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HÖLDER REGULARITY FOR MAXWELL’S EQUATIONS

UNDER MINIMAL ASSUMPTIONS ON THE COEFFICIENTS

GIOVANNI S. ALBERTI

Abstract. We prove global Hölder regularity for the solutions to the time-
harmonic anisotropic Maxwell’s equations, under the assumptions of Hölder
continuous coefficients. The regularity hypotheses on the coefficients are min-
imal. The same estimates hold also in the case of bianisotropic material pa-
rameters.

1. Introduction

This paper focuses on the Hölder regularity of the solutions E,H ∈ H(curl,Ω) :=
{F ∈ L2(Ω;C3) : curlF ∈ L2(Ω;C3)} to the time-harmonic Maxwell’s equations [16]

(1)







curlH = iωεE + Je in Ω,
curlE = −iωµH + Jm in Ω,
E × ν = G× ν on ∂Ω,

where Ω ⊆ R
3 is a bounded, connected and simply connected domain in R

3, with
a connected boundary ∂Ω of class C1,1 and the coefficients ε and µ belong to
L∞

(

Ω;C3×3
)

and are such that for every η ∈ C
3

(2) 2Λ−1 |η|
2
≤ η·

(

ε+ εT
)

η, 2Λ−1 |η|
2
≤ η·

(

µ+ µT
)

η and |µ|+|ε| ≤ Λ a.e. in Ω

for some Λ > 0. The 3 × 3 matrix ε represents the electric permittivity and µ
the magnetic permeability. The current sources Je and Jm are in L2

(

Ω;C3
)

, the
boundary value G belongs to H(curl,Ω) and the frequency ω is in C \ {0}. We are
interested in finding (minimal) conditions on the parameters and on the sources
such that the electric field E and/or the magnetic field H are Hölder continuous.
The study of the minimal regularity of ∂Ω needed goes beyond the scopes of this
work; domains with rougher boundaries are considered in [3, 12, 6, 7, 9, 8].

Let us mention the main known results concerning this problem. The Hölder
continuity of the solutions under the assumption of Lipschitz coefficients was proven
in [22]. The needed regularity of the coefficients was reduced from W 1,∞ to W 1,3+δ

for some δ > 0 in [1]. The case of bianisotropic materials was treated in [13, 1], with
similar hypotheses and results. For related recent papers, see [23, 20, 18, 15]. The
arguments of all these works are based on the H1 regularity of the electromagnetic
fields, which was first obtained in [21] for Lipschitz coefficients, and then in [1] for
W 1,3+δ coefficients. Thus, the coefficients were always required to belong to some
Sobolev space.
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The purpose of this work is to show that it is sufficient to assume that the
coefficients are Hölder continuous. Due to the terms εE and µH in (1), this is
the most natural hypothesis on ε and/or µ, and turns out to be minimal (see
Remark 3 below). Our approach is very different from that of [1], and is based
on the Helmholtz decomposition of the electromagnetic fields, as in [21, 22] and
several related works. However, the argument used is new, and allows to avoid any
additional differentiability of E and H. As far as the differentiability of the fields
is concerned, it is worth mentioning that ideas similar to those used in this work
may be applied to prove the H1 regularity of the fields with W 1,3 coefficients [2].

The main result of this paper regarding the joint regularity of E and H, under
the assumptions that both ε and µ are Hölder continuous, reads as follows.

Theorem 1. Assume that (2) holds true and that

ε ∈ C0,α(Ω;C3×3), ‖ε‖C0,α(Ω;C3×3) ≤ Λ,(3)

µ ∈ C0,α(Ω;C3×3), ‖µ‖C0,α(Ω;C3×3) ≤ Λ,(4)

for some α ∈ (0, 1
2 ]. Take Je, Jm ∈ C0,α(Ω;C3) and G ∈ C1,α(curl,Ω), where

CN+1,α(curl,Ω) = {F ∈ CN,α(Ω;C3) : curlF ∈ CN,α(Ω;C3)}, N ∈ N,

equipped with the canonical norms. Let (E,H) ∈ H(curl,Ω)2 be a weak solution of
(1). Then E,H ∈ C0,α(Ω;C3) and

‖(E,H)‖C0,α(Ω;C3)2 ≤ C
(

‖(E,H)‖L2(Ω;C3)2+‖G‖C1,α(curl,Ω)+‖(Je, Jm)‖C0,α(Ω;C3)2

)

for some constant C depending only on Ω, Λ and ω.

The higher regularity version is given below in Theorem 7. This result can be
easily extended to treat the case of bianisotropic materials, see Theorem 8 below.

If only one of the parameters is C0,α, for instance ε, the corresponding field E
will be Hölder continuous, provided that µ is real. (The Campanato spaces L2,λ

are defined in Section 4.)

Theorem 2. Assume that (2) and (3) hold true and that ℑµ ≡ 0. Take Je, G ∈
C0,α(Ω;C3) with curlG ∈ L2,λ(Ω;C3) for some λ > 1 and Jm ∈ L2,λ(Ω;C3). Let
(E,H) ∈ H(curl,Ω)2 be a weak solution of (1). Then E ∈ C0,β(Ω;C3), where

β = min( λ̃−1
2 , λ−1

2 , α) for some λ̃ ∈ (1, 2) depending only on Ω and Λ, and

‖E‖C0,β(Ω;C3) ≤ C
(

‖E‖L2(Ω;C3) + ‖(G, Je)‖C0,α(Ω;C3)2 + ‖(curlG, Jm)‖L2,λ(Ω;C3)2

)

for some constant C depending only on Ω, Λ and ω.

We conclude the introduction by noting that the regularity assumptions on the
coefficients are indeed minimal.

Remark 3. Let Ω = B(0, 1) be the unit ball and take α ∈ (0, 1). Let f ∈
L∞((−1, 1);R) \ Cα((−1, 1);R) such that Λ−1 ≤ f ≤ Λ in (−1, 1). Let ε be
defined by ε(x) = f(x1). Choosing Je = (−iω, 0, 0) ∈ C0,α(Ω;C3), observe that
E(x) = (f(x1)

−1, 0, 0) and H ≡ 0 are weak solutions in H(curl,Ω)2 to

curlH = iωεE + Je in Ω, curlE = −iωH in Ω,

such that E /∈ C0,α(Ω;C3). This shows that interior Hölder regularity cannot hold
if ε is not Hölder continuous, even in the simplified case where ε depends only on
one variable.
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This paper is structured as follows. In Section 2 we prove Theorem 1 and discuss
the corresponding higher regularity result. Section 3 is devoted to the study of
bianisotropic materials. Finally, in Section 4 we prove Theorem 2, by using standard
elliptic estimates in Campanato spaces, which are briefly reviewed.

2. Joint Hölder regularity of E and H

2.1. Preliminary results. We start by recalling the Helmholtz decomposition of
a vector field.

Lemma 4 ([4, Theorem 6.1], [3, Section 3.5]). Take F ∈ L2(Ω;C3).

(1) There exist q ∈ H1
0 (Ω;C) and Φ ∈ H1(Ω;C3) such that

F = ∇q + curlΦ in Ω,

divΦ = 0 in Ω and Φ · ν = 0 on ∂Ω.
(2) There exist q ∈ H1(Ω;C) and Φ ∈ H1(Ω;C3) such that

F = ∇q + curlΦ in Ω,

divΦ = 0 in Ω and Φ× ν = 0 on ∂Ω.

In both cases, there exists C > 0 depending only on Ω such that

‖Φ‖H1(Ω;C3) ≤ C ‖F‖L2(Ω;C3) .

We shall need the following key estimate.

Lemma 5 ([4]). Take p ∈ (1,∞) and F ∈ Lp(Ω;C3) such that curlF ∈ Lp(Ω;C3),
divF ∈ Lp(Ω;C) and either F · ν = 0 or F × ν = 0 on ∂Ω. Then F ∈ W 1,p(Ω;C3)
and

‖F‖W 1,p(Ω;C3) ≤ C
(

‖curlF‖Lp(Ω;C3) + ‖divF‖Lp(Ω;C)

)

,

for some C > 0 depending only on Ω and p.

2.2. Proof of Theorem 1. With an abuse of notation, several positive constants
depending only on Ω, Λ and ω will be denoted by the same letter C.

First, we express E−G and H by means of scalar and vector potentials by using
Lemma 4: there exist qE ∈ H1

0 (Ω;C), qH ∈ H1(Ω;C) and ΦE ,ΦH ∈ H1(Ω;C3)
such that

(5) E −G = ∇qE + curlΦE in Ω, H = ∇qH + curlΦH in Ω,

and

(6)

{

divΦE = 0 in Ω,
ΦE · ν = 0 on ∂Ω,

{

divΦH = 0 in Ω,
ΦH × ν = 0 on ∂Ω.

Moreover, there exists C > 0 depending only on Ω such that

(7) ‖ΦE‖H1(Ω;C3) ≤ C ‖(E,G)‖L2(Ω;C3)2 , ‖ΦH‖H1(Ω;C3) ≤ C ‖H‖L2(Ω;C3) .

By Lemma 5, the vector potentials enjoy additional regularity.

Lemma 6. Assume that (2) holds true and take p ∈ [2,∞). Take Je, Jm ∈
Lp(Ω;C3) and G ∈ W 1,p(curl,Ω). Let (E,H) ∈ W 1,p(curl,Ω)2 be a weak solu-
tion of (1), where

W 1,p(curl,Ω) := {F ∈ Lp(Ω;C3) : curlF ∈ Lp(Ω;C3)},
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equipped with the canonical norm. Then curlΦE , curlΦH ∈ W 1,p(Ω;C3) and

‖curlΦE‖W 1,p(Ω;C3) ≤ C ‖(H, Jm, curlG)‖Lp(Ω;C3)3 ,

‖curlΦH‖W 1,p(Ω;C3) ≤ C ‖(E, Je)‖Lp(Ω;C3)2 ,

for some constant C depending only on Ω, Λ and ω.

Proof. Set ΨE := curlΦE . By (5) and the third equation of (1) we have

ΨE × ν = (curlΦE)× ν = (E −G)× ν −∇qE × ν = 0 on ∂Ω,

since qE is constant on ∂Ω. Thus, using the first equation of (1) and the identities
curl∇ = 0 and div curl = 0 we obtain

(8)







curlΨE = −iωµH + Jm − curlG in Ω,
divΨE = 0 in Ω,
ΨE × ν = 0 on ∂Ω.

Therefore, by Lemma 5 we have that curlΦE ∈ W 1,p(Ω;C3) and

‖curlΦE‖W 1,p(Ω;C3) ≤ C ‖(H, Jm, curlG)‖Lp(Ω;C3)3 .

The proof for ΦH is similar, only the boundary conditions have to be handled in
a different way. As above, set ΨH := curlΦH . By [16, equation (3.52)] and (6) we
have

ΨH · ν = (curlΦH) · ν = div∂Ω(ΦH × ν) = 0 on ∂Ω.

Moreover divΨH = 0 in Ω and using the second equation of (1) we obtain curlΨH =
iωεE+Je ∈ Lp(Ω;C3). Therefore, by Lemma 5 we have that curlΦH ∈ W 1,p(Ω;C3)
and

‖curlΦH‖W 1,p(Ω;C3) ≤ C ‖(E, Je)‖Lp(Ω;C3)2 . �

We are now in a position to prove Theorem 1.

Proof of Theorem 1. The proof is divided into two steps.
Step 1. W 1,6-regularity of the scalar potentials. By Lemma 6 with p = 2 and

the Sobolev embedding theorem, we have that curlΦE , curlΦH ∈ L6(Ω;C3) and

(9) ‖(curlΦE , curlΦH)‖L6(Ω;C3)2 ≤ C ‖(E,H, curlG, Je, Jm)‖L2(Ω;C3)5 .

Using the first equation of (1) we obtain that div(εE) = div(iω−1Je). Thus, by
(5) we have that qE is a weak solution of

(10)

{

−div(ε∇qE) = div(εG+ εcurlΦE − iω−1Je) in Ω,
qE = 0 on ∂Ω.

Similarly, using the second equation of (1) and (5) we have

(11)

{

−div(µ∇qH) = div(µcurlΦH + iω−1Jm − iω−1curlG) in Ω,
−(µ∇qH) · ν = (µcurlΦH + iω−1Jm − iω−1curlG) · ν on ∂Ω,

where the boundary condition follows from µH · ν = iω−1curlE · ν− iω−1Jm · ν and

curlE · ν = div∂Ω(E × ν) = div∂Ω(G× ν) = curlG · ν on ∂Ω.
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Therefore, by the Lp theory for elliptic equations with complex coefficients (see,
e.g., [5, Theorem 1]) applied to the above boundary value problems, we obtain
∇qE ,∇qH ∈ L6(Ω;C3) and

(12) ‖∇qE ,∇qH)‖L6(Ω;C3)2

≤ C
(

‖(curlΦE , curlΦH)‖L6(Ω;C3)2 + ‖G‖W 1,6(curl,Ω) + ‖(Je, Jm)‖L6(Ω;C3)2

)

.

Step 2. C1,α-regularity of the scalar potentials. Combining (9) and (12) we have
E,H ∈ L6(Ω;C3) and

‖(E,H)‖L6(Ω;C3)2 ≤ C
(

‖(E,H)‖L2(Ω;C3)2 + ‖G‖W 1,6(curl,Ω) + ‖(Je, Jm)‖L6(Ω;C3)2

)

.

Thus, by Lemma 6 with p = 6 we obtain curlΦE , curlΦH ∈ W 1,6(Ω;C3) and

‖(curlΦE , curlΦH)‖W 1,6(Ω;C3)2

≤ C
(

‖(E,H)‖L2(Ω;C3)2 + ‖G‖W 1,6(curl,Ω) + ‖(Je, Jm)‖L6(Ω;C3)2

)

.

By the Sobolev embedding theorem, this implies curlΦE , curlΦH ∈ C0, 12 (Ω;C3) and

‖(curlΦE , curlΦH)‖
C

0, 1
2 (Ω;C3)2

≤ C
(

‖(E,H)‖L2(Ω;C3)2 + ‖G‖W 1,6(curl,Ω) + ‖(Je, Jm)‖L6(Ω;C3)2

)

.

In view of (3)-(4), by applying classical Schauder estimates for elliptic systems
[14, 17] to (10) and (11) we obtain

‖(qE , qH)‖C1,α(Ω;C)2 ≤C
(

‖(E,H)‖L2(Ω;C3)2+‖G‖C1,α(curl,Ω)+‖(Je, Jm)‖C0,α(Ω;C3)2

)

.

Finally, the result follows from (5) and the last two estimates. �

2.3. Higher regularity. The proof of Theorem 1 is based on the regularity of the
scalar and vector potentials of the electric and magnetic fields. In particular, the
regularity of ΦE and ΦH follows from Lemma 5, while the regularity of qE and qH
follows from standard Lp and Schauder estimates for elliptic systems. Since all these
estimates admit higher regularity generalisations [4, 17], by following the argument
outlined above we immediately obtain the corresponding higher regularity result.

Theorem 7. Assume that (2) holds true, that ∂Ω is of class CN+1,1 and that

ε, µ ∈ CN,α(Ω;C3×3), ‖(ε, µ)‖CN,α(Ω;C3×3)2 ≤ Λ,

for α ∈ (0, 1
2 ] and N ∈ N. Take Je, Jm ∈ CN,α(Ω;C3) and G ∈ CN+1,α(curl,Ω).

Let (E,H) ∈ H(curl,Ω)2 be a weak solution of (1). Then E,H ∈ CN,α(Ω;C3) and

‖(E,H)‖CN,α(Ω;C3)≤C
(

‖(E,H)‖L2(Ω;C3)2+‖G‖CN+1,α(curl,Ω)+‖(Je, Jm)‖CN,α(Ω;C3)2

)

for some constant C depending only on Ω, Λ, ω and N .

3. The case of bianisotropic materials

In this section, we investigate the Hölder regularity of the solutions of the fol-
lowing problem

(13)







curlH = iω (εE + ξH) + Je in Ω,
curlE = −iω (ζE + µH) + Jm in Ω,
E × ν = G× ν on ∂Ω.
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In this general case, (2) is not sufficient to ensure ellipticity. As we will see, the
leading order coefficient of the coupled elliptic system corresponding to (10)-(11) is

A = Aαβ
ij =









ℜε −ℑε ℜξ −ℑξ
ℑε ℜε ℑξ ℜξ
ℜζ −ℑζ ℜµ −ℑµ
ℑζ ℜζ ℑµ ℜµ









,

where the Latin indices i, j = 1, . . . , 4 identify the different 3×3 block sub-matrices,
whereas the Greek letters α, β = 1, 2, 3 span each of these 3× 3 block sub-matrices.
We assume thatA is in L∞(Ω;R)12×12 and that satisfies a strong Legendre condition
(as in [11, 14]), namely

(14) Aαβ
ij ηiαη

j
β ≥ Λ−1 |η|

2
, η ∈ R

12 and
∣

∣Aαβ
ij

∣

∣ ≤ Λ a.e. in Ω

for some Λ > 0. This condition is satisfied by a large class of materials, including
chiral materials and all natural materials [1, Lemma 10 and Remark 11]. Moreover,
generalising the regularity assumptions given in (3)-(4), we suppose that

(15) ε, ξ, ζ, µ ∈ C0,α(Ω;C3×3), ‖(ε, ξ, ζ, µ)‖C0,α(Ω;C3×3)4 ≤ Λ

for some α ∈ (0, 1
2 ].

The main result of this section reads as follows.

Theorem 8. Assume that (14) and (15) hold true. Take Je, Jm ∈ C0,α(Ω;C3)
and G ∈ C1,α(curl,Ω). Let (E,H) ∈ H(curl,Ω)2 be a weak solution of (13). Then
E,H ∈ C0,α(Ω;C3) and

‖(E,H)‖C0,α(Ω;C3)2 ≤ C
(

‖(E,H)‖L2(Ω;C3)2+‖G‖C1,α(curl,Ω)+‖(Je, Jm)‖C0,α(Ω;C3)2

)

for some constant C depending only on Ω, Λ and ω.

Proof. The main ingredients are the same used for the proof of Theorem 1. In
particular, the regularity result on the vector potentials ΦE and ΦH of E −G and
H given in Lemma 6 holds true also in this case. The only difference lies in the
fact that, since the bianisotropy mixes the electric and magnetic properties, the
corresponding estimates will be

(16) ‖(curlΦE , curlΦH)‖W 1,p(Ω;C3)2 ≤ C ‖(E,H, Je, Jm, curlG)‖Lp(Ω;C3)5 .

Similarly, as far as the scalar potentials are concerned, the two equations (10)-(11)
become a fully coupled elliptic system, namely

−div(ε∇qE + ξ∇qH) = div(εG+ εcurlΦE + ξcurlΦH − iω−1Je) in Ω,
−div(ζ∇qE + µ∇qH) = div(ζG+ ζcurlΦE + µcurlΦH + iω−1(Jm − curlG)) in Ω,

augmented with the boundary conditions

qE = 0 on ∂Ω,
−(ζ∇qE + µ∇qH)·ν = (ζG+ ζcurlΦE + µcurlΦH + iω−1(Jm − curlG))·ν on ∂Ω.

By (14), this system is strongly elliptic, and since the coefficients are Hölder con-
tinuous, both the Lp theory and the Schauder theory are applicable [17, Theorem
6.4.8].

We now present a quick sketch of the proof, which follows exactly the same
structure of the proof of Theorem 1. By (16) with p = 2 we first deduce that
curlΦE and curlΦH belong to L6. Thus, by applying the Lp theory to the elliptic
system above, we deduce that the scalar potentials are in W 1,6. By (5), this implies
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that E and H are in L6. Using again (16) with p = 6 we deduce that curlΦE and
curlΦH are Hölder continuous. Finally, by the Schauder estimates we deduce that
∇qE and ∇qH are Hölder continuous. The corresponding norm estimate follows as
in the proof of Theorem 1. �

4. Hölder regularity of the electric field E

The proof of Theorem 2 is based on standard elliptic estimates in Campanato
spaces [10], which we now introduce. For λ ≥ 0, let L2,λ(Ω;C) be the Banach space
of functions u ∈ L2 (Ω;C) such that

[u]22,λ;Ω := sup
x∈Ω,0<ρ<diamΩ

ρ−λ

ˆ

Ω(x,ρ)

∣

∣

∣
u(y)−

1

|Ω(x, ρ)|

ˆ

Ω(x,ρ)

u(z) dz
∣

∣

∣

2

dy < ∞,

where Ω(x, ρ) = Ω ∩ {y ∈ R
3 : |y − x| < ρ}. The space L2,λ(Ω;C) is naturally

equipped with the norm

‖u‖L2,λ(Ω;C) = ‖u‖L2(Ω;C) + [u]2,λ;Ω.

We shall use the following standard properties.

Lemma 9 ([19, Chapter 1]). Take λ ≥ 0 and p ∈ [2,∞).

(1) If λ ∈ (3, 5) then L2,λ (Ω;C) ∼= C0,λ−3
2

(

Ω;C
)

.

(2) Suppose λ < 3. If u ∈ L2(Ω;C) and ∇u ∈ L2,λ
(

Ω;C3
)

then u ∈ L2,2+λ (Ω;C),
and the embedding is continuous.

(3) The embedding Lp (Ω;C) →֒ L2,3 p−2
p (Ω;C) is continuous.

We now state the regularity result regarding Campanato estimates we will use.

Lemma 10 ([19, Theorem 2.19]). Assume that (2) holds and that ℑµ ≡ 0. There

exists λ̃ ∈ (1, 2) depending only on Ω and Λ such that if F ∈ L2,λ
(

Ω;C3
)

for some

λ ∈ [0, λ̃], and u ∈ H1 (Ω;C) satisfies
{

div(µ∇u) = divF in Ω,
µ∇u · ν = F · ν on ∂Ω,

then ∇u ∈ L2,λ
(

Ω;C3
)

and

(17) ‖∇u‖L2,λ(Ω;C3) ≤ C ‖F‖L2,λ(Ω;C3)

for some constant C depending only on Ω and Λ.

We shall need the following generalisation of Lemma 5 to the case of Campanato
estimates. For a proof, see the second part of the proof of [22, Theorem 3.4].

Lemma 11. Take λ ∈ [0, 2) and F ∈ L2(Ω;C3) such that curlF ∈ L2,λ(Ω;C3),
divF ∈ L2,λ(Ω;C) and F × ν = 0 on ∂Ω. Then ∇F ∈ L2,λ(Ω;C3) and

‖∇F‖L2,λ(Ω;C3) ≤ C
(

‖curlF‖L2,λ(Ω;C3) + ‖divF‖L2,λ(Ω;C)

)

,

for some C > 0 depending only on Ω and λ.

We are now in a position to prove Theorem 2.

Proof of Theorem 2. With an abuse of notation, several positive constants depend-
ing only on Ω, Λ and ω will be denoted by the same letter C.

Write E − G and H in terms of scalar and vector potentials (qE ,ΦE) and
(qH ,ΦH), as in (5). By Lemma 6 and the Sobolev embedding theorem curlΦH ∈
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L6(Ω;C3) and ‖curlΦH‖L6(Ω;C3) ≤ C ‖(E, Je)‖L2(Ω;C3)2 . Thus, by Lemma 9, part

(3), we have that curlΦH ∈ L2,2(Ω;C3) and

‖curlΦH‖L2,2(Ω;C3) ≤ C ‖(E, Je)‖L2(Ω;C3)2 .

Therefore, applying Lemma 10 to (11) we obtain that ∇qH ∈ L2,min(λ̃,λ)(Ω;C3)
and

‖∇qH‖
L2,min(λ̃,λ)(Ω;C3) ≤ C(‖(E, Je)‖L2(Ω;C3)2 + ‖(curlG, Jm)‖L2,λ(Ω;C3)2).

Combining the last two inequalities we obtain the estimate

‖H‖
L2,min(λ̃,λ)(Ω;C3) ≤ C(‖(E, Je)‖L2(Ω;C3)2 + ‖(curlG, Jm)‖L2,λ(Ω;C3)2).

As a consequence, applying Lemma 11 to ΨE = curlΦE , by (8) and the fact that L∞

is a multiplier space for L2,min(λ̃,λ), we obtain that ∇curlΦE ∈ L2,min(λ̃,λ)(Ω;C3)
and

‖∇curlΦE‖L2,min(λ̃,λ)(Ω;C3) ≤ C(‖(E, Je)‖L2(Ω;C3)2 + ‖(curlG, Jm)‖L2,λ(Ω;C3)2).

Hence, by Lemma 9, part (2), and (7) we have that curlΦE ∈ L2,2+min(λ̃,λ)(Ω;C3)
and

‖curlΦE‖L2,2+min(λ̃,λ)(Ω;C3) ≤ C(‖(E,G, Je)‖L2(Ω;C3)3 + ‖(curlG, Jm)‖L2,λ(Ω;C3)2).

Then, by Lemma 9, part (1), we obtain that curlΦE ∈ C0,
min(λ̃,λ)−1

2 (Ω;C3) and

‖curlΦE‖
C

0,
min(λ̃,λ)−1

2 (Ω;C3)
≤ C(‖(E,G, Je)‖L2(Ω;C3)3 + ‖(curlG, Jm)‖L2,λ(Ω;C3)2).

By (3), classical Schauder estimates applied to (10) yield ∇qE ∈ C0,β(Ω;C3), where

β = min( λ̃−1
2 , λ−1

2 , α), and

‖∇qE‖C0,β(Ω;C3) ≤ C(‖E‖L2(Ω;C3)+‖(curlG, Jm)‖L2,λ(Ω;C3)2 +‖(G, Je)‖C0,α(Ω;C3)2).

Finally, combining the last two estimates yields the result. �
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