule mλ is not orthogonal
to BΩ at p then we have arbitrarily fast decay xχΩ,mλy À aN, whereas, when mλ is
orthogonal to BΩ at p the decay is slow, xχΩ,mλy À a3/4. The corner points on the other
hand demand considerably more attention and we will need to use an approximation
argument to address general closed curves Ω. In the end, we will show that for a corner
point p P BΩwe again have xχΩ,mλy À a3/4, ifmλ is orthogonal to BΩ at p, and otherwise
xχΩ,mλy À a5/4 (Theorem 4.11). Therefore, whereas the frame coefficients for edge points
have one direction of slow decay, and all other directions give fast decay, in case of corner
points the decay will be slow for the two directions that correspond to the normals, and it
will be marginally faster for all other directions.

The drawbacks that come when the framework is as general as it is here are rather
obvious. The crux of our results is that they are of only qualitative nature (though a
more detailed analysis could yield better quantitative estimates), and we can only produce
upper bounds on frame coefficients. The presently available research, for example [17]
and [16], seems to suggest that it would be reasonable to expect that the upper bounds on
the frame coefficients are unattainable at this level of generality, since the existing proofs
depend delicately on the specifics of each construction.

1.2 Contents

We will begin in Section 2, where we will define continuous parabolic molecules. In
Section 3 where we will briefly assess the edge points and Section 4 will be devoted to the
analysis of corner points. The analysis of angular wedges in Section 4.1 will be the starting
point for the analysis of general sets through an approximation procedure. In Section 4.5
we will describe and extended the results of Section 4.1 to general sets. Section 5 will be
devoted to the study of decay rates of frame coefficients when the indicator function of
the set in question is multiplied by a smooth function. The purpose of Section 6 is to ask
(and answer) the question of what would change if we chose a different scaling law. We
will finish off in Sections 7 and 8 with a simple numerical study and a brief discussion of
further directions that could be pursued.
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1.3 Notation

Throughout this paper we will use p to denote the arbitrary point of interest in R2. When
we say that an angle θλ, is normal or orthogonal to a bounded open set Ω Ď R2, or to its
boundary BΩ, at a point p, or to some angle, what me mean is that cos(η+ θλ) = 0, where
η is the angle of the normal at p P BΩ. Analogously, we will say that a molecule mλ, with
λ = (aλ, θλ, p), is orthogonal to Ω, or to BΩ, if p P BΩ and θλ is normal to BΩ at p.

We will use Lp(Rd) to denote the Lebesgue space of functions associated with the
norm } ¨ }p. The Fourier transform of an L1(Rd) function f is defined as

f̂(ξ) =

ż

Rd
f(x)e´2πıx¨ξdx.

This definition can be extended to tempered distributions using standard density argu-
ments.

With x¨, ¨y we will denote either the dot product of two functions, or the action of a
distribution on a given function. On the other hand, when there is only one argument
then x¨y is defined as xxy = (1 + x2)1/2. Throughout this paper we will work in R2, with
a spatial variable x, while ξ will be reserved to variables in the frequency space. The
notation A À B will be used to indicate that A ď CB where C is a constant that does not
depend on neither A nor B.

2 Continuous Parabolic Molecules

We begin by introducing the basic definitions and ideas regarding continuous parabolic
molecules (herein CPMs ). Define the parameter space as

P = R ˆ [0, 2π) ˆ R2,

where a point (a, θ, b) P P describes a scale a, an orientation θ, and a location b.

Let Rθ =

(

cos(θ) ´ sin(θ)
sin(θ) cos(θ)

)

be the rotation matrix through the angle θ, and let Da =

diag(a,a1/2) be the (parabolic) dilation matrix, with a P R+.

Definition 2.1. A family of functions tmλ : λ P Λu is called a family of continuous parabolic
molecules of order (R,M,N1,N2) if it can be written as

mλ(b) = a
´3/4
λ ϕ(λ)

(

D1/aλ
Rθλ

(b ´ bλ)
)

,

where (aλ, θλ, bλ) = Φ(λ) P P and ϕ(λ) satisfies

|Bβϕ̂(λ)(ξ)|À min
(

1,aλ + |ξ1|+a
1/2
λ |ξ2|

)M
x‖ξ‖y´N1 xξ2y´N2 (1)

for all multi-indices |β|ď R. The implicit constants are uniform over λ.

The map Φ : Λ Ñ P is called a parametrisation. Since dictionaries abide by different
architectures, they might for example have different approaches to treating orientations,
we use the parametrisation mapping to say how do their native indices correspond to scal-
ing, orientation and location parameters. To simplify the notation, we will identify λ with
(aλ, θλ, bλ), instead of writing (aλ, θλ, bλ) = Φ(λ), which should not lead to confusion.
Furthermore, in most of the proofs we will also drop the λ subscripts for the sake of less
cumbersome notation. There are further notions that are required for a full description of
the framework (e.g. admissibility of parametrisations), but they are not relevant for the
present discussion and we refer to [12, 13] for more details.
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Definition 2.1 suggests a number of properties: a (somewhat biased) directional decay
as the coordinates tend to infinity, M almost vanishing moments, and frequency localisa-
tion with respect to the dilation parameter aλ. Furthermore, R P N describes the spatial
localisation of the moleculemλ whileN1 andN2 correspond to its smoothness. The law of
parabolic scaling is propagated through the dilation matrix Da. As we will see in Section
6, when it comes to the detection of edges and corner points, we do not need to adhere
to the parabolic scaling. there are many other viable choices as long as some directional
bias is present. This can be achieved by replacing a1/2 in the definition of Da with aα, for
α P (0, 1).

The foremost examples of families of continuous parabolic molecules are second gen-
eration curvelets and cone-adapted shearlets and one can show that they are both CPMs
of arbitrary order.

Since we will mostly be working in the Fourier domain, let us note that the Fourier
transform of mλ is given as

m̂λ(ξ) = a
3/4
λ e´2πıb¨ξϕ̂(λ)

(

Daλ
Rθλ

ξ
)

.

The fundamental property of CPMs is almost orthogonality. Essentially, this means that
the inter-Gramian of two CPM families exhibits strong off-diagonal decay with respect to
the pseudo-distance function

w(λ,ν) =
aM
am

(

1 + a´1
Md(λ,ν)

)

,

where

am = min (aλ,aν) ,

aM = max (aλ,aν) ,

d(λ,ν) = |θλ ´ θν|2+|bλ ´ bν|
2+|xeλ, bλ ´ bνy|,

eλ = (cos(θλ), sin(θλ))
J ,

which was motivated by the work of Smith [19], Candés and Demanet [11], and Grohs
and Kutyniok [12].

Theorem 2.1. Let Γ = tmλ : λ P ΛΓ u and Σ = tnν : ν P ΛΣu be two families of continuous
parabolic molecules, both of order (R,M,N1,N2). Then

|xmλ,nνy|ď w (λ,ν)´N

holds for every N P N such that

R ě 2N, M ą 3N´ 5
4

, N1 ě N+
3
4

, N2 ě 2N.

Almost orthogonality of CPMs can be used to infer that some results in microlocal
analysis, such as the resolution of the wavefront set or the microlocal Sobolev regularity,
are universal for all good-enough families of CPMs.

2.1 Wavefront Set

Let us now formalise the notion of the wavefront set. We say that a set C is a cone if for
every ξ P C and every t ą 0 we have tξ P C.

Definition 2.2. The wavefront set of a distribution f, denoted WF(f), is the complement
of the set of all points (θ0, b0) such that there exists a smooth window function φ P C∞

0 ,
φ(b0) ‰ 0 and an open cone C such that θ0 P C, with the property that for all N P N

|xφf(ξ)| ď CN(1 + ‖ξ‖)´N, for all ξ P C. (2)
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As we already mentioned, one of the important features of curvelets and shearlets is
their ability to uncover the wavefront set of a distribution as the complement of the set of
points where the corresponding frame coefficients decay rapidly. To be more specific, if
we denote by γaθb the second generation curvelets [5], then WF(f) is the complement of
the set of points (θ0, b0) such that

xf,γaθby À aN, for all N P N, as a Ñ 0,

for (θ, b) are in some open neighbourhood of (θ0, b0). In [13] it was shown that this result
is indeed universal for all families of CPMs that satisfy mild conditions, which we will not
go into for the sake of brevity.

Theorem 2.2. Let Σ = tnν : ν P ΛΣu be a family of continuous parabolic molecules of order
(R,M,N1,N2), and (ΨΣ,ΛΣ) its parametrisation. The wavefront set of f is the complement of

RΣ =

#
(θ0, b0) : for all k P N we have |xf,n

Ψ´1
Σ (a,θ,b)y|= O(ak) as a Ñ 0,

for some neighbourhood N of (θ0, b0)

+
. (3)

3 Detection of Edges

Consider a bounded, open setΩ Ď R2 with a continuous and piecewise-smooth boundary
BΩ and let χΩ denote its indicator function. As we mentioned earlier, it can be shown
that the wavefront set of χΩ is given by

WF(χΩ) = t(θ, x) : x P BΩ, θ normal to BΩ at xu. (4)

The proof of (4) can be found in [20]. On the other hand, Theorem 2.2 states that the
wavefront set is the complement of the set of angle-location pairs for which the frame
coefficients with respect to a family of CPMs decay rapidly as the dilation parameter goes
to zero. Let us summarise this in a theorem.

Theorem 3.1. Let Ω Ď R2 be a bounded and open set with continuous and piecewise-smooth
boundary BΩ, and let Γ = tmλ : λ P ΛΓ u be a family of continuous parabolic molecules that
satisfy the assumptions of Theorem 2.2. Then if a point p P R2 does not lie on the boundary curve
BΩ and the angle θλ P [0, 2π) is arbitrary, we have

xχΩ,mλy À aNλ , for all N P N,

for λ = (aλ, θλ, p). Otherwise, if p lies on the boundary curve BΩ, and BΩ is C∞ in the
neighbourhood of p, then taking θλ which is normal to BΩ at p, we again have

xχΩ,mλy À aNλ , for all N P N.

Proof. The statement follows directly by comparing (4) with Theorem 2.2.

This result is of only qualitative nature, that is to say, the dependence of the decay
rates on the order of the given CPM family and on the smoothness of the boundary in the
vicinity of p could be made more explicit, but such considerations are not pertinent for
the present discussion.

This still leaves a couple of unanswered questions. The first question concerns the
decay rates of the frame coefficients xχΩ,mλy when p lies on the boundary of Ω and the
angle θλ is normal to BΩ at p. Studies conducted in [5, 16, 17] indicate that the answer
is exactly a3/4

λ . We will not focus on this question since we cannot obtain lower bounds
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within this framework, whereas the upper bound can be derived through a very simple
argument using the fact that χΩ is in L∞ by

|xχΩ,mλy| ď a
3/4
λ

ż

R2
|ϕ(λ)(x)|dx À a

3/4
λ . (5)

This is up to a multiplicative constant the same as what can be reached through substan-
tially more delicate means, such as in [16, 17]. Therefore, we will not pursue this question
any further.

The second interesting question concerns the points were the boundary is not smooth.
This is the question we will focus on in the rest of this chapter. These are the points where
the boundary curve is continuous but the derivative is not uniquely defined, or in other
words, the tangents from the left and from the right at those points on the boundary are
not aligned.

4 Corner Points

4.1 Wedges

The first order of business is to define what is a corner point of a set Ω Ď R2. We will
follow the definitions from [16].

Definition 4.1. Let Ω Ď R2 be a bounded and open set with continuous and piecewise-
smooth boundary that has non-vanishing and bounded curvature. Denote by αΩ : [0, 1] Ñ
R2 the parametrisation of the boundary BΩ (which we may assume to be an arc-length
parametrisation). We say that a point p P BΩ is a corner point of Ω if α 1

Ω(t+0 ) ‰ ˘α 1
Ω(t´0 ),

where p = αΩ(t0).

The condition α 1
Ω(t+0 ) = ˘α 1

Ω(t´0 ) is also excludes the sets whose boundary is Möbius-
like. That is, when following the path of the normal all the way back to the starting point
we end up on the same line but facing the opposite direction. This can happen for example
if the number of crossings in a curve is odd, or equivalently, if the winding number of a
point in the interior of the curve is even, thus reversing the orientation of the normals.

The first step in computing the decay rates of the frame coefficients is showing that
they are a local property.

Lemma 4.1. Consider two tempered distributions f1 and f2 such that f1 = f2 in an open neigh-
bourhood of p P R2 and let Γ = tmλ : λ P ΛΓ u be a family of continuous parabolic molecules of
order (R,M,N1,N2) such that N1 ą 4. Then for λ = (aλ, θλ, p) and ρ P N, we have, provided
R ě 2ρ,

xf1,mλy „ aρ if and only if xf2,mλy „ aρ, as a Ñ 0.

Proof. Let us first assume that f1 and f2 are bounded compactly supported functions. This
can then be extended to tempered distributions through standard arguments. We can
assume without loss of generality that f1 and f2 coincide on a ball Bǫ(p). We have

|xf1,mλy ´ xf2,mλy| =
∣

∣

∣

∣

ż

R2
mλ(x)(f1 ´ f2)(x)dx

∣

∣

∣

∣

ď ‖f1 ´ f2‖L∞(Bc(p))

ż

Bc
ǫ(p)

|mλ(x)|dx.

We will omit the λ indices from now on. Writing M = D1/aRθ we have

m(x) = a´3/4ϕ(M(x ´ p)).
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Through standard methods we get

ϕ(x) =

ż

R2
ϕ̂(ξ)e2πıx¨ξdξ = (´1)k(2π‖x‖)´2k

ż

R2
∆kϕ̂(ξ)e2πıx¨ξdξ.

Using Jensen’s inequality we then have

|ϕ(x)| ď Ck2k´1
(

1 + ‖x‖2
)k

= C̃kx‖x‖y´2k,

holds for all k P N for which ∆kϕ̂ exists and such that
ż

R2
|ϕ̂(ξ)|dξ ă ∞, and

ż

R2
|∆kϕ̂(ξ)|dξ ă ∞. (6)

Due to conditions (1), the terms in (6) hold as long as the CPM family Γ is of order
(R,M,N1,N2), where R ě 2k and N1 ě 4. Therefore, we have

|ϕ(M(x ´ p))| ď Ck2k´1x‖M(x ´ p)‖y´2k. (7)

Now, since ‖Mu‖ ě a´1/2‖u‖, it follows
ż

Bc
ǫ(p)

|m(x)|dx ď Cka
k

ż

Bc
ǫ(p)

(a+ ‖u‖2)´kdu ď Ck,ǫa
k,

as long as k ą 1. Therefore, the conclusion follows.

From this point forward we will assume that any family of CPMs satisfies the condi-
tions of Lemma 4.1.

Let us now describe the strategy that we will argue in the remainder of the paper. We
will begin by considering angular wedges (such as in Figure 4.1), which are prototypical
examples of sets in R2 with corner points. A simple argument using the localisation
Lemma 4.1 then allows for the corner detection in polygons. In order to address more
general sets we will use an approximation argument in which the boundary of a given set
Ωwill, in the vicinity of a corner point, be approximated with straight lines determined by
the two tangents that define the corner point. We will show that the information regarding
the decay rates is preserved throughout this process.

To begin, let Wη1,η2 Ď R2 denote an angular wedge centred at the origin, where
0 ă η1 ă η2 ă 2π and η2 ´ η1 ‰ π, defined by

Wη1,η2 =

"
x P R2 : η1 ď

∣

∣

∣

∣

atan
(

x2

x1

)
∣

∣

∣

∣

ď η2

*
. (8)

Here by atan we denote the extension of the arc tangent so that its range is [0, 2π). Let
Hη1,η2(x) = χWη1,η2

(x) denote the indicator function of such a wedge and assume without
loss of generality that 0 ă η2 ´ η1 ă π. The function Hη2,η2 induces a distribution whose
Fourier transform can be obtained by first computing the Fourier transform of H0,π/2 and
then squeezing and rotating the angular wedge W0,π/2 as required. The function H0,π/2
is the indicator function of the first quadrant, and we have

H0,π/2(x) = χx1ą0(x1)χx2ą0(x2).

Thus, H0,π/2 is a direct product of two Heaviside distributions. Therefore, its Fourier
transform is also a direct product and is given as

Ĥ0,π/2(ξ) =
1
4
δ(ξ1)δ(ξ2) ´ ı

4π

(

δ(ξ2)PV
1
ξ1

+ δ(ξ1)PV
1
ξ2

)

´ 1
4π2 PV

1
ξ1

PV
1
ξ2

, (9)
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η1

η2

Wη1,η2

Figure 1: Angular wedge defined through its two angles, η1 and η2

where PV marks the Cauchy’s principal value. In the rest of the text we will (mostly) omit
writing PV for the sake of reducing the notational load, though it will always be lurking
somewhere in the background. Denoting now

A = Rη2+η1
2

diag
(

1, tan
(

η2 ´ η1

2

))

Rπ/4, (10)

we have Wη1,η2 = AW0,π/2. It follows

Ĥη1,η2(ξ) = tan
(

η2 ´ η1

2

)

Ĥ0,π/2(A
Jξ). (11)

The case π ă η1 ´ η2 ă 2π is analogous, since it follows from a simple observation of the
identity Hπ/2,2π = 1 ´H0,π/2.

We will first look at band-limited CPMs , where the computations are considerably
simpler, yet they still give an indication of what needs to be done in the general case.

4.2 Band Limited Molecules

Let Γ = tmλ : λ P ΛΓ u be a CPM family and assume that for all λ the frequency support
of ϕ(λ) satisfies

supp ϕ̂(λ) Ď [A1,A2] ˆ [´B,B], (12)

where A1,A2,B ą 0 and A2 ą A1. All known constructions of band-limited parabolic
analysing systems satisfy support conditions of this type, consider for example second
generation curvelets [5] and band-limited shearlets [16]. We can now show the following.

Lemma 4.2. Let p = 0 P R2, and Γ = tmλ : λ P ΛΓ u be a family of band-limited CPMs that
satisfy (12) for all λ P ΛΓ . For λ = (aλ, θλ, p) we then have

xHη1,η2 ,mλy À a
5/4
λ

sin (η2 ´ η1)

cos(η1 + θλ) cos(η2 + θλ)
,

when cos(θλ + ηi) ‰ 0 for all i = 1, 2. On the other hand, if cos(ηj + θλ) = 0 we have

xHη1,η2 ,mλy À a
3/4
λ

sin(η2 ´ η1)

cos(ηk + θλ)
,

where k P t1, 2u ´ j.

Proof. Let us first examine the case when cos(θλ + ηi) ‰ 0 for i = 1, 2. We can notice
that the Dirac delta function contributions from (9), that is (11), vanish when the dilation
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parameter a is small enough since the supports of the Dirac delta contributions (the origin)
and ϕ̂(λ) do not intersect. Therefore, we have

xHη1,η2 ,mλy = xĤη1,η2 , m̂λy = xĤ0,π/2, m̂λ(AJ¨)y = c ¨
ż

R2

m̂λ(AJξ)

ξ1ξ2
dξ

= C ¨
ż

R2

ϕ̂(λ)(ξ)dξ

(ξ1 +
?
aλξ2 tan(η1 + θλ))(ξ1 +

?
aλξ2 tan(η2 + θλ))

,

where

C = a
5/4
λ

sin (η2 ´ η1)

2
?

2 cos(η1 + θλ) cos(η2 + θλ)
.

For ξ P supp ϕ̂(λ) Ď [A1,A2] ˆ [´B,B] we have that if the dilation parameter a is small
enough, then ξ1 +

?
aλξ2 tan(η1 + θλ) and ξ1 +

?
aλξ2 tan(η2 + θλ) are uniformly away

from 0, and moreover, are uniformly bounded from above and from below, which gives

ż

R2

ϕ̂(λ)(ξ)dξ

(ξ1 +
?
aλξ2 tan(η1 + θλ))(ξ1 +

?
aλξ2 tan(η2 + θλ))

À
ż

R2
ϕ̂(λ)(ξ)dξ

(1)
À 1.

Therefore,

xHη1,η2 ,mλy À a
5/4
λ

sin (η2 ´ η1)

cos(η1 + θλ) cos(η2 + θλ)
.

Let us now consider the other case. Without loss of generality, we assume cos(η1 + θλ) =

0. The contribution of terms that involve δ(ξ2) vanish using previous argumentation.
Therefore, we are essentially left with an integral along one of the lines that define the
angular wedge Wη1,η2 . Addresing that expression first we have

B
1
ξ2
δ(ξ1), m̂λ(AJ¨)

F
= c ¨

ż

R2

m̂λ(AJξ)

ξ2
δ(ξ1)dξ = C̃ ¨

ż

R2

δ(u2)ϕ̂
(λ)(u)

u1 +
?
aλ tan(η2 + θλ)u2

du

À a
3/4
λ

sin(η2 ´ η1)

cos(η2 + θλ)
,

where C̃ = a
3/4
λ

sin(η2´η1)
cos(η2+θλ)

. Analogous analysis gives

B
1
ξ1ξ2

, m̂λ(AJ¨)
F

À a
3/4
λ

sin(η2 ´ η1)

cos(η2 + θλ)

ż

R2

ϕ̂(λ)(ξ)

ξ2
dξ,

where the integral is finite due to the assumptions on ϕ̂(λ). Therefore, putting it all
together we have

xHη1,η2 ,mλy À a
3/4
λ

sin(η2 ´ η1)

cos(η2 + θλ)
,

as desired.

For full disclosure, the rate a3/4 can up to a multiplicative constant be reached by the
same arguments as in (5), that is, by considering the L∞ nature of the Heaviside function.
But, in Lemma 4.2 we obtain further information about the geometric interplay between
the orientation of the molecule and the angles at the corner point.

4.3 General Parabolic Molecules

We will now show that the results of the previous section can be extended to more gen-
eral scenarios, namely, for CPMs that are not necessarily band-limited. Even though the
general principles remain the same, the computations will get significantly more delicate
and we will need to impose some rather mild conditions on the CPM family we will be

10



working with. In this section we will constantly work under the assumption that the un-
derlying CPM family is of sufficiently high order (R,M,N1,N2), since our focus is not on
deriving precise and quantifiable estimates. We hope that this will be clear in every proof
and statement.

Let us first recall that the Fourier transform of Hη1,η2 is given by

Ĥη1,η2(ξ) = tan
(

η2 ´ η1

2

)

Ĥ0,π/2(A
Jξ),

where

Ĥ0,π/2(ξ) =
1
4
δ(ξ1)δ(ξ2) ´ ı

4π

(

δ(ξ2)PV
1
ξ1

+ δ(ξ1)PV
1
ξ2

)

´ 1
4π2 PV

1
ξ1

PV
1
ξ2

,

with A as defined in (10). To simplify the notation for the computations, let us split
xHη1,η2 ,mλy into three terms as follows,

xHη1,η2 ,mλy = xĤη1,η2 , m̂λy = xĤ0,π/2, m̂λ(AJ¨)y

=
1
4

xH1, m̂λ(AJ¨)y ´ ı

4π
xH2, m̂λ(AJ¨)y ´ 1

4π2 xH3, m̂λ(AJ¨)y,

where (omitting PV) we define

H1(ξ) = δ(ξ1)δ(ξ2),

H2(ξ) =
δ(ξ1)

ξ2
+
δ(ξ2)

ξ1
, (13)

H3(ξ) =
1
ξ1ξ2

.

Let us first address the case when the molecule mλ is not orthogonal to either sides
of the wedge. In contrast with the discussion in Section 4.2, the action of the distribution
Ĥη1,η2 on a function ϕ̂(λ), whose support is not necessarily compact, will generally in-
clude the contributions of all three terms, H1,H2 and H3. In order to see this, we can start
by observing the contribution of the first term.

Lemma 4.3. Consider a CPM family Γ = tmλ : λ P ΛΓ u of order (R,M,N1,N2) and the
distribution H1 defined in (13). Provided the dilation parameter aλ is small enough we have

xH1, m̂λ(AJ¨)y À a
3/4+M
λ , (14)

where the matrix A is defined in (10).

Proof. A simple computation gives

xδ(ξ1)δ(ξ2), m̂λ(AJ¨)y „ a
3/4
λ ϕ̂(λ)(0) ď a

M+3/4
λ , (15)

where we used (1).

Notice that for band-limited molecules that obey support assumptions (12) the left
hand side of (14) would be equal to 0 since the origin is not in the support of ϕ̂(λ).

Let us now look at the second term.

Lemma 4.4. Consider a CPM family Γ = tmλ : λ P ΛΓ u and the distribution H2 defined in (13).
Provided the dilation parameter aλ is small enough we have

xH2, m̂λ(AJ¨)y À a
5/4+CM,N1
λ , (16)

where CM,N1 ą 0 is a positive constant that depends on the order of family Γ , and becomes
arbitrarily large provided M and N1 are big enough, and matrix A is defined in (10).

11



Proof. Consider first the action of 1
ξ2
δ(ξ1) and omit the indices. The other term can be

treated analogously. We have
B

1
ξ2
δ(ξ1), m̂(AJ¨)

F
= a3/4

ż

R2

1
ξ2
δ(ξ1)ϕ̂(Tξ)dξ,

where T = DaRθAJ, with A. Denote now

f(y) := ϕ̂
(

y(a cos(θ+ η1),
?
a sin(θ+ η1)

)

= ϕ̂(ỹ).

If we apply the Dirac delta and use the change of variables

ξ2 ÞÑ y
?

2 cos
(

η2´η1
2

) ,

it follows B
1
ξ2
δ(ξ1), m̂(AJ¨)

F
„ a3/4

ż

R

f(y)

y
dy.

Following the standard proof of well-definedness of Cauchy’s principal value, we can split
up the integral as

ż

|y|ąǫ
f(y)

1
y
dy =

ż C

|y|ąǫ
f(y)

1
y
dy +

ż
∞

|y|ąC
f(y)

1
y
dy, (17)

where C ą 0 is a constant that will be specified later. In order to bound the first term we
observe ż C

|y|ąǫ

f(y)

y
dy =

ż C

yąǫ

f(y) ´ f(´y)

y
dy ď 2C ¨ sup

yP[0,C]

|f 1(y)|, (18)

which follows from the continuity and the mean value theorem. To bound f 1(y) we have
by the chain rule

|f 1(y)| ď ‖Bϕ̂(ỹ)‖‖∇ỹ‖ ď a1/2‖Bϕ̂(ỹ)‖.

Take C ą 0 to be such that 1+ |y| ď a´β holds for all y P [0,C] and some β ą 0 which will
be discussed later. Notice that this implies C „ a´β. We now have

|f 1(y)| À a1/2 min(1,a(1 + |y|))M ď a1/2+M(1´β), (19)

using the moment condition from (1). Plugging (19) into (18) it follows

ż C

|y|ąǫ

f(y)

y
dy À aM(1´β)´β+1/2. (20)

On the other hand, we can write
ż

|y|ąC

f(y)

y
dy =

ż

|y|ąC

yf(y)

y2 dy À C´1 sup
yP[C,∞)

|yf(y)|. (21)

Furthermore, since we now have 1 + |y| ě a´β it follows 1+|y|2ě a´2β

2 . Thus, using the
decay conditions (1) we have |ϕ̂(ỹ)| À x‖ỹ‖y´N1 xỹ2y´1, which yields

|yf(y)| ď a´1xỹ2y|ϕ̂(ỹ)| ď a´1x‖ỹ‖y´N2 À aN1(2β´1)´1. (22)

Therefore, plugging (22) into (21) we have
ż

|y|ąC

f(y)

y
dy À aN1(2β´1)+β´1. (23)

12



Looking at equations (20) and (23) we see that we need 1/2 ă β ă 1. Therefore, provided
M and N1 are both large enough, the terms in (20) and (23) will have arbitrarily fast decay.
To be more precise, in order to ensure that the decay rate is faster than 5/4 we need

M ě 3/4 +β

1 ´β and N1 ě 9/4 ´β
2β´ 1

.

An entirely analogous argument yields the same decay order for the other term,
x 1
ξ1
δ(ξ2), m̂λ(AJ¨)y. Hence, the conclusion follows.

Estimates (14) and (16) say that the terms xH1,mλy and xH2,mλy exhibit fast decay
which depends on the smoothness of the molecule. Let us now address the last remaining
term. First, we need to define vanishing moments.

Definition 4.2. We say that a bivariate function f P L2(R2) has K vanishing moments in the
xj direction, where K P N and j P t1, 2u, if

ż

R2

|f̂(ξ)|2

|ξj|2K
dξ ă ∞. (24)

Lemma 4.5. Consider a CPM family Γ = tmλ : λ P ΛΓ u such that the functions ϕ(λ) have one
vanishing moment in the x1 direction, the distribution H3 defined in (13), and consider the matrix
A as defined in (10). Provided the dilation parameter a is small enough, we have

xH3, m̂λ(AJ¨)y À a
5/4
λ

sin (η2 ´ η1)

cos(η1 + θλ) cos(η2 + θλ)
.

Proof. Let us omit the indices and notice that same as in Section 4.2 we have

B
1
ξ1ξ2

, m̂(AJ)

F
= C

ż

R2

ϕ̂(ξ)dξ

(ξ1 +
?
aξ2 tan(η1 + θ))(ξ1 +

?
aξ2 tan(η2 + θ))

, (25)

where

C = a5/4 sin (η2 ´ η1)

2
?

2 cos(η1 + θ) cos(η2 + θ)
.

The integral in (25) can be split in three parts. The first part is the integral over
ˇ̌
ˇξ2
ξ1

ˇ̌
ˇ ď a´α,

where we write α = 1
2 ´ ε ą 0. Denote ti = tan(ηi + θ). We have

1 ´ |ti|aε ď
ˇ̌
ˇ̌1 + ti

?
a
ξ2

ξ1

ˇ̌
ˇ̌ ď 1 + |ti|aε. (26)

Hence, provided the dilation parameter a is small enough it follows

1
ξ1 +

?
at1ξ2

,
1

ξ1 +
?
at2ξ2

„ 1
ξ1

.

Therefore, ż
ˇ̌
ˇξ2
ξ1

ˇ̌
ˇďa´α

ϕ̂(ξ)dξ

(ξ1 +
?
at1ξ2)(ξ1 +

?
at2ξ2)

„
ż

ˇ̌
ˇξ2
ξ1

ˇ̌
ˇďa´α

ϕ̂(ξ)dξ

ξ2
1

, (27)

which is finite since we assumed ϕ satisfies the vanishing moments condition.

Consider now the contribution coming from the integral over
ˇ̌
ˇξ2
ξ1

ˇ̌
ˇ ě a´α. Let us first

observe the change of variables under the linear transformation

ξ ÞÑ v =

(

1
?
at1

1
?
at2

)

ξ. (28)
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Applying (28) gives

ż
ˇ̌
ˇξ2
ξ1

ˇ̌
ˇěa´α

ϕ̂(ξ)dξ

(ξ1 +
?
at1ξ2)(ξ1 +

?
at2ξ2)

=
a´1/2

|t2 ´ t1|

ż
ˇ̌
ˇξ2
ξ1

ˇ̌
ˇěa´α

ϕ̂a
t2t1

(v)

v1v2
dv1dv2, (29)

where ϕ̂a
t2t1

is defined as

ϕ̂a
t2t1

(v) = ϕ̂

(

1
t2 ´ t1

(t2v1 ´ t1v2,a´1/2(v2 ´ v1)

)

.

We will now split the area of integration in the integral (29) in two pieces. The first piece
is the box Ia,γ = [´aγ,aγ]2, for γ ą 0 that will be specified later. Applying the standard
methods of Cauchy’s principal value we have

a´1/2

|t2 ´ t1|

ż

Ia,γ

ϕ̂a
t2t1

(v)

v1v2
dv À a´1/2

|t2 ´ t1|

ż

Ia,γ

sup
ṽPIa,γ

|B(1,1) (ϕ̂a
t2t1

(ṽ)
)

|dv. (30)

The chain rule gives

ˇ̌
ˇB(1,1) (ϕ̂a

t2t1
(v)

)

ˇ̌
ˇ À a´1 max

|α|=2

ˇ̌
ˇ̌Bαϕ̂

(

1
t2 ´ t1

(t2v1 ´ t1v2,a´1/2(v2 ´ v1))

)
ˇ̌
ˇ̌ ,

where α P N2
0 is a multi-index. This can be bounded using (1) as

∣

∣

∣

∣

∣

Bαϕ̂
( 1
t2 ´ t1

(t2v1 ´ t1v2,a´1/2(v2 ´ v1)
)

∣

∣

∣

∣

∣

À
(

a+
|t2v1 ´ t1v2| + |v2 ´ v1|

|t2 ´ t1|

)M

.

Therefore,
ˇ̌
ˇ̌Bαϕ̂

(

1
t2 ´ t1

(t2v1 ´ t1v2,a´1/2(v2 ´ v1))

)
ˇ̌
ˇ̌ À aMγ, for all v P Ia,γ.

Plugging it back into (30) we get

a´1/2

|t2 ´ t1|

ż

Ia,γ

ϕ̂a
t2t1

(v)

v1v2
dv À aMγ+2γ´3/2. (31)

Consider now the image of the cone
ˇ̌
ˇξ2
ξ1

ˇ̌
ˇ ě a´α under the linear transformation de-

fined by (28). The result is the cone Ca
t1,t2

that is determined by the lines through the
points (˘1 ˘ aǫt1, ˘1 ˘ aǫt2). Therefore, we can decompose it four equivalent pieces.

Let us assume now, without loss of generality, that t1 ą t2. It follows

a´1/2

|t2 ´ t1|

ż

Ca
t1t2

´Ia,γ

ϕ̂a
t2t1

(v)

v1v2
dv À a´1/2´2γ

ż
∞

v2=aγ

ż (1´aǫ)v2

v1=´v2

|ϕ̂a
t1,t2

(v)|dv.

We can now use the decay estimate |Bαϕ̂(v)| À |v2|
´N2 , which yields

a´1/2

|t2 ´ t1|

ż

Ca
t1t2

´Ia,γ

ϕ̂a
t2t1

(v)

v1v2
dv À a´1/2+N2/2´2γ

ż

Ca
t1t2

´Ia,γ

|v2 ´ v1|´N2dv

À aN2( 1
2 ´(γ+ǫ))+ǫ´1/2. (32)

Let us recollect the requirements on γ and ǫ. First of all, we need γ, ǫ ą 0, whereas
(26) and (32) further impose ǫ ă 1/2 and γ+ ǫ ă 1/2. Choosing γ and ǫ that satisfy these
conditions, we have fast decay provided M and N2 are big enough and the statement
follows from (27), (31) and (32).
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We can combine the three preceding lemmas in the following theorem.

Theorem 4.6. Assume Γ = tmλ : λ P ΛΓ u is a family of CPMs . Let λ = (aλ, θλ, p) be such that
θλ is orthogonal to neither η2 nor η1. Then we have

xHη1,η2 ,mλy À a
5/4
λ

sin(η2 ´ η1)

cos(η1 + θλ) cos(η2 + θλ)
+ aCM,N1,N2 ,

where CM,N1,N2 ą 0 is a positive constant that depends on M,N1 and N2, is greater than 5/4
and becomes arbitrarily large for large M,N1 and N2.

Proof. We have

xHη1,η2 ,mλy =
1
4

xH1, m̂λ(AJ¨)y ´ ı

4π
xH2, m̂λ(AJ¨)y ´ 1

4π2 xH3, m̂λ(AJ¨)y,

where H1,H2 and H3 are as defined in (13). The statement then follows by using the
triangle inequality and applying Lemmas 4.3, 4.4 and 4.5.

An analogous analysis can be applied to the case when the parabolic molecule is
aligned with one of the wedge lines. We will not provide the details here since the calcu-
lations are very similar to those we have already performed and since essentially the same
decay rate can be again obtained by merely using the L∞ nature of Hη1,η2 .

Theorem 4.7. Assume Γ = tmλ : λ P ΛΓ u is a family of CPMs . Let λ = (aλ, θλ, p) be such that
cos(ηj + θλ) = 0, and consider k P t1, 2u ´ j. Then we have

xHη1,η2 ,mλy À a
3/4
λ

sin(η2 ´ η1)

cos(ηk + θ)
+ aCM,N1,N2 ,

where CM,N1,N2 ą 0 depends on M,N1 and N2, and is greater than 3/4 and becomes arbitrarily
large for large M,N1 and N2.

4.4 Polygons

The tools we developed thus far allow us to identify the corner points of polygons. To
begin, let us show that translating any given set does not affect the decay rates. Taking a
set Ω Ď R2 and a point p P R2, it follows

χΩ+p(x) = χΩ(x ´ p) = TpχΩ(x),

where Tp denotes the translation operator. Since the Fourier transform maps translations
into modulations, we have

xχΩ+p,mλy = xχ̂Ω+p, m̂λy

=

ż

R2
e´2πıξ¨pχ̂Ω(ξ)e2πıξ¨pϕ̂(λ)(Daλ

Rθλ
ξ)dξ

=

ż

R2
χ̂Ω(ξ)ϕ̂(λ)(Daλ

Rθλ
ξ)dξ

where λ = (aλ, θλ, p). Therefore, as expected, translating the set does not affect the decay
rates of the frame coefficients, and it is sufficient to restrict our attention to the study of
the decay rates for p = 0.

Consider now a polygon P and a corner point p on its boundary and let η1 and η2 be
the angles determined by the two lines of the polygon that meet at p. Using the localisation
Lemma 4.1 it follows that the decay rates of coefficients xχP,mλy are the same as those
of xHη1,η2 ,mλy. Therefore, we can apply the results from Section 4.3. We can summarise
these findings in the following theorem.
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Theorem 4.8. Let P Ď R2 be a polygon and Γ = tmλ : λ P ΛΓ u a family of continuous parabolic
molecules. Consider p P BP. Provided p is a corner point of P and λ = (aλ, θλ, p) then if θλ is
not orthogonal to BP at p, we have

xχP,mλy À a
5/4
λ

sin(η2 ´ η1)

cos(η1 + θλ) cos(η2 + θλ)
,

and otherwise if cos(ηj + θλ) = 0, then for k P t1, 2u ´ j we have

xχP,mλy À a
3/4
λ

sin(η2 ´ η1)

cos(ηk + θλ)
.

Proof. Since Hη1,η2 = χP in the neighbourhood of p, by the localisation Lemma 4.1 we
have that xχP,mλy is of the same decay order as xHη1,η2 ,mλy. The result now follows
directly from Theorems 4.6 and 4.7.

4.5 General Sets

In order to detect edges and corner points of general sets we will now use a fairly straight-
forward approximation argument. The boundary of a given corner point of BΩ will be lo-
cally approximated using straight lines whose orientations are determined by the tangents
at the corner point. It will then follow that such an approximating procedure preserves
the decay rates. Therefore, decay rates that we have computed for angular wedges will
give decay rates on domains with more general boundaries.

Assume again that Ω Ď R2 is a bounded and open set with continuous and piecewise-
smooth boundary that has and bounded curvature, and is parametrised by αΩ : [0, 1] Ñ
R2. Consider a corner point p P BΩ where p = αΩ(t0) with α 1

Ω(t+0 ) ‰ ˘α 1
Ω(t´0 ). Let

ǫ ą 0 be small enough so that Bǫ(p) intersects BΩ at exactly 2 points (the same then
holds for all smaller ǫ). Let R denote the set that approximates Ω. For the points outside
of Bǫ(p), the set R is equal to Ω, that is

R ´ Bǫ(p) = Ω´ Bǫ(p).

On the other hand, part of the boundary BR within Bǫ(p) is a linear approximation of αΩ
obtained by locally replacing the boundary of BΩ with tangent lines emanating from p

(look at Figure 4.5). That is, from the left we use α 1
Ω(t´0 ) and from the right α 1

Ω(t+0 ), to be
the slopes of the respective linear interpolants through p (we assume αΩ takes a positive
orientation). We will denote the parametrisation of the BR as αR. What is important is
that in Bǫ(p) [16] we have

‖αΩ(t) ´αR(t)‖ ď C(t´ t0)2.

The first step in our approximation procedure is to show that the linear approximation χR
exhibits the same decay rates at p as its corresponding translated angular wedge Wη1,η2 +

p, where η1 and η2 denote the angles defined by the tangents α 1
Ω(t+0 ) and α 1

Ω(t´0 ). By
the discussion at the beginning of Section 4.4, we can without loss of generality assume
p = 0. Furthermore, in the following we will assume that we are working with a CPM

family Γ = tmλ : λ P ΛΓ u which is of sufficiently high order.

Lemma 4.9. Let χR be the local approximation of the set Ω that we just described, and let the
angles η1 and η2 correspond to the tangents α 1

Ω(t+0 ) and α 1
Ω(t´0 ). Then the following holds

if for ρ ą 0 xHη1,η2 ,mλy À a
ρ
λ, as aλ Ñ 0, then xχR,mλy À a

ρ
λ, as aλ Ñ 0,

where λ = (aλ, θλ, p).
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BR

Bǫ(p)

p

Ω

Figure 2: Local approximation of the boundary around a corner point

Proof. We have
xχR,mλy = xHη1,η2 ,mλy + xχR ´Hη1,η2 ,mλy.

Therefore, since Hη1,η2 = χR holds on Bǫ/2(p), the localisation Lemma 4.1 gives

xχR ´Hη1,η2 ,mλy À aN,

for every N P N for which ∆Nϕ̂ exists and has a finite L1 norm. Since we by assumption
have xHη1,η2 ,mλy ď C̃aρ, the statement follows (provided N ě ρ).

Notice now
xχΩ,mλy = xχR,mλy + xχΩ ´ χR,mλy. (33)

Let us focus on the second term.

Lemma 4.10. Let Ω and R be the previously described sets. Then for a CPM family Γ = tmλ :

λ P ΛΓ u, we have

xχΩ ´ χR,mλy À a
CN
λ ,

where CN ą 5
4 and λ = (aλ, θλ, p).

Proof. Let us omit the λ indices. We have

xχΩ ´ χR,my =

ż

Baγ(p)

m(x) (χΩ ´ χR) (x)dx

looooooooooooooooooomooooooooooooooooooon
I1

+

ż

Bc
aγ

(p)

m(x) (χΩ ´ χR) (x)dx

looooooooooooooooooomooooooooooooooooooon
I2

.

where γ ą 0, and will be specified later, and a is taken small enough so that aγ ă ǫ

is ensured. We will approach the discussion in slightly broader generality by allowing
‖αΩ(t) ´ αR(t)‖ ď C|t´ t0|k for some k P N. Furthermore, we will denote the desired
decay rate with q. We would like to see how does the interaction between k and q play
out.

Estimating I1 we have

|I1| À a´3/4
ż

Baγ(p)

|χΩ ´ χR|(x)dx À a´3/4
ż t0+aγ

t0´aγ
‖αΩ(t) ´αR(t)‖dt

À a´3/4
ż t0+aγ

t0´aγ
|t0 ´ t|kdt À a´3/4+γ(k+1).
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Hence, we need ´3/4+γ(k+ 1) ą q. Since Ω´Bǫ(p) = R´Bǫ(p), we can estimate I2 by

|I2| À
ż

Bc
aγ

(p)

|ϕ(M(x ´ p))||χΩ ´ χR|(x)dx À a´3/4
ż

Bǫ(p)´Baγ(p)

|ϕ(M(x ´ p))|dx

À a´3/4
ż

Bǫ(p)´Baγ(p)

|ϕ(D1/a(x ´ p))|dx,

where M = D1/aRθ. Using (7), we now have

|I2| À a´3/4
ż

Bǫ(p)´Baγ(p)

(

1 + a´2x2
1 + a

´1x2
2

)´N
dx À ǫa2N´3/4

ż
∞

aγ
x´2N

1 dx1

À ǫa2N(1´γ)´3/4+γ.

Therefore, for the statement to hold we need 2N(1 ´ γ) ´ 3/4 + γ ą q, which is the case
provided γ ă 1 and provided N is big enough.

Getting back to the statement of the lemma, for q = 5/4, we would need γ ą 2
k+1 and

γ ă 1 ´ 1
2N´1 . Furthermore, since we are using linear interpolation through R in order to

locally approximate Ω, we have k = 2. It follows that γ ą 2
3 . Therefore, such a γ will exist

provided N ě 3.

We can now combine the previous lemmas into the following theorem.

Theorem 4.11. Let Ω Ď R2 be a bounded and open set with continuous and piecewise-smooth
boundary that has bounded curvature. Assume Γ = tmλ : λ P ΛΓ u is a family of continuous
parabolic molecules which satisfy the assumptions of Lemmas 4.9 and 4.10. If p is a corner point
of Ω, them omitting the higher order terms we have

xχΩ,mλy À a
5/4
λ ,

when λ = (aλ, θλ, p) and θλ is orthogonal to neither α 1
Ω(t+0 ) nor α 1

Ω(t´0 ), where αΩ(t0) = p.
Otherwise, if θλ is orthogonal to BΩ at p we have

xχΩ,mλy À a
3/4
λ .

Proof. Let η1 and η2 be the angles associated with the tangents, α 1(t+0 ) and α 1(t´0 ), at
p P BΩ, and assume without loss of generality that p = 0. Since p is a corner point
we have η2 ´ η2 R πZ by assumption. Consider first the case when θλ is orthogonal to
neither η1 nor η2. By Lemma 2.2 we have that xHη1,η2 ,mλy À a

5/4
λ , for λ = (aλ, θλ, p).

Lemma 2.3 then says that it follows xχR,mλy À a
5/4
λ , where with R we denote the locally

linear (around p) approximation of Ω. Since Lemma 2.4 tells us that xχΩ ´ χR,mλy ď
a
CN
λ , where CN ą 5

4 provided m̂λ is sufficiently smooth, it follows by equation (33) that

xχΩ,mλy À a
5/4
λ , where the higher order terms can be readily neglected. Analogous

analysis gives that xχΩ,mλy À a
3/4
λ holds when θλ is orthogonal to either η1 or η2.

5 Multiplication with a Smooth Function

Theorem 4.11 admits a very simple and immediate generalisation.In the following we will
try to address the decay rates for coefficients of the form xfχΩ,mλy, where f is a (locally)
smooth function. To begin the analysis we will look at monomials and build up from
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a3/4a3/4
a5/4

(a) Decay rates at a corner point. The rates a3/4 cor-
respond to orthogonal directions while a5/4 corre-
spond to the non-orthongal directions

a3/4
aN

(b) On smooth parts of the boundary we have the
decay rate a3/4 in the orthogonal direction and oth-
erwise aN

Figure 3: Decay rates of the points along the edge of a domain.

there. For a multi-index α P N2
0 we compute

xxαχΩ,mλy = xχΩ, xαmλy = Cαxχ̂Ω, Bα (m̂λ)y = Cα

C
χ̂Ω,

ÿ

|β|=|α|

Cθ,βa
β1+

β2
2

λ m̂λ,β

G

= Cα

ÿ

|β|=|α|

Cθ,βa
β1+

β2
2

λ xχ̂Ω, m̂λ,βy, (34)

where
m̂λ,β = a

3/4
λ ϕ

(λ)
β

(

Daλ
Rθλ

ξ
)

and ϕ(λ)
β

(ξ) = Bβϕ(λ)(ξ). (35)

Extracting the highest common power of the dilation parameter from the expression (34),
we have

xxαχΩ,mλy À a
|α|
2

λ

ÿ

|β|=|α|

xχΩ,mλ,βy. (36)

The analysis developed in tpreceding sections can now be readily applied to each of
the coefficients xχΩ,mλ,βy. A careful examination of the arguments in previous sections
reveals that the computations, and the subsequent decay rates, came about by applying
the time-frequency localisation of functions mλ to show boundedness of various integrals,
that is, solely by using the decay conditions (1) and the smoothness of m̂λ. However, it
is clear from (35) that the functions mλ,β satisfy the decay conditions (1), provided m̂λ is
smooth enough. To be more precise, mλ,β is of order (R´ |β|,M,N1,N2), assuming mλ is
a molecule of order (R,M,N1,N2). Therefore, applying the results of Theorem 4.11, for a
corner point p and λ = (aλ, θλ, p), we have

xxαχΩ,mλy À a
5/4+ |α|

2
λ ,

when mλ is not orthogonal to the tangents at p and

xxαχΩ,mλy À a
3/4+ |α|

2
λ ,

when it is.
The same line of argument can now be extended to general polynomials. Consider a

polynomial Pα(x), of finite degree, such that BβPα(0) = 0, for all multi-indices β P N2
0

such that|β| ď α, where α is the smallest element of N2
0 with that property. In other

words, Pα satisfies
Pα(x) =

ÿ

βPJ

Cβxβ.
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where J Ď N2
0, with 0 ă |J| ă ∞, and α = (α1,α2) P N2

0 is defined by αi = minβPI βi, for i =
1, 2. If p is a corner point of Ω it follows by linearity

xPαχΩ,mλy =
ÿ

βPJ

CβxxβHη1,η2 ,mλy À a
|α|
2

λ

ÿ

βPJ

ÿ

|γ|=|β|

xχΩ,mλ,γy

À a
5/4+ |α|

2
λ , (37)

when the molecule mλ is not orthogonal to BΩ at p. An analogous argument shows that

xPαχΩ,mλy À a
3/4+ |α|

2
λ when mλ is not orthogonal to BΩ at p.

Remark. It would be possible to produce a more precise assessment of the decay rates had
we picked the underlying parabolic molecule with more scrutiny. To argue that this is
the case it is sufficient to re-examine (34). The fundamental issue that hinders a better
analysis lies in the fact that a general parabolic molecule m̂λ does not separate ξ1 and ξ2.
Consequently, any partial derivative of m̂λ will necessarily involve all partial derivatives
of the same order and the dilations imposed by the matrix Da cannot be decoupled. A
much finer analysis could be obtained by considering parabolic families that can achieve
this decoupling, such as the classical shearlets [6, 16]. We shall not pursue this line of
argument since imposing such restrictions would be at odds with what we are trying to
achieve. Interested reader is directed to [18] for a further discussion on this topic.

We can now extend our analysis to more general functions by locally approximating a
given function with its Taylor polynomial. Take f P Cm

(

R2
)

and denote by Pk its Taylor
polynomial of degree k around p, that is

f(x) =
ÿ

|α|ďk

Bαf(p) (x ´ p)α + Rk(x) = Pk(x) + Rk(x). (38)

Let p be a corner point of Ω and assume without loss of generality that p = 0. Let f be
such that Bβf(0) = 0, holds for all β P N2

0 such that |β| ď l, where l ă k. Then it follows

xfχΩ,mλy = xfχΩ ´ PkχΩ,mλy + xPkχΩ,mλy. (39)

Therefore, provided
xf χΩ ´ PkχΩ,mλy À aNλ , (40)

holds for a big enough N P N, it will follow

xf χΩ,mλy À a
q+

|α|
2

λ , (41)

where q = 3
4 when mλ is orthogonal to BΩ at p, and q = 5

4 otherwise.
The proof of (40) is analogous to that of Lemma 4.10, and it is the content of Lemma

A.1 which can be found in the Appendix. Furthermore, (41) clearly holds not just for
globally smooth functions but for more general classes of functions by adhering to the
localisation Lemma 4.1.

Looking at (41) we see that the resulting rate of decay comes from two contributions.
The factor aq. for q = 3/4 or q = 5/4, comes from coefficients of the form xχΩ,ϕλy,
where ϕλ is a partial derivative of a CPM and satisfies a condition of the form (1). The

second contribution, a
|α|
2 , comes by using the property of the Fourier transform to draw a

relationship between polynomial multiplication in the space domain with partial deriva-
tives in the frequency domain. In other words, if a corner point p is a root of f, then the
strength of singularity of fχΩ at p is counteracted by the multiplicity of the root, and this
can be observed through the increased rate of decay of the frame coefficients. The rate of
decay will increase relative to the multiplicity of the root.

We can now use the approximation strategy developed in Section 4.5 to extended the
results for any set Ω satisfying the assumptions of Theorem 4.11.
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Theorem 5.1. Let f P Cm(R2) be a function such that Bβf(p) = 0, for all β P N2
0 such that

|β| ď l, and let Pk(x) be its corresponding Taylor polynomial around p of degree k where k ą l.
Assume a family of continuous parabolic molecule Γ = tmλ : λ P ΛΓ u and a set Ω satisfy the
conditions of Theorem 4.11. Consider a corner point p of Ω, and take λ = (aλ, θλ, p). If θλ is
orthogonal to neither α 1

Ω(t+0 ) nor α 1
Ω(t´0 ), where αΩ(t0) = p then

xfχΩ,mλy À a
5/4+ |α|

2
λ ,

and otherwise

xfχΩ,mλy À a
3/4+ |α|

2
λ .

Proof. Consider (39), and estimate the first term by (40) using Lemma A.1. The statement
then follows by (37).

6 α-Molecules

Throughout the preceding analysis we used the parabolic scaling of the variables, as dic-
tated by Definition 2.1. A natural question is how, and indeed if, would the results change
if we chose a different scaling law. Since the parabolic scaling is propagated through the
parabolic dilation matrices, the most immediate work-around would be to generalise the
dilation matrices by Da,α = diag(a,aα) where α P [0, 1], and revise the definition of con-
tinuous molecules accordingly. Constructions of this type are typically called α-molecules
[21]. Notice that the parabolic molecules correspond to the case α = 1/2.

We will not be concerned at this point with questions regarding existence or the con-
vergence of integrals and such things, but rather just with quantitative changes in terms of
the decay with respect to the scaling parameter a. It follows immediately that a5/4 ought

to be replaced with a
3´α

2 , and a3/4 with a
1+α

2 , in e.g. statements of Theorems 4.6 and 4.7.
Therefore, taking α = 1 (which corresponds to the case when we treat both axes equally
and the isotropic directional wavelets) we get that the decay rates satisfy 3´α

2 = 1+α
2 .

Therefore, we cannot distinguish between edge and corner points, nor can we distinguish
between different orientations associated to a corner point. This means that that we indeed
need an unequal treatment of the axes to conduct analysis of this type.

Furthermore, changing the dilation matrices does not change the conditions of Lemma
2.4, that is, in order for the lemma to hold we again get the conditions

´1 +α

2
+ γ(k+ 1) ą 3 ´α

2
, and 2N(1 ´ γ) ´ 1 +α

2
+ γ ą 3 ´ γ

2
,

which are readily reduced to γ ą 2
k+1 , and γ ă 1 ´ 1

2N´1 . But, those are exactly
the same conditions we got with parabolic molecules. Therefore, the conclusion would
remain the same, which means that from the theoretical perspective, when it comes to the
detection of geometric features such as corner points, the particular choice of a scaling
law does not make a tangible effect as long as some sort of directional bias is present.

7 A Look at Earlier Work and a Simple Numerical Test

As we have mentioned on more than one occasion, the main contribution of our work is
the level of generality. This generality comes with the obvious drawbacks and we make no
claims with regards to the real-world applicability. We will now put the results presented
here in the context of contemporary research. Apart from the initial studies in [5] and
[15], we are aware of two approaches that are currently on the market. The common
feature across the existing methods is a two step process that combines an approximation
procedure and a localisation argument to yield results on edge and corner detection.

21



The first approach, studied for example in [16] and [3], relies on a couple of features.
Firstly, the underlying dictionary is assumed (or rather constructed) to be band-limited,
where the mother function separates the angular and radial influences in one way or
another. The next step uses an ingenious trick, taken from [22] and [23] to compute
the Fourier transform of χΩ. Let Ω Ď R2 again be an open and bounded set whose
parametrisation is denoted by αΩ and define

F(ξ, x) = (F1(ξ, x), F2(ξ, x)) = ´2πı‖ξ‖´2e´2πıξ¨xξK, where ξK = (´ξ2, ξ1)
J.

Using the Green’s theorem (or the divergence theorem) we then have

χ̂Ω(ξ) =

ż

Ω
e2πıξ¨xdx =

ż

Ω

(

B(1,0)F2(ξ, x) ´ B(0,1)F1(ξ, x)
)

dx

=

ż

BΩ
F(ξ,αΩ(t))α 1

Ω(t)dt

= ´ 1
2πı‖ξ‖2

ż

BΩ
e´2πıξ¨αΩ(t)ξK ¨α 1

Ω(t)dt

The phase ξ ¨αΩ(t) becomes stationary when ξ ¨α 1
Ω(t) = 0, which corresponds to the case

when ξ is normal to the boundary curve. Going to polar coordinates, one then studies the
behaviour of χ̂Ω as ‖ξ‖ tends to infinity and uses the method of stationary phase. Study-
ing the coefficients xχ̂Ω,mλy with respect to a band-limited family of functions allows one
to precisely isolate the orientations of the normals at edge and corner points.

The second approach, observed in [17], studies the case when the underlying dictio-
nary is compactly supported. This assumption poses a unique set of challenges since a
limited smoothness in the spatial domain gives a comparatively limited decay in the fre-
quency domain, but this study is grounded in the understanding that the singularities of
two-dimensional objects are essentially local properties in the spatial domain. Hence, the
computations are conducted in the spatial domain, using so-called detector shearlets. The
results are promising and some aspects of their functionality can be extended to three
dimensions.

The results in [16], [17], and our results agree in several respects. In all three studies,
frame coefficients at an edge point admit the decay rate of a3/4 when the molecule is
orthogonal to BΩ at a given point, and the rate aN holds in all other directions. These
results are in accordance with earlier studies in [16] and [3]. Furthermore, the decay rates
for a corner point p, when the molecule is orthogonal to BΩ at p, are in all three cases
a3/4. Where the results differ is the case when the given molecule is not orthogonal to BΩ
at a corner point. The results in [17] and our results suggest that the rate is a5/4 whereas
the results of [16] suggest the rate a9/4, which is claimed to be the result of cancellations
of certain integrals which is attributed to the properties of the underlying shearlet family.
Notice that this is not an immediate contradiction with our results since we claim only
upper bounds.

The follow-up studies to those [16] can be found in [18], where the authors conducted
studies similar to those in Section 5, as we previously indicated. In [18] the authors use a
somewhat unorthodox construction of shearlets where the mother shearlet is defined by

ψ̂(ξ) = w(ξ1)v

(

ξ2

ξ1

)

, where suppw, supp v Ď [´1, 1].

Therefore, the mother shearlet is a classical shearlet (cf. Chapter 1 in [6]) but its support
is non-standard since the support of w is centred around the origin, whereas the standard
construction obeys

ψ̂(ξ) = ψ1(ξ1)ψ2

(

ξ2

ξ1

)

, where supp ψ̂1 Ď
[

´2, ´1
2

]

Y
[

1
2

, 2
]

and supp ψ̂2 Ď [´1, 1].

(42)
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The results that follow are analogous to those in the earlier paper [16], and it is claimed
that cancellations of the same type still occur, including the case of coefficients of the form
xfχΩ,ψλy.

Due to this unorthodox nature of the underlying shearlet constructions, its disagree-
ment with other work, and a couple of other peculiarities that a diligent examination of
the proofs seems to uncover, we decided to conduct a very simple numerical study of
the asymptotics of decay rates for shearlets constructed in the initial paper [16], since the
work in [18] is based on those results. To conduct this small experiment we used MATLAB

to compute the values of the coefficients xHη1,η2 ,mλy, for θλ = 0 and a various selection
of η1 and η2 which correspond to the case when the molecule is not orthogonal to the
wedge Wη1,η2 at p = 0, and the range of dilations a = 2´5, . . . , 2´10. We then computed
the extrapolated decay rates.

The chosen family of shearlets was such that it satisfies the assumptions of the initial
work in [16], where the authors considered a mother shearlet obeying the classical con-
struction (42), and where ψ̂1 is a smooth and odd function, and ψ̂2 is an even function
that decreases on [0, 1) and obeys ‖ψ2‖2 = 1. The results are summarised in Table 1.

η1 = π/6 η1 = 2π/6 η1 = π/30 η1 = ´π/6
Angles η2 = 5π/6 η2 = 7π/6 η2 = 2π/6 η2 = 3π/6
Extrapolated Rates 1.2504 1.2557 1.2542 1.2536

Table 1: Extrapolated decay rates of frame coefficients

Our elementary numerical study seems to confirm that the rate a5/4 is the actual rate
in this context. We make no claims regarding the robustness, or the conclusiveness of our
numerical experiment and its results, for which a more detailed study would be needed,
rather it is merely meant as an indication. We should add that we believe the results in
[16] and [18] are still essentially valid, though perhaps with some minor tweaks.

8 Concluding Remarks

In this paper we presented arguments that provide upper bounds on the decay rate of
frame coefficients at corner points. While it might be possible to produce lower bounds
as well, this does not seem likely since the existing results on upper bounds hold only
in very specific cases, that is, only for delicately constructed families of shearlets; look
at the discussion in [17, 16]. Therefore, because our approach is based in generality and
the level of abstractness, lower bounds seem out of reach. On the other hand, it might
be possible to get a microlocal characterisation of corner points by perhaps using the
geometrical dependence of the angle at the corner point and the orientation parameter of
the molecule.

Another topic of interest is the analysis of corner points of the jth order, that is, in-
stead of considering only α 1(t+0 ) ‰ α 1(t´0 ), we could look at α(j)(t+0 ) ‰ ˘α(j)(t´0 ). Our
approach cannot be directly adapted to these cases on account of the fact that there is a
direct correlation between the smoothness of the boundary around a given point, and the
decay rates of coefficients with a given directional parabolic frame; the higher the smooth-
ness the faster the decay with respect to the dilation parameter. On the other hand, since
the nature of our approach means that we are assessing the approximation rather than
assessing the set itself, higher decay rates are rendered undetectable due to the fact that
we are using a first order approximation. Thus, a different approach would be required.
Furthermore, it would be desirable to know the dependence of the decay rates with re-
spect to other geometrical features of the boundary curve, such as its curvature. At the
moment there are some results for band-limited molecules, but thus far they are not in
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the generality we would want them to be.
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A Appendix

Lemma A.1. Let f P Cm and let Pk(x) be its corresponding Taylor polynomial around p of degree
k where k ą l. Assume that Γ = tmλ : λ P ΛΓ u is a family of continuous parabolic molecules of
high-enough order and that Ω is a set that satisfies the conditions of Theorem 4.11. Then

xf χΩ ´ PαααχΩ,mλy À aKλ , (43)

holds for K ą 5
4 .

Proof. Without loss of generality let us assume p = 0 and drop the λ indices. We have

|xfχΩ ´ PkχΩ,my| ď
ż

R2
|f(x) ´ Pk(x)||χΩ(x)||mλ(x)|dx

=

ż

Baγ(0)
|f(x) ´ Pk(x)||χΩ(x)||m(x)|dx

loooooooooooooooooooooooomoooooooooooooooooooooooon
I1

+

ż

Bc
aγ

(0)
|f(x) ´ Pk(x)||χΩ(x)||m(x)|dx

loooooooooooooooooooooooomoooooooooooooooooooooooon
I2

.

Estimating I1 gives

I1 =

ż

Baγ(0)
|f(x) ´ Pk(x)||χΩ(x)||m(x)|dx À a´3/4

ż

Baγ(0)
|f(x) ´ Pk(x)||χΩ(x)|dx

À
ż

Baγ(0)
|x|kdx À aγ(k+2),

where γ ą 0. On the other hand, for I2 we have

I2 =

ż

Bc
aγ

(0)
|f(x) ´ Pk(x)||χΩ(x)||m(x)|dx À

ż

Bc
aγ

(0)
|ϕ(x)|dx

À
ż

Bc
aγ

(0)

(

1 + a´2x2
1 + a

´1x2
2

)´N
dx À aN´3/4

ż
∞

aγ
r´1´2Ndr À aN(1´2γ)´3/4

Therefore, the statement holds for 0 ă γ ă 1
2 such that and γ(k+ 2) ą 5

4 and provided N
is big enough.
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