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Abstract

The concept of scattering coefficients has played a pivotal role in a broad range of
inverse scattering and imaging problems in acoustic and electromagnetic media. In view of
their promising applications, we introduce the notion of scattering coefficients of an elastic
inclusion in this article. First, we define elastic scattering coefficients and substantiate that
they naturally appear in the expansions of elastic scattered field and far field scattering
amplitudes corresponding to a plane wave incidence. Then an algorithm is developed
and analyzed for extracting the elastic scattering coefficients from multi-static response
measurements of the scattered field. Moreover, the estimate of the maximal resolving
order is provided in terms of the signal-to-noise ratio. The decay rate and symmetry of the
elastic scattering coefficients are also discussed. Finally, we design scattering-coefficients-
vanishing structures and elucidate their utility for enhancement of nearly elastic cloaking.
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1 Introduction

The notion of scattering coefficients of acoustic and electromagnetic inclusions emerged in
an effort to design enhanced near invisibility cloaks [9, 11, 12]. These frequency-dependent
geometric objects contain rich information about the contrast of material parameters, high
order shape oscillations, frequency profile, and the maximal resolving power of the imaging
setup. They have been effectively used for inverse medium scattering [7], echolocation and
shape description [13], mathematical understanding of super-resolution phenomena in imaging
[6] and phase-less reconstruction of domains [5]. In electromagnetic or acoustic media, scattering
coefficients provide a natural extension to the concept of polarization tensors [8] with respect
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to frequency dependence. They are defined in terms of Fourier-Bessel coefficients (in 2D) or
spherical harmonic coefficients (in 3D) of far-field scattering amplitude and can be retrieved
with high accuracy from the multi-static response (MSR) measurements of the scattered field by
solving a least-squares optimization problem. Multistatic imaging involves two steps. The first
step consists of recording the waves generated by point sources on an array of receivers. The
second step consists of processing the recorded matrix data in order to estimate some features
of the medium [3, 8]. The interested readers are referred to [11, 12, 13] for further details.

The invisibility cloaking, proved to be scientifically realizable in many investigations, for in-
stance, by Pendry et al. [37], Greenleaf, Lassas and Uhlmann [26, 27], Greenleaf et al. [24, 25],
Leonhardt [29] and Milton, Briane and Willis[31], is an exciting area of interest nowadays. Sig-
nificant progress has been made recently on the control of conductivity equations [10, 26, 27],
acoustic [11, 16, 19], electromagnetic [12, 17] and elastic waves [28, 21, 22, 23] using curvi-
linear transformations of coordinates. In fact, a meta-material is perceived as an invisibility
cloak that maps a concealment region into a surrounding shell by virtue of transformation and
thereby making the material parameters strongly heterogeneous and anisotropic, however ful-
filling impedance matching with the surrounding vacuum. The cloak, thus neither does scatter
waves nor does it induce a shadow in the transmitted field. Reduction in the backscattering
[10, 11, 12] and the anomalous localized resonances [4, 14, 20] are also used to design and
enhance cloaking devices.

The purpose of this article is to introduce the notion of elastic scattering coefficients (ESC)
of an inclusion embedded in a homogeneous medium. The impetus behind this study is the
enhancement of nearly elastic cloaking and the promising applications of ESC in mathematical
imaging and inverse scattering. We first define ESC of the inclusion using the eigen-functions
of the Lamé equation and the integral representation of scattered elastic field in terms of hyper-
singular boundary integral operators. Then, a least-squares optimization algorithm is designed
for the reconstruction of significant ESC from the full aperture MSR data collected using a
circular acquisition system. The stability, truncation error and maximal resolving order of the
reconstruction procedure are analytically quantified. Finally, we design mathematical structures
with vanishing scattering coefficients (S-vanishing structures) and elaborate a framework for the
enhancement of nearly elastic cloaking. The results contained in this paper can cater to many
inverse scattering problems, especially for shape identification and classification in elastic media.
The interested readers are referred to [30] and articles cited therein for comprehensive details
on shape identification in elastic media.

The contents of this article are organized in the following manner. Some notation and a few
preliminary results on layer potential theory of elastic scattering are collected in Section 2. In
Section 3, ESC are defined and their important features are discussed. Section 4 is dedicated
to the reconstruction framework for ESC. The enhancement procedure for elastic cloaking is
elaborated in Section 5. Finally, in Section 6, we sum up the important contributions of this
investigation and discuss about interesting applications of ESC in mathematical imaging.

2 Elements of Layer Potential Theory

Since this article is concerned with elastic scattering and the integral formulation of the scattered
field is the key component to define ESC, we feel it best to pause and introduce some background
material from layer potential theory for elasticity. For details beyond those we provide in this
section, please refer to the monograph [2].



2.1 Preliminaries and Notation

To simplify matters, throughout this article, we confine ourselves to the two-dimensional case.
However, it is precisely that all the results and definitions in this section are valid in three-
dimensions with obvious modifications.

For any sufficiently smooth, open and bounded domain  C R? with C?— boundary 99, we
define L?(Q) in the usual way with norm

1/2
lull o = (/ |u|2dx> ,
Q

and the Hilbert space H!(Q) by
H'(Q) :={u e L*(Q)|Vu e L*(Q)},
with norm
) ) 1/2
sy = (lulZege) + 1Vullie) -

We define H?(12) as the space of functions u € H'(2) such that 9;;u € L*(Q) for all 4, j = 1,2,
and H3/2(Q) as the interpolation space [H'(€2), H*(Q)]; /2. Let t be the tangent vector to 09
at point x and let 9/0t denote the tangential derivative. Then, we say that u € H(99Q) if
u € L%(09) and du/0t € L?(09). Refer to the monograph by Bergh and Lofstrom [18] for
further details.

Consider a homogeneous isotropic elastic material, occupying a bounded domain D C R?
with connected C?—boundary dD, compressional and shear moduli A\; € Ry and u; € Ry
respectively, and density p; € Ry. Let the exterior domain R? \ D be loaded with different
elastic material having parameters pg, Ao, o € R4 such that

(Ao = A1) (ko = pa) > 0. (2.1)

To facilitate latter analysis, we introduce piecewise defined parameters

)\(X) = )\OX(]RQ\D) (X) + /\1X(D)(X) (22)
p(x) := poX (r2\p)(X) + p1x(D)(X) (2.3)
p(x) := poX(®2\D)(X) + p1X(D)(X), (2.4)

where yq represents the characteristic function of a domain 2. We also define the linear
elasticity operator Ly, ,, and the surface traction operator (or conormal derivativative) 9/0v,
associated with parameters (Ao, po) by

Lxg o W] = [10AW + (Ao + 110)VV - W] (2.5)
and 5
(‘%/ = X(V-w)n +2u (VW) n (2.6)

for all sufficiently smooth vector fields w : R? — R?, where n € R? represents the outward
unit normal to 9D, V*w = (Vw + (Vw)T)/2 is the linear elastic strain and the superscript T
reflects a transpose operation.

Let w > 0 be the angular frequency of the mechanical oscillations. We denote the outgoing
fundamental solution of the time-harmonic elasticity equation in R? with parameters (g, fo, po)
by I'“, that is, for all x € R?

([’Xo,uo + IOOW2I)FUJ(X) = _50(X)I27 Vx € R27 (27)



subject to the Kupradze’s outgoing radiation conditions where ¢y is the Dirac mass at y, Z is
the identity operator and I, € R?*? is the identity matrix. Let ko 1= w/c, for @ = P, S, where

the constants cg = \/fio/po and cp = /Ao + 2p0/po refer to background shear and pressure
wave speeds respectively. It is well known, see, for instance, [32], that

I'“(x) = :0 [(Ig +—5VV ) g(x,ks) — ;%VVTg(x, kp)|, xe€R*\{0}. (2.8)

The function g(-, k) is the fundamental solution to the Helmholtz operator —(A + x2Z) in R?
with wave-number x € R, that is,

(A + K°T)g(x, k) = —0p(x), x€R?,
subject to the Sommerfeld’s outgoing radiation condition

1/2 dg(x, k)
Oon

lim |x| —ikg(x,K)| =0, x € R?,

|x|—00

where 0/0n represents the normal derivative. In two dimensions,
~ g vx € R\ {0 2.9
906 8) = THO (slx)), vx € B2\ {0}, (2.9)

where H((,l) is the Hankel function of first kind of order zero (see, for instance, [33]). Throughout
this article, we use the convention I'’(x,y) = I'’(x — y) and reserve the notation o and 3 to
represent pressure (P) and shear (S) wave-modes, that is, o, 8 € {P, S}.

2.2 Scattered Field and Integral Representation

Let us begin this subsection by introducing the elastic single layer potential
SPlel(x) = /t)D I'(x,y)e(y)do(y), x € R?\ 9D (2.10)

for all densities ¢ € L?(0D)2. We also need the boundary integral operator

(K9) e =p.v. /aD a—VxI‘w V)e(y)do(y), ae. x€0D

for all ¢ € L?(0D)?, where p.v. stands for Cauchy principle value of the integral and the
surface traction of matrix I'“ is defined columnwise, that is, for all constant vectors p € R?

[ar} o o]

ov ov

We recall that the traces SB[¢]| L
conditions (see, for instance, [1, Section 3.4.3])

Splel|, = Sslel|_
A(Splel) ‘
ov +

and 9(S%[¢])/0v| 4 are well-defined and satisfy the jump

(2.11)
(x) = (i;[—i— (IC%)*) p(x), a.e. x € 0D.



Here and throughout this investigation subscripts + and — indicate the limiting values across
the interface 9D from outside and from inside domain D respectively, that is, for any function

(]
(¥(x)) ’i = lim ¢(x+en), x€ID.

e—0t
Consider a time harmonic incident elastic field U satisfying
(Lrguo +pow?T)U(x) =0, Vx € R (2.12)

Then the total displacement field in the presence of inclusion D, represented by u, satisfies the
transmission problem

(Lap+ p?T)u(x) =0, Vx€R?,

(2.13)
(u — U)(x) satisfies Kupradze’s radiation condition when |x| — oo .
We recall from [2, Theorem 1.8] that the total field u admits the integral representation
U(x,w) + SY[](x,w), x€R?\ D,
u(x,w) = (2.14)

Splel(x,w), x €D,

in terms of single layer potentials S% and 5‘5, where unknown densities ¢, € L?(0D)? satisfy
the system of integral equations

S, -84 » U
23] sl <¢>: s

ov ov v

(2.15)

oD

Here a superposed ~ is used to distinguish the single layer potential and the surface traction
defined using interior Lamé parameters (A1, 1, p1). To simply matters the dependence of u,
U, ¢ and 9 on frequency w is suppressed, whenever no confusion may arise.

The following result from [2, Theorem 1.7] guarantees the unique solvability of the system
(2.15) and consequently that of problems (2.13) and (2.14).

Theorem 2.1. Let D be a Lipschitz bounded domain in R? with parameters 0 < Ay, j1, p1 < 00
satisfying condition (2.1) and let w?py be different from Dirichlet eigenvalues of the operator
—Lx, 4y on D. Then for any function U € HY(OD)? there exists a unique solution (¢,) €
L2(0D)? x L*(OD)? to the integral system (2.15). Moreover, there exists a constant C > 0 such
that

ouU
llellzz oy + 1Pl 2200y < C | [[Ul|arop)2 + || 5 : (2.16)
W || L2(apy2

3 Elastic Scattering Coefficients

This section is dedicated to defining ESC in two dimensions. To facilitate the definition of ESC,
we first recall some background material on cylindrical eigen-functions of the Lamé equation
and present the multipolar expansions of the exterior scattered elastic field and the Kupradze
fundamental solution I'“ in the next subsection.



3.1 Cylindrical Elastic Waves and Multipolar Expansions

We define x := x/|x| for all x € R?\ {0} and write S := {x € R?|x-x = 1}. The position
vector x € R? can be equivalently expressed as x = (|x|cos ¢x, x| sin ¢x) where @y € [0,27)
denotes the polar angle of x. Denote by {&,,€s} the orthonormal basis vectors for the polar
coordinate system in two dimensions, that is,

&, = (cos vx,sinpx), €y = —(sin @y, Cos Yx).
Consider the surface vector harmonics in two-dimensions
P, (%) = e™¥<¢, and S,,(X) =e™#x&y for all m € Z. (3.1)

It is known, see [32] for instance, that these cylindrical surface vector potentials enjoy the
orthogonality properties

/S P, (%) P(X)do(X) = 206, (3.2)
Sn

J

/S P, (%) Sn,(X)do(%) =0, (3.4)

(%) - Sy (X)do (%) = 2760m, (3.3)

for all n,m € Z, where d,,,, is the Kronecker’s delta function and do is the infinitesimal differ-
ential element on S.

Let Hf,% ) and Jm be cylindrical Hankel and Bessel functions of first kind of order m € Z,
respectively. Then, for each xk > 0, we construct the functions vy, (-, k) and wy,(+, k) by

U (%, 5) 1= HD (k[x])e™?*  and  wp, (X, k) = Jp (k]x])e™$x. (3.5)

It is easy to verify that v,,, are outgoing radiating solutions to the Helmholtz equation Av+x2v =
0 in R?\ {0} and that w,, are entire functions to Av + x?v = 0 in R? respectively.
Using surface vector harmonics P,,, S,, and functions v,,, w,,, we define

H’IF)’)L (Xv KP) ::va (Xa K:P)

—kp (H$><np|x|>)' P,,.(%) + %Hﬁpwwxbsm(x» (3.6)
Hf;l(x,mg) ::V X (&,0m (X, Ks))
= D s )P () — s (HD () S5, (3.7)

and

Jf;(x, kp) :=Vwn,(X,kp)

=rp (Jm(£p[x]) P (%) + %Jm(ﬁP\XDSm(i)’ (3.8)
Jfﬁb(x, ks) =V X (€ wnm (X, ks))
Z%Jm(KJS\XDPm(*) — ks (Jm(s]x])" S (%), (3.9)



for all ko > 0 and m € Z, where &, = (0,0, 1) is a unit normal vector to the (z1,x2)—plane and

(Hg))’(t) ::%[Hg)(t)} and () (1 ;:%[Jm(t)]. (3.10)

For simplicity, we suppress the dependence of J%, and HY, on wave-numbers x, henceforth.

The functions JE, and J% are the interior longitudinal and transverse eigen-vectors of the
Lamé system in R2. Similarly, HY and HS, are the exterior eigen-vectors of the Lamé system
in R?\ {0} [15]. Following result on the completeness and linear independence of the interior
eigen-vectors (J,};,Jfﬁb) and exterior eigen-vectors (Hg,Hfl) with respect to L?(0D)?—norm
holds. The interested readers are referred to [38, Lemmas 1-3] for further details.

Lemma 3.1. Let D C R? be a bounded simply connected domain containing origin and 0D be a
closed Lyapunov curve. Then the set {HE HS : m € Z} is complete and linearly independent
in L2(0D)?%. Moreover, if pyw? is not a Dirichlet eigenvalue of the Lamé equation on D, then
the set {JD J5 : m € Z} is also complete and linearly independent in L*(9D)?.

m?

As a direct consequence of Lemma 3.1, corresponding to every incident field U satisfying
(2.12), there exist constants al,,a> € C for all m € Z such that

m?'m

U(x) =Y (a5 J5(x)+ahI)(x), xR (3.11)

meZ

In particular, a general plane incident wave of the form

1 1 .
U(X) — jelﬁsx‘d dJ_ + jezmpx‘d d
PoCs PoCp

7 ~ iKaX- { 1IKpX-
= (¥ w4 g (7)) (3:12)

can be written in the form (3.11) with

8= af (U) = —— b im(/2-0) P,S 3.13
Uy = (U) P T , Be{pS} (3.13)

where d = (cosf,sinf) € S is the direction of incidence and d* is a vector perpendicular to d.
In fact, this decomposition is a simple consequence of Jacobi-Anger decomposition of the scalar
plane wave
etrxd _ Z 6im(ﬂ'/2ftpx)Jm(R‘XDeimex'
mMEZL

Moreover, for all x,y € R? such that |x| > |y| and for any vector p € R? independent of x

I y)p =~y 3 HS () [T5) -

 4poc2
PoCs nez

S HIX) [ e (314

 4poc?
Po P nez

Refer, for instance, to [39], for the derivation of this expansion.



3.2 Scattering Coefficients of Elastic Inclusions

Note that the multipolar expansion (3.14) of the fundamental solution I' enables us to derive
the expansion

SBIHIC) == oy S HI) [ [T - w(v)] doly)

 4pyc2
pOPnEZ

DB /aD [T50) v)] doly) (3.15)

 4poc
Po S nez

of the single layer potential S%[4] for all x € R? \ D sufficiently far from the boundary dD.
Consequently, by virtue of expansion (3.15) and the integral representation (2.14), the scattered
field can be expanded as

u(x) - Ux S @ S(x i P(x
(9 - U =~ [SH< )+ 0| (3.16)
where
= [T vw)]doy), ae(sph Vaez (3.17)
oD

Definition 3.2. Let ((pﬁwl,bfl), m € 7, be the solution of (2.15) corresponding to U = J& .
Then the elastic scattering coefficients Wﬁfﬁ,i of D € R? are defined by

WSL:EL = W%lZ[D7/\07AlaMOaMhPOvPIaW] = [;D

3500 wh )| do(y), monez (318)
where a and B indicate wave-modes P or S.
Following result on the decay rate of the ESC holds.

Lemma 3.3. There exist constants Cy g > 0 for each wave-mode o, f = P, S such that

s Cag "
W7n,n[D7A07)‘17,u0uu'1ap07p13w} < W (319)

for allm,n € Z and m,n — oco.

Proof. The proof of the estimate (3.19) is very similar to [11, Lemma 2.1] for the acoustic
scattering coefficients. For the sake of completeness, we fix the ideas of the proof in the sequel.
Recall the asymptotic behavior

T (t) ~ 1( ct )lm (3.20)

2rt|m| \ 2|m)|

of Bessel functions of first kind with respect to the order |m| — oo and for a fixed argument ¢
[35, Formula 10.19.1]. Then, by using the recurrence formulae [35, Formula 10.6.2],

T () = — Ty (t) + %Jm(t) and  J! (t) = Jy_1(t) — %Jm(t) (3.21)



one obtains

jml+1 Im|
1 et |m| 1 et
J ()] < +— ( ) : 3.22
(O] < 2n(Jm| + 1) <2(m + 1)> t '\ 2n|m| \ 2|m| (3:22)
Consequently, by the definition (3.8)-(3.9) of J%(x), and Theorem 2.1, we have
o« In|—1
192 oy < () (323

and

[m|—1
0J5 cy
o <c(|a? + Hm < | == : 3.24
e (e I 2
for some constants Cf{* and Cg . Finally, the result follows by substituting the estimates for
the norms of 92 and J2 in the definition of the scattering coefficients and choosing C, s

appropriately in terms of C{* and Cg . O

3.3 Connections with Scattered Field and Far Field Amplitudes
Consider a general plane incident field U of the form (3.12) admitting decomposition (3.11)-
(3.13). By superposition principle the solution (¢, ) of (2.15) is given by
wix) =Y [anwh +asws] and ox) =Y [aheh +aiel]  (329)
meZ meEZL

This, together with Definition 3.2 of the scattering coefficients and the expansion (3.16), renders
the asymptotic expansion

u(x) — U(x) = Z [fof(x) +~SHY (x)] (3.26)

of the scattered field for all x € R? \ D sufficiently far from 9D, where

=D (oWl +dawih) . Be{pS), (3.27)
mEeZ
with
&= B _ #eim(ﬂ/Qfe). (3.28)

_ b = _
dpocy ™ 4pjchrp

In order to substantiate the connection between ESC and far field scattering amplitudes we
recall that the cylindrical Hankel functions HT(Ll) admit the far field behavior

ik|x| 2 )
HW (k|x]) ~ e\m £ mim(n/241/4) | <|x‘—3/2) (3.29)
X TK
’ etrlx| 2 )
HY(k[x|)) ~ik——=y) —e /244 L O (|2|73/2 (3.30)
" \/ |x| TR



as |x| = oo (see, for instance, [35, Formulae 10.2.5 and 10.17.11]). Here, the notation ~
indicates that only leading order terms are retained. Consequently, the far field behavior of the
functions HY and HY can be predicted as

eins|x\

A8, (%), as |x| — oo, (3.31)

n’ 4 X n X))~ n
VIx| VIx|

AP = (i 4+ Drpe ™2 [E2 and A% 1= —(i 4 1)kge™ ””7/2\/§~ (3:32)
T ™

Thus, for all x € R?\ D such that |x| — oo the scattered field (u — U) in (3.26) admits the
asymptotic expansion

7,/{p|x\ A P 6il<as|x| S 1008 A
u(x) — U(x) Y P,( + P AXPS, (X)] . 3.33
(x) v Z (%)] N %[v (%)] (3.33)

On the other hand, the Kupradze radiation condition guarantees the existence of two analytic
functions u¥ : S — C? and u¥ : S — C? such that

()~ Vo) = i () + (3 +.0 x (334

ux—UX:qu—i—usfi—i—O(), as |x| — oo. 3.34
Vx| Vx| [x[*/2

The functions u® and ug’ are respectively known as the longitudinal and transverse far-field

patterns or the scattering amplitudes. Comparing (3.33) and (3.34) the following result is read-

ily proved, which substantiates that the far-field scattering amplitudes admit natural expansions

in terms of scattering coefficients.

Theorem 3.4. Let U be the incident plane field given by (3.11). Then the corresponding
longitudinal and transverse scattering amplitudes can be written as

u(ID:’O[D7 AOa )\17 Mo, K15 PO, plaw](fc) = Z 77113A;.7,0,PPTL(§() (335)
nez

ugo[D7>\07)‘la,u07,u'17p07p17 ZVSAOO SS ) (336)
neZ

where the coefficients vE and ~5 are defined in (3.27).

3.4 Symmetry of Scattering Coefficients
We have the following results on the symmetry of ESC with respect to indices and wave-modes.

Lemma 3.5. For alln,m € Z and o, B € {P, S}

Wfr(;;:/g[D7 )\07 )‘1>MO7M17pUa phw] - W7?7)»,%[D7 >\07 )‘lu 1o, N17P07p1,w]~ (337)

Proof. Let us first fix some notation. For any v,w € H%/?(D)? and a,b € R, we define the
quadratic form

(v, w)% = /D [a(V v)(V-w) + g (Vv+VvT): (Vw+Vw')|dx, (3.38)

10



where : denotes the matrix contraction operator defined for two matrices A = (a;;) and B =

(bij) by A: B := Zaijbi]’. It is easy to get from the definition of (-,-)5” that
(2]

/ 8—Wd0( )= / V- Lo p[wldx + (v, w)%5P.
oD v D

Note that if w is a solution of the Lamé equation £, [w] + cw?w = 0 then

/ V- 6—Wda( )——ch/ v wdx + (v, w)3
ov D

and consequently from (3.39)

/ V- —do / — - wdo(x) — cw /v wdxf/ﬁab - wdx.
oD ap 0

Moreover, if v solves L, p[v] + cw?v = 0 then

ow ov
/BDV Eda( X) = { — - wdo(x).

We will also require the constants

Ho
np = 9
M1 — Mo
~ M1
np = )
M1 — Mo
. Ao + o
775 A )
(A1 = Ao) + (1 — po)
~ A1+
ns =

(A1 = Xo) + (g1 — po)

(3.39)

(3.40)

(3.41)

(3.42)

Let (%, %) and (2, 42) be the solutions of (2.15) with U = J* and U = J? respectively,

that is,
Spen —Sppe = 33,0
3t - mspwn| = SR
and
3D‘Pm SE"MZ = JB ’8D
%gfjapf,, - 878%¢?""+ - e ‘BD

Then, by making use of the jump conditions (2.11), Wﬁ;ﬁ can be expressed as

0
SD [’lpm}

Wik = [ 35 wldeto = [ Js-[aSD[m
oD oD 1o} ov

11

Jaoo.

(3.43)

(3.44)

(3.45)

(3.46)



Further, by invoking (3.46) and subsequently using (3.41) and (3.42), one gets the expression

— 98 — [o )
@7/3:_ a ., m a, _ w B
Wit = [ 33 Grasto+ [ 3| st - sossiwil] | ot

_ Ta a']rﬂn aﬁ Qwr, B QJa B
[ aGrane+ [ (TR Splet - G - splwhl] doto

e /D 7% - 85l Jdx /D Loy (T3] - 8802 dx.

This, together with (3.45), leads to

- 0J8 aJe aJe
a,B — _ a ., m _
Wik == [ T Srieto+ [ SR Splehlinto— [ SR Splellint

o3 S .
[ S g o) - pu? [ TT-Spleix— [ La T3 Spleilax
op OV D D

It is easy to see that the first and the fourth terms cancel out each other thanks to (3.42).
Therefore,

oJe  9Jel ~ Ta . 3
Wit = [ 50 - G| Ssletlaota) - pu [ 7 Splihlix

m,n o ov
- /D L, T3] - Spleh]dx. (3.47)

Now remark that V -J9 = 0 = V x JZ. Therefore, it is easy to verify by definition of the
surface traction operator that
oJe 9Je  19Jx 1 9J%
n L=——"t=__"1 (3.48)

ov o ne Ov 1, O
Thus, using right most quantity of (3.48) in (3.47) and subsequently invoking identity (3.41),

one gets

AL
oD (9V

7 [ Lrs T Sl
J 3 ~ TJa  ow
=/ 77 5 Selenl| da<x>+<1—na>plw2/J%-sp[somdx
o D

D 1%
1 — Mo / ‘C/\1 H1 SD [Som]d

Ha Wb =

m,n

8818 1do (x) — Taprs? / T3 - 5800 Jdx
D

This, together with (3.43) and (3.46), provides

_ = 0 = 0
nWih = | Splenl- 55Splell)| doto— | SpReT- 5-Splwnl| dox)
oD - oD

/ SHwe]- mda()+(1—ﬁa)p1w2 /D 7 - 85[0 dx

(17 /D Lo (T3] - 85 (108, Jdx. (3.49)
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Similarly, substituting the first relation of (3.48) back in (3.47) and invoking (3.45), one obtains

v

o 8.] ~ —
DWW = /6 Gk Slehldo(x) — naprs? /D 73 53lP Jdx

e /D Lo, T3] 3800 Jdx

aJa A
o O - Splpmldo(x) + o O Jndo(x)
~nopss? [ T3 Spletlix = [ L0007 Spletlix. (350
Finally, subtracting (3.50) from (3.49) and noting that 7, — 1, = 1, one finds out that
a,B _ ~w @ w « a w B
Wit = [ STl = Salell|_dot) — [ SERRl- s8] doto
oD ov oD ov
- 938 / oJa I%
— [ SY[be] - S do(x) — . S8l Jdo(x / 38 do(x). (3.51
| st st - | GR sypwilaot - [ G hasta. 350
Similarly, we have
B, Sw a w B 8 W o
Wn,’m: S[ - fSD[cpn] do(x) = | Splpm] - 5-Splvn]] do(x)
aD v +
o 8.10‘ an’ A G
S [Ypm] - —"do(x) - plwpldo(x) — 5, Indo(x)
aD ap oV
a
[ S5l 1] - Splisldax / SoSBIO| - Spllde(x

— 9J o3k L. 5 e
—/aDSD[«pmy ot~ [ O -sD[«,bn}da(x)—/aDJ Mo (3.52)

The proof is completed by taking complex conjugate of expression (3.52) and comparing the
result with equation (3.51). O

Lemma 3.6. For allm,n € Z and o, € {P, S},

Wg;ﬁ n[D,)\O,)\l,/Jmﬂhpo,Pl,w] = (—1)m+nW7%’7§1[D,AO,)\I,MO,ul,pmpl,w}. (3'53)

Proof. Let dz_m be the unique solution of the integral system (2.15) with U(x) := Jém(x).
Then by definition

Wl D] = /8 . [Jﬁn(y) : Mm(y)} do(y). (3.54)

On the other hand, recall that the cylindrical Bessel functions possess the connection property
[35, Formula 10.4.1],

J_m(X) = (—=1)™ T (%). (3.55)

Therefore, for all m € Z and x € R?

(x) := (=1)"I5(x). (3.56)



Consequently,

WD) =1 [ (300 0)] dety).

Using similar arguments as in Lemma 3.5 it can be proved after fairly easy manipulations that

| (300w ] de) = [ (3200 wi0)] doty). (357
Thus
WD) =1 [ (37,00 420)] doty)
v [ 3R v )] doty)
=(=1)"™tr WD),
which gives the required result by virtue of Lemma 3.5. O

4 Reconstruction of Scattering Coefficients

In the previous section we have defined and discussed interesting properties of ESC of an
inclusion. The aim of this section is to substantiate that these frequency dependent geometric
quantities can be recovered from the measurements of the scattered field. Towards this end,
we design a procedure based on least-squares minimization using MSR data. To simplify the
matters we consider the full aperture case with the circular acquisition system.

4.1 MSR Data Acquisition

Let {Xs}s=1,.. n, and {X,},=1.. n, be the sets of locations of the point sources and point
receivers, and {ds,dt}s=1... v, and {d,,d}},—1... v, (such that dg-df =0 =d,-d;") be the
corresponding unit directions of incidences and receptions respectively for some N,., Ny € N.
Let the points{x,} and {x,} be uniformly distributed over the circle dBr(0) with radius R
centered at origin such that |x,| = R = |x4| and 0, = 05, = 27r/N, and 0; = 05, = 27ws/N;.
We consider a regime in which R is large enough so that the terms of order O(R3/?) are
negligible. For simplicity, we assume that D contains the origin which is reasonable since we
are in sufficiently far field regime and the inclusion D can be envisioned as sufficiently centered
in BR(O)

Let F; and Gy, for all s =1,--- | N, be the pressure and shear type incident waves emitted
from point x, with direction of incidence dg, that is,

1 : )
Fi(x):= —5 dee"r*xds and  Gy(x) = 5 dleinsxds, (4.1)

PoCP PoCg

Let up, (x) and ug, (x) be the corresponding total fields. For all incident fields F; and G, we
record the scattered fields at all points x, in directions d, and d;- so that we can form four
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MSR matrices A% (AZ il ) v v for £,¢ € {||, L} with elements
s=1,-Ng,r=1,-- ,N,.

ALY =(Tur, (x,) = Fu(x)] -, ) (4.2)
Al =(Tur, (x,) ~ Fo(x,)] - d ) (4.3)
A5 =(ue. (x) = Gu(x)]-d,) (4.4)
A5+ =(lue, (x,) = Gu(x)] ) (4.5)

at a given fixed frequency w. Note that by virtue of expansions (3.11), (3.26) and (3.27), the
elements of the MSR matrices admit the expansions

sl — P PP (1P . S,P[yyS ) '
Al H;de(s) (Wi [l - a ] + Wil [ (x) - 4] (4.6)

L _ P P( 1 8,P [y1S Sl .
Al erzd s) (Wih [ ) - af ] + Wik [HS () - ) (4.7)

Ll — S s . 5,8 [y15 ) '
AL WZ;ZCZ (WP [HP x,) dr] + WSS [Hn (x,) dTD (4.8)
AL = S ds (WPS [HP %) dﬂ + WSS [Hg(xr) : dﬂ) , (4.9)

n,mez

where d (s) = df (F,) and d5 (s) = d (G,) are the coefficients given by (3.28) corresponding
to incident fields F, and G respectively. Here the parameter s in the argument of d?, reflects
its connection with s-th incident field.

Let us now introduce a cut-off parameter K such that the terms with |n| > K or |m| > K
are truncated in the expansions (4.6)-(4.9) and let E&¢ = (E4Y) € CN=*Nr for £, ¢ € {||, L} be

the corresponding matrices of truncation errors thus induced. Let us also introduce the matrices
Wa,ﬁ c (C(QK'-',-1)><(2K-1-1)7 X ¢ (CN ><(2K+1) Ya (CN X(2K+1) and Ya (CNr><(2K+1) by

(W2) L =W, (XP),,, = dn(s),
(Yf) =Hie)-dn, (Y9),, =Hg(x,)  di. (4.10)
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and the block matrices

Al AllL
A = L L c CQNSXQNT
A-l A5
PP s,P
W = <W W c C(4K+2)><(4K+2)
WPS WSS
EPP ESP
E— (EPS ESS) € C2N:x2N,
P
X — X Oz2x+1 € C2Nex(4K+2)
Oori1 X5
Y& Y?$
Y=< l ;>6@M”M“% (4.11)
Y, Y7

where Ogpy1 € RN+X(E+1) g the zero matrix. It can be seen after fairly easy manipulations
that the global MSR matrix can be expressed as

A=XWY"+E, (4.12)
where * reflects the Hermitian transpose of a matrix, i.e. A* = KT.
The following result is readily proved thanks to Lemma 3.5.

Lemma 4.1. The global block matriz W is Hermitian, that is, W = W*,

4.2 Least-squares Minimization Algorithm

Let us define the linear transformation L : CAK+2)x(4K+2) _, C2Ns 2N 1y
L(M) := XMY* (4.13)

and let N gise € C?Vs*2Nr denote the measurement noise. For simplicity, we assume that each
entry (Npoise)sr 1S an independent and identically distributed complex random noise with mean
zero and variance o2 such that

Nnoise = UnoiseNO with (NO)ST ~ N(Oa 1) (414)
In this subsection we consider the noisy measurements
A =XWY*+E + Nypise = L(W) + E 4+ Nyoise (4.15)

and design a procedure to retrieve the solution W. Let us reconstruct a least-squares mini-
mization solution for the linear system (4.15) in ker Lt by

W := argmin [|L(M) — A, (4.16)
Meéeker L+
where || - || denotes the Frobenius norm of matrices and ker L denotes the kernel of the linear

operator L. Note that if the cut-off parameter K is such that (2K + 1) < N,., Ny and both
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matrices X and Y are full rank then L is rank preserving and ker L is trivial. Consequently,
the admissible set for the least-squares minimization turns out to be RAK+2)x(4K+2) 3pnq W

can be explicitly calculated in the absence of measurement noise. In this case X is a Fourier
matrix by virtue of (3.6), (3.7) and (3.13) and

1

N,
X)X = 5 Topiq with by = ———)
( ) + 4/%0%‘%,3

THE (4.17)

where Ipg 1 € REEFDXCEFD §g the identity matrix. Consequently,

XP)Y*XP O
e (( ) e ) o s
O2r 11 (X%)" x5

with
bp| Lok Oz
Zx = (l T e ). (4.19)
Oox 1 lbs| *Iar+1
Note also that
( ﬁ) Y =N,C*% and (Y9)'Y] = N,D*7, (4.20)

where C*8 D»# ¢ REE+X(2K+1) are diagonal matrices

ggKg[iK
a B
ol = N-KIi-x : (4.21)
9% 9%
he e
X
D = PoRTR , (4.22)
ng b
with
, )
g = (H (rpR))  and g5, o= S2H(D (ks R), (4.23)
y /
hP :Z%H,(,})(KPR) and hS = —kg (HQ(KSR)). (4.24)
Therefore,

P\~ P P\*~ P P\*~/S P\*~/5

— (YP) Y[+ (D) Y (YP) Yi e+ (vD) v

s\~ P S\*~ P s\ ~rs S\*~S

(YF) YP+ vyl () Yi+(v5) vs

CP’P+DP’P CP’S+DP’S
; : (4.25)
CS,P+DS,P CS’S+DS’S
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It can be easily proved that Y*Y becomes diagonal when the radius R of the imaging
domain dBR(0) is sufficiently large. Precisely, the following result holds.

Lemma 4.2. For the radius R of the ball Br(0) approaching to infinity the matriz Y*Y admits
a decomposition

(4.26)

CPP Ok
Y'Y =N, Zvyv + Q with Zvy := ss |
Ozx11 D>

where Q = (quer )y pr_1q... Ak 4o 1S such that |geer| < CR™2 for some constant C € R independent
of R.

Proof. In the sequel C' denotes a generic constant and varies at each step. Note that the matrix
Y*Y can be decomposed as

CP.P 02K+1> ( DFP CP,S+DP,S>
+ Ny

S,s S, P S,P S,s (4'27)
02K+1 D~ C~ + D~ C~>

Y'Y := N, (

Recall that C*# and D*# are diagonal matrices and in particular

2

HO(ssR)? and  (DPF) =" |HD (kpR)P.

(C%%) mm = R

mm = 2|

Thus, by virtue of the decay property (3.29) of H&l), as R — oo we have

C
[(C) | € 5 and [(DPF), )< 5
Similarly, the decay properties (3.29)-(3.30) furnish
C C
[(C7) | Sz and [(C¥F), 1< 55
C C
|(D"?),, | <5z and [(DF),]< 25

as R — oo. This shows the decay of the elements of second matrix on right hand side (RHS)
of (4.27), which leads to the required form of Y*Y for R — oo. O

An important consequence of Lamma 4.2 and the orthogonality relation (4.18) is the fol-
lowing result substantiating that the linear operator L possesses a left pseudo-inverse when
R — oo.

Theorem 4.3. Let (2K + 1) < N,, N5 and matrices X and Y be full-rank. Then, the linear

operator L : CAK+2)x(4K+2) _, C2N:-x2Nr yy555055es a left pseudo-inverse
LT (A) := L zox Avzy! (4.28)
" NN, X Y '

when R — oo.
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Proof. Since (2K 4+ 1) < N, N,, X and Y are full-rank, and R — o0, it is easy to see that
both X and Y possess left pseudo-inverses, denoted by Xt and YT respectively, thanks to the
orthogonality property (4.18) and Lemma 4.2. Precisely,

_ 1 _ 1
Xt= (X*X)7'X* = FZ;JX* and Y= (Y'Y)'Y*= Fz;fY*
as R — oco. Consequently, we have
1 — 1~ % —1 1 * —1 ~r% AT\ —1
T ZX XTAYZY = (X'X) ' X (xWy*) YZy
I = v e
:EW(Y Y)Zy'
=W.
This completes the proof. O

4.3 Stability Analysis

In this section we perform a stability analysis for the linear operator L. We substantiate that
the operator L is ill-conditioned for K — +o0o. It simply means that only a certain number
of lower order scattering coefficients can be recovered stably which in turn contain only lower
order information of the shape oscillations of boundary dD. The limit on the information about
the shape and morphology of the inclusion D that can be obtained stably is determined by the
maximum resolving order and the stability estimate for the operator L thereby defining the
resolution limit of the imaging paradigm. Towards this end, the following result characterizes
the singular values and the singular vectors of the operator L.

Theorem 4.4. Let Ny, N, > 2K + 1 and R — oo. Then the right singular vectors of L are
coincident with the canonical basis of RUETDXAKA2) and the (p,q)—th singular value of the
operator L is given by

cp

i
(B kB |, 1< pg<2K +1,

Opq "= 4P3W2\/m , (4.29)
) (H(§1_)2_3K(/£SR)) 2K 4+2<pq<AK +2.
Proof. Let us define the inner product of two complex matrices N and M by
(N, M) := Z (N™) gor (M) g -
o0
Let V,, € RUKFDXAK2) for each p,q = 1,2,--- ,4K + 2 be such that
(Vpg) g = Opelqer, VLU =1,2,--- 4K +2.
It is easy to verify that for R — oo, thanks to diagonality result (4.18) and Lemma 4.2,
(L(Vpg) , L(Vprg)) =(XVp Y, XV Y7)
=N;N, <qu’ Zva’q’ZY>
:6PP'6qq'NsNr|fq|2’ (4.30)
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where

|95—1—K|
T7 1Spaqg2K+l7
P
ful =4 (4.31)
|hq—2—3K|
S

On substituting the values of 95717;@ hq57273K and b, from (4.23), (4.24) and (4.17), one
arrives at

2
cp

|fq| = 4/’3‘*}2
2

Cs

/
(H (kB |, 1<pg<2K +1,

(4.32)
. 2K +2<p,q<4K +2.

(Hél_)2—3K("st)>/

This shows that the canonical basis {qu}p g1, K12 forms the set of right singular vectors
of L and the (p, g)-th singular value of the operator L is thus rendered by ||L (V)| and is

given by (4.29). Moreover, the left singular vectors of L are furnished by the relation V,, :=
L (Vpq) /0pg- O

It should be observed that the quantities g5y, | and |h5y | diverge when K — oo.
Consequently, the operator L is unbounded. Indeed, we have the following estimate for the
condition number of L thanks to Theorem 4.4.

Corollary 4.5. Under the assumptions of Theorem /.4,

cond (L) £ (CEK) (KD

as K — 400, (4.33)
where Cf := 2/erqR.

Proof. Let omax and omin be the largest and the smallest singular values of the operator L.
Recall the asymptotic behavior of the Bessel functions of first and second kind

Tont) = m<2€;>ml and Y (t) > — ﬁ (;;)ml (4.34)

with respect to the order |m| — oo at a fixed argument ¢ [35, Formulae 10.19.1 and 10.19.2].
Consequently, an easy commutation shows that

HD (aR)| S (CRImD™ + (Calml) ™™ as | - oc. (4.35)
Moreover, invoking the recurrence relation [35, Formula 10.6.2]
(HD ) =m0 - D) (4:36)
it is easy to get that
(820 )) | S(Catm = 1)) 4 (Cilm = 1) 4 £ ((Cm)™ + (Cn) ™)

<(Cum)™ (4.37)
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when m — 4o0o. Consequently,

K+1 K+1
) :

oert)er+) S (CRK) and ok iouri) S (CRK (4.38)

Finally, we note that the relation o, >~ O(2K+1)(2K+1) holds when K is large enough, which
follows from the fact that CP > CS (this is due to the inequality cp > cg, since pg, Ag > 0).
Moreover, the smallest smgular Value Omin 18 bounded. Therefore,

K) (4.39)

cond(L) = Tmax S (CRK

UII]II’]

O

4.4 Error Analysis

Let us now analyze the error committed by truncating the infinite series in the MSR data. But
before further discussion we recall the following result from [13, Appendix A].

Lemma 4.6. For ¢> 0 and N € N such that N > c/e

c ) n ( c ) N < 1 >
-] <= — . (4.40)
7;\] (n N 1+ 1In(N/e)
The following is the main result of this section.

Theorem 4.7. Let O and Co g > 1 be the constants defined in Corollary 4.5 and Lemma
3.3 respectively. Let the radius R of the measurement domain Bgr(0) be such that h =
rn:aLXaB{QC’2 C%} < 1. Then there exists a sufficiently large truncation order K satisfying
K> maX{C'a 3/(CRe)} such that

|ESP| = O(hEh). (4.41)

Proof. We prove the result for the truncation error EL:F only. The rest of the estimates can
be obtained following the same procedure. We first split the summations into three different

contributions as

BRP = 3+ 3+ > [ahts) (Whh [HE ) ]+ wER[HI(x) - d,))

Im|<K |m|>K |m|>K
[n|>K In|<K |n|>K

=0 + Iy + I5. (442)

Then, thanks to Lemma 3.3 and invoking the definitions (3.28) and (3.6)-(3.7) of d2 and H%
respectively, we have

|m|—1 In|—1
1 Cpp Cpp (1) !
= S4,0(2)0‘113/<;p<|z<K |mIml-1 Iz: |n|Inl—1 e (H” (KPR>)
Cip '~ C8r il
(1)
i XQK |m||m| 1 |z:1< In|ln1=1 R ‘H" (KSR)‘) (4.43)
[n|>
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We recall again the estimates
|HO (aR)| S (Caln)™ + (Caln) ™,
(H 50 ) | S5(CITD" 4 (Gl = D) 4 §(CHID' "+ (C(ln] = 1))~

as |n| = oo and note that, up to some factors independent of K,

|m|-1 |m|—1

C’PP K-1 S,P K—1
Z |m||m| 1~ CPP and Z ‘m“m\ 1 NOSP :
|m|<K |m|<K
Therefore
Cgpl e P 2 P n|—1 1 Inl-1 P [n|—1
IL]S SaRdh > |5 (CRIn) (CrpCR) ™ + (1~ Tl (Cp,pCE)
In|>K

+E <CP,P/C]F£>|”|_1+ < CP,P/C}]; )|n—1
2 nl? In|(jnf —1)

n|—1
(Csln))? (Cs.pCp)™ " + <CSP/CR> ] (4.44)

K-1
exgC
+ i Z

8p2chkp
PoCphkp In[>K

Thanks to Lemma 4.6 the third, fourth and sixth terms on RHS of (4.44) are negligible for all
K > max, g{Ca g/Cpe}. Moreover, it can be easily verified that

TL2 1 1 n—1
gz =1 and oo (1 <1, VneN (4.45)
and
L
(0%)? < Cf < CopC < C2 ,0% < maX{Ca e <3 (4.46)
Therefore we have
60113(;1 2 [n]—-1 — n 2 |n|—1
o > (CRInl)" (CrrCR)™ S eCEp! 21n|‘+2 (2Cp,pCF)
In|>K In|>K
< OB (20p pOE) !
~ €lpp ( PP R)
< eh™ 7, (4.47)
CI{’(I;I 1 Inl—1 pyInl—1
> (m) (@i
In|>K
< 0K-1 1 1 it pyInl—1
SCrpt X e (10 ] (2Cr.pCh)
In|>K
_ K-—1
< Cpp' (2CppCR)
<R, (4.48)
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and

ergCEp! o 2 syni1 _ cpCE " [n/? syInl-1
e 2 (CRIN (CsrCR) " S = 3T g (20sCR)
P Cs 2
In|>K n|>K
CPC'Sgl gy K—1
< —2 (2Cq pC
~ cs ( S,p R)
< PpKE-1 (4.49)

Substituting the estimates (4.47)-(4.49) in (4.44) one arrives at

1
L] S — (e+1+cp> RE-L
PoCp Cs

The estimate for |I3| follows by changing the role of m and n. Moreover, by proceeding in a
similar fashion, it can be easily established that

hKfl
L)<= .
nis (%)

Combining the estimates for |I1], |I2| and |I3], one obtains |EL:P| < hE~1. This completes the

proof.
O

4.5 Maximal Resolving Order

In this subsection, we determine the maximal resolving order K for the reconstruction frame-
work. In order to do so we first estimate the strength of the recorded signals in terms of the
geometry of inclusion D and the radius of the recording circle. Then we define the signal-to-
noise ratio (SNR) in terms of signal strength and noise standard deviation oysise. Towards this
end, it is easy to see from the integral representation (2.14) that

where g, is the solution of (2.15) corresponding to U = F,. By virtue of the far field behavior

eterlxl i+1 _
Fw ~ S S, lhpXy
(x,y) \/m (4/)00% Tmpx @ xe )

N etrsixl ( i+1
Vizl \4pocéy/Trs

(I, — X @ %) e—ms*~Y> (4.51)
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of the fundamental solution for a bounded y € R? and x € R? such that |x| — oo one has

(i—&-l)emPR
_\/>4POCP\/W oD
1 (i+1)etrst
VR 4pock/7Es Jap

1 (it 1)eineR
= TR dpo 7 o
+L(i+1)emsR
VR 4pocs\/Tks Jop

On the other hand, by (2.16)

A” I~ [(dr ® dr)wFs (y)] . dr e—uip|y|cos (6,-—0y dO’( )

A © Ay, (y)] - dy e o100 ()

['I/JFS (y) . dr] e*llﬁlply‘COS (6-—0y dO’( )

e, (v) - ] 0 o), (452

OF,
ov

< /oD (4.53)

l¥r. I L20p)2 < IFsll 1 apy2 + H
L2(0D)?

for some constant independent of R and |0D|. Thus, by taking the modulus on both sides of
(4.52), substituting the above estimate for ||¢r, || and using the Cauchy-Schwartz inequality,
one obtains the estimate

Al < c == (4.54)

0D
VR’
The constant C' above depends only on the material parameters of the background domain,
inclusion D and the frequency w of the incident field but is independent of R and 9D. Similarly,
the terms of other MSR matrices can be also bounded by |8D|/v/R. This endorses that the
measured signals are of order |0D|/v/R. Therefore, we define SNR by

oD|/VR

Onoise

SNR := (4.55)

Now we are ready to estimate the maximal resolving order K. In the sequel, [E denotes the
expectation with respect to the statistics of the noise Ny ise. Moreover, we work in the regime
when R — oo (or O(R™3/2) terms are negligible) and the truncation error is much smaller than
the noise standard deviation, which in tern is much smaller than the order of the signal (or
simply SNR is much larger than 1), that is,

hE= < opoise < |0D|/VR. (4.56)

From the injectivity of operator L for R — oo and the relation (4.15) we have

E(‘(W—W)mn 2>1/2

+ ‘ LT (Nnoise)mn

o\ 1/2
) =E (‘ (LT (E + Nnoise)mn

< [LI @)

< 0';% (HEHF + HNnoiseHF)

S T (W74 Gnoiee VNG, ) (4.57)
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where Cauchy-Schwartz inequality has been invoked to arrive at the last identity. By assumption
(4.56), the first term on RHS of (4.57) is negligible. Thus,

. 1/2
E(‘(WW) ) <o oroiser/Naly. (4.58)

This indicates that the discrepancy between the estimated and the measured scattering coeffi-
cients approaches zero very rapidly for all m,n > K when K — oo thanks to the estimation
of the magnitude of ,,,. It simply means that the scattering coefficients of an inclusion D

can be approximated arbitrarily closely and up to any order by the elements of W in the sense
of mean-squared error when the noise regime is characterized by (4.56). However, in view of
the decay rate (3.19) of W58, it is reasonable to determine an adoptive resolving order K by
restricting the reconstruction error to be smaller than the signal level. In particular, for any

threshold reconstruction error € > 0, one can see from (4.58) and (3.19) that

. o\ 1/2 C 2K -2
E (‘ (W _ W) > <o gnoie VNS N, < & <}“{?"> :

where Cpax = max, g{Cq ps}. After simple manipulations analogous to those in the proof

/
of Corollary 4.5 and using the behavior of the (H,(LU(/{&R)) for large m, one can show that
Ot = O ((CZK)'~K) for all m,n > K. Therefore, under noise regime characterize by (4.56),

mn

2K —2
(C«}‘%K)l_K K2K72 5 gcmax
Onoise
or equivalently
2 SVK—1 K-1
KK—I 5 E(CmaxCR) S €h S ESNR
Onoise Onoise
and the maximal resolving order is defined by
K =max{N € NNV~ <eSNR}. (4.59)

5 Nearly Elastic Cloaking

As an application of the elastic scattering coefficients we consider the elastic cloaking problem.
The aim here is to construct an effective nearly cloaking structure at a fixed frequency for making
the objects inside the unit disk invisible. We extend the approach of Ammari et al. [10, 11, 12]
for conductivity, Helmholtz and Maxwell equations to the Lamé system. Towards this end, we
first design S-vanishing structures by cancelling the first ESCs in the next subsection.

5.1 S-vanishing Structures

For positive numbers r; (j =1,2,--- ,L+1) with2 =1y > ry > --- > 741 = 1 we construct
a multi-layered structure by defining

Ay ={xeR*| |x|>2}
AjSZ{XER2| Tj+1§‘x|<rj}a ]:17ﬂL
AL+1 Z:{X S R2 ’ |X| < 1}
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Let (Aj, 145, pj) be the Lamé parameters and densities of A; for j =0,---, L+ 1. In particular,
Ao, Mo and po are the parameters of the background medium. In the sequel, the piecewise
constant parameters A\, p and p are redefined as

L+1 L+1 L+1
AX) =) A X)), w(x) =D pixay(x) and  p(x) =D pix(a,)(X)- (5.1)
Jj=0 j=0 =0

in accordance with the aforementioned multi-layered structure. The scattering coefficients
Wl = Wl (X, i, p,w) can be defined analogously to (3.18) and the total field u = (uy,uz) "
solves the equation

Ly,u+pw’u=0 in R (5.2)

Since the aforementioned multi-layered structure is circularly symmetric it is easy to check
that
Wﬁfbﬁ = forall a,8€{P,S} and n#m.

Therefore, we have the following definition of the S-vanishing structures.

Definition 5.1 (S-vanishing Structure). The medium (X, p, p) defined by (5.1) is called an S-
vanishing structure of order N at frequency w if Wﬁ‘,f =0 for all In| < N and o, 8 € {P,S}.
Analogously, it is called an S-vanishing structure for compressional (resp. shear) waves if

Wl =0 (resp. W9 =0) for all |n| < N and « € {P, S}.

In the rest of this subsection we aim to construct an S-vanishing structure for general
elastic waves. To facilitate the later analysis we adopt the notation T}, for the surface traction
operator 9/0v associated with elastic moduli A and u. In order to design envisioned structure it
suffices to construct (A, i, p) such that W8 := W,‘ff =0forall0<n< N and o, € {P,S}
thanks to Lemma 3.6. We assume that D is a cavity, that is, the scattered field u satisfies
the traction-free boundary condition T, ,,,,u := du/0v = 0 on [x| = 1. Note that the
two-dimensional surface traction admits the expression

TauW = 2u(v - Vwi,v - Vws) + Andivw + pt (owy — Oywe), W = (wi,ws),

in terms of the normal and tangent vectors n = (ni,ns) and t = (—nj,ns2) on the surface
respectively. Here and in the sequel we use the notation T ,w to indicate the dependance of
Ow /Ov on the parameters A and p. We look for solutions u,, to (5.2) of the form

u,(x) =a "IN (x) + @775 (x) + o THE (x) + o PHE (x), x€ 4, j=0, L,

with the unknown coefficients @;*“, a;"* € C, to be determined later. Intuitively, one should

look for solutions u,, whose coefficients fulfill the relations
arap® 40 and ol =al® =0 forall n=0,---,N. (5.3)
Note that by (3.16) and (3.17), the scattering coefficients in this case turn out to be

WP = idpoc2al® =0 whenal” =1 and ap° =0, 5.0
D.
WS =idpociag™® =0 whendy” =0 and ap° =1
5 = idpocZay® =0 whena’ =0 and a;” =1,

where cp and cg are the pressure and shear wave speeds, respectively. The solution u,, satisfies
the transmission conditions

U,ly =u,|- and Ty, |, Unly =Ty, uun|- on |x|=7r; Vj=1,--- L. (5.5)
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Fairly easily calculations indicate that on |x| =r

0?0, (%, kp)
or?
= 2urL(HDY (rep)e™ — AeL HY (rrp)eex

e, - [T\, HE (x)] = 2u + Mo, (x, kp)

1 in
= 5 (—2urmp (HOY (rip) + @2un? = (A +20)r2k2) B (ricp) ) €%,

1 .
= 7B71LD(THP7 A, :U’)e”upx,

2
and
& - [T, HE ()] = 20 (_7}23%;:;; ) 71«822’;(52;?))
- %(Qi“n) (_Hfbl)(rﬁp) + THP(H,,(}))/(T,AQP)) einex
= T%Cf(rnp’ A, p)elnex,
where

BY (t, A, 1) i= =20t (HD)' (1) + (2pn® — (A + 2u)¢*) HM (2),

CR(t A ) = (2ipm) (—HD (1) + t(HD) (1))
In the sequel, we use shorthand notation BY; = Bl (rjkp, Aj, ;) and CF; = CF(rjkp, Aj, 1)
for simplicity. It holds that
Ty, Hy, (%) = Tiz (B ;Pn(X)+Cp;Sn(%X)) on|x|=r;.
J
Analogously, we obtain
T B0 = 5 (B, Pali) + €1, 84() on bl =7,

with
!
B;; :B;f(t)\t:ws = (2ipn) (Hr(bl)(rjﬁs) +rjks (Hr(zl)) (W%)) 7

!
CSy =CE 0], o = 2(rsis) (HD) (ryms) + (—2um? + 3p(ryws P HD (ryws) )

and

1 /~ ~
Ty, 353) = (B;;,j P, (%) +C%, sn(&)) , a=PS8,
J

where B . and C2 ; are defined in the same way as B} and CF ; with H,Sl) replaced by J,.

n.j n,j n,j
Hence, the transmission conditions in (5.5) can be written as

1 1
~n,P ~n,S n,P n,S\T __ (on, P ~n,S  n,P n,S\T
o 1Mn,j_1(aj71,aj71,ajfl,ajfl) _ﬁM @y a;” ay a”) (5.6)
J— J
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forj=1,---,L, where M,, ;, j =0,---,L,n=0,---, N, is the 4 x 4 matrix defined by

tpdy(tip)  indaltys)  tpEHS) (tp)  inH ()

indu(tip)  —tisTy(tis)  inH(tp)  —tsH (t5)
anj = ~p ~g P 5 s tj,oz =Tk
By (tip) By (tis) By ;(tjp) By ;(tj,s)
Critip)  C5,(tp) Gy i(tis) Gy i(tis)
The traction-free boundary condition on |x| = r54+1 = 1 amounts to
M, 1@y, ap” o) =(0,0,0,0)7, (5.7)

forn=20,---, N with

0 0 0 0

0 0 0 0
M, r+1:= §PL ESL B, BS,
chr OE,L CiL CS,L

Combining (5.6) and (5.7) we obtain
QM (g " ay % ag” ag*) " =(0,0,0,0)",

2 L

n n rr _ 0 0 (58)

Q( ) = Q( )()‘7M»pw2) = (TO> M, 1+1 HMné’Mnyjfl = ( (271L) (272L)> )
j=1

where Q(;f)7 Qég) are 2 X 2 matrix functions of A, u and pw?.

Exactly like the acoustic case [11] one can show that the determinant of Qgg) is non-
vanishing. Therefore, it suffices to look for the parameters A;, u;,p; (7 = 1,2,---,L) from
the nonlinear algebraic equations

(ng))l,k()\’ﬂvaQ) = 03 Zak = 1727 n= 1a2 T

We are interested in a nearly S-vanishing structure of order N at low frequencies, that is, a
structure (A, u, p) such that

WP\, pyw) = o(w?N) forall a,B€{P,S}, [n|]<N, as w— 0.

Towards this end, we need to study the asymptotic behavior of W#(\, i, p,w) as w tends to
zero. In view of (5.4) and (5.8) we find out that

(WP, WerS)T = idpoc (ay "0 ™) T = —idpoc? (Q5) 1 QY @ "ag )T (5.9)

where aj” and "% are selected depending on (5.4).

Let W,, denote the 2 x 2 matrix

wrr Wi
W”<WP,S ws.s |

Then, the following result based on relation (5.9) elucidates the low frequency asymptotic
behavior of W,,.
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Theorem 5.2. For alln € N, we have

N—n (L+1)l
W (A, s p,w) = W™ | Vi o(A, s p) +Z Zw (nw)! Voi i psp) | + X0 (5.10)

as w — 0, where matrices Vo and V1 ; are defined by

PP S,P P,P S,P

Vn,o Vn,o n,l,j Vn N

Vino = P,S 8,8 and Vn,; = P,S 5,8
Vn,O Vn,O Vn,l,j Vn N R

in terms of some VO‘"B and VO"B dependent on A, i, p but independent of w. The residual matriz
Y, = (Y] )ik=12 15 such that To| < Cw?N, for all i,k = 1,2, where constant C € R, is
independent of w.

The analytic expressions of the quantities Vo‘g and Va’ﬁ 1,; in terms of A\j, p; and p; are
very complicated, but can be extracted by, for example usmg the symbolic toolbox of MAT-
LAB. Theorem 5.2 follows from (5.9) and the low-frequency asymptotics of Q(") (A, i1, pw?) and

(n )()\ U, pw?) as w — 0. The latter can be derived based on the definition given in (5.8) in
comblnatlon with the expansion formula of Bessel and Neumann functions and their derivatives

for small arguments. For the sake of completeness below we sketch the proof of Theorem 5.2.

Proof of Theorem 5.2. Recall that for t — 0

tn
Jn(t) = T+ 1) +Oo@"),
, B tnfl _—
In(t) —m‘FO(t ),
Yn(t) — 2 75( ) + O(t—n-H)
o 2T(n+1 .

Hence, by the definition of B (¢, A, ), C2(t, A\, ), Ef{(t, A, 1) and CA',Q‘(L‘, A, 1), we have

2" (n + 1)

BnI,D(ty >\7 ,u) = *OS(t, )\, ,u,) = — — + O(tfn+1)
P S pn2" T (n + 1) —n+1
Co(t: A ) = =B (b, A p) = =—— o —— + 0(™"")
By, - -CS _ L o

-~ ~ Qtn
Py = -B5( S 1
Cn b2 n (b0 27=1T(n + 1) +0("),

as t — 0. Inserting the previous asymptotic behavior into the expression of M,, ; we get
(A1 A
M, ; = (A21 Aoy (5.11)
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where

ol g
n P S N
A= (J ’ >+O(W )s

n an n—1
2'C(n+1) \atn,  —t7

o T(n+1) (p
A= FTin+1) ( ! 1) + O(w
fzt_"

it nt
pn P 58 nt1)
o=t n>+o
20 0+ 1) \ntnp —ithg!
gn+l, T 1 it-jn tin
Agy = S el (n+1) < i: ‘J_i_l + O(w™ ),
n tip —itg
This implies that
O(wnfl) O(wfnfl)
M, ; = , g=1,---,L, (5.12)
Ow")  O™)
0 0
M, 1 = as w — 0. (5.13)
O") Ow™)

Moreover, the inverse of M, ; can be expressed as
(AT FATALBTANAY AL ARBT!
" < —B7'Ay AL B! > ,
where B is the Schur complement of Agy, that is,

B .= A22 - AglAfllAlz.

Since
A =0wW™™), AJAL=0w™?), AyuA;'=0w) and B™'=0(w"),
it follows that
Ow™"Y O(w™"
M, = ( ) o™ as w — 0. (5.14)
’ Ow™*)  O(w")

Inserting (5.12), (5.13) and (5.14) into the expression (5.8) of Q™ and then making use of
the series expansions of J,, Yy, J/, and Y, we find out that

N—n L+1
QY (N, pw?) =" [ Gro(h i p) + D D G, pw (Inw)? +o0 (wz(N_”))
=1 7=0
N—n L+1 ] )
QO g o) = w0 | Ho i) + - SO HY)A o, pleo (Inw) + 0 (w2
=1 j=0

which together with (5.9) yields (5.10). Here, the remaining terms o(w?™¥=")) are understood
element-wisely for the matrices. O



In order to construct a nearly S-vanishing structure of order N at low frequencies, thanks
to Theorem 5.2 we need to determine the parameters \;, 1; and p; from the equations

Vot p) = Vel (A p,p) =0,

foral 0 <n < N,1<I<(N-n),1<j<(L+1)and «,5 € {P,S}. Numerically, this
can be achieved by applying, for example, the gradient descent method to the minimization
problem

9 N—n (L+1)1 9

min vesl 4 ‘Va’ﬁ- .

NTTOED SER{1CE N S S 1
a,Be{P,S} =0 ;=0

5.2 Enhancement of Near Cloaking in Elasticity

The aim of this section is to show that the nearly S-vanishing structures constructed in Section
5.1 can be used to enhance cloaking effect in elasticity. The enhancement of near cloaking is
based on the idea of transformation optics (also called the scheme of changing variables) used
in [26, 27, 36, 37]. Let (X, u, p) be a nearly S-vanishing structure of order N at low frequencies,
taking the form of (5.1). This implies that for some fixed w > 0 there exists ey > 0 such that

|W;;¥L”’761[)\7M,p, EWH = O(EZN)v |n| <N, e<e.

On the other hand, recall from the proof of Lemma 3.3 that

2|n|—2 2|n|—2
B - B —
|WS’B[)\,/L,p, GCOH < m(‘z‘m €2|”| 2 < mi);‘m 62N 2 for all |n| > ]V7 € < €. (515)

Hence, by Theorem 3.4, the far-field elastic scattering amplitudes can be estimated by
U\, 1, pyew] (X, %) = 0(e2V72), a=P,S, as e—0 (5.16)

uniformly in all observation directions x and incident directions X’. Introduce the transforma-
tion on R )
U (x):= -x, x€R%
€

Then arguing as in the acoustic and electromagnetic case [11, 12] we have
uXNo U, uoW., poW,wl =ul [\ pu,p ew] =o(eV72) forall €< e.

Note that the medium (Ao ¥, po ¥, poW¥,.) is a homogeneous multi-coated structure of radius
2e.

We now apply the transformation invariance of the Lamé system to the medium (Ao W, po
U, poW,). Recall that the elastic wave propagation in such a homogeneous isotropic medium
can be restated as

V-(¢€:Vu)+w?(po¥)u=0 in R?
where € = (Cijkl)zj-\fj’k’lzl is the fourth-rank stiffness tensor defined by

C’ijkl(x) = ()\ o ‘1/6) 6i,j5k,l + (,u o \1/6) (62‘7]@(%"1 + 6i’16j,k), (517)
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and the action of € on a matrix A = (a;;), j=1,2 is defined as

C:A=(¢: A)f,jzl = Z Cijkl Qi . (5.18)

k,=1,2 P
In the case of a generic anisotropic elastic material, the stiffness tensor satisfies the following
symmetries

major symmetry: Cjjr = Chriij, minor symmetries:  Cijr = Cjint = Cijik, (5.19)

for all 4,7,k,1 = 1,2. Let X = (¥1,42) = F.(x) : RZ — R? be a bi-Lipschitz and orientation-
preserving transformation such that F.({|x| < €}) = {|X|] < 1} and that the region |x| > 2
remains invariant under the transformation. This implies that we have blown up a small
traction-free disk of radius € < 1 to the unit disk centered at the origin. The push-forwards of
¢ and p are defined respectively by

P A 2 1 0z, 0T
F).¢C:.=¢=(C; 7 = — Ciip—2 =4 7
(Fe) ( qkp(x))i7q,k,p:1 det(M) lj;Q gkl Bz, Bz, i)

- p 0F;
) det(M) e=FL (@) Oz Iy

We need the following lemma (see, for instance, [28, 31]).

1,q,k,p=1,2

Lemma 5.3. The function u is a solution to V - (€ : Vu) + w?pu = 0 in R? if and only if
U =uo (F.)" ! satisfies V- (€ : V1) + w?pi = 0 in R%, where V denotes the gradient operator
w.r.t to transformed variable X.

Applying the above lemma to the Lamé system (5.17) we obtain the following result.

Theorem 5.4. If (\, u, p) is a nearly S-vanishing structure of order N at low frequencies, there
erists eg > 0 such that

UZO[(Fe)*Q:a (FE)*(p o \IIE)’W](X>X/) = 0(62N_2)7 a=PF.S,

for all € < ey, uniformly in all x and x’. Here the stiff tensor € is defined by (5.17). Moreover,
the elastic medium ((F¢)«€, (Fe)«(po ¥,)) in 1 < |x| < 2 is a nearly cloaking device for the
hidden region |x| < 1.

Theorem 5.4 implies that for any frequency w and any integer number N there exist ¢g =
eo(w, N) > 0 and the elastic medium ((F¢).€, (Fe)«(po ¥.)) with € < ¢g such that the nearly
cloaking enhancement can be achieved at the order o(e?V~2). We finish this section with the
following remarks.

Remark 5.5. Unlike the acoustic and electromagnetic case, the transformed elastic tensor
(F.)+€ is not anisotropic, since it possesses the major symmetry only. Note that the transformed
mass density (Feo).«(po W.) is still isotropic. In fact, it has been pointed out by Milton, Briane
and Willis [31] that the invariance of the Lamé system can be achieved only if one relaxes the
assumption on the minor symmetry of the transformed elastic tensor. This has led Norris and
Shuvalov [34] and Parnell [36] to explore the elastic cloaking by using Cosserat material or by
employing non-linear pre-stress in a neo-Hookean elastomeric material.

Remark 5.6. We have designed an enhanced nearly cloaking device for general incoming elas-
tic plane waves. A device for cloaking only compressional or shear wave can be analogously
constructed by using the corresponding elastic scattering coefficients.
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6 Discussion

In this article elastic scattering coefficients (ESC) of characteristically small inclusions are
introduced using surface vector harmonics based cylindrical solutions to Lamé equations and
the multipolar expansions of elastic fields based on them. It is established that the scattered
field and the far field scattering amplitudes due to the incidence of a general plane wave admit
natural expansions in terms of ESC. This connection substantiates their utility in direct and
inverse elastic scattering. The scattering coefficients of a three dimensional elastic inclusion
can be analogously defined using three dimensional vector spherical harmonics and specially
constructed vector wave functions. An added complication in three dimensions is that there
are three wave-modes (P, SV and SH modes) which cannot be completely decoupled. It can be
easily proved that the ESC possess similar properties in three dimensions.

The decay rates and symmetry of the ESC with respect to indices and wave-modes are also
discussed. These properties indicate that only first few coeflicients are significant and sufficient
to cater to a variety of scattering problems. The higher order ESC contain fine details of
shape oscillations and geometric features of the inclusion. Thus, the largest order of stably
recoverable ESC determines the maximal resolving power of the imaging setup and determines
the resolution limit in feature extraction frameworks.

For reconstructing significant ESC from multi-static response data we have formulated a
truncated linear system of equations where the truncation parameter can be tuned depending
on the requirements of the actual physical problem, stability constraints, truncation error and
the measurement noise. This truncated system is converted to a matrix system wherein all
the ESC upto truncation order are arranged in a matrix which appears to be Hermitian and
ill-conditioned (in the sense of rapidly decaying singular values) thanks to decay, symmetry
and stability results proved herein. This observation is pertinent to designing subspace migra-
tion type shape identification frameworks in elastic media. Moreover, shape descriptors and
invariants of elastic objects can also be designed using ESC.

Finally, as an application of ESC we constructed the scattering coefficients vanishing struc-
ture and elucidated that such structures can be used to enhance the performance of nearly elastic
cloaking devices. The results present in the article are not restricted to only two dimensions
and can be easily extended to three dimensional media.

In future studies, the role of ESC in mathematical imaging, especially from the perspectives
of designing shape invariants and descriptors in elastic media, will be investigated. Moreover,
in order to handle inverse elastic mediums scattering problems and to understanding the super-
resolution phenomena in elastic media, the concept of inhomogeneous ESC will be discussed.
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