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Abstract

This paper aims at imaging the dynamics of metabolic activity of cells.

Using dynamic optical coherence tomography, we introduce a new multi-

particle dynamical model to simulate the movements of the collagen and

the cell metabolic activity and develop an efficient signal separation tech-

nique for sub-cellular imaging. We perform a singular-value decomposition

of the dynamic optical images to isolate the intensity of the metabolic activ-

ity. We prove that the largest eigenvalue of the associated Casorati matrix

corresponds to the collagen. We present several numerical simulations to

illustrate and validate our approach.
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1 Introduction

Since dynamic properties are essential for a disease prognosis and a selection of

treatment options, a number of methods to explore these dynamics has been de-

veloped. When optical imaging methods are used to observe cell-scale details of

a tissue, the highly-scattering collagen usually dominates the signal, obscuring the

intra-cellular details. A challenging problem is to remove the influence of the col-

lagen in order to have a better imaging inside the cells.
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There have been many studies on optical imaging to extract useful information.

In [12] the authors use stochastic method, which follows from a probabilistic model

for particle movements, and then they express the autocorrelation function of the

signal in terms of some parameters including different components of the velocity

and the fraction of moving particles. Those parameters are then estimated using

a fitting algorithm. In [10, 13], the autocorrelation function of the signal can be

written as a complex-valued exponential function of the particle displacements.

Through the relation between the real and imaginary parts of this autocorrelation

function, the authors analyze the temporal autocorrelation on the complex-valued

signals to obtain the mean-squared displacement (MSD) and also time-averaged

displacement (TAD) (which is the velocity) of scattering structures. Very recently,

in [4], Apelian et. al. use difference imaging method, which consists in directly

removing the stationary parts from the images by taking differences or standard

deviations. The motivation of this paper comes from [4].

Some researchers use Doppler optical coherence tomography to obtain high

resolution tomographic images of static and moving constituents simultaneously

in highly scattering biological tissues, for example, [5] and in [6, Chapter 21].

In this paper, using dynamic optical coherence tomography we introduce a sig-

nal separation technique for sub-cellular imaging and give a detailed mathematical

analysis of extracting useful information. This includes giving a new multi-particle

dynamical model to simulate the movement of the collagen and metabolic activity,

and also providing some results relating the eigenvalues and the feasibility of using

singular value decomposition (SVD) in optical imaging, which as far as we know

is original.

The paper has three main contributions. First, we give a new model as an exten-

sion of the single particle optical Doppler tomography, which allows us to justify

the SVD approach for the separation between the collagen signal and metabolic

activity signal. Then we perform eigenvalue analysis for the operator with the in-

tensity as an integral kernel, and prove that the largest eigenvalue corresponds to

the collagen. This means that using a SVD of the images and removing the part cor-

responding to the largest eigenvalue is a viable method for removing the influence

of collagen signals. Finally, based on SVD, we give a new method for isolating the

intensity of the metabolic activity.

The paper is structured as follows. In Section 2 we introduce our multi-particle

dynamical model based on a classical model in [6]. In Section 3, we discuss the

forward operator with total signal as its integral kernel, and give its eigenvalue

analysis, showing that the part corresponding to the collagen signal have rank one,

which provides the theoretical foundation for using SVD. In Section 4, we discuss

the mathematical rationality for using a SVD method and the method of isolating

the metabolic signal. In Section 5 we give some numerical experiments. Some
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concluding remarks are presented in the final section.

2 The dynamic forward problem

Optical Coherence Tomography (OCT) is a medical imaging technique that uses

light to capture high resolution images of biological tissues by measuring the time

delay and the intensity of backscattered or back reflected light coming from the

sample. The research on OCT has been growing very fast for the last two decades.

We refer the reader, for instance, to [9, 7, 8, 14, 16, 17]. This imaging method has

been continuously improved in terms of speed, resolution and sensitivity. It has

also seen a variety of extensions aiming to assess functional aspects of the tissue in

addition to morphology. One of these approaches is Doppler OCT (called ODT),

which aims at visualizing movements in the tissues (for example, blood flows).

ODT lies on the identical optical design as OCT, but additional signal processing

is used to extract information encoded in the carrier frequency of the interferogram.

The purpose of this paper is to analyze the mathematics of ODT in the con-

text of its application for imaging sub-cellular dynamics. We prove that a signal

separation technique performs well and allows imaging of sub-cellular dynamics.

We refer the reader to [1, 3, 2] for recently developed signal separation approaches

in different biomedical imaging frameworks. These include ultrasound imaging,

photoacoustic imaging, and electrical impedance tomography.

2.1 Single particle model

We first consider a single moving particle. In [6, Chapter 21], the optical Doppler

tomography is modeled as follows. Assume that there is one moving particle at a

point x in the sample Ω and denote by ν the z-component of its velocity. Then the

ODT signal generated by this particle is given by

ΓODT (x, t) = 2

∫ ∞

0

S 0(ω)K(x, ω)KR(x, ω) cos(2πω(τ +
∆

c
) + 2πω

2n̄vt

c
)dω, (1)

where ω is the frequency, S 0(ω) is the spectral density of the light source, K(x, ω)

and KR(x, ω) are the reflectivities of the sample and the reference mirror respec-

tively, n̄ is the index of refraction, c is the speed of the light, τ is the time delay

on the reference arm, and ∆ is the path difference between the reference arm and

sample arm.

Since cos is an even function, the above integral can be rewritten as

ΓODT (x, t) =

∫ ∞

−∞
S 0(ω)K(x, ω)KR(x, ω)e2πωi(τ+ ∆

c
)+2πωi 2n̄vt

c dω. (2)
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Figure 1: a) Illustration of the imaging setup. b) A particle moves from A to B

covering a distance of vt. When the particle is at B, the light travels an additional

distance of 2vt inside a medium with refrative index n̄, so the effective path-length

of the sample arm increases by 2n̄vt.

To give an explanation for the exponential term of the above formula, we

choose a suitable coordinate system such that the beam propagates along the z-

direction, and suppose that the particle moves in this direction from point A to

point B with velocity v, which also means covering a distance of vt (see Figure

1). Physically, the received signal ΓODT is determined by the effective path-length

difference between the sample and reference arms. In addition, for this moving par-

ticle the effective path-length difference is represented by the quantity cτ+∆+2n̄vt,

which could also be seen as the z-coordinate of the particle (see Figure 1).

Note that (2) is only applicable to a single particle at x moving with a constant

velocity v. For a particle with a more general movement, the path-length difference

is no longer a linear function with respect to t. Nevertheless, we define ϕ(t) as the

z-coordinate of the particle at time t, which is a generation of cτ + ∆ + 2n̄vt. Also,

in our case the reference arm is a mirror, so without loss of generality, we make the

assumption that KR(x, ω) = 1. Then the following expression for signal ΓODT (x, t)

holds

ΓODT (x, t) =

∫ ∞

−∞
S 0(ω)K(x, ω)e2πωi( 2n̄

c
ϕ(t))dω.

This is not just a simplification of the model (1), but also a small modification,

since the particles with regular and random movements produce difference signals.
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Here we look into more details of particle movements. For the sake of simplicity,

we assume that the collagen particles move with a constant speed v, so ϕ(t) =

ϕ(0) + vt. On the other hand, for the particles belonging to the metabolic activity

part, ϕ(t) behaves as a random function, since we do not have much information

with regard to them.

Remark. Formula (2.1) is derived in [6] by considering what is essentially our

φ(t) (written as ∆d there, see formula (21.11) and (21.15) of [6].) This justifies our

treatment for general particles above. We emphasize that we generalized the model

in [6] to accommodate particles with variable velocities.

2.2 Multi-particle dynamical model

We have seen the effect of the image ΓODT (x, t) for one moving particle. We now

consider the more realistic case of a medium (could be cell or tissue) with a large

number of particles in motion. In actual imaging, for each pixel which we denote

also by x, there would be many particles, all with different movement patterns.

We choose an appropriate coordinate system, such that for any particle on the

plane z = 0, its effective path-length difference is zero. Let L be the coherence

length. Physically, only the particles with path-length difference smaller than L,

or equivalently z ∈ [−L, L], will be present in the image. In fact, if the differences

between the two arms are larger than the coherence length, then the lights from two

arms do not interfere anymore, and thus do not contribute to the received signal.

This means that the imaging region is a ”thin slice” within the sample with thick-

ness 2L (see Figure 2). Then we divide the slice into small regions, such that each

region corresponds to a pixel of the final image. See Figure 2 for the imaged small

region, which is given by x × [−L, L], and for the correspondence between them

and pixels of the final image.

Since there are many particles in this region, we describe their distribution

using a density function p. Moreover, for any function f (z), we have that the

integral
∫ z2

z1
f (z)p(x, z, t)dz is equal to the sum of f (z) over all particles in x×[z1, z2].

We know that the received light intensity in the small region x × [−L, L] could be

seen as the sum of light intensity over all particles in this region. Therefore for

uniform medium, we can write it as an integral in terms of the density function

p(x, z, t),

ΓODT (x, t) =

∫ ∞

−∞

∫ L

−L

S 0(ω)K(x, ω)e2πωi( 2n̄
c

z) p(x, z, t)dω dz,

noting that the reflectivity coefficient K must be the same for all involved particles.

According to the definition of p(x, z, t), we consider it as the sum of the density
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Figure 2: One ”slice” in the sample, and its division into small regions correspond-

ing to the pixels of the image.

function of collagen particles and the density function of metabolic activity parti-

cles, namely,

p(x, z, t) = pc(x, z, t) + pm(x, z, t). (3)

Consequently, their respective reflectivities will be denoted Kc and Km, giving us

the ODT measurements formula

ΓODT (x, t) = Γc
ODT (x, t) + Γm

ODT (x, t), (4)

where Γc
ODT

(x, t) corresponds to the collagen signal and Γm
ODT

(x, t) corresponds to

the metabolic activity signal, with formulas

Γ
j

ODT
(x, t) =

∫ ∞

−∞

∫ L

−L

S 0(ω)K j(x, ω)p j(x, z, t)e2πωi( 2n̄
c

z)dω dz, for j ∈ {c,m} .
(5)

Physically, since the collagen moves as a whole, we could assume that the collagen

particles move with one uniform (and very small) velocity v0, which means any

such particles will be at position z + v0t at time t. Let qc(x, z) denote the density

function of all the collagen particles inside area x with initial vertical position z.

Then we have

pc(x, z + v0t, t) = qc(x, z). (6)

Furthermore, from this expression we could see when t = 0, qc(x, z) = pc(x, z, 0).

In the case of metabolic activity we do not assume any conditions on the density

function pm(x, v, z), because there is no physical law of motions for us to use. In
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the numerical experiments, because of the large number of particles, a random

medium generator is used to simulate the particle distribution while keeping the

computational cost low.

Since x is a small area inside the sample, when we choose x, it could include

both collagen particles and metabolic activity particles. The aim is to separate

the two classes of particles. In practice, the contributions of collagen particles to

the intensity is much larger than the contributions of the metabolic activity. This

allows us to understand that the reflectivity of collagen particles Kc is much larger

(realistic quantities are about 102 to 104 times) than the reflectivity of metabolic

activity particles Km, and

|Γc
ODT (x, t)| ≫ |Γm

ODT (x, t)|. (7)

In this section, we have given a multi-particle dynamical model, to separate the

collagen signal and the metabolic activity signal. The next step is to analyze the

properties of this model.

3 Property analysis of the forward problem

3.1 Direct operator representation

Based on the multi-particle dynamical model, in order to analyze the properties of

collagen and metabolic activity, we first represent their corresponding operators.

Let S be the integral operator with the kernel ΓODT (x, t), which is a real-valued

function given by (5). The collagen signal has high correlation between different

points, while the metabolic signals have relatively lower correlation, so it would

be useful to look at the correlation of the whole signal. The correlation between

two points x and y can be represented as
∫

ΓODT (x, t)ΓODT (y, t) dt, which is exactly

the integral kernel of the operator S S ∗, where S ∗ is the adjoint operator of S . We

denote the kernel of S S ∗ by

F(x, y) =

∫ T

0

ΓODT (x, t)ΓODT (y, t)dt, (8)

for some fixed T > 0. Substituting the representation of ΓODT (x, t) in (4) into (8),

we arrive to

F(x, y) = Fcc(x, y) + Fcm(x, y) + Fmc(x, y) + Fmm(x, y),
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where for j, k ∈ {c,m}, F jk(x, y) is given by

F jk(x, y) =

∫

R2×[−L,L]2×[0,T ]

S 0(ω1)S 0(ω2)K j(x, ω1)Kk(y, ω2)p j(x, z1, t)

× pk(y, z2, t)e
4πin̄

c
(ω1z1−ω2z2)dω1dω2dz1dz2dt,

(9)

with z1, z2 ∈ [−L, L] and ω1, ω2 ∈ R, t ∈ [0,T ]. Likewise, we denote the corre-

sponding operator by S jS
∗
k

for j, k ∈ {c,m}. In the case of the collagen signal, note

that the operator S cS ∗c contains the solely collagen information.

First we consider its kernel Fcc. Applying the uniform movements of collagen

particles (6) along the z-direction yields

Fcc(x, y) =

∫

R2×[−L,L]2×[0,T ]

S 0(ω1)S 0(ω2)Kc(x, ω1)Kc(y, ω2)qc(x, z1 − v0t)

× qc(y, z2 − v0t)e
4πin̄

c
(ω1z1−ω2z2)dω1dω2dz1dz2dt.

(10)

In order to simplify this expression even further, let us introduce a couple of

assumptions.

Physically, since the scale of collagen and inter-cellular structures (such as col-

lagen) are much larger than the coherence length L, the particle distribution inside

a small slice |z| < L should be more or less uniform. Therefore, it is reasonable to

assume that qc(x, z) does not actually depend on z inside such a small slice, namely,

qc(x, z) = qc(x).

Furthermore, in practice the tissue being imaged is nearly homogeneous, and

therefore the reflectivity spectrum, (or more intuitively, the ”color” of the tissue)

should stay the same everywhere. The only difference in reflectivity between two

points should be a difference of total reflectivity (using our ”color” analogy, the two

points would look like, e.g. ”different shades of red”, and not ”red and yellow”).

Therefore, for any two pixels x1 and x2, by looking at the reflectivities Kc(x1, ω)

and Kc(x2, ω) as functions of frequency ω, they are directly proportional. Thus it is

reasonable to assume that Kc(x, ω) could be written in the variable separation form

Kc1
(x)Kc2

(ω).

Under these two assumptions, the expression of Fcc(x, y) can be simplified con-

siderably:

Fcc(x, y) = T Kc1
(x)Kc1

(y)qc(x)qc(y)

×
∫

R2×[−L,L]2

S 0(ω1)S 0(ω2)Kc2
(ω1)Kc2

(ω2)e
4πin̄

c
(ω1z1−ω2z2)dω1dω2dz1dz2

= T Kc1
(x)Kc1

(y)qc(x)qc(y)

×
∫

[−L,L]2

F (S 0Kc2
)(−4πn̄z1

c
)F (S 0Kc2

)(
4πn̄z2

c
)dz1dz2

(11)
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where the Fourier transform of a function f (ω) is defined asF f (τ) =
∫

R
f (ω)e−iωτdω.

This is the fundamental formula for analyzing collagen signal, since from this

formula, we could see that Fcc(x, y) is variable separable with respect to x and y.

This property gives us a hint to compute the eigenvalues of the collagen signal.

For the correlation terms Fcm(x, y) and Fmc(x, y), which contains both the colla-

gen and metabolic activity signals, we use again the uniform movement assumption

for pc while keeping the metabolic part pm. Inserting (6) into (9), we have

Fmc(x, y) = Kc1
(y)qc(y)

∫

[−L,L]2×[0,T ]

F (S 0Kc2
)(

4πn̄z2

c
)

× F (S 0Km)(x,−4πn̄z1

c
)pm(x, z1, t)dz1dz2dt,

(12)

and

Fcm(x, y) = Kc1
(x)qc(x)

∫

[−L,L]2×[0,T ]

F (S 0Kc2
)(−4πn̄z1

c
)

× F (S 0Km)(y,
4πn̄z2

c
)pm(y, z2, t)dz1dz2dt.

(13)

From representations (12) and (13), we could see that Fmc(x, y) and Fcm(x, y) have

also variable separated forms with respect to x and y.

In the case of the metabolic activity kernel Fmm(x, y), by keeping the represen-

tation pm, it is clear that

Fmm(x, y) =

∫

[−L,L]2×[0,T ]

F (S 0Km)(x,−4πn̄z1

c
)F (S 0Km)(y,

4πn̄z2

c
)

× pm(x, z1, t)pm(y, z2, t)dz1dz2dt.

(14)

To sum up, the main feature of our multi-particle dynamical model is that,

except the sole metabolic activity signal, all the other parts have kernels of variable

separable form. Therefore, it is important to relate this property to the separation

of the signals. This will be the aim of the next subsection.

3.2 Eigenvalue analysis

We have given the representation of the integral operators and their corresponding

kernels. In order to argue for the feasibility of using a SVD, we will calculate

the corresponding eigenvalues, showing that the collagen signal has one very large

eigenvalue relative to the metabolic activity. We assume that the eigenvalues are

ordered decreasingly, so λ1 is the largest one.
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We first recall that for an operator A with rank one, the unique non-zero eigen-

value λ is equal to the trace of A. From the expression of Fcc(x, y), we could see

that Fcc(x, y) has rank one because of the separable form with respect to x and y, so

the operator S cS ∗c has only one nonzero eigenvalue, which we denote by λ(S cS ∗c).

Now we compare λ(S cS ∗c) and the eigenvalues of the operator S mS ∗m.

Lemma 3.1. Let S cS ∗c and S mS ∗m be the integral operators with kernels Fcc and

Fmm defined in (11) and (14), respectively. If the intensities of collagen and metabol-

ic activity satisfy (7), then we have

λ(S cS ∗c) ≫ λi(S mS ∗m), ∀i ≥ 1.

Proof. On one hand, Fcc(x, y) has rank one, so it is clear that

λ(S cS ∗c) = tr(S cS ∗c). (15)

On the other hand, since the eigenvalues of operator S mS ∗m are all positive, any

eigenvalue λi(S mS ∗m) satisfies

λi(S mS ∗m) < Σ∞i=1λi(S mS ∗m) = tr(S mS ∗m). (16)

Then it suffices to prove that tr(S cS ∗c) ≫ tr(S mS ∗m). From the definition of

trace of an operator, we readily get tr(S cS ∗c) =
∫

x∈Ω Fcc(x, x)dx. Substituting the

expression (8) into the above formula yields

tr(S cS ∗c) =

∫

x∈Ω

1

2

∫ ∞

−∞
Γc

ODT (x, t)Γc
ODT

(x, t)dtdx

=
1

2

∫

x∈Ω

∫ ∞

−∞
|Γc

ODT (x, t)|2dtdx.

The same analysis can be carried out by looking at tr(S mS ∗m),

tr(S mS ∗m) =
1

2

∫

x∈Ω

∫ ∞

−∞
|Γm

ODT (x, t)|2dtdx.

Recall that the intensity of collagen signal is much larger than metabolic activ-

ity signal, which is the assumption in (7). Hence, we obtain the trace comparison

tr(S cS ∗c) ≫ tr(S mS ∗m).

�

Now we compare the eigenvalue λ(S cS ∗m) with λ(S cS ∗c) and λ1(S mS ∗m).
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Lemma 3.2. Let S cS ∗c, S cS ∗m and S mS ∗m be the integral operators with kernels

defined in (11), (12) and (14). Then their eigenvalues satisfy

λi(S cS ∗m) ≤
√

λ(S cS ∗c)λ1(S mS ∗m)

for all i.

Proof. Recall the definition of the operator norm of an operator A, namely, ‖A‖OP =

sup{ ‖Av‖
‖v‖ , v ∈ V with v , 0}, which yields λ(S cS ∗m) 6 ‖S cS ∗m‖OP. Since the operator

norm is equal to the largest singular value, direct calculation shows that

‖S cS ∗m‖OP ≤ ‖S c‖OP‖S ∗m‖OP

= σ1(S c)σ1(S ∗m)

=
√

λ(S cS ∗c)
√

λ1(S mS ∗m),

where σ1 denotes the largest singular value. �

In this section, we discussed eigenvalue analysis for the forward operator of

multi-particle dynamical model. More explicitly, we showed that the largest eigen-

value corresponds to the collagen signal, the middle eigenvalues mix the collagen

signal and metabolic activity signal, and the remaining eigenvalue corresponds to

the metabolic activity signal. Also in our model the solely collagen signal has rank

one, which provides a good reason to use SVD in solving the inverse problem.

4 The inverse problem: Signal separation

Our main purpose in this paper is to image the dynamics of metabolic activity of

cells. Highly backscattering structures like collagen dominate the dynamic OC-

T signal, masking low-backscattering structures such as metabolic activity. As

shown in the modeling part, we divide the scattering particles in the tissue into the

high-backscattering collagen part, and the low-backscattering metabolic activity

part. Based on this division, the resulting image ΓODT (x, t) could also be written

as the sum of the collagen Γc
ODT

(x, t) and the metabolic activity part Γm
ODT

(x, t).

The inverse problem is to recover the intensity of metabolic activity of cells from

the image ΓODT (x, t). In this paper, we use singular value decomposition (SVD)

method to approximate the metabolic activity part, then using a particular formula

(see (23)) to get its corresponding intensity.

4.1 Analysis of SVD algorithm

Since we have proved the high backscattering signal corresponds to a rank one

kernel and this part is far larger than the rest, It is natural to associate it to the
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first singular value of the SVD expansion. We claim that in order to remove the

high backscattering signal, it is reasonable to remove the first term in the SVD

expansion of the image. In this section we first recall the SVD algorithm, and then

we assert that there is a gap between our model and SVD algorithm. At the end of

this section, we give a result to illustrate the gap is small that we could ignore.

Let x1, x2, . . . , x j, . . . denote the pixels of the image. We define the matrices

A, Ac ∈ Cnx×nt by

A j,k = ΓODT (x j, tk)

(Ac) j,k = Γ
c
ODT (x j, tk),

where j ∈ {1, ..., nx}, k ∈ {1, ..., nt}.
Recall that a non-negative real number σ is a singular value for a matrix A, if

and only if there exists unit vectors u ∈ Rnx and v ∈ Rnt such that

Av = σu and A∗u = σv,

where the vectors u and v are called left-singular and right-singular vectors of A

for the singular value σ.

Assuming that the singular values of A are ordered decreasingly, that is, σ1 ≥
σ2 ≥ . . . , and let ui and vi be the singular vectors for σi. We emphasis that the

vectors ui and vi are orthonormal sets in Cnx and Cnt respectively. Thus, the SVD

of the matrix A is given by

A = Σ
nt

i=1
σiuivi

T . (17)

Since the matrix A is composed of a large rank one part Ac and a small part

coming from metabolic signal Γm
ODT

, we can say that A − Ac is ”relatively small”

with respect to A. It is well known that the first term in the SVD expansion of A

is the rank one matrix A1 such that ‖A − A1‖op is minimal. Therefore, it is natural

to think that Ac is ”close” to A1 in some way. But A1 = σ1u1v1
T is generally not

the same as Ac, because as we will see in Appendix A, the eigenvectors of the

kernels Fcc, Fcm and Fmc are generally not orthogonal. Since SVD always gives

an orthogonal set of eigenvectors, we conclude that the SVD approach itself does

not give the eigenvectors exactly. Nevertheless, we can show that the SVD result

is still a good approximation to the true eigenvectors.

To bridge the gap between the collagen signal Γc
ODT

and the first term of SVD

expansion of ΓODT , we investigate the relationship between their singular values

and singular vectors. We note that Γc
ODT

has only one nonzero singular value σc,

with the corresponding singular vectors uc and vc.

We claim in the following theorem that the singular value σ1 and the corre-

sponding singular vector u1 are good approximations of the singular value σc and
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Total signal

ΓODT

First term in the

SVD of ΓODT

collagen signal

Γc
ODT

Matrix A A1 Ac

First singular value σ1 σ1 σc

First singular vector u1, v1 u1, v1 uc, vc

Other singular values σ2 > σ3 >

· · · > σi

0 0

Table 1: Singular values and singular vectors.

singular vector uc. See Table 1 for the notations of their singular values and singu-

lar vectors.

Theorem 4.1. Let σi, ui, vi, Ac, uc and vc be described in Table 1. Assume that the

collagen signal dominates, that is,

‖A − Ac‖op

‖Ac‖op

= 1/N (18)

for a large N. Then there exists a constant C > 0 such that

|σc − σ1|
σc

≤ C/N,

and

‖uc − u1‖l2 ≤ C/N.

Proof. We define a matrix-valued function

F : s 7→ (Ac + sN(A − Ac))∗(Ac + sN(A − Ac)). (19)

Through this construct of F, we obtain

F(0) = A∗cAc and F(
1

N
) = A∗A.

Applying Rellich’s perturbation theorem on hermitian matrices F (see, for ex-

ample, [15]) to get the following two properties. There exists a set of n analyt-

ic functions λ1(s), λ2(s), . . . , such that they are all the eigenvalues of F(s). Al-

so, there exists a set of vector-valued analytic functions u1(s), u2(s), . . . , such that

F(s)ui(s) = λi(s)ui(s), and 〈ui(s), u j(s)〉 = δi j.

13



In view of the definition of ui(s) and λi(s), we show four useful properties,

u1(0) = uc, u1(1/N) = u1,

λ1(0) = σ2
c = ‖Ac‖2op, λ1(1/N) = σ2

1,
(20)

where the last property comes from the fact λ1(1/N) is the largest eigenvalue of

F(1/N) = A∗A when N ≫ 1.

The objective is to get upper bounds for ‖uc − u1‖l2 and |σc − σ1|. Using (20),

we have uc − u1 = u1(0)− u1(1/N) and σc −σ1 =
√
λ1(0)−

√
λ1(1/N). Since u1(s)

and λ1(s) are analytic, a Taylor expansion at 0 yields

‖uc − u1‖l2 = ‖
u′

1
(0)

N
‖l2 + O(1/N3/2),

|σc − σ1| =
λ′

1
(0)

2
√
λ1(0)N

+ O(1/N2).

(21)

The next step is to seek for proper upper bounds for λ′
1
(0) and u′

1
(0).

For the upper bound of λ′
1
(0), we differentiate F(s)ui(s) = λi(s)ui(s) with re-

spect to s and then take s = 0 to obtain

F′(0)ui(0) + F(0)u′i(0) = λi(0)u′i(0) + λ′i(0)ui(0). (22)

Since we always have ‖ui(s)‖ℓ2 = 1, a direct calculation shows that

〈ui(s), u′i(s)〉 = 1

2

d

ds
‖ui(s)‖2 = 0.

By taking an inner product of both sides of (22) with ui(0), we get

λ′i(0) = λ′i(0)‖ui(0)‖2
l2

= 〈ui(0), F′(0)ui(0)〉 + 〈ui(0), F(0)u′i(0)〉
= 〈ui(0), F′(0)ui(0)〉 + 〈F(0)ui(0), u′i(0)〉
= 〈ui(0), F′(0)ui(0)〉 + λi(0)〈ui(0), u′i(0)〉
= 〈ui(0), F′(0)ui(0)〉.

Hence, λ′
i
(0) satisfies |λ′

i
(0)| ≤ ‖F′(0)‖op. By the definition of F(s), we have

‖F′(0)‖op = N‖A∗c(A − Ac) + (A − Ac)∗Ac‖ ≤ 2N‖Ac‖op‖A − Ac‖op. Replacing N

with (18) yields |λ′
i
(0)| ≤ 2‖Ac‖2op. Therefore, by inserting the expression λ1(0) in

(20) into (21), we get |σc − σ1| ≤ σc

N
+ O(1/N2).

For the upper bound of u′
1
(0), we look again at (22). By taking an inner product

with u′
1
(0), we immediately obtain

〈u′1(0), F′(0)u1(0)〉 + 〈u′1(0), F(0)u′1(0)〉 = λ1(0)‖u′1(0)‖2
l2
.
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Recall that the matrix Ac is of rank one. So, there exists a positive constant c,

such that A∗cAc = cu1(0)uT
1

(0), which reads

F(0)u′1(0) = cu1(0)(uT
1 (0)u′1(0)) = cu1(0)〈u1(0), u′1(0)〉 = 0.

Therefore, direct calculation shows that ‖u′
1
(0)‖l2 ≤

‖F′(0)u1(0)‖
l2

λ1(0)
≤ ‖F

′(0)‖op

‖Ac‖2op
≤ 2.

The rest of the proof follows by substituting the above bound into (21), then

we have ‖uc − u1‖l2 ≤ 2
N
+ O(1/N3/2). �

Remark 1. Theorem 4.1 shows that the eigenvector difference of two classes

is the order of 1
N

, where N could be seen as the ratio between collagen signal

and metabolic signal, so when N is large enough, the difference could be ignored,

therefore, it is reasonable to use the eigenvectors of the SVD to approximate the

true eigenvectors.

Remark 2. In the proof of Theorem 4.1, we did not use any representation of

A and Ac, so in a more general case, for any matrix A = Ac + o(Ac) where rank

of Ac is 1, the first singular value and first singular vector of A could be used to

approximate the singular value and the singular vector of Ac.

4.2 Analysis of obtaining the intensity of metabolic activity

Recall that our objective is to get the intensity of the metabolic activity after remov-

ing the influence of the collagen signal. We have proved that the largest singular

value corresponds to the collagen signal, and the following few singular values cor-

respond to the correlation part between collagen signal and metabolic activity, the

rest of the singular values contains information related to the metabolic activity.

Let T be the set of these ”rest” singular values. In practice, we only know

the total signal ΓODT (x, t) (or the matrix A). By performing a SVD for ΓODT (x, t),

we take the terms only corresponding to the singular values in T in the SVD ex-

pansion. The next problem is to reconstruct the intensity of the particle move-

ments of metabolic activity. In our numerical experiments, we observe that the

sum
∑

i∈T σ
2
i
|ui(x j)|2 gives a very good approximation to the intensity of metabolic

activity at the pixel x j. We will explain why it works.

Physically, we expect the metabolic activity signal to be centered around 0, so

in each pixel x j, the norm ‖Am(x j, t)‖2ℓ2 could be seen as the standard deviation of

the metabolic signal, which could represent the intensity of metabolic activities in

pixel x j. However, in our model the eigenvectors are not orthogonal (this statement

may be justified by arguing as in Appendix A). Thus when using a SVD, we do

not get the exact ”pure” metabolic activity signal Am, but only an approximation,

which we denote by Am1
. We first give an interpretation that

∑

i∈T σ
2
i
|ui(x j)|2 could

be written as a ℓ2 norm of the matrix Am1
.
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Theorem 4.2. Let A be the matrix after the discretization of ΓODT (x, t) with respect

to x and t, such that the j-th row of A corresponds to the pixel x j, and the k-th

column of A corresponds to the time tk. Let T be a subset of singular values of A,

and Am1
be the result of taking only the singular values in T from A. Then for any

pixel x j, we have
∑

i∈T
σ2

i |ui(x j)|2 =
∑

k

|Am1
(x j, tk)|2. (23)

Proof. We apply the SVD algorithm to the matrix A to get A = US V∗, where

U = (u1, u2, . . . ), V = (v1, v2, . . . ) are unitary matrices, and S is a diagonal matrix

containing the singular values of A.

We construct a new diagonal matrix S T , which is obtained from S by keeping

all the singular values in T , but changing everything else to zero. By the definition

of Am1
, we readily derive Am1

= US T V∗.
Note that σiui(x j) is the element at row j, column i of the matrix US . By

the construction of S T , we know σiui(x j) is the element at row j, column i of the

matrix US T for every i ∈ T . Therefore, the sum
∑

i∈T σ
2
i
|ui(x j)|2 is equal to the

square-sum of the j-th row of the matrix US T , which gives

‖US T (x j, ·)‖2ℓ2 =
∑

i∈T
σ2

i |ui(x j)|2. (24)

On the other hand, the relation Am1
= (US T )V∗ means that for each x j, Am1

(x j, ·) =
(US T )(x j, ·)V∗.

A direct calculation from the definition of ℓ2 norm of vectors shows that

∑

k

|Am1
(x j, tk)|2 = ‖Am1

(x j, ·)‖2ℓ2 = Am1
(x j, ·)Am1

(x j, ·)∗.

Using V∗V = I and substituting (US T )(x j, ·)V∗ for Am1
(x j, ·) yields

∑

k

|Am1
(x j, tk)|2 = US T (x j, ·)(US T (x j, ·))∗ = ‖US T (x j, ·)‖2ℓ2 . (25)

Combining (24) and (25) completes the proof. �

Then let us look at the ℓ2 norm of the difference between the two matrices Am

and Am1
. Proceeding as in the proof of Theorem 4.1, we can estimate ‖Am − Am1

‖.
When N in (18) is large enough, it is reasonable to approximate Am by Am1

. This

fact enables us to say that ‖Am1
(x j, t)‖2ℓ2 ≈ ‖Am(x j, t)‖2ℓ2 for each pixel x j.

Therefore, we conclude that
∑

i∈T σ
2
i
|(ui) j|2 over the set T of ”rest” singular

values is indeed a good approximation for the metabolic activity intensity.
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5 Numerical experiments

In this section we model the forward measurements of our problem. Using the

SVD decomposition we filter out the signal, finally obtaining images of the hidden

weak sources.

5.1 Forward problem measurements

To simulate the signal measurements using formula (5), we only need to simulate

the density function p(x, z, t) of the media to be illuminated. For each pixel x, there

are two types of superimposed media. One is the collagen media characterized for

having a strong signal and slow movement. The second medium is the metabolic

activity, that has a fast movement relative to the time samples. According to [4],

the collagen signal intensity is around 100 times stronger than the metabolic one.

Given these properties, both media are modeled differently. The collagen par-

ticles are simulated as an extended random medium on z that displaces slowly on

time; see [11]. For each pixel x, an independent one-dimensional random medium

rx(·) is generated, and then p(x, z, t) = rx(z+tv) with v being the constant movemen-

t velocity. The metabolic activity is simulated as an uniform white noise, whose

intensity represents its magnitude. Background or instrumental noise is added ev-

erywhere in a similar fashion, but with smaller intensity.

After the medium is simulated, formula (5) is applied to reproduce the mea-

sured signal, where for integration purposes, the broadband light is approximated

by Dirac deltas in certain frequencies. All the model parameters are set such that

we obtain similar measurements to the ones obtained in [4]. In Figure 3 we can

see, for a single pixel, the simulated signal as a function of time.
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Figure 3: On the left we can see the total signal measured at a fixed pixel. If

decomposed into the one corresponding to the collagen structures and metabolic

signal, we obtain the other two images.

In the following, we consider a two-dimensional 21x21 grid of pixels. The col-

lagen signal, albeit being generated by an independent random media, has the same
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parameters everywhere, thus sharing a similar behavior. In Figure 4, we present the

considered metabolic activity intensity map and two snapshots at different times of

the total signal.
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Figure 4: On the left we can see the considered metabolic map, it describes the

intensity of the metabolic signal presented in Figure 3. The other two images

correspond to raw sampling of the media at different times.

5.2 SVD of the measurements

To use the singular value decomposition on the signal, we reshape the raw data

ΓODT (x, t) under a Casorati matrix form, where the two-dimensional pixels on the

x variable are rearranged as a one-dimensional variable, and hence the total signal

is written as a matrix A where each dimension corresponds respectively to the space

and time variables. The total signal consists on the addition of the metabolic and

collagen signals, namely A = Am + Ac. Our objective is to recover the spatial

information of the metabolic signal Am.

We apply the SVD decomposition (17) over the total signal A, where the di-

mension of each space corresponds to the amount of pixels of the image and the

time samples respectively. Each space vector {ui} point out which pixels are par-

ticipating in the ith singular value. To obtain an image of the pixels participating

in a particular subset of singular values T ⊂ N, we use the following formula (see

Section 4.2 for why it works):

I( j) =

√

∑

i∈T
σ2

i
ui( j)2, (26)

where the indices j are for indexing the image’s pixels. When the signal has mean

0, formula (26) corresponds to the standard deviation that was already considered

as an imaging formula in [4].

In Figure 5, we can see an image of each space vector {ui} ordered by their

associated singular value, these vectors correspond to the decomposition of the
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total signal A. The other two pictures on the right of it, correspond to the singular

space vectors but for each unmixed signal Ac and Am, separately. As it can be seen,

the spatial vectors of both signals get mixed in the total signal, but the metabolic

activity ones get embedded in a clustered fashion, although there is a distortion of

these vectors, this is unavoidable given the nature of the SVD.
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Figure 5: On the left we can see the singular space vectors of the total signal,

ordered by their singular value index and cropped up to the 150th one. On the right

we can see the singular space vectors of the decomposed signals: the collagen and

the metabolic ones.

The location of the spatial vectors is related to their respective singular values,

that are presented in Figure 6. It is observed, that the moment in which the spatial

vectors of the total signal start to look like the ones from the metabolic activity, is

close to the moment in which the singular values from the metabolic activity get

close to those in the total signal. In a mathematical way, we say that the index

j ∈ N in which the spatial vectors ui start to resemble those of the metabolic

activity, corresponds to

j = argmin{σ j(A) < σ1(Am)} − k, with k small.

In practice, for the tested examples (up to 24x24 grid of pixels, and 500 to 1000

time samples) k ≈ 10 achieve the best results.

The clustered behavior of the singular vectors arise from the model itself,

as it generates fast decaying singular values for the collagen signal, whereas the

metabolic singular values decay in a more slow fashion. Hence, it is possible

to assign an interval of the total signal space vectors as an approximation to the

metabolic activity Am.

5.3 Selection of cut-off singular value

The before mentioned criteria to choose an adequate interval of singular-space vec-

tors to apply the imaging formula (26) is not possible in practice, as we have no

a priori information on where the metabolic singular values σi(Am) lie. Since the
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Figure 6: Singular values for the signals. The circle represents the optimal starting

index j at which we should consider the singular space-vectors of the total signal to

contain mostly information on the singular space-vectors of the metabolic activity.

The first singular value of the total signal and the collagen signal is outside the plot,

with an approximate value of 2.3 × 106.

idea is to consider an interval of singular space vectors, the first and last elements

must be defined. The length of the interval corresponds to the range of the matrix

Am, with some added terms coming from the matrix Ac. This can be left as a free

parameter to be decided by the controller. As a general guideline, it corresponds to

the quantity of pixels in which it is expected to find the metabolic activity.

For the considered first singular space vector, also called cut-off one, there is

a criteria that arises from the model. Given the differences between the metabolic

and collagen signal, the latter in the time variable has some regularity and self

correlation. This characteristic is transferred to the first singular time-vectors. In

Figure 7 we can see plots of these time-vectors for each signal.

Our proposed technique to decide the cut-off singular space vector consists in

measuring the regularity of the time vectors using the total variation semi-norm,

the smaller the value the more regular. In the case of a discrete signal, the total

variation can be stated as

| v |TV =

N−1
∑

i=1

|v(i + 1) − v(i)|.

Applying the total variation norm to the total signal singular time-vectors vi, we can

see that the regularity drops until arriving to, in mean, a slowly increasing plateau.

To find it, in an operator free way, it is possible to fit a 2 piece continuous quadratic

spline in the total variation plot, and define the cut-off singular value as the point

j in which the spline changes. This l is a good approximation for the first singular
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Figure 7: Plots of the singular time-vectors for each signal, at the second singular

value. The collagen time vectors are more regular and correlated compared to the

metabolic signal, albeit this property is gradually loosed as we augment the index

of the time vectors. Since the SVD of the total signal is dominated by the collagen

signal, its time vectors inherit the same property.

value of the metabolic activity, meaning that σl ≈ σ1(Am); see Figure 8. Keep in

mind that this considered method does not make use of a priori information.
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Figure 8: Same plot as in Figure 6, but including the total variation of the singular

time-vectors of the total signal. The total variation is scaled to fit the plot with the

singular values.

5.4 Signal reconstruction

Employing the cut-off criteria in subsection 5.3 and formula (26) to our simulation,

we can reconstruct the metabolic activity. In Figure 9 we have on the left-hand side

the best possible reconstruction using the SVD technique, that is the one we could

do if we could isolate completely the signal Am from the total signal A. On the

right-hand side, we have the actual reconstruction. It is worth mentioning that we

are not able to reconstruct the exact metabolic map, as formula (26) is used on the

21



simulated media, and thus the image obtained out of the isolated signal Am is the

one we are aiming to reconstruct.
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Figure 9: Reconstruction of the metabolic map presented in Figure 4. The left

image correspond to using directly formula (26) on the isolated Am signal. The

right-hand side image correspond to using our reconstruction method on the total

signal. Once the images are normalized, the committed error with respect to the

original metabolic map is 0.011 and 0.017, respectively

5.5 Discussion and observations

Since the SVD uses information of all pixels simultaneously to filter out the col-

lagen signal, this technique works better the larger the considered image size is,

as the main point is to use the joint information of all the pixels in the image, in

contrast to frequency filtering that considers only pointwise information. Numer-

ically, this effect is notorious, as the larger the image size, the more clustered are

the singular space-vectors associated to the metabolic activity and thus it is easier

to filter out the collagen signal.

With respect to the time samples, it is observed that the filtering process de-

grades if too many time samples are considered. When this happens (for our 21x21

grid size, this is above 1000 time samples), the singular values of the collagen sig-

nal start decaying in a slower rate, accomplishing a less clustered behavior of the

metabolic singular space-vectors, and thus achieving a worse signal separation.

Hence if there are high available amounts of time samples, one possible recom-

mendation is to do several reconstructions using subsets of these time samples and

then averaging the results.
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6 Conclusion

In this paper, we performed a mathematical analysis of extracting useful informa-

tion for sub-cellular imaging based on dynamic optical coherence tomography. By

using a novel multi-particle dynamical model, we analyzed the spectrum of the

operator with the intensity as an integral kernel, and shown that the dominant col-

lagen signal is rank-one. Therefore, a SVD approach can theoretically separate

the metabolic activity signal from the collagen signal. We proved that the SVD

eigenvectors are good approximation to the collagen signal, proving that the SVD

approach is feasible and reliable as a method to remove the influence of collagen

signals. And we also discovered a new formula that gives the intensity of metabolic

activity from the SVD analysis. This is further confirmed by our numerical results

on simulated data sets.

A Non-orthogonality of the eigenvectors of Fcc, Fcm, and

Fmc

In this appendix we will illustrate the fact that the eigenvectors of the kernels

Fcc(x, y), Fcm(x, y) and Fmc(x, y) are in general not orthogonal. Since all of them

have variable separable forms with respect to x and y, which is the basis of our

analysis, so here we only prove the nonorthogonality between eigenvectors of the

kernels Fcc(x, y) in (11) and Fcm(x, y) in (12).

Let A be the matrix obtained from discretizing the signal ΓODT . The singular

values of A are the square roots of the eigenvalues of the matrix A∗A, and the sin-

gular vectors of A are the corresponding eigenvectors of A∗A. We notice that A∗A
is a discretization of the integral kernel F(x, y). We first demonstrate the relation

between kernels with variable separable forms and eigenvectors.

Lemma A.1. For any function f (x, y) where x and y belong to Rd with d being

the space dimension, if there exist functions f1(x) and f2(y), such that f (x, y) =

f1(x) f2(y), then f1(x) and f2(y) are the eigenvectors of the integral operator T with

kernel f (x, y).

Proof. Define the operator T with the kernel f (x, y) to be (Th)(x) =
∫

f (x, y)h(y)dy.

Using the variable separation f (x, y) = f1(x) f2(y), we obtain

(Th)(x) =

∫

f1(x) f2(y)h(y)dy = f1(x)

∫

f2(y)h(y)dy.

Therefore, it is clear that the operator T has eigenvector f1(x), where
∫

f2(y) f1(y)dy

is the associated eigenvalue. Similarly, f2(y) is also the eigenvector of T , where
∫

f1(x) f2(x)dx is the associated eigenvalue. �
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Denote the functions ϕc(x) and ϕm(x) by

ϕc(x) = Kc1
(x)qc(x),

ϕm(x) =

∫

[−L,L]2×[0,T ]

F (S 0Kc2
)(

4πn̄z2

c
)

× F (S 0Km)(x,−4πn̄z1

c
)pm(x, z1, t)dz1dz2dt

Then the kernels Fcc and Fcm can be written as

Fcc(x, y) = C1ϕ
c(x)ϕc(y),

Fcm(x, y) = C2ϕ
c(x)ϕm(y),

where C1 and C2 are constants.

Applying Lemma A.1 to the kernels Fcc and Fcm, we know that the correspond-

ing eigenvectors are ϕc and ϕm respectively.

Since this integral
∫

ϕc(x)ϕm(x)dx depends much on the random term pm(x, z, t),

it will not be zero almost all of the time. Hence, in our construction, the vectors ϕc

and ϕm are in general not orthogonal.
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