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Abstract

In [GO15], the authors discussed the existence of numerically feasible solvers for advection equations
that run in optimal computational complexity. In this paper, we complete the last remaining requirement
to achieve this goal — by showing that ridgelets, on which the solver is based, approximate functions
with line singularities (which may appear as solutions to the advection equation) with the best possible
approximation rate.

Structurally, the proof resembles [Can01], where a similar result was proved for a different ridgelet
construction, which is however not well-suited for use in a PDE solver (and in particular, not suitable
for the CDD-schemes [CDD01] we are interested in). Due to the differences between the two ridgelet
constructions, we have to deal with quite a different set of issues, but are also able to relax the (support)
conditions on the function being approximated. Finally, the proof employs a new convolution-type
estimate that could be of independent interest due to its sharpness.
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1 Introduction

Over the past two decades, the field of Applied Harmonic Analysis has produced a wide range of multiscale
systems which are exceptionally well-adapted to different signal classes. Wavelets [Dau92] are the classical
construction in this context of course, which are able to achieve (N -term) approximation rates of functions
with point singularities as if the singularities were not there (in stark contrast to Fourier series, for example).

1.1 Higher-Dimensional Singularities

The number of possible construction increases dramatically when going from point-like singularities to func-
tions that are singular on a higher-dimensional manifold, and has spawned an entire “zoo” of constructions,
among which are ridgelets [Can98], curvelets [CD05a; CD05b; CDDY06], shearlets [KLLW05; KL12] and con-
tourlets [DV05] — the mentioned constructions are well-adapted to line singularities (ridgelets, see [Can01]),
resp. curved singularities (the rest, see e.g. [CD04; GK14]). Since many of the proofs (for example of ap-
proximation rates) often resemble each other between constructions, some effort has been made recently to
unify them by discovering and clarifying the underlying concepts — curvelets, shearlets and contourlets fall
into the framework of so-called “parabolic molecules” [GK14], while all of the mentioned systems (including
wavelets and ridgelets) are encompassed by the even broader framework of α-molecules [GKKS14].

The well-adaptedness of such a dictionary (say, Φ) to its target classes is reflected in the fact that,
for a function f from the respective class, the coefficient vector 〈Φ, f〉 := (〈ϕλ, f〉)λ∈Λ contains few large
coefficients and the rest is small or negligible — allowing tremendously improved performance for data
compression, data denoising, data reconstruction etc. compared to other representation systems.

1.2 Motivation: CDD-Schemes

But aside from image applications (where the dominating features — mostly edges — can often be modelled
by such singularities), many of these function classes appear in the context of various PDEs as well. The
seminal work [CDD01] showed that, in the context of elliptic PDEs exhibiting point singularities, wavelets
not only sparsify the solution, but also the Galerkin matrix of the discretised operator. This allows, roughly
speaking, to construct a numerically feasible algorithm that recovers N of the largest coefficients of the
solution in O(N) floating point operations (flops) — which is the best that is even theoretically possible.

This line of thought led to many further papers (e.g. [CDD02; Ste04; GS06; DFR07; DRW+07]) and
these methods are now referred to as CDD-schemes. Considering the very strong results obtained for wavelets
with this approach, the question arose whether such a scheme could also be developed for a class of PDEs
exhibiting higher-dimensional singularities — with the well-adapted representation systems mentioned above
being the obvious candidates for discretising the PDE.

To formulate some sufficient conditions for transferring the results to other PDEs, consider a differential
operator A : H → H′, mapping from a Hilbert space H to its dual and inducing a variational formulation

a(v, u) = ℓ(v), ∀v ∈ H. (1.1)

Based on [CDD01; Ste04; DFR07], the following list of ingredients makes it possible to transfer the results
achieved by [CDD01] for wavelets to a discretisation for A (see e.g. [GO15, Sec. 1.2], [Obe15, Sec. 4.3.1]):

(I) The bilinear form a is bounded and coercive with respect to the norm of the Hilbert space H, i.e.

a(v, v) ∼ ‖v‖2H and a(v, u) . ‖v‖H‖u‖H.

(II) The system is discretised with a frame1 Φ for H, in other words, there is a diagonal weight W =
diag

(
(wλ)λ∈Λ

)
such that

‖u‖H ∼
∥∥〈Φ, u〉H

∥∥
ℓ2
W

:=
∥∥(wλ〈ϕλ, u〉H

)
λ∈Λ

∥∥
ℓ2
.

1Actually, more specifically, a Gel’fand frame for the Gel’fand triple (H, L2,H′), see [DFR07].
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Figure 1.1: Solution to the advection equation (1.2) for a singular right-hand side

(III) The Galerkin matrix A — i.e. the discretisation of (1.1) by Φ (and preconditioned by W) — needs to
be “almost diagonal”2.

(IV) The frame Φ is optimal for a class C of model solutions to (1.1), in the sense that it allows N -term
approximation rates of functions in this class with the benchmark rate σ∗(C); see Section 3.

These ingredients suffice to formulate the desired algorithm — under the assumption of unit quadrature
cost3 for evaluating the inner products 〈Φ, u〉H and within A — see Theorem 1.2 below.

1.3 Linear Advection Equations

Regarding differential equations exhibiting solutions with more complicated singularities than points, such
features already appear in the context of linear advection equations. More precisely, we will deal with the
unidirectional advection–reaction equation,

Au := ~s · ∇u(~x) + κ(~x)u(~x) = f(~x), (1.2)

which describes the stationary distribution of the unknown quantity u under absorption κ, emission f and
transport in direction ~s. The corresponding Hilbert space to (1.2) is the anisotropic Sobolev space

H~s(Rd) :=
{
f ∈ L2(Rd) : (~s · ∇)f ∈ L2(Rd)

}
,

which is equipped with the norm

‖f‖H~s(Rd) :=
√
‖f‖2L2(Rd) + ‖(~s · ∇)f‖2L2(Rd).

2This name tries to encapsulate the underlying principle without going into details; the needed concept is called compress-
ibility, see [CDD01, Def. 3.6].

3Removing this assumption is the subject of future work based on ideas in [GS06].
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Roughly speaking, the operator A smoothes only in the direction of ~s, and singularities orthogonal to
this direction may remain, compare for example Figure 1.1. Typical methods for the numerical solution of
(1.2) include ([EG04, Chap. 5]):

• Galerkin Least Squares: 〈Av,Au〉 = 〈Av, f〉 ∀v ∈ Vtest

• Discontinuous Galerkin Methods

• Streamline Upwinding Petrov Galerkin (SUPG) [BH82]

All of these suffer from the fact that the transport term s · ∇u means that (1.2) is not H1-elliptic, which
leads to ill-conditioned systems of equations (with no rigorous results about the choice or efficiency of
preconditioners).

Even wavelets do not perform optimally for (1.2) — heuristically, the break-down can also be explained
with the fact that it takes many wavelets (which are adapted to point singularities) to resolve a singularity
along a line — picture a “cliff” or compare again with Figure 1.1. To model this behaviour of the solutions,
we will also introduce a class based on “mutilated” Sobolev functions (cf. [Can01]) in Subsection 2.2.

Ridgelets turned out to be particularly well-suited for discretising (1.2) — [Gro11] essentially proved
(II) of the ingredients mentioned above, while [GO15] showed (I) & (III). In this sense, the present work
complements and completes these previous works by aiming to show the last remaining ingredient (IV),
which will then allow to achieve the desired highly efficient algorithms, see Theorem 1.2.

1.4 Main Result

The core of this paper is to show that ridgelets (in the version of [Gro11]) achieve the best possible N -term
approximation rate for functions in Ht(Rd) that are allowed to be singular across hyperplanes, stated in
rough strokes in the following “theorem”.

Theorem 1.1 (Sketch of Theorem 4.1). Let f be a function in f ∈ Ht(Rd) apart from hyperplanes4, such
that the decay condition

|f(~x)| ≤ Cm

〈~x〉2m
(1.3)

holds for all m ∈ N, where 〈~x〉 =
√
1 + |~x|2. Then, for arbitrary δ > 0 and N ∈ N, the function fN —

reconstructed from only the N largest ridgelet coefficients of f — satisfies

‖f − fN‖L2 ≤ CδN
− t

d+δ, (1.4)

which (up to δ) is the best theoretically possible rate.
Additionally, if u is the solution to (1.2) with the f from above, then, for κ smooth enough, the recon-

struction uN from the N largest ridgelet coefficients of u similarly satisfies (note the different norm)

‖u− uN‖H~s ≤ C ′
δN

− t
d+δ. (1.5)

As hinted at in the beginning, the original ridgelet definition by [Can98] already showed (1.4) in [Can01].
However, by its construction, it is not possible to incorporate it into the kind of CDD-schemes we want to
achieve. In particular, the frame elements of [Can01] have unbounded support (which is made mathematically
feasible by restricting the domain to Ω = [0, 1]d), and therefore, the necessary sparsity of the matrix that
(III) alludes to is impossible to achieve.

In contrast, [Gro11] constructs a frame for the full L2(Rd) (resp. H~s(Rd)), but this necessitates frame
elements ϕλ which are intrinsically in L2(Rd) themselves, and thus, have much more localised support. The
price for this is that we need the full grid Z

d (under a certain transformation) of translations to cover all of

4We will make this statement precise in Definition 2.6.
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R
d with our frame elements, while [Can98] is able to make do with a one-dimensional grid. Since the proof

involves counting large coefficients (in some sense), these additional d− 1 dimensions make the proof of our
result substantially more involved and require some fairly delicate estimates to work out. In this respect, we
believe that the auxiliary estimates (Theorem 2.1 and Corollary 2.2) we have proved for this purpose are of
independent interest due to their increased strength compared to previous results (see Remark 6.2).

Finally, for the CDD-machinery to work, we need approximation estimates in the norm of the Hilbert
space H = H~s in which the solution lives, compare (1.5). This norm corresponds to multiplying the coefficient
sequence (element-wise) with a growing weight (namely the W from (II)), which further complicates matters.

However, once we achieve the proof of Theorem 1.1, we will have showed the following, compare [GO15,
Cor. 6.1, Thm. 6.2]5. For a more detailed account of combining ingredients (I)–(IV) into the result below,
we refer to [Obe15, Thm. 7.1.1].

Theorem 1.2. For arbitrary ~s ∈ S
d−1, consider (1.2) with right-hand side f ∈ Ht that is allowed to be

singular across hyperplanes and satisfies the decay condition

|f(~x)| ≤ Cm

〈~x〉m

for all m ∈ N (which is possible for compact support or exponential decay, for example).
Assuming that the absorption coefficient satisfies κ ≥ γ > 0 and κ ∈ H4(t+d+1), an approximand uε to

the solution of Au = f satisfying

‖u− uε‖H~s ≤ ε

can be found with the help of a numerically feasible ridgelet-based algorithm, such that, for arbitrary σ < t
d

(and ignoring quadrature cost),

#
{
arithmetic operations necessary to compute uε

}
. ε−

1
σ .

Remark 1.3. As a matter of fact, in [Obe15, Sec. 7.2], we show that Theorem 1.2 can be extended to
κ ∈ H4(t+d+1) that is also allowed to be singular across hyperplanes6, which is somewhat surprising, since
(III) depends crucially on the smoothness of κ. In a nutshell, one shifts the singularity from κ to the right-
hand side f , where it is harmless (see above), which is possible mainly due to having an explicit formula for
the solution of (1.2). △

1.5 Impact

Although (1.2) is quite simple, having a highly efficient solver for such an equation opens the door to
efficiently solve more complicated equations like the radiative transport equation (RTE),

Bu := ~s · ∇u(~x,~x) + β(~x)u(~x,~s) = f(~x) + σ(~x)

∫

Sd−1

K(~s,~s′)u(~x,~s′) d~s′. (1.6)

which couples the different directions ~s,~s′; see e.g. [Mod13, Sec. 9.5] for an introduction, resp. [KMRW09;
Fra07; DHSW12; DHK+14], for examples of applications of (1.6) and existing methods to solve it.

There are several ways to utilise a solver for (1.2) to solve (1.6). If we neglect the scattering term for
the moment, the ridgelet-based solver we develop could be used to solve (1.6) by either tensor product or
collocation methods in ~s (similar to techniques used in [GS11], where one can additionally make use of
the multiscale structure of Φ to alleviate the curse of dimensionality by balancing resolution in angle with
resolution in space).

5Note that the requirements of [GO15, Thm. 6.2] are stated erroneously, in the sense that the decay of the fi needs to be
global (compare (1.3)) and not just across the interfaces of the hyperplanes.

6As long as any potential singularities of f lie in hyperplanes that are parallel to the singularity in κ.
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One possibility to reintroduce the scattering term is via an iterative scheme — for example by evaluating
the integral for the previous iterand and adding the result to the right-hand side. We refer to [EGO15],
where an FFT-based ridgelet discretisation based on this “source iteration” has been implemented.

One crucial aspect in these procedures is that solutions for different ~s can be added together easily,
which is satisfied by our construction (since the ridgelets achieve optimal approximation for all directions ~s
simultaneously!). While we have already mentioned that uniformly refined FE methods (even if adaptive) do
not work well in this context, one might have the idea to adapt the FEM mesh anisotropically. The problem
with this is that the meshes for different directions ~s 6= ~s′ would have to be combined somehow, making
cumbersome interpolation between such meshes necessary.

Considering the work already carried out in [Gro11; GO15], this paper completes the picture regarding
the necessary ingredients for developing a CDD-scheme for (1.2). The result of this — Theorem 1.2 — is
very strong: complexity here is measured in terms of arithmetic operations to be carried out by a processor
and the solution is even allowed to possess singularities along lines (resp. hyperplanes in higher dimensions)
— for the right-hand side f , as well as the absorption coefficient κ (see Remark 1.3).

To illustrate the strength of these results, consider a function f ∈ Ht apart from a finite number of
line singularities (in arbitrary directions) in two dimensions. Then, the approximation error of using just
N ridgelets is O(N− t

2 ) and the number of flops to find these coefficients is of order O(N). For functions
with medium to high Sobolev regularity (apart from the line singularities), this approximation rate repre-
sents an improvement of many orders of magnitude over wavelet or FE Methods, with respective N -term
approximation rates of O(N− 1

2 ) and O(N− 1
4 ), irrespective of the magnitude of t. In terms of complexity,

the advantage is greater still because the linear systems for other methods cannot usually be solved in linear
time.

On the other hand, the convergence results are confined to linear advection equations (1.2) and our
analysis assumes that ~x belongs to the full space R

d. The latter fact poses no problem if for instance the
source term f is compactly supported but in many applications one needs to restrict ~x to a finite domain
D ⊆ R

d and impose inflow boundary conditions. The efficient incorporation of boundary conditions will
require the construction of ridgelet frames on finite domains, which is the subject of future work7. With such
a construction at hand the theoretical analysis carried out in this paper would essentially go through also for
finite domains. In this regard we mention that, very recently, shearlet frames were successfully constructed on
domains ([GKMP15]), raising the hope that this approach can be transferred to the closely-related ridgelets.

1.6 Outline

The outline of the paper is as follows. Below, we wrap up the section by briefly introducing the most
important notational conventions we will use throughout this paper. In Section 2, we cover some crucial
estimates, the most important properties of the advection equation (1.2), as well as the model class of
“mutilated” Sobolev functions. Furthermore, we recall the ridgelet construction of [Gro11] and a few classical
results we will need later on.

Section 3 deals with a minimalistic introduction to N -term approximation and how one can determine
the best theoretically possible approximation rate of any discretisation for a given class of functions C.

The core of the thesis is contained in Section 4; aside from the differences in the ridgelet constructions
(see discussion after Theorem 1.1) and the different techniques necessary to treat them, we are able to follow
the structure of [Can01] relatively closely — establishing the localisation of the ridgelet coefficients for a
function cut off at a hyper plane first in angle in Subsection 4.2, and then in space in Subsection 4.3, before
we proceed to the proof of the main result, Theorem 4.1, in Subsection 4.4.

The main part of the paper wraps up with the conclusion in Section 5, while the postponed proof of the
crucial estimates in Subsection 2.1 follows in Section 6.

7To be more precise, incorporation of inflow boundary conditions is possible with the code developed in [EGO15] but a
rigorous analysis is still lacking.
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1.7 Notation

This subsections lists the most important conventions we will use throughout this paper. As usual, we
conclude proofs by ✷; additionally, we mark the end of definitions and remarks by △.

The letter N denotes the natural numbers without zero, while N0 includes it. Similarly, R+ := (0,∞),
while R

+
0 := [0,∞).

We let BX(x, r) := {x′ ∈ X : distX(x, x′) < r} be the open ball in the metric space X. Occasionally we
omit the space if it is clear from the context. To distinguish the Euclidian norm from the other norms, we
denote it by |~x|. The inner product on R

d is simply denoted by ~x · ~x′, all other inner products are denoted
by 〈·, ·〉, where the first argument is antilinear and the second is linear (which is closer to the interpretation
as a functional (see e.g. Bra-ket notation) and has several advantages, in our opinion).

The Fourier transform we use is

f̂(~ξ) :=
[
F(f)

]
(~ξ) :=

∫

Rd

f(~x)e−2πi~x·~ξ d~x,

where we will mostly omit the square brackets for improved legibility if the second term has to be used. In
order to limit the amount of constants we have to carry, we define the following relation,

A(y) . B(y) :⇐⇒ ∃ c > 0 : A(y) ≤ cB(y),

where the constant has to be independent of y. Similarly, A ∼ B denotes the case that both A . B and
B . A hold.

For vector variables (and occasionally multi-indices), i primes (i = 1, . . . , 3) will always indicate the last

d− i components of that vector, i.e. ~k′′ = (k3, k4, . . . , kd)
⊤ ∈ R

d−2.
Square brackets around a vector — i.e. [~e1] — denote the linear span, while [~e1]

⊥ denotes its orthogonal
complement. The orthogonal projection along ~n is denoted by P~n.

Finally, we let H(y) := ✶R+(y) denote the Heaviside step function, and define the regularised absolute
value 〈~x〉 :=

√
1 + |~x|2 (to avoid problems with division by zero).

2 Preparations

In this section, we set up the foundations on which the rest of the paper will be built. In Subsection 2.1, we
introduce a crucial estimate that will be necessary later on (but whose proof we postpone to Section 6), while
in Subsection 2.2, we deal with the properties of the advection equation and the model class of solutions
we will consider. In Subsection 2.3, we briefly recall the ridgelet construction of [Gro11] in the necessary
detail to prove our results, and we wrap up this section with some classical results about interpolation in
Subsection 2.4.

2.1 An Integral Estimate

As one of the key tools for the main proof, we introduce the following integral inequality, the proof of which
we postpone to Section 6.

Theorem 2.1 (Theorem 6.1). For m,n ∈ N, a ∈ R
+
0 , b ∈ R, c, d ∈ R

+, we have

Im,n :=

∫ ∞

−∞

1

(a2(x− b)2 + c2)
m

1

(x2 + d2)
n dx

=
π

(a2b2 + (ad+ c)2)
m+n−1

1

c2m−1

1

d2n−1

∑

i+j+2k=2(m+n)−3
i≥2m−1∨ j≥2n−1

cm,n
i,j ci(ad)j(ab)2k

.
a2n−1

(a2b2 + a2d2 + c2)
n

1

c2m−1
+

1

(a2b2 + a2d2 + c2)
m

1

d2n−1
. (2.1)
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For an explicit representation of the constants cm,n
i,j , as well as the generating functions of Im,n and cm,n

i,j ,
see Section 6.

As a simple corollary for higher dimensions, we also record the following corollary of Theorem 2.1, which
is proved in Section 6 as well.

Corollary 2.2 (Corollary 6.4). For m,n ≥
⌈
k
2

⌉
c, d > 0, we have the following inequality,

∫

Rd

1(
|~x−~t|2 + c2

)m
1(

|~x|2 + d2
)n d~x .

1(
|~t|2 + c2 + d2

)n
1

c2m−k−1
+

1(
|~t|2 + c2 + d2

)m
1

d2n−k−1
.

2.2 The Advection Equation & Mutilated Functions

To rotate the transport direction~s in (1.2) — resp. the normals of the hyperplanes appearing in Definition 2.6
— into a canonical unit vector, we need the following rotation matrices.

Definition 2.3. For any vector ~s ∈ S
d−1, let R~s be a matrix that maps ~s to ~e1 = (1, 0, . . .)⊤, and let

R−1
~s = R⊤

~s be its inverse. This rotation is not unique in dimensions d ≥ 3, however, the ambiguity will be
irrelevant. We also define the respective pullbacks for f ∈ L2(Rd) by

ρ~sf(~x) := f(R−1
~s ~x), ρ−1

~s f(~x) := f(R~s~x),

thus (for continuous f), ρ~sf(~e1) = f(~s), ρ−1
~s f(~s) = f(~e1). △

Remark 2.4. Using these pullbacks, it’s easy to see that

~s · ∇u+ κu = f ⇐⇒ ~e1 · ∇ρ~su+ ρ~sκρ~su = ρ~sf. (2.2)

This makes an explicit calculation possible (see [GO15, Sec. 1]), namely that with

y(x1, ~x
′) := e−K(x1,~x

′)

∫ x1

−∞
ρ~sf(t, ~x

′)eK(t,~x′) dt, where K(t, ~x′) =

∫ t

0

ρ~sκ(r,~x
′) dr, (2.3)

setting u := ρ−1
~s y yields an explicit solution to (1.2) for arbitrary f ∈ L2(Rd), as long as 0 < κ0 ≤ κ(~x) <∞

almost everywhere. With the y from (2.3), we define the solution operator for A as follows,

S[f ] := ρ−1
~s y, S : L2 → H~s. △

The following theorem shows that S is bounded from Ht to itself.

Proposition 2.5 ([GO15, Thm. 2.2], [Obe15, Thm. 3.3.3]). For κ ∈ H⌈t⌉+ d
2 (Rd) with t ≥ 0, such that

κ ≥ γ > 0, the operator S and is bounded (at least) from Ht → Ht. Furthermore

‖S[f ]‖H~s ∼ ‖Au‖L2 = ‖f‖L2 . (2.4)

However, what we are mainly interested in in this paper are functions of the following form.

Definition 2.6. We say that a function f is inHt except for N hyperplanes if there areN hyperplanes hi with
corresponding (normalised) orthogonal vectors ~ni and offsets vi, as well as functions f0, f1, . . . , fN ∈ Ht(Rd)
such that

f(~x) = f0(~x) +
N∑

i=1

fi(~x)H(~x · ~ni − vi), (2.5)

where, as mentioned, H is the Heaviside step function. To abbreviate the concept notationally, we will
sometimes write f ∈ Ht(Rd \ {(hi)Ni=1}), or f ∈ Ht(Rd \ {hi}) for short. This is justified in the sense that
— by factoring with the right choice of equivalence relation — these are in fact Hilbert spaces again (see
[Obe15, Rem. 3.2.2]). △
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The analysis of the ridgelet coefficients of such a function will require calculating the Fourier transform of
such mutilated Sobolev functions, which — for each term — splits into a regular and a singular contribution
(from the function and the cut-off, respectively). This follows immediately from [Can01, Eq. (3.3)], but we
formulate it in the version we will use later on.

Lemma 2.7. The Fourier transform of a function f(~x) = H(~x · ~n − v)g(~x), where g ∈ Ht and t > 1
2 , in

terms of a singularity aligned with ~e1 is

f̂(R−1
~n
~ξ) = − i

2π
∣∣~ξ
∣∣2
~ξ · F [H(x1 − v)∇g(R−1

~n ~x)](~ξ)− i ξ1

2π
∣∣~ξ
∣∣2 ĝ|h(P~e1

~ξ), (2.6)

where g|h ∈ Ht− 1
2 (Rd−1) is the restriction to the hyperplane h =

{
~x ∈ R

d : ~x · ~n = v
}
. Furthermore, P~n is

the orthogonal projection along ~n and we identify P~n
~ξ with ~ξ′h ∈ R

d−1, while ĝ|h is shorthand for FRd−1 [g|h].

Since we are dealing with half-spaces due to the cut-off with the Heaviside function, the following extension
result (see e.g. [Tri92, Sec. 4.5]) will be useful.

Theorem 2.8. For a function f ∈ Ht, the restriction to the half-space
{
~x ∈ R

d : x1 > 0
}

can be extended
to the full space in a bounded fashion, i.e. there is g ∈ Ht such that

‖g‖Ht(Rd) . ‖f‖Ht({~x∈Rd : x1>0}) as well as f(~x) = g(~x) ∀~x ∈
{
~x ∈ R

d : x1 > 0
}
.

Obviously, by rotating and translating f (which leaves the norms invariant), this result also holds for half-
spaces separated by arbitrary hyperplanes.

Remark 2.9. Using Theorem 2.8, we see that, for arbitrary ~s, we can restrict the representation of (2.5)
to hyperplanes satisfying ~s · ~ni ≤ 0, since, if ~s · ~ni > 0, we can extend the mutilated fi to the full space —
absorbing it into f0 — and subtracting its extension on the other side (hence, the vector ni in the Heaviside
function flips signs). △

The following result extends the boundedness of S from Proposition 2.5 to the spaces Ht(Rd \ {hi}),
which can be seen as confirmation that this class of functions is well-chosen for the behaviour of (1.2).

Proposition 2.10. For f ∈ Ht(Rd \ {hi}), the solution u = S[f ] ∈ Ht(Rd \ {hi}) is of the same form (2.5),

and furthermore, ‖ui‖Ht . ‖fi‖Ht for i = 1, . . . , N , as well as ‖u0‖Ht .
∑N

i=0‖fi‖Ht . In other words, the
solution operator S is bounded on this space,

‖S‖Ht(Rd\{hi})→Ht(Rd\{hi}) <∞.

Proof. We begin by noting that, since the differential equation (1.2) is linear, it suffices to deal with one
term f(~x)H(~x · ~n− v), and the rest follows via superposition. Furthermore, using (2.2) and Remark 2.9, we
can assume without loss of generality that ~s = ~e1, and that (~n)1 ≤ 0.

Assuming (~n)1 < 0 (i.e. a strict inequality) for the moment, we use (2.3) with this right-hand side, and
observe that, if x1 is before the cut-off, the Heaviside function does not matter, and for everything beyond
that, the integral goes just until the interface of the hyperplane,

u(~x) = e−K(~x)

∫ x1

−∞
f(t, ~x′)H

(
(t, ~x′)⊤ · ~n− v

)
eK(t,~x′) dt

= H(~x · ~n− v)e−K(~x)

∫ x1

−∞
f(t, ~x′)eK(t,~x′) dt+H(v − ~x · ~n)e−K(~x)

∫ v−~x′·~n′
(~n)1

−∞
f(t, ~x′)eK(t,~x′) dt

= H(~x · ~n− v)S[f ](~x) +H(v − ~x · ~n)S[f ]
( v−~x′·~n′

(~n)1

~x′

)
e
K
(
( v−~x′·~n′

(~n)1
,~x′)⊤

)
e−K(~x).

9



Due to Proposition 2.5, S[f ] ∈ Ht(Rd), with norm bounded by ‖f‖Ht . In order for the second term to

appear, v − ~x · ~n has to be greater than zero, and therefore (since (~n)1 < 0) we have x1 >
v−~x′·~n′

(~n)1
. As the

absorption satisfies κ ≥ γ > 0, K(·, ~x′) is (strictly) monotonically increasing, and this implies that the term

e
K
(
( v−~x′·~n′

(~n)1
,~x′)⊤

)
e−K(~x) is bounded. Since the coordinate transformation in the first component is linear, we

conclude that

S[f ]
( v−~x′·~n′

(~n)1

~x′

)
e
K
(
( v−~x′·~n′

(~n)1
,~x′)⊤

)
−K(~x) ∈ Ht

({
~x ∈ R

d : ~x · ~n− v < 0
})
,

by since multiplication with smooth enough κ is bounded from Ht to itself (which can be showing that the
derivatives remain in L2 and interpolation), and noting that the exponential function does not decrease the
smoothness. Again by Theorem 2.8, we can extend this term to y ∈ Ht(Rd), and thus

u(~x) = H(~x · ~n− v)
(
S[f ](~x)− y(~x)

)
+ y(~x).

Due to the boundedness of S on Ht and ‖y‖Ht . ‖f‖Ht , this implies ‖u‖Ht(Rd\h) . ‖f‖Ht(Rd\h).

In the last remaining case — that (~n)1 = 0 (i.e. ~n⊥~s) — the path of the integral never crosses the
hyperplane, and thus u = H(~x · ~n− v)S[f ](~x).

Lastly, we discuss how decay properties transfer to the solution.

Lemma 2.11. If f ∈ L2 satisfies

|f(~x)| . 〈~x〉−2n
,

then the solution u = S[f ] to (1.2) also satisfies

|u(~x)| . 〈~x〉−2n
.

Proof. Using the solution formula from (2.3) (for ~s = ~e1), we calculate

|u(~x)| .
∫ x1

−∞

〈
(t, ~x′)⊤

〉−2n
eK(t,~x′)−K(x1,~x

′) dt ≤
∫ x1

−∞

〈
(t, ~x′)⊤

〉−2n
e−γ(x1−t) dt,

since the strict monotonicity of K (due to γ > 0) implies K(t, ~x′)−K(x1, ~x
′) ≤ γ(t− x1) for t ≤ x1. At this

point, we use the fact that for arbitrary m,

e−γy . 〈y〉−2m
, for y ≥ 0.

Inserting this into the above and resolving the square root from 〈y〉 =
√
1 + |y|2, we continue

|u(~x)| .
∫ x1

−∞

〈
(t, ~x′)⊤

〉−2n〈x1 − t〉−2m
dt ≤

∫ ∞

−∞

1

(t2 + |~x′|2 + 1)n
1

((t− x1)2 + 1)m
dt

.
1

(x21 + |~x′|2 + 2)n
+

1

(x21 + |~x′|2 + 2)m
1

(|~x′|2 + 1)n−
1
2

≤ 1

(|~x|2 + 1)n
= 〈~x〉−2n

,

where the last line uses (2.1), and m ≥ n (which we we are free to choose this large).

2.3 The Ridgelet Construction [Gro11]

We recall the definition of a ridgelet frame from [Gro11; GO15], where details on the construction can be
found. The starting point is a (sufficiently) smooth partition of unity in frequency (constructed from a given
window function),

(
ψj,ℓ

)
j∈N0, ℓ∈{0,...,Lj} such that

∞∑

j=0

Lj∑

ℓ=0

ψ̂2
j,ℓ = 1,

10



supported on (approximate) polar rectangles

supp ψ̂j,ℓ ⊆ Pj,ℓ :=
{
~ξ ∈ R

d : 2j−1 < |~ξ| < 2j+1,
~ξ

|~ξ|
∈ BSd−1(~sj,ℓ, 2

−j+1)
}
, (2.7)

where the vectors ~sj,ℓ are an approximately uniform sampling of points on the sphere for each scale j, with
average distance ∼ 2−j and cardinality #{~sj,ℓ}ℓ . 2j(d−1), see [BN07] for the construction or [Gro11; GO15]
for more details on their relation to ridgelets.

Definition 2.12. Using the functions ψ̂j,ℓ, a Parseval frame for L2(Rd) is defined by

ϕj,ℓ,~k = 2−
j
2TUj,ℓ

~k ψj,ℓ, j ∈ N0, ℓ ∈ {0, . . . , Lj}, ~k ∈ Z
d,

with T the translation operator, T~yf(·) := f(· − ~y), and Uj,ℓ := R−1
j,ℓD2−j , where Rj,ℓ := R~sj,ℓ is the

transformation introduced at the beginning of the section, and Da dilates the first component, Da
~k :=

(a k1, k2, . . . , kd)
⊤. The rotation Rj,ℓ is arbitrary (to the extent that it is ambiguous) but fixed. Whenever

possible, we will subsume the indices of ϕ by λ = (j, ℓ, ~k). △

Assumption 2.13. The window functions

ψ̂(j,ℓ)(~η) := ψ̂j,ℓ(U
−⊤
j,ℓ ~η)

have bounded derivatives independently of j and ℓ. Thus, for all n up to an upper bound N dependent on
the differentiability of the window functions (or possibly for all n ∈ N if the window functions are C∞), we
have the estimate

∥∥ψ̂(j,ℓ)

∥∥
Cn ≤ βn.

In [GO15, Lem. B.1], it is shown that this assumption can be satisfied with a reasonable (and still quite
flexible) choice of window functions.

Definition 2.14. We consider the diagonal matrix

W = (Wλ,λ′)λ,λ′∈Λ with Wλ,λ′ :=

{
0, λ 6= λ′,

1 + 2j |~s ·~sj,ℓ|, λ = λ′,

which is the right choice of weight to make Φ a frame for H~s (see [Gro11, Thm. 10], [GO15, Thm. 4.3]), i.e.

‖f‖H~s ∼ ‖W〈Φ, f〉‖ℓ2 . (2.8)

△

2.4 Interpolation between Spaces

We recall the scale of sequence spaces necessary for our analysis, as well as some classical interpolation results
in the context we will work in (the mentioned sequence spaces, Sobolev spaces, and operators between them).

Definition 2.15. The Lorentz spaces of sequences are defined as follows ([DeV98, p. 89]),

ℓpq :=

{
(cn)n∈N : |cN|ℓpq :=

(∑

n∈N

(c∗n)
qn

q
p−1

) 1
q

<∞
}
,

where c∗n is the decreasing rearrangement of (|cn|)n∈N, 0 < p <∞ and 0 < q <∞. For q = ∞, we have

ℓp∞ :=

{
(cn)n∈N : |cN|ℓp∞ := sup

n∈N

c∗nn
1
p <∞

}
=: ℓpw,
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which is also called the weak ℓp-space. It should be noted that, technically, the norms involved are generally
only quasinorms, i.e.

|aN + bN|ℓpq ≤ Kp,q

(
|aN|ℓpq + |bN|ℓpq

)
.

Additionally, it can be shown that ℓpp = ℓp, as well as ℓpq1 ⊆ ℓpq2 for q1 ≤ q2. △

Theorem 2.16. For Sobolev spaces with t > 0, the real interpolation with L2 depending on 0 < θ < 1 yields
([BL76, Thm. 6.4.5])

(L2, Ht)θ,2 = Htθ.

On the sequence space side, we have that ([BL76, Thm. 5.3.1])

(ℓ2, ℓpw)θ,2 = ℓp̄2, where p̄ =
(1− θ

2
+
θ

p

)−1

.

Finally, for compatible couples8 (X0, X1) and (Y0, Y1) and an admissible linear operator T , i.e.

T : X0 +X1 → Y0 + Y1, such that T
∣∣
Xi

: Xi → Yi and ‖T‖Xi→Yi
<∞ for i = 0, 1,

it holds that ([BL76, Thm. 3.1.2], [BS88, Thm. 5.1.12]), for all θ ∈ (0, 1),

‖T‖(X0,X1)θ,q→(Y0,Y1)θ,q
<∞.

3 N-Term Approximation & Benchmark Rates

We briefly recall some core concepts of (non-linear) approximation theory, see [DeV98] for a survey.

Definition 3.1. Consider a (relatively) compact class C ⊆ H, where H is a separable Hilbert space, as well
as a dictionary Φ = (ϕλ)λ∈Λ ∈ H. To measure the mentioned quality of approximation in dependence of N ,
we introduce the set

ΣN (Φ) :=

{
f =

∑

λ∈ΛN

cλϕλ : #ΛN ≤ N

}
,

which is non-linear (as f, g ∈ ΣN (Φ) generally don’t imply f + g ∈ ΣN (Φ)) — consequently, analysis of the
quantity

ςN (f,Φ) := inf
g∈ΣN (Φ)

‖f − g‖H

is referred to as the study of non-linear approximation. △

Comparing, ςN (f,Φ) with N−α, we have the following definition of approximation spaces (which can be
done in much greater generality, see [DeV98, Sec. 4.1]).

Definition 3.2. Let

Aα
q (Φ) :=

{
f ∈ H : ‖f‖Aα

q
:= |f |Aα

q
+ ‖f‖H <∞

}
,

where

|f |Aα
q
:=

{(∑
n∈N

(
nαςn(f,Φ)

)q 1
n

) 1
q , 0 < q <∞,

supn∈N n
αςn(f,Φ), q = ∞.

△

8I.e. both spaces are linear subspaces of a larger Hausdorff topological vector space and the embeddings are continuous, c.f.
[BS88, Def. 3.1.1]
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These spaces are fairly well-understood — especially if Φ forms a basis for H — and we will see that the
similarity to the definition of Lorentz spaces is more than incidental.

Theorem 3.3. For α > 0 and 0 < p < q ≤ ∞, we have Aα
p (Φ) ⊆ Aα

q (Φ). More importantly, the
approximation spaces are interpolation spaces; for 0 < α < r and 0 < p, q ≤ ∞, we have ([DeV98, Thm. 2])

Aα
q (Φ) = (H,Ar

p(Φ))α
r ,q.

Finally, if Φ is a basis for H, we have the following complete characterisation of the approximation spaces
Aα

q (Φ), namely that ([DeV98, Thm. 4])

f ∈ Aα
q (Φ) ⇐⇒ 〈Φ, f〉 := (〈ϕλ, f〉)λ∈Λ ∈ ℓp(α)q where p(α) =

(
α+

1

2

)−1

. (3.1)

For arbitrary dictionaries, (3.1) does not hold in general, but at least we can salvage one implication for
frames (follows from [KLL12, Lem. 3.1], which is carried out in [Obe15, Prop. 2.3.5]; see also [DeV98, Sec.
8]).

Proposition 3.4. For a frame Φ with canonical dual frame Φ̃, we have the implication that

〈Φ, f〉 ∈ ℓp(α)w with p(α) =
(
α+

1

2

)−1

=⇒ f ∈ Aα(Φ̃).

Consequently, we can ask how well a given dictionary approximates C. This is easily done by defining

σ∗(C,Φ) := sup
{
σ > 0: C ⊆ Aσ(Φ̃)

}
.

The more interesting question is, how well any dictionary could possibly approximate C (in terms of N -term
approximation). This can be done very abstractly with encoding/decoding schemes, see [Don01; DDGL15].

Definition 3.5. For a class of signals C ⊆ H with H a separable Hilbert space, we define:

• An encoding/decoding pair (E,D) ∈ ED(R) consists of two mappings

E : C → {0, 1}R, D : {0, 1}R → H,

where we call R the runlength of (E,D) and ED :=
⋃

R∈N
ED(R) is the set of all such pairs.

• The distortion of (E,D) is defined as

δ(E,D) := sup
f∈C

‖f −D(E(f))‖H.

• The optimal encoding rate is defined as

σ∗(C) := sup
{
σ > 0: ∃C > 0 ∀N ∈ N ∃(EN , DN ) ∈ ED(N) : δ(EN , DN ) ≤ CN−σ

}
△

Remark 3.6. The quantity σ∗(C) limits the best approximation rate of C for any decoding scheme, in
particular, for the discretisation with any dictionary (as long as the natural restriction of polynomial depth
search9 is imposed), i.e.

σ∗(C,Φ) ≤ σ∗(C).

It is also intimately related to the Kolmogorov (or metric) ε-entropy (see e.g. [Ott02]) — which we will
denote by Hε(C) — in the sense that ([DDGL15, Rem. 5.10])

σ∗(C) = sup
{
σ > 0: sup

ε>0
ε

1
σHε(C) <∞

}
. △

9This is to exclude pathological behaviour — namely, choosing arbitrary functions from a countable set Φ which is dense
in H This would give a perfect 1-term approximation, but no way to efficiently compute the approximation or even store the
dictionary. Polynomial depth search means that the set ΛN we select for our N -term approximation may only search through
the first π(N) dictionary elements, where π is an arbitrary polynomial.
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The interesting thing — despite its very general definition — is that σ∗(C) can be estimated with the
help of the following definition and Theorem 3.9.

Definition 3.7. Let C ⊆ H be a signal class in a separable Hilbert space H.

• We say C contains an embedded orthogonal hypercube of dimension m and sidelength δ if there exist
f0 ∈ C and orthogonal functions (ψi)

m
i=1 ∈ H with ‖ψi‖H = δ, such that the collection of vertices

h
(
f0, (ψi)

m
i=1

)
:=

{
h = f0 +

m∑

i=1

εiψi : εi ∈ {0, 1}
}

can be embedded into C.

• For p > 0, C is said to contain a copy of ℓp0 if there exists a sequence of orthogonal hypercubes (hk)k∈N

with dimensions mk and sidelength δk embedded in C, such that δk → 0 and for some constant C > 0

δk ≥ Cm
− 1

p

k , ∀k ∈ N. (3.2)

△

Remark 3.8. The motivation behind Definition 3.7 is, on the one hand, that we know precisely how many
bits we need to encode the vertices of a hypercube, and if C contains such hypercubes, then it must be at
least as complex.

On the other hand, ℓp trivially contains orthogonal hypercubes of dimension m and sidelength m− 1
p ; in

fact every ℓpq with q > 0 contains a copy of ℓp0, which partly motivates the choice of notation (since ℓpq1 ⊆ ℓpq2
for q1 ≤ q2).

Even more, since ℓp1 ⊆ ℓp2 for p1 ≤ p2, it is perhaps not surprising (and easy to check from (3.2)) that
ℓpq with q > 0 contains a copy of ℓτ0 for all τ ≤ p. △

As hinted in Remark 3.8, being able to precisely understand the complexity of hypercubes allowed
[Don01, Thm. 2] to prove the following landmark result. Since the proof is highly non-trivial, we also refer
to [DDGL15, Thm. 5.12], where an elementary proof of this result was given.

Theorem 3.9. If the signal class C ⊆ H contains a copy of ℓp0 for p ∈ (0, 2], the optimal encoding rate
satisfies

σ∗(C) ≤ 2− p

2p
.

Finally, since we are interested in functions in the Sobolev space Ht, computing the optimal encoding
rate of this class with the tools we have just introduced is a simple adaptation of [DDGL15, Thm. 5.17].

Lemma 3.10 ([Obe15, Lem. 2.3.11]). The Sobolev space Ht(Rd) ⊆ L2(Rd) contains a copy of ℓp
∗

0 , where

p∗ =
(
t
d + 1

2

)−1
. In particular, σ∗(Ht(Rd)

)
≤ t

d .

Remark 3.11. The model class of functions Ht(R\{hi}) — see Definition 2.6 — we will deal with regarding
(1.2) consists of functions in Ht that are allowed to have cut-offs across hyperplanes. This is trivially a
superset of Ht, and so it is clear that

σ∗(Ht(R \ {hi})
)
≤ σ∗(Ht(Rd)

)
≤ t

d
.

In other words, these “mutilated” Ht-functions have — potentially — even worse approximation rates than
functions in Ht.

Nevertheless, although the possibilities of achieving this benchmark seem slim (considering the very
abstract and extremely general definition of σ∗(C)), there is some hope: there are constructions for several
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classes C that do achieve σ∗(C), cf. [DDGL15, Chap. 5], and even in the more complicated case of allowing
cut-offs, wavelets (for example) can be shown to achieve the best possible approximation rate for piece-wise
Ck-functions over an interval, cf. [DDGL15, Cor. 5.36], and point-like singularities in R

d in general.
To summarise, we have now found the definitive benchmark to aim for, since, in view of Proposition 3.4,

we know that 〈Φ, f〉 ∈ ℓp
∗

w with p∗ =
(
t
d + 1

2

)−1
is the absolute best that is (even theoretically) possible for

generic functions in Ht (or the superset Ht(R \ {hi})) — any p < p∗ would imply an N -term approximation
rate that we have proved (see Lemma 3.10) to be impossible. △

4 Approximation Properties

Compared to the discussion in Section 1, the only addition we are now able to make is to formulate the goals
in terms of conditions on the ridgelet coefficient sequence, as well as a finer statement about the relation
between the decay of f (4.1) and the deviation δ in Theorem 1.1. [Can01, Thm. 4.1] shows that for a function
f ∈ Ht(Rd \{hi}), supported (compactly) on [0, 1]d, the ridgelet coefficient sequence

(〈
φj,ℓ,k, f

〉)
j,ℓ,k

belongs

to the ℓpw space with the best possible p = p∗ :=
(
t
d +

1
2

)−1
, which implies the optimal N -term approximation

rate t
d in the L2-norm.

In contrast, we will show that the coefficient sequence 〈Φ, f〉 :=
(
〈ϕλ, f〉

)
λ

with f ∈ Ht(Rd \ {hi})
satisfying the following polynomial decay condition,

|f(~x)| . 〈~x〉−2m
,

is in ℓ
p∗+ d

m
w . In particular, if the above decay holds for all m ∈ N (which is satisfied for example if f has

exponential decay or compact support), then 〈Φ, f〉 ∈ ℓp
∗+δ∗

w for arbitrary δ∗ > 0.
Finally, in the context of CDD-schemes (see Subsection 1.2) — we need to consider N -term approximation

with regard to the H~s-norms instead of the L2 norm. Due to (2.8), this corresponds to bounding the ℓpw-
norm of the weighted coefficient sequence W〈Φ, f〉, compare also with Corollary 4.2 in this regard. Since
the weights wλ ∼

〈
2j~s ·~sj,ℓ

〉
grow with scale j, this causes extra work as well.

4.1 Main Theorem

We begin straight away by formulating the goal of this section, Theorem 4.1. Once we will have proved this
result, we will have satisfied ingredient (IV) from Subsection 1.2.

Theorem 4.1. Let f be a function in L2(Rd) such that f ∈ Ht(Rd) apart from N hyperplanes — i.e. of the
form (2.5) — such that the following decay condition (recalling 〈y〉 =

√
1 + |y|2)

|f(~x)| . 〈~x〉−2m
(4.1)

holds for a certain m ∈ N. Then, if κ ∈ H⌈t⌉+ d
2 (for the terms involving S[f ]),

〈Φ, f〉L2 :=
(
〈ϕλ, f〉L2

)
λ∈Λ

∈ ℓ
p∗+ d

m
w ,

W〈Φ,S[f ]〉L2 :=
(
wλ〈ϕλ,S[f ]〉L2

)
λ∈Λ

∈ ℓ
p∗+ d

m
w ,

i.e. the (weighted) ridgelet coefficient sequences belong to the ℓpw-space with p = p∗+ d
m , where p∗ = ( t

d +
1
2 )

−1

would be the best possible p for f ∈ Ht(Rd), even without singularities(!), and the deviation from the optimal
value10 decays linearly with m.

If the decay condition (4.1) holds for arbitrarily large m ∈ N — which is satisfied for exponential decay or
compact support, for example — then, for arbitrary δ∗ > 0, 〈Φ, f〉L2 ∈ ℓp

∗+δ∗

w and W〈Φ,S[f ]〉L2 ∈ ℓp
∗+δ∗

w .

10For 〈Φ, f〉, the absence of W is not completely without effect, in that the deviation from the optimal p can be bounded by
d
2n

+ ε with arbitrarily small ε > 0.
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We split some essential parts of the proof into separate results, namely the localisation in angle of the
ridgelet coefficients in Proposition 4.3 and — after proving decay rates for (modified) ridgelets in space in
Lemma 4.4 — the localisation in space for the response to the singularity in Proposition 4.5, as well as the
general decay of the coefficients for functions satisfying (4.1) in Lemma 4.6.

Before we continue, let us briefly state the following corollary of Theorem 4.1, recalling the non-linear
set ΣN of functions being linear combinations of less than N terms from Φ (from Definition 3.1).

Corollary 4.2. For f ∈ Ht(Rd \{hi}) such that (4.1) is satisfied for all n ∈ N, we have, for arbitrary δ > 0,

inf
g∈ΣN (Φ)

‖f − g‖L2 . N− t
d+δ,

inf
g∈ΣN (Φ)

‖S[f ]− g‖H~s . N− t
d+δ.

Proof. This statement is a direct consequence of Proposition 3.4 and (2.8), respectively, that Φ is also a
frame (without the weight W) for L2.

4.2 Localisation in Angle

In Lemma 2.7, we considered how the Fourier transform of a function f(~x) = H(~x · ~n − v)g(~x) splits into
two parts, compare (2.6). Based on this decomposition, we will likewise split the coefficient sequence in two,
where our main interest is with the singular contribution arising from the cut-off.

The crucial property of ridgelets we want to explore in this section concerns the fact that large coefficients
will only appear for ridgelets that are aligned with the singularity, and we are able to describe the decay of
the coefficient in terms of the smoothness of g and the angle between ~sj,ℓ and ~n.

Proposition 4.3. Let f(~x) = H(~x · ~n − v)g(~x) with g ∈ Ht, t ∈ N. Furthermore, let κ ∈ Ht+ d
2 and

κ ≥ γ > 0. Then, the sequences

αλ :=
〈
ϕλ, f

〉
=
〈
ϕ̂λ, f̂

〉
= αr

λ + αs
λ,

βλ :=
〈
ϕλ,S[f ]

〉
=
〈
ϕ̂λ,F [S[f ]]

〉
= βr

λ + βs
λ,

can be split into a regular contribution αr resp. βr (coming from the function) and a singular contribution αs

resp. βs (coming from the cut-off). The regular part of both sequences shows decay with scale j proportional
to t,

∑

ℓ,~k

∣∣αr
j,ℓ,~k

∣∣2 . ε2j2
−2jt‖g‖2Ht ,

∑

ℓ,~k

∣∣wj,ℓ,~kβ
r
j,ℓ,~k

∣∣2 . ε2j2
−2jt‖g‖2Ht , (4.2)

where
∑

j ε
2
j ≤ 1. Defining the angle θj,ℓ(~n) := arccos(~sj,ℓ ·~n) that the vectors ~sj,ℓ enclose with ~n and setting

Λj
r(~n) :=

{{
ℓ : 2−r ≤

∣∣sin θj,ℓ(~n)
∣∣ ≤ 2−r+1

}
, 1 ≤ r < j,{

ℓ :
∣∣sin θj,ℓ(~n)

∣∣ ≤ 2−j+1
}
, r = j,

the singular part of both sequences is localised in angle for a given scale j as follows,

∑

ℓ∈Λj
r(~n)

∑

~k

∣∣αs
j,ℓ,~k

∣∣2 . 2−j2−(j−r)(2t−1)‖g‖2Ht ,

∑

ℓ∈Λj
r(~n)

∑

~k

∣∣wj,ℓ,~kβ
s
j,ℓ,~k

∣∣2 . 2−j2−(j−r)(2t−1)‖g‖2Ht .
(4.3)
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Proof. From [Gro11], we know that

‖f‖L2 ∼ ‖〈Φ, f〉‖ℓ2 = ‖αΛ‖ℓ2 (4.4)

‖S[f ]‖H~s ∼ ‖W〈Φ,S[f ]〉‖ℓ2 = ‖WβΛ‖ℓ2 , (4.5)

where u := S[f ] ∈ H~s for f ∈ L2 (cf. (2.4)). We define

P j
r (~n) :=

⋃

ℓ∈Λj
r(~n)

Pj,ℓ,

and let χ̂ be the indicator function of this set. Obviously, χ̂ has an inverse Fourier transform, which we
name χ. Since {j} × Λj

r × Z
d is a subset of all ridgelets intersecting P j

r , we can apply (4.4) to f ∗ χ (which,
by looking at the Fourier side, is obviously in L2) we arrive at

∑

ℓ∈Λj
r

∑

~k

∣∣αλ

∣∣2 .

∫ ∣∣f̂ χ̂
∣∣2 d~ξ =

∫

P j
r (~n)

∣∣f̂
∣∣2 d~ξ. (4.6)

To get the same (localised!) estimate in Fourier space for second sequence, we need to do a bit more. First,
we split the absorption into its parts

Au = ~s · ∇u+ (γ + κ0)u = f ⇐⇒ Acu := ~s · ∇u+ γu = f − κ0u =: fc,

and observe that u is also the solution of the differential equation Acu = fc. From Proposition 2.10 we
know that u(~x) = u0(~x) +H(~x · ~n− v)u1(~x) is of the same form as f , with ‖ui‖Ht . ‖g‖Ht , and again, the
multiplication with κ also does not pose a problem (see [Obe15, Prop. 3.3.5]).

Thus, fc(~x) = g0(~x) + H(~x · ~n − v)g1(~x) with ‖gi‖Ht . ‖g‖Ht . The gain of this change of differential
equation is that Ac trivially satisfies the requirements for (2.4), and therefore ‖u‖H~s ∼ ‖Acu‖L2 holds for Ac

as well. Now, crucially, due to the constant absorption term in Ac, the operator commutes with convolution,
i.e. Ac(u ∗χ) = (Acu) ∗χ = fc ∗χ with χ as above. Thus, using the same argument as for (4.6) and applying
(4.5) for u ∗ χ,

∑

ℓ∈Λj
r

∑

~k

∣∣wλβλ
∣∣2 .

∥∥u ∗ χ
∥∥2
H~s ∼

∥∥Ac(u ∗ χ)
∥∥2
L2 =

∥∥fc ∗ χ
∥∥2
L2

=

∫

P j
r

∣∣f̂c
∣∣2 d~ξ ≤

∫

P j
r (~n)

∣∣ĝ0
∣∣2+

∣∣F [H(~x · ~n− v)g1(~x)](~ξ)
∣∣2 d~ξ.

The term involving ĝ0 will contribute to the regular part Wβr, and the required inequality (4.2) is easily

proved since, for t ∈ R
+, ‖h‖Ht ∼

∥∥〈~ξ
〉t
ĥ(~ξ)

∥∥
L2 , thus

∫

P j
r (~n)

∣∣ĝ0
∣∣2 d~ξ =

∫

P j
r (~n)

〈
~ξ
〉2t

〈
~ξ
〉2t
∣∣ĝ0
∣∣2 d~ξ . 2−2jt

∫

P j
r (~n)

〈
~ξ
〉2t∣∣ĝ0

∣∣2 d~ξ . 2−2jt‖g0‖Ht . 2−2jt‖g‖Ht ,

using the fact that |~ξ| & 2j for ~ξ ∈ P j
r (~n).

Aside from the contribution above, both sequences have now been dominated by the same kind of integral,
and so we can deal with both cases together from now on. We will work with g (and thus the estimate for
α), but by replacing any occurrence of it with g1 (and recalling ‖g1‖Ht . ‖g‖Ht) will automatically yield
the estimate for Wβ.

Setting

f(~x) = f̃(R~n~x) where f̃(~x) := H(x1 − v)g̃(~x) and g̃(~x) := g(R−1
~n ~x)
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like in the proof of Lemma 2.7, we continue from (4.6) as follows. Transforming with ~ζ = R~n
~ξ, we use (2.6)

and the fact that (a+ b)2 ≤ 2(a2 + b2),

∫

P j
r (~n)

∣∣f̂(~ξ)
∣∣2 d~ξ =

∫

R~nP
j
r (~n)

∣∣f̂(R−1
~n
~ζ)
∣∣2 d~ζ

.

∫

R~nP
j
r (~n)

∣∣~ζ
∣∣−2∣∣F [H(x1 − v)∇g̃(~x)](~ζ)

∣∣2 +
∣∣~ζ
∣∣−2∣∣ĝ|h(P~e1

~ζ)
∣∣2 d~ζ.

Each Pj,ℓ making up P j
r (~n) is a polar rectangle (compare (2.7)), and with the help of the transform R(r,~s) :=

r~s, we can easily describe effect of R~n,

R~nPj,ℓ = R~nR
(
[2j−1, 2j+1]×BSd−1(~sj,ℓ, 2

−j+1)
)
= R

(
[2j−1, 2j+1]×BSd−1(R~n~sj,ℓ, 2

−j+1)
)
.

Thus,

sin θR~n~sj,ℓ(~e1) = arccos(R~n~sj,ℓ ·~e1) = sin θj,ℓ(~n) and therefore R~nP
j
r (~n) = P j

r (~e1).

We begin the induction with t = 0, where the claim follows trivially with αs
λ ≡ 0 resp. βs

λ ≡ 0. Suppose
now that the claim holds for t − 1 ∈ N, i.e. g ∈ Ht−1 and thus also g̃ ∈ Ht−1. Then, by the above, the
induction hypothesis implies

∫

P j
r (~n)

∣∣f̂
∣∣2 d~ξ .

∫

P j
r (~e1)

∣∣~ξ
∣∣−2∣∣F [H(x1 − v)∇g̃(~x)](~ξ)

∣∣2 d~ξ +
∫

P j
r (~e1)

∣∣~ξ
∣∣−2∣∣ĝ|h(P~e1

~ξ)
∣∣2 d~ξ

. ε2j (δ
j
r)

22−j(2t−1)−2j + 2−3j2−(j−r)(2(t−1)−1) + 2−2j

∫

P j
r (~e1)

∣∣ĝ|h(P~e1
~ξ)
∣∣2 d~ξ, (4.7)

because, again,
∣∣~ξ
∣∣ & 2j on P j

r (~e1). The factors εj and δjr satisfy

j∑

r=1

(δjr)
2 = 1 and

∞∑

j=1

ε2j = 1.

The last integral can be treated (for 1 ≤ r < j) as follows

∫

P j
r (~e1)

∣∣ĝ|h(P~e1
~ξ)
∣∣2 d~ξ =

∫

P j
r (~e1)

∣∣ĝ|h(P~e1T (r cos θ, r sin θ, φ))
∣∣2rd−1(sin θ)d−2 dr dφ dθ,

where, after having transformed into spherical coordinates, we split off the first component r cos θ (θ being
the angle to the ξ1-axis) and treat the rest as d − 1-dimensional spherical coordinates with radius r sin θ,
i.e. T (x, s, φ) = (x, s cosφ1, s sinφ1 cosφ2, . . .)

⊤. Consequently, we transform with r′ = r sin θ,

.

∫

PθP
j
r (~e1)

2j

|sin θ|

∫

Sd−2

∫ 2j+1|sin θ|

2j−1|sin θ|

∣∣ĝ|h(r′, φ)
∣∣2(r′)d−2 dr′ dφ dθ,

where one power of r . 2j has been estimated, |sin θ| is bounded from below due to r < j and Pθ denotes
the projection onto the relevant interval [0, 2π) for θ (which results in two intervals symmetric around π due
to the way Λj

r is defined; we can treat both cases as one since only the absolute value of sin θ is involved).
The integrals over r′ and φ can again be interpreted as a d − 1-dimensional integral, allowing us to

continue the estimation due to g|h ∈ Ht− 1
2 (Rd−1), for the same reason as above (i.e. the identification of the

18



Ht-norm with a weighted L2-norm in Fourier space),

∫

P j
r (~e1)

∣∣ĝ|h(P~e1
~ξ)
∣∣2 d~ξ .

∫

PθP
j
r (~e1)

2j

|sin θ|

∫

Sd−2

∫ 2j+1|sin θ|

2j−1|sin θ|

∣∣ĝ|h(r′, φ)
∣∣2(r′)d−2 〈r′〉

2t−1

〈r′〉2t−1 dr′ dφ dθ

.

∫

PθP
j
r (~e1)

2j

|sin θ|
1

〈2j sin θ〉2t−1

∫

Rd−1

∣∣ĝ|h(~ξ′)
∣∣2〈~ξ′

〉2t−1
d~ξ′ dθ

.

∫

PθP
j
r (~e1)

2j

|sin θ|
1

〈2j sin θ〉2t−1 ‖g|h‖
2

Ht− 1
2 (Rd−1)

dθ

≤ 2−j(2t−2)

∫

PθP
j
r (~e1)

|sin θ|−2t
dθ ‖g‖2Ht(Rd). (4.8)

For 1 < r < j, we continue by transforming with y = sin θ (the functional determinant (cos θ)−1 is bounded
from above by a constant due to the restriction that r < j)

∫

PθP
j
r

|sin θ|−2t
dθ .

[
−y−2t+1

]2−r+1+2−j

2−r−2−j = 2(−2t+1)(−r−1) − 2(−2t+1)(−r+2) . 2r(2t−1),

because r > 1. For r = 1, we have |sin θ| & 1 and thus, the integral in (4.8) can be estimated by a constant,
and is trivially less than (a constant independent of j times) 2r(2t−1).

Finally, for r = j, the support P j
j is contained in a cylinder aligned with the ξ1-axis (cf. [GO15, Prop.

A.6]), and therefore

∫

P j
j

∣∣ĝ|h(P~e1
~ξ)
∣∣2 d~ξ ≤

∫

[−2j+1,2j+1]×B
Rd−1 (0,8)

∣∣ĝ|h(P~e1
~ξ)
∣∣2 d~ξ . 2j

∥∥ĝ|h
∥∥2
L2(Rd−1)

≤ 2j‖g‖2Ht(Rd).

Returning to (4.7) and collecting all the factors, we see that the latter two terms (combined into αs
λ resp. βs

λ)
satisfy (4.3), as claimed.

4.3 Localisation in Space

Similarly to the localisation in angle (i.e. ℓ), we require a localisation in space (i.e. ~k) for a function cut off
across a hyperplane, which we will establish in this section. Before we are able to tackle the proof, we need
to investigate the spatial decay of the ridgelets (and a modified variant) in physical space.

Finally, after having dealt with the singular functions in Proposition 4.5, we investigate how spatial decay
of a general L2-function transfers to the ridgelet coefficients in Lemma 4.6.

Lemma 4.4. For arbitrary n ∈ N and an arbitrary rotation R ∈ SO(d), we have that,

|ϕλ(~x)| .
2

j
2

〈
U−1
j,ℓ ~x− ~k

〉2m , (4.9)

∣∣∣F−1
[ ξ1∣∣~ξ
∣∣2 ϕ̂λ(R~ξ)

]
(~x)
∣∣∣ . 2−

j
2

〈
U−1
j,ℓ R~x− ~k

〉2n , (4.10)

where the implicit constants depends only on n (and the choice of window function used to construct ψ̂).

Proof. We start by proving (4.10), inserting the definition and transforming by ~ξ = R−1U−⊤
j,ℓ ~η, which yields
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(because, for rotations, R−1 = R⊤)

F−1
[ ξ1∣∣~ξ
∣∣2 ϕ̂λ(R~ξ)

]
(~x) = 2−

j
2

∫
ξ1∣∣~ξ
∣∣2 ψ̂j,ℓ(R~ξ) exp

(
2πi(~ξ · ~x−R~ξ · Uj,ℓ

~k)
)
d~ξ

= 2−
j
2

∫
ξ1∣∣~ξ
∣∣2 ψ̂j,ℓ(R~ξ) exp

(
2πiR~ξ · Uj,ℓ(U

−1
j,ℓ R~x− ~k)

)
d~ξ

= 2
j
2

∫ (
R−1U−⊤

j,ℓ ~η
)
1∣∣U−⊤

j,ℓ ~η
∣∣2 ψ̂(j,ℓ)(~η) exp

(
2πi~η · (U−1

j,ℓ R~x− ~k)
)
d~η. (4.11)

due to the representation from Assumption 2.13. The idea now is to use integration by parts and

∆~η exp
(
2πi~η · (U−1

j,ℓ R~x− ~k)
)
= −(2π)2

∣∣U−1
j,ℓ R~x− ~k

∣∣2 exp
(
2πi~η · (U−1

j,ℓ R~x− ~k)
)
. (4.12)

to generate sufficiently high powers of
∣∣U−1

j,ℓ R~x− ~k
∣∣ in the denominator.

The support U⊤
j,ℓPj,ℓ ⊆

[
1
4 , 2
]
× BRd−1(0, 4) is bounded from above and below (compare again [GO15,

Prop. A.6]) and so we just have to bound the derivatives independently of j. Due to Assumption 2.13, this
is not a problem for the ψ(j,ℓ)(~η). If we can show the same for the fraction in front, we will have the desired
estimate due to the product rule.

dj,ℓ(~η) :=

(
R−1U−⊤

j,ℓ ~η
)
1∣∣U−⊤

j,ℓ ~η
∣∣2 =

(
R−1R−1

j,ℓD2j~η
)
1∣∣D2j~η

∣∣2 =
2jc1η1 + c2η2 + . . .+ cdηd

22jη21 + η22 + . . .+ η2d
.

Due to the fact that the factor 2j only appears in connection with η1, we only need to consider what happens
when deriving by η1, as all other derivatives just produce higher powers of the denominator without adding
powers of 2j in the numerator. By splitting the term into η1 and the rest, respectively, and adding

0 = −ic1

√
η22 + . . .+ η2d + ic1

√
η22 + . . .+ η2d

in the numerator of the first term, we see that (since the quantity we’re interested is clearly real),

∂k

∂ηk1
dj,ℓ = Re

(
∂k

∂ηk1

c1

2jη1 + i
√
η22 + . . .+ η2d

)
+

∂k

∂ηk1

c2η2 + . . .+ cdηd
22jη21 + η22 + . . .+ η2d

.

The first term resolves to

Re

(
c1(−1)kk!2jk

(
2jη1 + i

√
η22 + . . .+ η2d

)k+1

)
,

where, clearly, the power of 2j is always at least one higher in the denominator than in the numerator.
For the second term, we anticipate Faà di Bruno’s formula (6.32) — the generalisation of the chain rule to
arbitrary order of differentiation — and the generating function machinery of Subsection 6.2 to deal with
the Bell polynomials that are involved, i.e. (6.33). Then, with “inner” function g(x) := 22jx2,

Bn,k(2
2j+1x, 22j+1, 0, . . .) = 22jk

n!

k!

( dn

dtn
tk(2x+ t)k

)∣∣∣
t=0

, for
⌈n
2

⌉
≤ k ≤ n,

and thus

∂k

∂ηk1

c2η2 + . . .+ cdηd
22jη21 + η22 + . . .+ η2d

=
n∑

k=⌈n
2 ⌉

22jkpk(η1)(c2η2 + . . .+ cdηd)

(22jη21 + η22 + . . .+ η2d)
k+1

,
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where pk(η1) = (−1)kn!
(

dn

dtn t
k(2η1 + t)k

)∣∣
t=0

is a polynomial in η1 independent of 2j . In particular, in terms

of powers of 2j , the power in the denominator is always at least two larger than in the numerator.
Taken together, we can see that because |~η| ∼ 1 for ~η ∈ U⊤

j,ℓPj,ℓ, for any multi-index α with |α| ≥ 0,

∂|α|dj,ℓ
∂~ηα

(~η) . 2−j . (4.13)

This allows us to apply (4.12) to (4.11) — boundary terms vanish because of compact support. Conse-
quently, using [GO15, Cor. C.3], we achieve

∣∣∣F−1
[ ξ1∣∣~ξ
∣∣2 ϕ̂λ(R~ξ)

]
(~x)
∣∣∣

=

∣∣∣∣2
j
2

(−4π2)n∣∣U−1
j,ℓ R~x− ~k

∣∣2n
∫

U⊤
j,ℓPj,ℓ

∆n
(
dj,ℓ(~η)ψ̂(j,ℓ)(~η)

)
exp
(
2πi~η · (U−1

j,ℓ R~x− ~k)
)
d~η

∣∣∣∣

.
2

j
2

∣∣U−1
j,ℓ R~x− ~k

∣∣2n
∫

U⊤
j,ℓPj,ℓ

∣∣dj,ℓ(~η)
∣∣
C2n

∣∣ψ̂(j,ℓ)(~η)
∣∣
C2n d~η .

2−
j
2

∣∣U−1
j,ℓ R~x− ~k

∣∣2n .

Finally, this implies

∣∣∣F−1
[ ξ1∣∣~ξ
∣∣2 ϕ̂λ(R~ξ)

]
(~x)
∣∣∣ . 2−

j
2

〈
U−1
j,ℓ R~x− ~k

〉2n ,

because the compact support of ϕ̂λ implies that the function on the left-hand side belongs to C∞(Rd) —

i.e. has no singularities — with respect to ~x (and is bounded independently of ~k) and therefore, we may
replace the absolute value with its regularised version (up to a constant).

The proof of (4.9) proceeds along the same lines, with the simplification that we do not have to consider
dj,ℓ or its derivatives — which also removes the factor 2−j that we had gained from (4.13). This finishes the
proof.

With these tools in hand, we proceed to the promised localisation in space for a function cut off across
a hyper plane.

Proposition 4.5. Let f(~x) = H(~x · ~n − v)g(~x) with g ∈ H
1
2 (Rd), cut off across the hyperplane h =

{~x : ~x · ~n = v}, such that the restriction g|h ∈ L2(Rd−1) satisfies

∣∣g(~x)δ{~x·~n=v}
∣∣ =

∣∣g|h(~x′h)
∣∣ . 〈~x′h〉

−2m
= 〈P~n~x〉−2m

almost everywhere, (4.14)

where ~x′h ∈ R
d−1 is identified with P~n~x = ~x − (~x · ~n)~n. For the solution u = S[f ], the mutilated part (cf.

Proposition 2.10) is of the same form, i.e. u(~x) = u0(~x) +H(~x · ~n− v)u1(~x), and we require

∣∣u1(~x)δ{~x·~n=v}
∣∣ =

∣∣u1|h(~x′h)
∣∣ . 〈~x′h〉

−2m
= 〈P~n~x〉−2m

almost everywhere. (4.15)

Condition (4.14) does not necessarily imply (4.15), but the latter follows for example from the stronger

assumption that |g(~x)| . 〈~x〉−2m
, compare Lemma 2.11.

If the ridgelets are constructed with a window function such that (4.10) holds for m sufficiently large, we

have the following localisation in space in terms of a modified translation parameter ~t(~k),

∣∣αs
λ

∣∣ . 1

a

2−
j
2

(|~t′′|+ ρ21 + ρ22 + 1)m
,

∣∣wλβ
s
λ

∣∣ . 1

a

2
j
2

(|~t′′|+ ρ21 + ρ22 + 1)m
, (4.16)
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where, with θ~n := arccos(~n ·~e1) and φ := θj,ℓ − θ~n,

~t(~k) = ~k − vU−1
j,ℓ ~n, ρ1(~t) :=

1

a
(cosφ t1 − 2j sinφ t2),

a :=

√
22j sin2 φ+ cos2 φ, ρ2(~t) :=

1

a2
(
2j sinφ t1 + cosφ t2

)
.

The essence (4.16) is, in slightly obscured form, that the magnitude of the coefficients of the modified transla-
tion parameter ~t appear unchanged — for d− 1 dimensions — in the decay of the ridgelet coefficients, while
in one dimension (basically, along t1), the magnitude is attenuated by a factor ∼ 2−j, as soon as sinφ is
not negligible. This behaviour corresponds directly to the way the grid of translations in Definition 2.12 is
refined in one direction (resp. the shape of the ridgelets themselves).

Proof. Since g and u1 satisfy exactly the same condition (i.e. (4.14) and (4.15)), we can deal with both

cases at the same time (here exemplarily for αs
λ). Transforming with ~ζ = R~n

~ξ, using (2.6) and applying the
Plancherel identity, this results in (because ζ1 is real)

αs
λ =

−i

2π

∫
ϕ̂λ(~ξ)

(R~n
~ξ)1∣∣~ξ
∣∣2 ĝ|h(P~n

~ξ) d~ξ =
−i

2π

∫
ϕ̂λ(R

−1
~n
~ζ)

ζ1∣∣~ζ
∣∣2F

[
g(R−1

~n ~x)δ{~x·~e1=v}
]
(~ζ) d~ζ

=
−i

2π

∫
F−1

[ ξ1∣∣~ξ
∣∣2 ϕ̂λ(R

−1
~n
~ξ)
]
(~x) g(R−1

~n ~x)δ{x1=v} d~x

=
−i

2π

∫

[~e1]⊥
F−1

[ ξ1∣∣~ξ
∣∣2 ϕ̂λ(R

−1
~n
~ξ)
]( v
~x′

)
g

(
R−1

~n

(
v

~x′

))
d~x′,

where [~e1] denotes the span of ~e1, and [~e1]
⊥ its orthogonal complement. Furthermore, it is easy to check

that R−1
~n

(
v
~x′

)
= R−1

~n

(
0
~x′

)
+ v~n ∈ h, as well as P~nR

−1
~n

(
v
~x′

)
= R−1

~n

(
0
~x′

)
. Therefore, using (4.10) and (4.14),

|αs
λ| . 2−

j
2

∫

[~e1]⊥

1
〈
U−1
j,ℓ R

−1
~n

(
v
~x′

)
− ~k
〉2n

1
〈
R−1

~n

(
0
~x′

)〉2m d~x′

= 2−
j
2

∫

[~e1]⊥

1
〈
U−1
j,ℓ R

−1
~n

(
0
~x′

)
−~t
〉2n

1
〈(

0
~x′

)〉2m d~x′,

where we have split off the component involving v in the first denominator, i.e.

U−1
j,ℓ

(
v

~x′

)
− ~k = U−1

j,ℓ

(
0

~x′

)
−~t, using ~t := ~k − vU−1

j,ℓ R
−1
~n ~e1 = ~k − vU−1

j,ℓ ~n.

Since U−1
j,ℓ R

−1
~n [~e1]

⊥ is still a hyperplane, the first denominator attains its minimum when the left term

corresponds to the orthogonal projection of ~t onto that plane. The normal vector transforms with the
transpose of the inverse of the transformation, i.e.

U−1
j,ℓ R

−1
~n [~e1]

⊥⊥(U−1
j,ℓ R

−1
~n )−⊤~e1 = U⊤

j,ℓ~n, and we set ~s∗ :=
U⊤
j,ℓ~n∣∣U⊤
j,ℓ~n
∣∣ .

Thus, the minimiser of the first denominator is τ(~t) := R~nUj,ℓ(~t−~s∗(~s∗ ·~t)) ∈ [~e1]
⊥. By the transformation(

0
~y′

)
=
(
0
~x′

)
+ τ(~t), we have

|αs
λ| . 2−

j
2

∫

[~e1]⊥

1
〈
U−1
j,ℓ R

−1
~n

(
0
~y′

)
−~s∗(~s∗ ·~t)

〉2n
1

〈(
0
~y′

)
− τ(~t)

〉2m d~y′

= 2−
j
2

∫

[~e1]⊥

1
(∣∣U−1

j,ℓ R
−1
~n

(
0
~y′

)∣∣2 + (~s∗ ·~t)2 + 1
)n

1
〈(

0
~y′

)
− τ(~t)

〉2m d~y′, (4.17)
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where the two summands in the first denominator are now orthogonal to each other, and the last equality
follow by Pythagoras’ theorem.

We will now try to construct a rotation, which will transform the terms in the integral in a way that it
can be dealt with. For reasons of clarity, this will be a two-stop process, first constructing the main rotation
Q, and then a small correction T . The condition on the rotation (that Rj,ℓ~sj,ℓ = ~e1) fixes the first component
of Rj,ℓ~e1 to be cos θj,ℓ. Otherwise, we have the freedom to choose Rj,ℓ such that

Rj,ℓ~e1 =




cos θj,ℓ
− sin θj,ℓ

0
...


, and in the same way, R~n~e1 =




cos θ~n
− sin θ~n

0
...


.

We may choose further images for our rotations, as long as we maintain the property that R~s · R~s′ = ~s ·~s′
for any pair of images R~s,R~s′ we choose for vectors ~s,~s′ ∈ S

d−1, because rotations maintain the intrinsic
(geodesic) distance between points on the sphere. Defining ~s′j,ℓ := P~e1~sj,ℓ (with norm

∣∣sin θj,ℓ
∣∣), we may

therefore choose

R~n

~s′j,ℓ
sin θj,ℓ

=




sin θ~n
cos θ~n

0
...


,

since, by our choice for R~n~e1 above, R~n~e1 · R~n
~s′j,ℓ

sin θj,ℓ
= 0 = ~e1 · ~s′j,ℓ

sin θj,ℓ
. In case that ~sj,ℓ = ~e1 (and thus

sin θj,ℓ = 0), we take R~ne2 = (sin θ~n, cos θ~n, 0, . . .)
⊤, which is a permissible choice for the same reason.

Once more in the same fashion, we are able to determine a rotation Q in the following way

Q−1~e1 = R~n~e1 and Q−1~e2 = R~n

~s′j,ℓ
sin θj,ℓ

,

whereby we achieve

Q−1 =




cos θ~n sin θ~n 0
− sin θ~n cos θ~n 0

0 0 (Q′′)−1


,

Rj,ℓR
−1
~n Q−1 =




cos θj,ℓ sin θj,ℓ 0
− sin θj,ℓ cos θj,ℓ 0

0 0 (V ′′)−1


. (4.18)

The form of the second matrix can be seen since, due to the choice of Q−1~e1, the first column is just Rj,ℓ~e1,
while the second column is calculated as follows. The first entry evaluates to

~e1 ·Rj,ℓR
−1
~n Q−1~e2 = R−1

j,ℓ~e1 ·R−1
~n R~n

~s′j,ℓ
sin θj,ℓ

= ~sj,ℓ ·
P~e1~sj,ℓ
sin θj,ℓ

=

∑d
k=2(~sj,ℓ)

2
k

sin θj,ℓ
=

1− (~sj,ℓ)
2
1

sin θj,ℓ

=
1− cos2 θj,ℓ

sin θj,ℓ
= sin θj,ℓ,

since (~sj,ℓ)1 = ~sj,ℓ ·~e1 = cos θj,ℓ. As the norm of the first row is thus one already, the other entries must be
zero. Similarly,

~e2 ·Rj,ℓR
−1
~n Q−1~e2 = ~e2 ·Rj,ℓ


~sj,ℓ −



(~sj,ℓ)1

0
...





 1

sin θj,ℓ
=

~e2
sin θj,ℓ

·(~e1 − cos θj,ℓRj,ℓ~e1) = cos θj,ℓ
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implies the zeros in the second row and column. The matrices Q′′ resp. V ′′ (restricted to have determinant
one) represent the degrees of freedom we still have in choosing the rotation Q.

Finally, we define the two matrices

Sθ =

(
cos θ − sin θ
sin θ cos θ

)
, T :=

(
Sθ~n 0
0 Id−2

)
,

where Sθ is the standard rotation matrix in two dimensions satisfying SθSφ = Sθ+φ. Inverting (4.18), we
see that

Q =

(
Sθ~n 0
0 Q′′

)
, QR~nR

−1
j,ℓ =

(
Sθj,ℓ 0
0 V ′′

)
, T−1Q =

(
I2 0
0 Q′′

)
,

and consequently, setting φ := θj,ℓ − θ~n,

T−1QR~nR
−1
j,ℓ =

(
Sφ 0
0 V ′′

)
, Rj,ℓR

−1
~n = Rj,ℓR

−1
~n Q−1Q =

(
S−φ 0
0 (V ′′)−1Q′′

)
. (4.19)

Coming back to (4.17), for reasons that will become apparent shortly, we transform with
(
0
~z′

)
= T−1Q

(
0
~y′

)

(since T−1Q leaves the first component invariant!) to arrive at

|αs
λ| . 2−

j
2

∫

[~e1]⊥

(∣∣D2jRj,ℓR
−1
~n Q−1T~z′

∣∣2 + (~s∗ ·~t)2 + 1
)−n

· . . .

. . . ·
〈
Q−1T

(
(0,~z′)⊤ − T−1Qτ(~t)

)〉−2m
d~z′

= 2−
j
2

∫

[~e1]⊥

(∣∣(−2j sinφ z2, cosφ z2, (V
′′)−1~z′′

)⊤∣∣2 + (~s∗ ·~t)2 + 1
)−n

· . . .

. . . ·
〈
(0,~z′)⊤ − T−1Qτ(~t)

〉−2m
d~z′,

(4.20)

where we used the (inverse of the) first equality from (4.19) to evaluate the first denominator. The next step
is to calculate T−1Qτ(~t), which we tackle as follows, this time with the second equality in (4.19),

U⊤
j,ℓ~n = D2−jRj,ℓR

−1
~n ~e1 =

(
2−j cosφ,− sinφ, 0, . . .

)⊤
,

∣∣U⊤
j,ℓ~n
∣∣ = 2−j

√
22j sin2 φ+ cosφ =: 2−ja.

From there on, we compute

~s∗ =
1

a

(
cosφ,−2j sinφ, 0, . . .

)⊤
, ~s∗ ·~t = 1

a
(cosφ t1 − 2j sinφ t2) = ρ1(~t),

and therefore, again with (4.19),

T−1Qτ(~t) = T−1QR~nR
−1
j,ℓD2−j

(
~t− (~s∗ ·~t)~s∗

)

= T−1QR~nR
−1
j,ℓ





2−jt1
t2
~t′′


− ρ1(~t)

a



2−j cosφ
−2j sinφ

0






=



2−j cosφ t1 − sinφ t2
2−j sinφ t1 + cosφ t2

V ′′~t′′


− ρ1(~t)

a




2−j cos2 φ+ 2j sin2 φ
2−j sinφ cosφ− 2j sinφ cosφ

0




=




0
1
a2

(
2j sinφ t1 + cosφ t2

)

V ′′~t′′


 =




0

ρ2(~t)

V ′′~t′′


,
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where the first two components simplify substantially, after inserting ρ1(~t), and expanding the first term

with a2

a2 . We also note that ρ21 + a2ρ22 = t21 + t22.
Continuing from (4.20), we can now bring this in the following form (for convenience, we will not further

denote the dependence of ρ1, ρ2 on ~t)

|αs
λ| . 2−

j
2

∫ ∞

−∞

∫

[~e1,~e2]⊥

(
|~z′′|2 + a2z22 + ρ21 + 1︸ ︷︷ ︸

=:p2

)−n(|~z′′ − V ′′~t′′|2 + (z2 − ρ2)
2 + 1︸ ︷︷ ︸

=:q2

)−m
d~z′′ dz2.

Using Corollary 2.2 for ~z′′ (basically applying Theorem 2.1 in direction V ′′~t′′, transforming to polar coordi-
nates and then once more Theorem 2.1 with respect to the radius), this yields

|αs
λ| . 2−

j
2

∫ ∞

−∞
p−2n

(
|~t′′|+ p2 + q2

)−m
dz2

≤ 2−
j
2

∫ ∞

−∞

(
a2z22 + ρ21 + 1

)−m(
(z2 − ρ2)

2 + |~t′′|+ ρ21 + 1
)−m

dz2

and again with the help of (2.1),

.
2−

j
2

(a2ρ22 + a2(|~t′′|+ ρ21 + 1) + ρ21 + 1)m

(
a2m−1

(ρ21 + 1)
2m−1

2

+
1

(|~t′′|+ ρ21 + 1)
2m−1

2

)

≤ 2−
j
2

(|~t′′|+ ρ21 + ρ22 + 1)m

(
1

a
+

1

a2m

)
≤ 1

a

2−
j
2

(|~t′′|+ ρ21 + ρ22 + 1)m
,

since 1 ≤ a ≤ 2j , which is what we wanted to show for αs
λ.

Repeating the whole procedure for u1 to estimate wλβ
s
λ increases the right-hand side by 2j at worst, due

to the weight (it is not apparent if or how the additional smoothness in the direction of ~s can be utilised,
since we are only integrating over a hyperplane), and the proof is complete.

As the last result in this section, we consider how general decay of the function being tested against the
ridgelet frame transfers to the coefficients.

Lemma 4.6. For a function f ∈ L2 satisfying the decay condition

|f(~x)| . 〈~x〉−2m

for some n ∈ N, the ridgelet coefficients satisfy

∣∣〈ϕλ, f〉
∣∣ . 2−

j
2

((
k1

2j

)2
+ |~k′|2 + 1

)m .

Proof. Using (4.9) and the required decay of f , we estimate and then transform by ~y = Rj,ℓ~x, yielding

∣∣〈ϕλ, f〉
∣∣ =

∣∣∣∣
∫
ϕλ(~x)f(~x) d~x

∣∣∣∣ ≤
∫

2
j
2

〈
U−1
j,ℓ ~x− ~k

〉2n
1

〈
~x
〉2m d~x =

∫
2

j
2

〈
D2j~y − ~k

〉2n
1

〈
~y
〉2m d~y

= 2
j
2

∫ ∞

−∞

∫

Rd−1

1(
|~y′ − ~k′|2 + (2jy1 − k1)2 + 1

)n
1(

|~y′|2 + (y1)2 + 1
)m d~y′ dy1.

By Corollary 2.2, this can be estimated in the following way,

∣∣〈ϕλ, f〉
∣∣ . 2

j
2

∫ ∞

−∞

1(
|~k′|2 + (2jy1 − k1)2 + y21 + 1

)m
1(

(2jy1 − k1)2 + 1
)m dy1

≤ 2
j
2

∫ ∞

−∞

1
(
22j
(
y1 − k1

2j

)2
+ 1
)m

1(
y21 + |~k′|2 + 1

)m dy1,
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which, by (2.1), is less than a multiple of

.
2

j
2

(
22j
(
k1

2j

)2
+ 22j(|~k′|2 + 1) + 1

)m
(
2j(2m−1) +

1
(
|~k′|2 + 1

) 2m−1
2

)
≤ 2−

j
2

((
k1

2j

)2
+ |~k′|2 + 1

)m .

4.4 Proof of Theorem 4.1

With the results of Sections 4.2 and 4.3, we are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. Recall that αλ =
〈
ϕλ, f

〉
and βλ = wλ

〈
ϕλ,S[f ]

〉
from Proposition 4.3. Thus, the

claim of the theorem will follow if we are able to prove

‖αΛ‖
ℓ
p∗+ d

m
w

.

N∑

i=0

‖fi‖Ht and ‖WβΛ‖
ℓ
p∗+ d

m
w

.

N∑

i=0

‖fi‖Ht ,

where the deviation d
n from the best possible value p∗ =

(
t
d + 1

2

)−1
(for fi ∈ Ht), decays with n.

Step 1 – Preparations
First off, we note that due to the linearity of the ridgelet coefficients, resp. the differential equation (1.2),
it suffices to treat a function f(~x) = H(~x · ~n − v)g(~x) and the rest follows through superposition. Also, we
will be able to prove the results for αΛ and βΛ almost completely simultaneously, and will mostly deal with
βΛ (noting, where appropriate, the mitigating factors in the easier αΛ-case). The only additional thing we
have to check for u = S[f ] is that the decay conditions for Lemma 4.6 holds, but this follows directly from
Lemma 2.11.

Furthermore, we recall from Proposition 2.10 that u(~x) = u0(~x)+H(~x ·~n−v)u1(~x) with ‖ui‖Ht . ‖g‖Ht .
Due to (4.1), we also have the necessary conditions to apply Proposition 4.5,

∣∣g|h(P~n~x)
∣∣ . 〈P~n~x〉−2m

,
∣∣u1|h(P~n~x)

∣∣ . 〈P~n~x〉−2m
.

We begin by choosing δ > 0, and will show membership of WβΛ in ℓp
′

w , where p′ = p∗ + δ∗ and

δ∗ = δ
(
t+ d

2

)−1
. The modified δ∗ will have to satisfy a lower bound to ensure that all the arguments hold,

and we will then that d
m is enough to achieve this bound. Following the decomposition βλ = βr

λ + βs
λ, we

will show this for both subsequences separately.

Step 2 – Singular part, large coefficients
We begin with Wβs

Λ, splitting the sequence into two parts, namely the tail

Tj,ℓ :=
{
~k ∈ Z

d :
∣∣Vj,ℓ~t(~k)

∣∣ >
(
2j+1

∣∣sin θj,ℓ
∣∣) δ

d +

√
d

2

}
,

and its complement T c

j,ℓ := Z
d \ Tj,ℓ. Here, ~t(~k) is defined as in Proposition 4.5, and similarly, a and φ are

reused to define Vj,ℓ as the following block-diagonal matrix (with determinant 1
a ),

Vj,ℓ =




cosφ
a

2j sinφ
a 0

2j sinφ
a2

cosφ
a2 0

0 0 Id−2


.

As the first step, we will show membership of the sequence Wβs
Λ|{λ:~k 6∈Tj,ℓ} in ℓp

′

w . Taking the number of

elements whose absolute value exceeds ε, i.e.

N(ε) := #
{
λ : k 6∈ Tj,ℓ ∧ |wλβ

s
λ| ≥ ε

}
,
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an equivalent definition of the ℓp
′

w -norm is

∥∥Wβs
Λ|{λ:~k 6∈Tj,ℓ}

∥∥
ℓp

′
w

∼ sup
ε>0

εN
1
p′ (ε) . ‖g‖Ht ,

which is what we will show in the following.
To do so, we define a further subset of N(ε),

Nj,r(ε) := #
{
(ℓ,~k) : ℓ ∈ Λj

r ∧ k 6∈ Tj,ℓ ∧ |wλβ
s
λ| ≥ ε

}
.

Clearly, (4.3) implies that |wλβ
s
λ|

2 ≤ C2−j‖g‖2Ht , and therefore Nj,r(ε) = 0 if 2j ≥ Cε−2‖g‖2Ht .
Next, we need to determine the cardinality of T c

j,ℓ for ℓ ∈ Λj
r. First we estimate the sum by an integral

(where the maximum of each cell of size [0, 1]d can be at most
√
d
2 away from the value of the function

at ~k ∈ Z
d), and then transform with ~x = Vj,ℓ~t(~k) = Vj,ℓ(~k − vU−1

j,ℓ ~n) — introducing a factor a from the
determinant — to estimate

#T c

j,ℓ ≤
∫
✶{

|Vj,ℓ~t(~k)|≤(2j+1|sin θj,ℓ|)
δ
d +

√
d
} d~k =

∫
a✶{

|~x|≤(2j+1|sin θj,ℓ|)
δ
d +

√
d
} d~x

= aµ
(
BRd

(
0,
(
2j+1

∣∣sin θj,ℓ
∣∣) δ

d +
√
d
))

. 2(j−r)(1+δ). (4.21)

Here, µ is the d-dimensional Lebesgue measure. The restriction defining Tj,ℓ may now seem somewhat
arbitrary, but the result is that the number of translations in the singular set is essentially one-dimensional
(even though the set of translations is d-dimensional!), which gives rise to the following bound for the
cardinality Nj,r (regardless of the condition that the absolute value be larger than ε),

Nj,r(ε) . 2(j−r)(d−1)
︸ ︷︷ ︸
#Λj

r.

· 2(j−r)(1+δ)
︸ ︷︷ ︸
#T c

j,ℓ.

= 2(j−r)(d+δ). (4.22)

As we shall see, the factor d+ δ will directly influence the best p possible for the ℓpw-norm of the subsequence

involving ~k ∈ Tj,ℓ, in the sense that we will achieve

p =
2(d+ δ)

2t+ (d+ δ)
≤ 2(d+ δ)

2t+ d
=
( t
d
+

1

2

)−1

+
2δ

2t+ d
= p∗ + δ∗ = p′, (4.23)

where we recall δ∗ = δ
(
t+ d

2

)−1
.

Of course, restricting the translations to achieve this bound is only half the battle — everything we
exclude now needs to be bounded afterwards — but this shall work out in our favour (and make sense of the
definition of Tj,ℓ), because the tail is precisely defined to contain only the small coefficients.

Let η := ε/‖g‖Ht . Then, by (4.3) and (4.22),

Nj,r(ε) . min
(
2(j−r)(d+δ), η−22−j2−(j−r)(2t−1)

)
.

Calculating the maximal r such that the second term is the minimum, we find

η−22−j2−(j−r)(2t−1) ≤ 2(j−r)(d+δ) ⇐⇒ r ≤ j − log2(η
− 2

σ 2−
j
σ ),

where σ := d+ δ + 2t− 1. Therefore,

Nj(ε) =

j∑

r=1

Nj,r(ε) . min
(
2j(d+δ), η−22−j(η−

2
σ 2−

j
σ )2t−1

)
= min

(
2j(d+δ), η−

2(d+δ)
σ 2−

j(d+δ)
σ

)

Again, we determine the critical j where the minimum switches from one term to the other, and see that

η−
2(d+δ)

σ 2−
j(d+δ)

σ ≤ 2j(d+δ) ⇐⇒ η−
2

σ+1 ≤ 2j ,
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which implies

Nj(ε) .





2j(d+δ), 2j ≤ η−
2

σ+1 ,

η−
2(d+δ)

σ 2−
j(d+δ)

σ , η−
2

σ+1 ≤ 2j ≤ Cη−2,

0, 2j ≥ Cη−2.

Finally, we have

N(ε) =

∞∑

j=0

Nj(ε) .
∑

j : 2j≤η−2/(σ+1)

2j(d+δ) +
∑

j : η−2/(σ+1)≤2j

η−
2(d+δ)

σ 2−
j(d+δ)

σ

. η−
2(d+δ)
σ+1 + η−

2(d+δ)
σ + d+δ

σ
2

σ+1 . η−
2(d+δ)
2t+d+δ ≤ η−p′

,

by (4.23) since η < 1, which finishes the argument for the first subsequence.

Step 3 – Singular part, tail
Next we will show membership of the sequence Wβs

Λ|{λ:~k∈Tj,ℓ} in ℓp
′ ⊆ ℓp

′

w . We begin by taking q < 1, and

— after applying (4.16) — again estimate the sum by an integral (recalling that the maximum per cell can

be at most
√
d
2 away from the value at ~k, which cancels with the shift in the right-hand side of the defining

inequality of Tj,ℓ),

∑

~k∈Tj,ℓ

|wλβ
s
λ|q .

∑

~k∈Tj,ℓ

2
jq
2 a−q

(
|~t′′|2 + ρ21 + ρ22 + 1

)mq

≤
∫
✶{|Vj,ℓ~t|> d/δ

√
2j+1|sin θj,ℓ|

} 2
jq
2 a−q

(
|~t′′|2 + ρ21 + ρ22 + 1

)mq d~k.

Calculating Vj,ℓ
(
t1, t2, t3, . . .

)⊤
=
(
ρ1, ρ2, t3, . . .

)⊤
, we transform the first term by ~x = V −1

j,ℓ (~k − U−1
j,ℓ ~n) to

yield

∑

~k∈Tj,ℓ

|wλβ
s
λ|q .

∫
✶{

|~x|>(2j+1|sin θj,ℓ|)
δ
d

} 2
jq
2

(|~x|2 + 1)mq
a1−q d~x

.

∫ ∞

(2j+1|sin θj,ℓ|)
δ
d

2
jq
2

(r2 + 1)mq
rd−1a1−q dr

. 2
jq
2 2(j−r)(− 2mq−d

d δ+1−q) . 2
jq
2 2(j−r)(− 2mqδ

d +1+δ). (4.24)

Summing over ℓ ∈ Λj
r, which has cardinality #Λj

r . 2(j−r)(d−1), this implies

∑

ℓ∈Λj
r

∑

~k∈Tj,ℓ

|wλβ
s
λ|

q
. 2

jq
2 2−(j−r)( 2mqδ

d −d−δ).

At first glance this estimate might seem of questionable benefit, since the first term has a positive power
of j. However, (4.3) and the following interpolation inequality11 for a sequence (ci)i∈I will save the day,

‖c‖ℓp ≤ ‖c‖θℓq‖c‖
1−θ
ℓ2 where

1

p
=
θ

q
+

1− θ

2
.

11Log-convexity of Lp-norms; follows from applying Hölder’s inequality to |f | = |f |θ|f |1−θ.
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In particular, we have that

(∑

ℓ∈Λj
r

∑

~k∈Tj,ℓ

|wλβ
s
λ|

p

) 1
p

.
(
2

j
2 2−(j−r)( 2mδ

d − d+δ
q )
)θ(

2−
j
2 2−(j−r)(t− 1

2 )
)1−θ

= 2−j( 1
2−θ)2−(j−r)(θ( 2mδ

d − d+δ
q )+(1−θ)(t− 1

2 )), (4.25)

which implies that for θ < 1
2 (i.e. q sufficiently small) and n sufficiently large, we have achieved a finite

ℓp-norm for the tail of the singular part, as we can now simply sum over r:

∑

ℓ

∑

~k∈Tj,ℓ

|wλβ
s
λ|

p
. 2−jp( 1

2−θ).

The condition θ < 1
2 prescribes an upper bound for q depending on the desired p, namely that θ < 1

2 ⇐⇒
1
q >

2
p − 1

2 .
In the same way as above, we get that

∑

ℓ∈Λj
r

∑

~k 6∈Sj,ℓ

|αs
λ|q . 2−

jq
2 2−(j−r)( 2nqδ

d −d−δ),

which lets us set q = p′ directly without having to interpolate (which leads to a slightly improved estimate
for δ∗ than the one below, compare also Step 7).

Step 4 – Singular part, estimating δ∗

To determine a lower bound for δ∗ in dependence of n, we observe that 2mδ
d > d+δ

q has to hold for the second

exponent in (4.25) to be negative (actually this is a source for potential improvement for δ, since, due to
θ < 1

2 , we could afford to let the first term become slightly negative; we will not deal with this, though).
Together with the condition for θ and for the p we want to achieve, this implies

2mδ

d(d+ δ)
>

1

q
>

2

p∗ + δ∗
− 1

2
=

2t+ d

d+ δ
− 1

2
,

where we recalled p∗ = ( t
d + 1

2 )
−1 and δ∗ = δ(t + d

2 )
−1. From this, we can use this to deduce a worst-case

lower bound for the deviation from the optimal p∗ to make our argument work, namely

δ
(2m
d

+
1

2

)
> 2t+

d

2
=⇒ δ∗ > 2

t+ d
4

t+ d
2︸ ︷︷ ︸

<1

1
2m
d + 1

2

,

which is satisfied in particular if

δ∗ ≥ 4d

4n+ d
.

Said otherwise, everything we showed is true if we choose δ∗ = d
m , which, conversely, means that the

coefficient sequence is at least in the space ℓ
p∗+ d

m
w , and possibly in an even smaller space ℓp

∗+δ̄
w , i.e. with

δ̄ ≤ d
m .

Step 5 – Regular part, large coefficients
Like for the singular part, we split the sequence into two parts, again defining a tail

T :=
{
~k ∈ Z

d :
∣∣D2−j

~k
∣∣ > 2j

δ
d +

√
d

2

}
,
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only this time, both subsequences will be summable in ℓp
′ ⊆ ℓp

′

w . Like before, we estimate the cardinality of
the complement T c := Z

d \ T ,

#T c ≤
∫
✶
{D2−j

~k<2j
δ
d +

√
d}

d~k = 2j
∫ 2j

δ
d +

√
d

0

rd−1 dr . 2j(1+δ).

The following estimate will be the key to finish this step. For sequences f, g with g > 0 almost everywhere
and some q > 1, we apply Hölder’s inequality,

∥∥|f | 1q
∥∥
ℓ1

=
∥∥|fg| 1q |g|− 1

q
∥∥
ℓ1

≤
∥∥|fg| 1q

∥∥
ℓq

∥∥|g|− 1
q
∥∥
ℓq′

=
∥∥fg

∥∥ 1
q

ℓ1

∥∥|g|− 1
q−1
∥∥ q−1

q

ℓ1

where q′ = q
q−1 , which is sometimes called the reverse Hölder inequality, because then, by taking qth powers

and bringing the last factor to the left-hand side, “‖fg‖ℓ1 ≥ ‖f‖
ℓ
1
q
‖g‖

ℓ
− 1

q−1
”, if we allowed negative exponents

in the ℓp-quasi-norms.
In our case, we chose q = 2

p′ , f := |Wβr
Λ|

2
and g = ✶{j,~k∈T c}, allowing us to apply the above inequality,

∥∥Wβr
Λ|j,T c

∥∥2
ℓp′

=

( Lj∑

ℓ=1

∑

~k∈T c

|wλβ
s
λ|

p′
) 2

p′

=
∥∥Wβr

Λ|j,T c

∥∥
ℓ
1
q
≤
∥∥Wβr

Λ|j,T c

∥∥2
ℓ2

∥∥✶{j,~k∈T c}
∥∥q−1

ℓ1
.

Since g is constant, the last norm simply evaluates to Lj ·#T c . 2j(d+δ) and therefore, using (4.2), we have

∥∥Wβr
Λ|j,T c

∥∥2
ℓp′

. ε2j2
−2jt2

j(d+δ)( 2
p′ −1)

.

Computing

1

p′
=
(
p∗ +

δ

t+ d
2

)−1

=
(
p∗ +

δ

t+ d
2

)−1

=
t
d + 1

2

1 + δ
d

makes it clear that the second exponent simplifies to

2jd
(
1 +

δ

d

)( t
d + 1

2

1 + δ
d

− 1

2

)
= 2jd

( t
d
− δ

2d

)
= 2j

(
t− δ

2

)
,

and thus

∥∥Wβr
Λ|j,T c

∥∥
ℓp′

. εj2
−j δ

2 ,

which is summable in j.

Step 6 – Regular part, tail
For the tail of Wβr

Λ, we need to use the decay of f resp. S[f ] to apply Lemma 4.6,

∑

~k∈T

|wλβ
r
λ|p

′
.
∑

~k∈T

2−
jp′
2

((
k1

2j

)2
+ |~k′|2 + 1

)mp′ ≤ 2−
jp′
2

∫
✶
{|D2−j

~k|>2j
δ
d }

1
((

k1

2j

)2
+ |~k′|2 + 1

)mp′ d~k.

Transforming with ~t = D2−j
~k, we are able to continue,

= 2−
jp′
2

∫

|~k|>2j
δ
d

2j
(
|~t|2 + 1

)mp′ d~t = 2j(1−
p′
2 )

∫ ∞

2j
δ
d

rd−1−2mp′
dr = 2−j((2mp′−d) δ

d+
p′
2 −1).
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Since this estimate is independent of ℓ, we can sum over the Lj ∼ 2j(d−1) directions on scale j to arrive at

Lj∑

ℓ=1

∑

~k∈T

|wλβ
r
λ|q . 2

−j
(

2mp′δ
d + p′

2 −d−δ
)

. (4.26)

For m sufficiently large, resp. δ not too small (see below), the exponent is negative, and we can thus sum in
j and have shown that the tail of the regular part is in ℓp

′ ⊆ ℓp
′

w .

Step 7 – Regular part, estimating δ∗

Similarly to Step 4, we check which condition δ (resp. δ∗) needs to satisfy so that the results from above

hold (i.e. that the exponent (4.26) is negative). Apart from the negligible term p′

2 in the exponent, this is
the same condition we had for the tail of the singular part, only that now, we don’t need to interpolate,

2mδ

d(d+ δ)
>

1

p′
=

1

p∗ + δ∗
=
t+ d

2

d+ δ
.

Therefore, the condition for δ∗ becomes

δ >
d

2m

(
t+

d

2

)
=⇒ δ∗ >

d

2m
,

which is weaker than the condition from Step 4, and satisfied in particular for d
m .

This allows us to round up the results thus far, and we observe that, taken together, Steps 1–7 prove the
claim of the theorem for t ∈ N.

Step 8 – Interpolating in t
What remains to show is to extend this to the half-line t > 0 via interpolation theory. Taking the operators
defined by

T1f := 〈Φ, f〉, T2f := W〈Φ,S[f ]〉,
we know that, by the frame property, resp. by (4.5),

‖Ti‖L2→ℓ2 <∞, i = 1, 2.

On the other hand, as we have just proved above for any t ∈ N, the Ti also satisfy

‖Ti‖Ht→ℓp
∗+δ∗

w
<∞, i = 1, 2,

where δ∗ ≤ d
m and 1

p∗ = t
d + 1

2 . Using the results from Theorem 2.16, we see that

‖Ti‖Htθ→ℓp̄2
<∞,

where 1
p̄ = 1−θ

2 + θ
p∗+δ∗ . Letting R

+ ∋ t̄ = tθ (regardless of the choice of t ∈ N and 0 < θ < 1), we compute

1

p̄
=

1− θ

2
+
θ(t+ d

2 )

d+ δ
=

t̄

d+ δ
+
θ

2

( d

d+ δ
− 1
)
+

1

2
,

and thus, since θ < 1
2 , we can deduce

p̄ =
d+ δ

t̄+ d
2 + δ

2 (1− θ)
≤ d+ δ

t̄+ d
2

=
( t̄
d
+

1

2

)−1

+ δ∗.

Finally, we remark that ℓp̄2 ⊆ ℓp̄w, and thus the proof is finished, since for arbitrary t ∈ R
+, we have shown

that for f ∈ Ht(Rd) with solution S[f ], it holds that

〈Φ, f〉 ∈ ℓ
p∗+ d

m
w as well as W〈Φ,S[f ]〉 ∈ ℓ

p∗+ d
m

w where p∗ =
( t
d
+

1

2

)−1

.
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4.5 Implications

To conclude this section, we briefly discuss differences to the proof and results in [Can01].

Remark 4.7. An obvious question that presents itself with regard to [Can01] is why Candès was able to
achieve p = p∗, while we only achieve this value up to an arbitrarily small δ∗. Aside from the fact that the
functions we treat do not have to have compact support, one major source for this loss is the fact that we
have so many more translations to deal with (d dimensions vs. one in [Can01]).

To achieve p = p∗, we would have to:

(A) Bound (4.21) in a way that depends purely linearly from 2j−r — since we can see that the deviation
δ directly impacts (4.23) through (4.22).

(B) On the other hand, the ℓq norm of the tail in (4.24) still has to have an exponent of 2j−r that is
negative for sufficiently large m.

The transformation Vj,ℓ in Tj,ℓ is already chosen in a way to be able to optimally estimate (4.24) by achieving
radial symmetry, and due to its functional determinant a ∼ 2j−r, (A) becomes almost impossible. One may

squeeze a slight improvement out of (4.16) by pulling a factor a
1
m in the denominator, which would reduce

the determinant of transforming with Vj,ℓ to a1−
d

2m . Still, this improvement is not enough, as it would force
δ ≤ d

2m in (A), making (B) impossible, sincem would disappear from the exponent. Also, the ℓp-interpolation
does not save us, due to the fact that the condition on θ would necessitate q < 0.

One solution would be if the fraction 1
a in (4.16) had any power that grew with m, even if it were as slow

as log(m) — as this would save (B) in the above scenario. But in general, due to the sharpness of (2.1), this
seems unlikely to be possible. Nevertheless, we do not rule out that δ∗ could be eliminated through other
proof techniques for functions with compact support. △

Remark 4.8. Finally, while we were able to follow the general approach of [Can01] — i.e. localisation in
angle, localisation in space, split off tails etc. — we had very different issue to deal with. On the one hand,
we were able to avoid the sampling estimates in Fourier space (which is essentially due to the fact that
Candès construction is supported on [~sj,ℓ] in frequency, while our construction diffuses this to the sets Pj,ℓ

where we are able to integrate), but on the other hand, issues like the localisation in space became much
more intricate and required “heavy machinery” (in the form of Theorem 2.1) to deal with. The removal of
the condition of compact support — resp. being also able to quantify the coefficient decay for functions with
only polynomial decay — is a welcome bonus, as is the fact that we were able to avoid the numerous case
distinctions that are often necessary in other proofs of optimality (compare e.g. [CD04]). △

5 Conclusion

Wrapping up, the fact that ridgelets approximate mutilated Sobolev functions with the benchmark rate —
up to arbitrarily small δ > 0 — for this class (as set out in Section 3) allows us to combine Theorem 4.1 with
[GO15] to achieve Theorem 1.2. To the best of our knowledge, this is the first construction of an optimally
adapted PDE solver with non-standard frames and for non-elliptic problems.

As indicated in Subsection 1.5, this can be utilised for solving more involved transport equations (1.6),
based on the fact that the ridgelet frame Φ covers all direction~s simultaneously, while the multiscale structure
makes it possible to alleviate the curse of dimensionality, for example by the “sparse discrete ordinates
method” (see e.g. [GS11]).

Finally, as a numerical check of the claimed results, we return to Figure 1.1, which is the solution of
(1.2) with a source function that is a box function times a Gaussian, rotated so that the edges of the box
are aligned with the transport direction ~s (which is chosen to not coincide with any of the ~sj,ℓ in the frame).
Since — apart from the singularities — the function is C∞, we even observe super-polynomial decay, in the
sense that in the doubly logarithmic plot Figure 5.1b, the curve has non-zero curvature (as far as we were
able to calculate) and overtakes any straight line (which would correspond to a fixed power N−σ).
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Figure 5.1: Solution to the advection equation for a singular right-hand side, as well the N -term approxi-
mation rate of the ridgelet frame

Furthermore, the localisation in angle discussed in Proposition 4.3, is also confirmed theoretically. Indeed,
the results are again very convincing, in that, for at least the first 100′000 largest coefficients (on scales 1–10),
the corresponding rotational parameters ℓ are all either the ~sj,ℓ closest to the direction ~s or its immediate
left/right neighbours — across all scales! To put this into perspective, there are 2j+1 different ~sj,ℓ on each
scale, and we can discard all but three of them without discernible loss in accuracy. For further numerical
results in this context see [Obe15, Sec. 8.2].

6 An Integral (In)Equality

The following result turned out to be necessary for the proof of Theorem 4.1, but has proven useful in
other contexts as well (e.g. Lemma 2.11). It is very well-suited for quantifying interactions between (offset)
decaying functions — particularly for convolutions (see Corollary 6.4) — and substantially stronger than
other results of this type we are aware of (see Remark 6.2).

6.1 Main Theorem & Consequences

The following theorem is formulated not in its most general form, but in a form that any one-dimensional
problem of this type can be transformed into.
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Theorem 6.1. For m,n ∈ N, a ∈ R
+
0 , b ∈ R, c, d ∈ R

+, we have

Im,n :=

∫ ∞

−∞

1

(a2(x− b)2 + c2)
m

1

(x2 + d2)
n dx

=
π

((c+ ad)2 + a2b2)
m+n−1

1

c2m−1

1

d2n−1

∑

i+j+2k=2(m+n)−3
i≥2m−1∨ j≥2n−1

cm,n
i,j ci(ad)j(ab)2k

.
a2n−1

((c+ ad)2 + a2b2)
n

1

c2m−1
+

1

((c+ ad)2 + a2b2)
m

1

d2n−1
(6.1)

≤ a2n−1

(a2b2 + a2d2 + c2)
n

1

c2m−1
+

1

(a2b2 + a2d2 + c2)
m

1

d2n−1
. (6.2)

Furthermore, the generating function for Im,n is

∑

m,n≥1

Im,ny
mzn =

πyz√
c2 − y

√
d2 − z

√
c2 − y + a

√
d2 − z

(
√
c2 − y + a

√
d2 − z)2 + a2b2

, (6.3)

and with h(v, w) := (v + w)2 + 1, we also have a generating function for the coefficients,

∑

i,j≥0
m,n≥1

cm,n
i,j viwjymzn

=
h(v, w)yz√

1− h(v, w)y
√
1− h(v, w)z

v
√
1− h(v, w)y + w

√
1− h(v, w)z

(
v
√
1− h(v, w)y + w

√
1− h(v, w)z

)2
+ 1

. (6.4)

The coefficients are zero unless the following conditions are satisfied,

i+ j ≡ 1 mod 2, i+ j ≤ 2(m+ n)− 3, (i ≥ 2m− 1 ∨ j ≥ 2n− 1).

If these are satisfied, the coefficients can be calulated as follows,

cm,n
i,j =

i∑

r=0

j∑

s=0

δ{r+s≡1 mod 2}(−1)m+n+ r+s−1
2

(
r + s

s

)
· . . .

. . . ·
( r−1

2

m− 1

)( s−1
2

n− 1

)(
m+ n− 1

m+ n− 1− i+j−r−s
2

)(
i+ j − r − s

i− r

)
.

Another representation of the coefficients can be found in Proposition 6.11.

Remark 6.2. In [Gra14, App. B.1], it is shown that for dimension k ≥ 1, powers m,n > k, factors p, q > 0
and vectors ~r,~s ∈ R

k, the following inequality holds

∫

Rk

pk

(1 + p|~x−~r|)m
qk

(1 + q|~x−~s|)n d~x .
min(p, q)k

(1 + min(p, q)|~r −~s|)min(m,n)
.

Applied to our context (using the fact that 1 + x2 ≥ 1
2 (1 + |x|)2 ≥ 1

2 (1 + x2), resp. k = 1), implies

Im,n .
1

a

1

(b2 + d2)min(m,n)

1

c2m−1

1

d2n−2min(m,n)
+

1

(a2b2 + c2)min(m,n)

1

c2m−2min(m,n)

1

d2n−1
.

Even though we know that in our case, we can take m to be arbitrarily large (but fixed), this only yields

Im,n .
1

a

1

(b2 + d2)n
1

c2m−1
+

1

(a2b2 + c2)
n

1

c2(m−n)

1

d2n−1
. (6.5)
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In one of the key estimates that we need for Theorem 4.1 (see the proof of Proposition 4.5), c and d will
contain variables in other dimensions to be integrated over, and the fact that one term now has three factors
renders an second application of (6.5) impossible in this case. We would need to accept considerable slack in
the estimates (by dropping one factor in the second term of the right-hand side of (6.5)), which would make
achieving sufficiently strong estimates much more difficult (if not impossible).

Compare also with Corollary 6.4, where we are able to leverage (6.2) into higher dimensions as well — in
our case obtaining a denominator that contains both p and q (in the notation of this remark), see (6.6). △

Remark 6.3. The estimate has one deficiency in terms of the behaviour of a — namely, that Im,n always
decreases with increasing a (albeit much slower than might be expected; the decay with b, c, d is much more
pronounced), whereas the first term in the estimates increases with a until around

a ∼
√

nc2

b2 + d2
for (6.2) resp. a ∼ ncd+

√
n(b2 + d2)c2

b2 + d2
for (6.1)

and only then starts to decrease with a.
This is not avoidable, as the first term of (6.1) actually appears as such (modulo a constant) in the

explicit representation of Im,n, but there, its growth is eliminated by the decay with a of terms like the
second one in (6.1), which have a higher weight in practice.

Consequently, barring a more precise analysis of the constant’s dependence on m and n, the estimate can
be made more efficient in some cases by directly estimating away a ≥ 1 within Im,n and then applying (6.1)
— namely when

1 ≪ a .
(b2 + (c+ d)2)n

(b2 + d2)n

if only the first term should be minimised, which is the case if a ∼ c ≫ b, d, for example. Considering both
terms simultaneously, estimating a ≥ 1 is still beneficial in the following regime,

1 ≪ a .
(b2 + (c+ d)2)n

(b2 + d2)n
(b2 + (c+ d)2)md2n−1

(b2 + (c+ d)2)md2n−1 + (b2 + (c+ d)2)nc2m−1
. △

Proof of Theorem 6.1. The proof is split into several parts. First, we need to determine the partial fraction
decomposition (PFD) of the integrand, which we do in Proposition 6.5. Since m and n are arbitrary, we will
only be able to formulate a recursion at first. However, we can leverage this recursion into explicit generating
functions for the terms appearing in the PFD, which we do in Proposition 6.8. This machinery is necessary,
unfortunately, since mere induction is hopelessly inadequate for the task at hand.

With the help of these two tools, we are able to calculate the generating function (6.3) which we prove
in Proposition 6.9.

In the form (6.3), we have already achieved (essentially) the crucial cancellation (compared to the PFD)
that eliminates the “bad” factors from the denominator. However, what remains to be shown compared to
Theorem 6.1 is that cm,n

i,j = 0 if i ≤ 2(m− 1) ∧ j ≤ 2(n− 1). To gain explicit control over these coefficients,
we first “disassemble” the function (6.3) into its parts (by differentiation) in Proposition 6.11, which yields
another formula for cm,n

i,j (which is more complex, but without binomial coefficients of non-integers).
Then, inserting the “indicators” we need, we put it back together to arrive at the formula (6.4) in

Proposition 6.12. Finally, we take apart (6.4) one last time in a different way that allows us to conclude
that the required coefficients are actually zero in Proposition 6.14. This will finish the proof. Finally, in
Remark 6.15, we mention the conjecture that, always, cm,n

i,j ≥ 0, which, however, we have not (seriously)
attempted to prove.

Before we continue, we record an corollary of Theorem 6.1 for higher dimensions.

35



Corollary 6.4. For m,n ∈ N and c, d > 0, as well as vectors ~r,~s ∈ R
k and invertible matrices A,B such

that AB−1 is diagonalisable12, we assume that two functions satisfy

|f(~x)| .
(∣∣A(~x+~r)

∣∣2 + c2
)−m

and |g(~x)| .
(∣∣B(~x+~s)

∣∣2 + d2
)−n

.

Then, if m,n >
⌈
k
2

⌉
, we have the following estimate for the convolution of f and g,

∣∣[f ∗ g](~t)
∣∣ . 1

|detB|

( ‖BA−1‖k(
|B(~r +~s+~t)|2 + d2 + ‖BA−1‖2c2

)n
1

c2m−k−1
+ . . .

. . . +
‖BA−1‖2m(

|B(~r +~s+~t)|2 + d2 + ‖BA−1‖2c2
)m

1

d2n−k−1

)

and — in a dual way — the same estimate holds after concurrently switching ~r ↔ ~s, A↔ B, c↔ d and
m↔ n, i.e. we can choose the minimum of the two.

Specialising to A = B = I and ~r = ~s = 0, we see that

∣∣[f ∗ g](~t)
∣∣ . 1(

|~t|2 + c2 + d2
)n

1

c2m−k−1
+

1(
|~t|2 + c2 + d2

)m
1

d2n−k−1
. (6.6)

Proof. We begin by inserting the definition, using the assumed estimates and transforming by ~y = B(~x+~s).

∣∣[f ∗ g](~t)
∣∣ =

∣∣∣∣
∫
f(~t− ~x)g(~x) d~x

∣∣∣∣ .
∫ (∣∣A(~t− ~x+~r)

∣∣2 + c2
)−m(∣∣B(~x+~s)

∣∣2 + d2
)−n

d~x (6.7)

=
1

|detB|

∫ (∣∣A(~r +~t−B−1~y +~s)
∣∣2 + c2

)−m(|~y|2 + d2
)−n

d~y.

Decomposing AB−1 = V DV −1 with D being a diagonal matrix with eigenvalues sorted by descending
absolute value and V being the (unitary) matrix of corresponding eigenvectors, we set ~u := V −1A(~r+~s+~t)
and continue by transforming with ~z = V −1~y,

∣∣[f ∗ g](~t)
∣∣ . 1

|detB|

∫ (∣∣−V DV −1~y +A(~r +~s+~t)
∣∣2 + c2

)−m(|~y|2 + d2
)−n

d~y

=
1

|detB|

∫ (∣∣D~z − ~u
∣∣2 + c2

)−m(|~z|2 + d2
)−n

d~z.

The problem we face now is that the above integral behaves “elliptically” in some sense — and in a way we
can’t remove by suitable stretching — because each component appears both as zi and as λizi. With (6.2) in
mind, there are two ways out of this. On the one hand, we could shave off dimension after dimension (since
the zi are decoupled, we can apply (6.2) in each dimension sequentially), but this blows up the number of
terms to (potentially) 2k, and we would “lose” at least half a power of either denominator in each step (or
every second step, if one is careful).

The second way — which we will choose — is to (effectively) make the matrix D a multiple of the identity
(thus removing the “elliptic” influences), by estimating it with its smallest eigenvalue (by magnitude) as
follows below. In view of Remark 6.3, it is not unlikely that this might even be the more efficient estimate in
many cases. A combination of the two methods is of course also possible, in fact, if AB−1 is not diagonalisable,
it is necessary to “cut apart” the Jordan blocks in the way described above.

Each entry of D~z −~u contributes a term (λizi − ui)
2 = |λi|2

(
zi − ui

λi

)2
to the absolute value, and we can

estimate this from below (thus estimating the integral from above) by |λd|2(zi − ui

λi
)2. For notational ease,

we set a := |λd| as well as ~v := D−1~u, and continue from above,
∫ (∣∣D(~z −D−1~u)

∣∣2 + c2
)−m(|~z|2 + d2

)−n
d~z ≤

∫ (
a2|~z − ~v|2 + c2

)−m(|~z|2 + d2
)−n

d~z.

12The restriction that AB−1 has to be diagonalisable is obviously artificial and can be removed in principle (although the
formula would become much more complicated).
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Now we set R := R~v/|~v| (compare Definition 2.3) — satisfying R~v =
(
|~v|, 0, . . .

)⊤
— and transform with

~w := R~z using the invariance of the Euclidian norm under rotations,

∫ (
a2|~z − ~v|2 + c2

)−m(|~z|2 + d2
)−n

d~z

=

∫

Rk

1(
a2(w1 − |~v|)2 + a2|~w′|2 + c2

)m
1(

w2
1 + |~w′|2 + d2

)n d~w,

where ~w =
(
w1

~w′

)
, i.e. ~w′ represents the k − 1 lower components of ~w.

We split off the integration in w1 and apply (6.2),

∫

Rk−1

∫ ∞

−∞

1(
a2(w1 − |~v|)2 + a2|~w′|2 + c2

)m
1(

w2
1 + |~w′|2 + d2

)n dw1 d~w
′

.

∫

Rk−1

a2n−1

(
a2|~v|2 + 2a2|~w′|2 + c2 + a2d2

)n
1

(
a2|~w′|2 + c2

) 2m−1
2

+ . . .

. . .+
1(

a2|~v|2 + 2a2|~w′|2 + c2 + a2d2
)m

1
(
|~w′|2 + d2

) 2n−1
2

d~w′

≤
∫ ∞

0

a2n−k

(
r2 + a2|~v|2 + c2 + a2d2

)n
rk−1

(
r2 + c2

) 2m−1
2

dr + . . .

. . .+

∫ ∞

0

1(
a2r2 + a2|~v|2 + c2 + a2d2

)m
rk−1

(
r2 + d2

) 2n−1
2

dr

≤ 1

2

∫ ∞

−∞

a2n−k

(
r2 + a2|~v|2 + c2 + a2d2

)n
1

(r2 + c2)
m−⌈ k

2 ⌉
1

(c2)⌈ k
2 ⌉− k

2

dr + . . .

. . .+
1

2

∫ ∞

−∞

1(
a2r2 + a2|~v|2 + c2 + a2d2

)m
1

(r2 + d2)
n−⌈ k

2 ⌉
1

(d2)⌈ k
2 ⌉− k

2

dr,

where we split the integrals and transformed the first term by ~x′ = 1
a ~w

′ before changing to polar coordinates.
We then extended the integral over r to −∞ in order to be able to apply (6.2) once more,

.
a2n−k

(
a2|~v|2 + c2 + a2d2

)m−⌈ k
2 ⌉+n− 1

2

1

(c2)⌈ k
2 ⌉− k

2

+
a2n−k

(
a2|~v|2 + c2 + a2d2

)n
1

c2m−k−1
+ . . .

. . .+
a2n−2⌈ k

2 ⌉−1

(
a2|~v|2 + c2 + a2d2

)n−⌈ k
2 ⌉+m− 1

2

1

(d2)⌈ k
2 ⌉− k

2

+
1(

a2|~v|2 + c2 + a2d2
)m

1

d2n−k−1

.
a2n−k

(
a2|~v|2 + c2 + a2d2

)n
1

c2m−k−1
+

1(
a2|~v|2 + c2 + a2d2

)m
1

d2n−k−1
,

because, obviously, a2|~v|2 + c2 + a2d2 > c2, a2d2. Now, a = |λd|, the smallest eigenvalue of AB−1, corre-
sponds to the inverse of the largest eigenvalue of BA−1, which itself is equal to the matrix norm

∥∥BA−1
∥∥.

Furthermore, |D−1~u| = |V D−1~u| = |B(~r +~s+~t)|. Putting everything together, we arrive at

∣∣[f ∗ g](~t)
∣∣ . 1

|detB|

( ‖BA−1‖k(
|B(~r +~s+~t)|2 + d2 + ‖BA−1‖2c2

)n
1

c2m−k−1
+ . . .

. . .+
‖BA−1‖2m(

|B(~r +~s+~t)|2 + d2 + ‖BA−1‖2c2
)m

1

d2n−k−1

)
.
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Depending on the quantities in question (but certainly in the case that
∥∥AB−1

∥∥≪
∥∥BA−1

∥∥), we transform
differently from (6.7),

∣∣[f ∗ g](~t)
∣∣ .

∫ (∣∣A(~t− ~x+~r)
∣∣2 + c2

)−m(∣∣B(~x+~s)
∣∣2 + d2

)−n
d~x

=
1

|detA|

∫ (
|~y|2 + c2

)−m(∣∣B(~t+~s−A−1~y +~r
∣∣2 + d2

)−n
d~y

=
1

|detA|

∫ (
|~y|2 + c2

)−m(∣∣BA−1~y −A(~r +~s+~t)
∣∣2 + d2

)−n
d~y.

Proceeding like before, this means that the convolution also satisfies

∣∣[f ∗ g](~t)
∣∣ . 1

|detA|

( ‖AB−1‖2n(
|A(~r +~s+~t)|2 + c2 + ‖AB−1‖2d2

)n
1

c2m−k−1
+ . . .

. . .+
‖AB−1‖k(

|A(~r +~s+~t)|2 + c2 + ‖AB−1‖2d2
)m

1

d2n−k−1

)
.

and we can choose the one that is smaller.

6.2 Some Basic Generating Function Theory

The main idea of the approach of generating functions — see e.g. [Wil94] — can be described as follows:
take a sequence gn (recursively defined, for example) and calculate

G(x) := ops({gn}∞0 , xn) :=
∑

n≥0

gnx
n,

where “ops” stands for ordinary power series (as opposed to exponential power series, which we will not
need). If G can be identified with a known function, gn can be recovered as

gn =
1

n!

dnG(x)

dxn

∣∣∣∣
x=0

=: [xn]G(x),

which is often possible, even if the recursion for gn cannot be resolved by induction. The notation [xn] will
henceforth denote the nth coefficient of G with respect to x. Two properties follow immediately from the
definition,

[xn](xkG(x)) =
[
xn−k

]
G(x), (6.8)

[xn]G(βx) = βn[xn]G(x), (6.9)

where β ∈ R, as a simple consequence of the chain rule.
The main tool to calculate G are basic identities from the theory of power series, with the advantage

that we can do all calculations purely formally at first, while ultimately, if the resulting G turns out to be
convergent in a ball of radius R > 0 then all our formal calculations are actually justified analytically as
well. This kind of freedom is especially useful if gn is itself a partial sum of the sequence fn,k, since we can
freely interchange the order of summation, i.e.

G(x) :=
∑

n≥0

n∑

k=0

fn,kx
n =

∑

n≥0

∑

k≥0

✶{k≤n}fn,kx
n =

∑

k≥0

∑

n≥k

fn,kx
n =

∑

k≥0

xk

=Fk(x)︷ ︸︸ ︷∑

n≥0

fn−k,kx
n.

If — as will often be the case — we can calculate Fk(x) and consequently G(x), we may then find gn =∑n
k=0 fn,k as [xn]G.
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We consider — again only formally — a function F (x) = ops({fn}∞0 , xn) generated by {fn}, as well as
another one generated by {gn}, G(x) = ops({gn}∞0 , xn); then

ops({fn+1}∞0 , xn) =
F (x)− F (0)

x
, (6.10)

F (x)G(x) = ops

({ n∑

k=0

fngn−k

}∞

0

, xn
)
. (6.11)

Furthermore, the last essential ingredient is having the identification of as many power series as possible
with known functions. But before we define the binomial coefficient for α ∈ C (we will only need α ∈ R)
and n ∈ N0,

(
α

n

)
:=

α(α− 1) · . . . · (α− n+ 1)

n!
=

Γ(α+ 1)

Γ(n+ 1)Γ(α− n+ 1)
,

where the last equality holds in the limit α′ → α if one of the Γ-terms has a singularity at α. By reversing
the signs and order of the factors in the numerator, we see that the following identity holds

(
α

n

)
= (−1)n

(
n− α− 1

n

)
. (6.12)

We only list the power series identities we will need ([Wil94, Sec 2.5]):

1

1− x
=
∑

n≥0

xn, (6.13)

1

(1− x)k+1
=
∑

n≥0

(
n+ k

n

)
xn, k ∈ N0, (6.14)

(1 + x)α =
∑

n≥0

(
α

n

)
xn, α ∈ R, (6.15)

1√
1− 4x

=
∑

n≥0

(
2n

n

)
xn, (6.16)

(
1−

√
1− 4x

2x

)k

=
∑

n≥0

k

n+ k

(
2n+ k − 1

n

)
xn, k ∈ N. (6.17)

Note that, due to (6.12), (6.15) generalises both (6.13) and (6.14).

6.3 Partial Fraction Decomposition

Before we can think about the integration in Im,n, we first need to figure out the partial fraction decompo-
sition (PFD) of the integrand.

Proposition 6.5. Using

∆ := δ+δ− := ((c+ ad)2 + a2b2)((c− ad)2 + a2b2)

it holds that

Pm,n :=
1

(a2(x− b)2 + c2)
m

1

(x2 + d2)
n =

=
m∑

k=1

a2n

∆n+k−1

rnk + a2b x snk
(a2(x− b)2 + c2)m−k+1

+
n∑

ℓ=1

a2(ℓ−1)

∆m+ℓ−1

tℓm + a2b x uℓm
(x2 + d2)n−ℓ+1

,

(6.18)
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where, for k, ℓ ∈ N, the coefficients can be calculated recursively:

rℓk =

k∑

k′=1

r1k−k′+1r
ℓ−1
k′ + a2b2(∆u1k−k′ − (a2b2 + c2)u1k−k′+1)u

ℓ−1
k′ (6.19a)

tℓk =

k∑

k′=1

t1k−k′+1r
ℓ−1
k′ + a4b2d2u1k−k′+1u

ℓ−1
k′ (6.19b)

uℓk =

k∑

k′=1

u1k−k′+1r
ℓ−1
k′ − t1k−k′+1u

ℓ−1
k′ = −sℓk (6.19c)

The calculation first needs to resolve ℓ→ ℓ− 1 → . . .→ 1 back to initial values

r1k = r11t
1
k−1 + a2b2(a2b2 + c2)u11u

1
k−1, (6.20a)

t1k = t11t
1
k−1 − a4b2d2u11u

1
k−1, (6.20b)

u1k = u11t
1
k−1 + t11u

1
k−1 = −s1k, (6.20c)

which themselves can be resolved by recurring back (in k) to

r11 = 3a2b2 + a2d2 − c2, r10 = −1, (6.21a)

t11 = a2b2 − a2d2 + c2, resp. t10 = 1, (6.21b)

u11 = 2 = −s11, u10 = 0 = s10. (6.21c)

Furthermore, we have the following important relation between the coefficients

rℓk + tℓk = 2a2b2uℓk. (6.22)

Proof. First off, we calculate the PFD for the case m,n = 1,

1

a2(x− b)2 + c2
1

x2 + d2
=
a2

∆

3a2b2 + a2d2 − c2 − 2a2b x

a2(x− b)2 + c2
+

1

∆

a2b2 − a2d2 + c2 + 2a2b x

x2 + d2

from which we can read off the left half of (6.21). Next, assuming (6.18) for m and n = 1 we use induction
in m,

Pm+1,1 =

m∑

k=1

a2

∆k

r1k + a2b x s1k
(a2(x− b)2 + c2)m−k+2

+
1

∆m

t1m + a2b x u1m
(a2y2 + c2)(x2 + d2)

. (6.23)

We continue by splitting the second term with the help of (6.21),

1

∆m

t1m + a2b x u1m
(a2(x− b)2 + c2)(x2 + d2)

=
a2

∆m+1

(r11 + a2b x s11)(t
1
m + a2b x u1m)

a2(x− b)2 + c2
+

1

∆m+1

(t11 + a2b x u11)(t
1
m + a2b x u1m)

x2 + d2

=
a2

∆m+1

r11t
1
m + a2b x(r11u

1
m + s11t

1
m) + a4b2x2s11u

1
m

a2(x− b)2 + c2
+ . . .

. . .+
1

∆m+1

t11t
1
m + a2b x(t11u

1
m + u11t

1
m) + a4b2x2u11u

1
m)

x2 + d2

Considering (6.21c), we collect the x2-terms in the numerators,

2a4b2u1m
∆m+1

(
x2

x2 + d2
− a2x2

a2(x− b)2 + c2

)
=

2a4b2u1m
∆m+1

(
1− d2

x2 + d2
− 1 +

a2b2 + c2 − 2a2b x

a2(x− b)2 + c2

)
.
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Coming back to (6.23), we set the abbreviation f1(x) := a2(x − b)2 + c2 for the first denominator, and
compute that

Pm+1,1 =

m∑

k=1

a2n

∆k

r1k + a2b x s1k
f1(x)m−k+2

+

t1m+1︷ ︸︸ ︷
t11t

1
m − a4b2d2u11u

1
m + a2b x(

u1
m+1︷ ︸︸ ︷

t11u
1
m + u11t

1
m)

∆m+1(x2 + d2)
+ . . .

. . .+
a2

∆m+1f1(x)

(
r11t

1
m+ a2b2(a2b2+ c2)u11u

1
m︸ ︷︷ ︸

r1m+1

+ a2b x(r11u
1
m+ s11t

1
m − 4a2b2u1m︸ ︷︷ ︸

=−u1
1t

1
m−t11u

1
m=s1m+1

)
)
,

because r11 − 4a2b2 = −t11 and s11 = −u11. This coincides with the recurrences in (6.20), as claimed.
As claimed in (6.22), the identity r11 + t11 = 4a2b2 can be extended (here first for ℓ = 1),

r1k + t1k = (r11 + t11)t
1
k−1 + 2a2b2(a2b2 − a2d2 + c2)u1k−1

= 4a2b2t1k−1 + 2a2b2t11u
1
k−1 = 2a2b2u1k,

(6.24)

which will help cut short some computations below.
Now we come to the induction in n. The case for arbitrary m and n = 1 has been proved above, which

covers the base case. Under the induction hypothesis that (6.18) holds for m,n ∈ N, we have

Pm,n+1 =
m∑

k=1

1

∆n+k−1

a2n(rnk + a2b x snk )

f1(x)m−k+1

1

x2 + d2
+

n∑

ℓ=1

1

∆m+ℓ−1

a2(ℓ−1)(tℓm + a2b x uℓm)

(x2 + d2)n−ℓ+2
. (6.25)

Clearly, we can now apply our previous knowledge (the case with n = 1), i.e.

1

(a2(x− b)2 + c2)m−k+1

1

x2 + d2

=

m−k+1∑

k′=1

1

∆k′

a2(r1k′ + a2b x s1k′)

(a2(x− b)2 + c2)m−k+1−k′+1
+

1

∆m−k+1

t1m−k+1 + a2b x u1m−k+1

x2 + d2

Inserting this into (6.25) yields

m∑

k=1

a2n

∆n+k−1

rnk + a2b x snk
(a2(x− b)2 + c2)m−k+1

1

x2 + d2

=

m∑

k=1

m−k+1∑

k′=1

a2(n+1)

∆n+k+k′−1

r1k′rnk + a2b x(r1k′snk + s1k′rnk ) + a4b2x2s1k′snk
(a2(x− b)2 + c2)m−k−k′+2

+ . . .

. . .+

m∑

k=1

a2n

∆m+n

t1m−k+1r
n
k + a2b x(t1m−k+1s

n
k + u1m−k+1r

n
k ) + a4b2x2u1m−k+1s

n
k

x2 + d2
.

We replace the undesired quadratic part a4b2x4 depending on the denominator of the term we’re dealing
with,

a4b2x2 = a2b2
(
a2(x− b)2 + c2

)(
1− a2b2 + c2 − 2a2b x

a2(x− b)2 + c2

)
,

a4b2x2 = a4b2
(
x2 + d2

)(
1− d2

x2 + d2

)
,

and change the summation indices as follows (demonstrated for only one term):

m∑

k=1

m−k+1∑

k′=1

r1k′rnk =
m−1∑

k=0

m−k∑

k′=1

r1k′rnk+1 =
m−1∑

k=0

m−k−1∑

k′=0

r1k′+1r
n
k+1 =

m−1∑

k′′=0

∑

k+k′=k′′

r1k+1r
n
k′+1

=

m−1∑

k′′=0

k′′∑

k′=0

r1k′′−k′+1r
n
k′+1 =

m∑

k=1

k−1∑

k′=0

r1k−k′rnk′+1 =
m∑

k=1

k∑

k′=1

r1k−k′+1r
n
k′
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This leads to

m∑

k=1

a2n

∆n+k−1

rnk + a2b x snk
(a2(x− b)2 + c2)m−k+1

1

x2 + d2

=

m∑

k=1

a2(n+1)

∆n+k

(∑k
k′=1 r

1
k−k′+1r

n
k′ − a2b2(a2b2 + c2)s1k−k′+1s

n
k′

(a2(x− b)2 + c2)m−k+1
+ . . .

. . .+
a2b x

∑k
k′=1 s

1
k−k′+1r

n
k′ + (r1k−k′+1 − 2a2b2u1k−k′+1)s

n
k′

(a2(x− b)2 + c2)m−k+1
+ . . .

. . .+

∑k
k′=1 a

2b2s1k−k′+1s
n
k′

(a2(x− b)2 + c2)m−k

)
+

m∑

k′=1

a2n

∆m+n

(
t1m−k′+1r

n
k′ + a4b2d2s1m−k′+1s

n
k′

x2 + d2
+ . . .

. . .+
a2b x(t1m−k′+1s

n
k′ + u1m−k′+1r

n
k′)

x2 + d2
+ a4b2u1m−k′+1s

n
k′

)
.

The terms with x2 + d2 in the denominator exactly match the claimed t- and u-terms from (6.19) for k = m
and ℓ = n+ 1, and thus we only have to deal with the remaining terms having powers of a2(x− b)2 + c2 in
the denominator (as well as the very last term). To harmonise those powers, we perform an index shift for
the third term (except the last summand, which will cancel with the very last term above), to arrive at

m∑

k=2

a2(n+1)

∆n+k−1

∑k−1
k′=1 a

2b2s1k−k′snk′

(a2(x− b)2 + c2)m−k+1
+
a2(n+1)

∆m+n

m∑

k′=1

a2b2snk′(

=0︷ ︸︸ ︷
s1m−k′+1 + u1m−k′+1).

Here, we can extend the summation to
∑m

k=1

∑k
k′=1, because all additional terms are zero.

Furthermore, due to (6.24), we can simplify the second term (containing all terms with the factor a2b x)
to

m∑

k=1

k∑

k′=1

a2(n+1)

∆n+k

a2b x(t1k−k′+1u
n
k′ − u1k−k′+1r

n
k′)

(a2(x− b)2 + c2)m−k+1
.

Therefore,

Pm,n+1 =

m∑

k=1

a2(n+1)

∆n+k

(∑k
k′=1 r

1
k−k′+1r

n
k′ + a2b2unk′(∆u1k−k′ − (a2b2 + c2)u1k−k′+1)

(a2(x− b)2 + c2)m−k+1
+ . . .

. . .+
a2b x

∑k
k′=1 t

1
k−k′+1u

n
k′ − u1k−k′+1r

n
k′

(a2(x− b)2 + c2)m−k+1

)
+

n+1∑

ℓ=1

a2(ℓ−1)

∆m+ℓ−1

tℓm + a2b x uℓm
(x2 + d2)n−ℓ+2

,

which now also matches the r- and s-terms in (6.19), and in particular also un+1
m = −sn+1

m .
Finally, we want to extend (6.24) to (6.22), which can be done as follows,

rℓk + tℓk =

k∑

k′=1

(r1k−k′+1 + t1k−k′+1)r
ℓ−1
k′ + a2b2(∆u1k−k′ − t11u

1
k−k′+1︸ ︷︷ ︸

=u1
1t

1
k−k′+t11u

1
k−k′

)uℓ−1
k′

=
k∑

k′=1

2a2b2u1k−k′+1r
ℓ−1
k′ + a2b2

(
(

=4a4b2d2

︷ ︸︸ ︷
∆− (t11)

2)u1k−k′ − 2t11t
1
k−k′︸ ︷︷ ︸

=−2t1
k−k′+1

)
uℓ−1
k′ = 2a2b2uℓk.

Remark 6.6. We note that the recursion (6.20) is formulated in terms of t- and u-terms because we chose
to induce in m first — inducting over n first would lead to a different update rule (6.20)! △
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6.4 Generating Functions for the PFD

The following result about coupled recursions answers an obvious question to ask in this context, and as
such, is certainly known already. However, since the solution is quite trivial, we have not searched for a
reference, but rather proved it ourselves.

Proposition 6.7. For a recursion

(
gk
hk

)
=M

(
gk−1

hk−1

)
=Mk−i

(
gi
hi

)
with M =

(
m1,1 m1,2

m2,1 m2,2

)
,

with arbitrary M and initial value
(
gi
hi

)
, where i ≥ 0, the generating functions G(y) = ops

({
gk
}∞
0
, yk
)

and

H(y) = ops
({
hk
}∞
0
, yk
)

are given by

G(y) = yi
(m1,2hi −m2,2gi)y + gi
det(M)y2 − tr(M)y + 1

, H(y) = yi
(m2,1gi −m1,1hi)y + hi
det(M)y2 − tr(M)y + 1

. (6.26)

Proof. Let us begin by assuming that M is diagonalisable. Then there exists an invertible matrix Q such
that

M = Q

(
λ1 0
0 λ2

)
Q−1.

Setting
(g′

i

h′
i

)
:= Q−1

(
gi
hi

)
, we can calculate — because gk = 0 for k < i — that

(
G(y)

H(y)

)
=
∑

k≥0

(
gk
hk

)
yk =

∑

k≥i

Q

(
λk−i
1 0

0 λk−i
2

)(
g′i
h′i

)
yk = yiQ

∑

k≥0

(
g′iλ

k
1y

k

h′iλ
k
2y

k

)
= yiQ

( g′
i

1−λ1y

h′
i

1−λ2y

)
.

Since λ1λ2 = det(M) and λ1 + λ2 = tr(M), this implies

(
G(y)

H(y)

)
=

yi

det(M)y2 − tr(M)y + 1
Q

(
g′i(1− λ2y)

h′i(1− λ1y)

)
.

By explicitly calculating the eigenvalues and eigenvectors in terms of the mi,j , one can check that (note the
switched eigenvalues!)

Q

(
λ2 0
0 λ1

)
Q−1 =

(
m2,2 −m1,2

−m2,1 m1,1

)
,

and therefore

Q

(
g′i(1− λ2y)

h′i(1− λ1y)

)
= QQ−1

(
gi
hi

)
− y

(
m2,2 −m1,2

−m2,1 m1,1

)(
gi
hi

)
=

(
gi + y(m1,2hi −m2,2gi)

hi + y(m2,1gi −m1,1hi)

)
,

which finishes the proof for diagonalisable M .
If M is not diagonalisable, we can choose a sequence Mn of diagonalisable matrices which converge to

M in an appropriate norm (e.g. the Frobenius-norm), since, in the space C
d×d, non-diagonalisable matrices

are a subset of the hypersurface where the discriminant of the characteristic polynomial is zero.
For Gn(y) and Hn(y) corresponding to Mn, we see that they depend continuously on the coefficients

(mi,j)n of Mn — taking an appropriate norm with respect to y over a sufficiently small ball around the origin
(such that the denominator is always positive) — with no blow-up for Mn converging to non-diagonalisable
M , and therefore Gn(y) and Hn(y) converge to the G(y), H(y) formed with M . This finishes the proof.
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Proposition 6.8. Letting q := a2b2+a2d2−c2, we can calculate the generating functions for the coefficients
of the PFD of Pm,n,

R(y, z) :=
∑

ℓ≥1

Rℓ(y)zℓ :=
∑

ℓ≥1

∑

k≥1

rℓky
kzℓ = yz

∆(y − z) + r11
∆(y − z)2 − 2t11y − 2qz + 1

, (6.27a)

T (y, z) :=
∑

ℓ≥1

T ℓ(y)zℓ :=
∑

ℓ≥1

∑

k≥1

tℓky
kzℓ = yz

−∆(y − z) + t11
∆(y − z)2 − 2t11y − 2qz + 1

, (6.27b)

U(y, z) :=
∑

ℓ≥1

U ℓ(y)zℓ :=
∑

ℓ≥1

∑

k≥1

uℓky
kzℓ = yz

2

∆(y − z)2 − 2t11y − 2qz + 1
, (6.27c)

and U(y, z) = −S(y, z). Then,

rℓk =
[
ykzℓ

]
R(y, z), tℓk =

[
ykzℓ

]
T (y, z), uℓk =

[
ykzℓ

]
U(y, z).

Proof. We begin by considering T 1 and U1 — if we write (6.20b) and (6.20c) in matrix form, we see that
(
t1k
u1k

)
=M

(
t1k−1

u1k−1

)
=Mk−1

(
t11
u11

)
with M :=

(
t11 −2a4b2d2

2 t11

)
.

Even though going back to initial values
(r10
u1
0

)
=
(
1
0

)
would be possible, we omit it on purpose, because the

case for m = 0 is not of interest to us (compare the definition of Im,n).
Fortunately, it turns out that we know the determinant of M already from somewhere,

det(M) = ∆, tr(M) = 2t11,

and therefore, by (6.26), we see that

T 1(y) = y
−
(

=∆︷ ︸︸ ︷
4a4b2d2 + (t11)

2
)
y + t11

∆y2 − 2t11y + 1
, U1(y) =

2y

∆y2 − 2t11y + 1

Since (6.22) implies that R1(y) + T 1(y) = 2a2b2U1(y), we can easily calculate

R1(y) = y
∆y + r11

∆y2 − 2t11y + 1
.

Now we come to the full recursion, recalling that Rℓ(y) =
∑

k≥1 r
ℓ
ky

k (and correspondingly for U , T ) —

which effectively means that we have set rℓ0 to zero for the function Rℓ, resp. R. Starting from (6.19a) and
applying (6.10) — which is now easier due to the choice regarding rℓ0 — it follows that

Rℓ(y)

y
=
∑

k≥0

rℓk+1y
k =

∑

k≥0

yk
k+1∑

k′=1

r1k−k′+2r
ℓ−1
k′ + a2b2(∆u1k−k′+1 − (a2b2 + c2)u1k−k′+2)u

ℓ−1
k′ .

We treat the terms separately, using (6.11), to compute

∑

k≥0

yk
k+1∑

k′=1

r1k−k′+2r
ℓ−1
k′ =

∑

k≥0

yk
k∑

k′=0

r1k−k′+1r
ℓ−1
k′+1 =

(∑

k≥0

r1k+1y
k

)(∑

k≥0

rℓ−1
k+1y

k

)
=
R1(y)

y

Rℓ−1(y)

y
.

Applying same procedure to the other terms, we see that, due to the choice to omit rℓ0 (and because uℓ0 is
zero anyway),

Rℓ(y) =
∆y + r11

∆y2 − 2t11y + 1
Rℓ−1(y) + 2a2b2

∆y − a2b2 − c2

∆y2 − 2t11y + 1
U ℓ−1(y).
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is a well-defined recursion for Rℓ with initial value ℓ = 1. For the U -recursion, we proceed in the same way
to arrive at

U ℓ(y) =
2

∆y2 − 2t11y + 1
Rℓ−1(y) +

∆y − t11
∆y2 − 2t11y + 1

U ℓ−1(y).

This allows us to again use Proposition 6.7 with i = 1 and z instead of y, by writing

(
Rℓ(y)

U ℓ(y)

)
=

(
1

∆y2 − 2t11y + 1

(
∆y + r11 2a2b2(∆y − a2b2 − c2)

2 ∆y − t11

)

︸ ︷︷ ︸
=:N

)ℓ−1(
R1(y)

U1(y)

)
.

Again, some factors in the determinant cancel,

det(N) =
∆

∆y2 − 2t11y + 1
, tr(N) = 2

∆y +

=q︷ ︸︸ ︷
a2b2 + a2d2 − c2

∆y2 − 2t11y + 1
,

and we see that

U(y, z) = z
∆y2 − 2t11y + 1

∆z2 − 2(∆y + q)z +∆y2 − 2t11y + 1

(

=0︷ ︸︸ ︷
N2,1(∆y + r11)− 2N1,1)yz + 2y

∆y2 − 2t11y + 1

=
2yz

∆(y − z)2 − 2t11y − 2qz + 1
,

R(y, z) = z
(2N1,2 −N2,2(∆y + r11))yz + (∆y + r11)y

∆z2 − 2(∆y + q)z +∆y2 − 2t11y + 1
= yz

∆(y − z) + r11
∆(y − z)2 − 2t11y − 2qz + 1

,

because 2N1,2 −N2,2(∆y + r11) = −∆.
To conclude, we can use the fact that (6.22) implies R(y, z) + T (y, z) = 2a2b2U(y, z), which implies

T (y, z) = yz
−∆(y − z) + t11

∆(y − z)2 − 2t11y − 2qz + 1
.

6.5 Generating Function for Im,n

We begin by noting that for values at half-integers, the Gamma function can be evaluated as follows (m ∈ N0)

Γ
(1
2
+m

)
=

(2m)!

4mm!

√
π, Γ

(1
2
−m

)
=

(−4)mm!

(2m)!

√
π, (6.28)

which can be shown by induction using the functional equation Γ(x + 1) = xΓ(x) and the well-known fact
that Γ

(
1
2

)
=

√
π.

This allows us to explicitly calculate the constants of the integral over one of the terms in the PFD,
transforming first with y = a

c (x−b), using the fact that the resulting function is even, and finally transforming
with t = 1

y2+1 ,

∫ ∞

−∞

1

(a2(x− b)2 + c2)m
dx =

2

c2m

∫ ∞

0

1

(y2 + 1)m
c

a
dy =

2

a c2m−1

∫ 0

1

tm
−1

2
√
t
3√

1− t
dt

=
1

a c2m−1

∫ 1

0

tm− 1
2−1(1− t)

1
2−1 dt =

1

a c2m−1
B
(
m− 1

2
,
1

2

)

=
1

a c2m−1

Γ(m− 1
2 )Γ(

1
2 )

Γ(m)
=

π

a c2m−1

(
2(m−1)
m−1

)

4m−1
, (6.29)

using the definition of the Beta function as well as (6.28).
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Proposition 6.9. The generating function for Im,n is

∑

m≥1

∑

n≥1

Im,ny
mzn =

πyz√
c2 − y

√
d2 − z

√
c2 − y + a

√
d2 − z

(
√
c2 − y + a

√
d2 − z)2 + a2b2

.

In particular, for m,n ∈ N, we have

Im,n =
[
ym−1zn−1

] π√
c2 − y

√
d2 − z

√
c2 − y + a

√
d2 − z

(
√
c2 − y + a

√
d2 − z)2 + a2b2

. (6.30)

Proof. We begin by inserting (6.18),

Im,n =

∫ ∞

−∞
Pm,n dx =

∫ ∞

−∞

m∑

k=1

a2n

∆n+k−1

rnk + a2b x snk
(a2(x− b)2 + c2)m−k+1

+

n∑

ℓ=1

a2(ℓ−1)

∆m+ℓ−1

tℓm + a2b x uℓm
(x2 + d2)n−ℓ+1

dx.

The u-terms vanish because the integral is an odd function, and for the s-terms — after shifting x accordingly
for the first sum — the same happens. However, we need to pay attention to the terms with k = m and
ℓ = n, because they are not integrable in x by themselves, but we will see that together, they are.

Im,n =

∫ ∞

−∞

m−1∑

k=1

a2n

∆n+k−1

rnk + a2b2snk
(a2x2 + c2)m−k+1

+
n−1∑

ℓ=1

a2(ℓ−1)

∆m+ℓ−1

tℓm
(x2 + d2)n−ℓ+1

+ . . .

. . .+
a2(n−1)

∆n+m−1

(
rnm

a2x2 + c2
+

tnm
x2 + d2

+ a2snm

(
a2b(x+ b)

a2x2 + c2
− b x

x2 + d2

))
dx. (6.31)

We begin by treating the last term, first calculating the definite integral for arbitrary 0 < X−, X+ < ∞,
splitting and transforming appropriately,

∫ X+

−X−

a2b(x+ b)

a2x2 + c2
− b x

x2 + d2
dx

=
b

2

∫ X+

−X−

2a2x

a2x2 + c2
dx+

∫ X+

−X−

a2b2

a2x2 + c2
dx− b

2

∫ X+

−X−

2x

x2 + d2
dx

=
b

2

(∫ a2X2
+

0

−
∫ a2X2

−

0

)
1

u+ c2
du+

a b2

c

∫ a
c X+

− a
c X−

1

u2 + 1
du− b

2

(∫ X2
+

0

−
∫ X2

−

0

)
1

u+ d2
du

=
b

2
log
(a2X2

+ + c2

a2X2
− + c2

)
+
a b2

c

(
arctan

(a
c
X+

)
− arctan

(
−a
c
X−
))

− b

2
log
(X2

+ + d2

X2
− + d2

)

=
b

2

(
log
(a2X2

+ + c2

X2
+ + d2

)
− log

(a2X2
− + c2

X2
− + d2

))
+
a b2

c

(
arctan

(a
c
X+

)
+ arctan

(a
c
X−
))
.

We can see that the integral does not only exist as a principal value, but converges to a finite number in X−
and X+ separately, and therefore,

lim
X−→∞

lim
X+→∞

∫ X+

−X−

a2b(x+ b)

a2x2 + c2
− b x

x2 + d2
dx =

b

2

(
log(a2)− log(a2)

)
+
a b2

c

(π
2
+
π

2

)
=
πa b2

c
.

Continuing from (6.31), we apply (6.29) and see that the terms we have just treated separately actually
conform to the pattern exhibited by the other terms — i.e. we can extend the summation to k = m and
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ℓ = n again.

Im,n =

m∑

k=1

1

∆n+k−1

a2n−1

c2(m−k)+1

π

4m−k

(
2(m− k)

m− k

)(
rnk + a2b2snk

)
+ . . .

. . .+

n∑

ℓ=1

1

∆m+ℓ−1

a2(ℓ−1)

d2(n−ℓ)+1

π

4n−ℓ

(
2(n− ℓ)

n− ℓ

)
tℓm

=
π

∆m+n−1c2m−1d2n−1

( m∑

k=1

∆m−kc2(k−1)(ad)2n−1
(
2(m−k)
m−k

)

4m−k

(
rnk + a2b2snk

)
+ . . .

. . .+
n∑

ℓ=1

∆n−ℓc2m−1(ad)2(ℓ−1)

4n−ℓ

(
2(n− ℓ)

n− ℓ

)
tℓm

)

=:
π

∆m+n−1c2m−1d2n−1
Qm,n.

We deal with the two sum separately (reversing the order of k), calculating the generating function that will
have the term we’re looking for as the mth coefficient.

∑

m≥0

m∑

k=1

∆m−kc2(k−1)(ad)2n−1 1

4m−k

(
2(m− k)

m− k

)(
rnk + a2b2snk

)
ym

=
∑

m≥0

∑

k≥0

✶{k≤m−1}∆
kc2(m−k−1)(ad)2n−1 1

4k

(
2k

k

)(
rnm−k − a2b2unm−k

)
ym

= (ad)2n−1
∑

k≥0

( ∆

4c2

)k(2k
k

)
c−2

∑

m≥k+1

(
rnm−k − a2b2unm−k

)
(c2y)m

= (ad)2n−1
∑

k≥0

(∆
4

)k(2k
k

)
yk+1

∑

m≥0

(
rnm+1 − a2b2unm+1

)
(c2y)m

= (ad)2n−1
∑

k≥0

(∆
4

)k(2k
k

)
yk+1

(Rn(c2y)− a2b2Un(c2y)

c2y

)

= [zn]
(ad)2n−1y√

1−∆y

(R(c2y, z)− a2b2U(c2y, z)

c2y

)

where we used (6.10) — recalling that Rn and Un have no constant term — and the generating functions of
Proposition 6.8, as well as (6.16) for the remaining sum in k.

Using the same procedure, we see that

n∑

ℓ=1

∆n−ℓc2m−1(ad)2(ℓ−1) 1

4n−ℓ

(
2(n− ℓ)

n− ℓ

)
tℓm = [ymzn]

c2m−1z√
1−∆z

T (y, a2d2z)

a2d2z
,

since t0m = 0 for all m ∈ N.
Then, for m,n ≥ 1, using (6.9),

Qm,n =
[
ymzn

] y

ad
√
1−∆y

R(c2y, a2d2z)− a2b2U(c2y, a2d2z)

c2y
+

z

c
√
1−∆z

T (c2y, a2d2z)

a2d2z

=
[
ymzn

] adyz√
1−∆y

∆(c2y − a2d2z) + r11 − 2a2b2

∆(c2y − a2d2z)2 − 2t11c
2y − 2q a2d2z + 1

+ . . .

. . .+
cyz√
1−∆z

−∆(c2y − a2d2z) + t11
∆(c2y − a2d2z)2 − 2t11c

2y − 2q a2d2z + 1

=
[
ym−1zn−1

] ad
√
1−∆z(∆(c2y − a2d2z) + q)− c

√
1−∆y(∆(c2y − a2d2z)− t11)√

1−∆y
√
1−∆z(∆(c2y − a2d2z)2 − 2c2t11y − 2a2d2qz + 1)

,
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where we have used (6.8) for the last equality.
The next crucial realisation is to (try to) factor everything in terms of v(y) :=

√
1−∆y and w(z) :=√

1−∆z, which works out almost miraculously well. First for the last factor of the denominator (multiplied
by ∆),

∆
(
∆(c2y − a2d2z)2 − 2c2t11y − 2a2d2qz + 1

)

=
(
c2(1− v2)− a2d2(1− w2)

)2 − 2c2t11(1− v2)− 2a2d2q(1− w2) + ∆

= c4v4 − 2a2c2d2v2w2 + a4d4w4 + 2c2v2(t11 + a2d2 − c2︸ ︷︷ ︸
a2b2

) + . . .

. . .+ 2a2d2w2(

a2b2︷ ︸︸ ︷
q − a2d2 + c2) +

a4b4︷ ︸︸ ︷
c4 − 2a2c2d2 + a4d4 − 2c2t11 − 2a2d2q +∆

= (c2v2 + a2d2w2 + a2b2)2 − 4a2c2d2v2w2

= (c2v2 + a2d2w2 + a2b2 + 2acdvw)(c2v2 + a2d2w2 + a2b2 − 2acdvw)

=
(
(cv + adw)2 + a2b2

)(
(cv − adw)2 + a2b2

)

and then, in similar fashion for the numerator

adw(∆(c2y − a2d2z) + q)− cv(∆(c2y − a2d2z)− t11) = (cv + adw)
(
(cv − adw)2 + a2b2

)
,

which finally achieves the cancellation that will turn out to be the key to get rid of the factor δ− in the
denominator of the PFD. Taken together, this yields

Qm,n =
[
ym−1zn−1

] ∆

v(y)w(z)

cv(y) + adw(z)

(cv(y) + adw(z))2 + a2b2
,

Finally, recalling Im,n = πQm,n/(∆
m+n−1c2m−1d2n−1), we apply (6.9) to arrive at

Im,n =
[
ym−1zn−1

] π

c2m−1d2n−1

1√
1− y

√
1− z

c
√
1− y + ad

√
1− z

(c
√
1− y + ad

√
1− z)2 + a2b2

,

and once more using (6.9), to yield the representation (6.30). This proves the claimed generating function
for Im,n.

6.6 Determining the Coefficients

Compared to Theorem 6.1, (6.30) already has the right structure, but what remains to be proved at this
stage is that the coefficients cm,n

i,j are zero when i ≤ 2(m − 1) ∧ j ≤ 2(n − 1). Showing this will concern us
for the remainder of this section.

The generalised chain rule is expressed through Faà di Bruno’s formula

dn

dxn
f(g(x)) =

n∑

k=1

f (k)(g(x))Bn,k

(
g′(x), g′′(x), . . . , g(n−k+1)(x)

)
, (6.32)

where

Bn,k(y1, . . . , yn−k+1) =
∑

∑

i ji=k
∑

i i·ji=n

n!

j1!j2! · . . . · jn−k+1!

(y1
1!

)j1(y2
2!

)j2
· . . . ·

( yn−k+1

(n− k + 1)!

)jn−k+1

are the so-called Bell polynomials, which satisfy the following identity for their generating function,

∞∑

n=k

Bn,k(y1, y2, . . . , yn−k+1)
tn

n!
=

1

k!

( ∞∑

m=1

ym
tm

m!

)k
. (6.33)
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Lemma 6.10. For 1 ≤ k ≤ n and c > 0, we have

Bn,k

( d

dy

√
c2 − y, . . . ,

dn−k+1

dyn−k+1

√
c2 − y

)∣∣∣
y=0

= (−2c)k−2n (2n− k − 1)!

(k − 1)!(n− k)!
. (6.34)

Proof. Using (6.15) we see that

[ym]
√
c2 − y = [ym] c

√
1− y

c2
=

( 1
2

m

)
(−1)mc1−2m

Inserting this into (6.33), we obtain by virtue of (6.10) and (6.17) that

Bn,k

( d

dy

√
c2 − y, . . .

)∣∣∣
y=0

= [tn]
n!

k!
ck
(√

1− t/c2 − 1
)k

= [tn]
n!

k!
ck
(1−

√
1− t/c2

t/(2c2)

)k( −t
2c2

)k

=
[
tn−k

] n!
k!
(−2c)−k

(1−
√
1− t/c2

t/(2c2)

)k

=
n!

k!
(−2c)−k k

n

(
2n− k − 1

n− k

)
(4c2)k−n,

which yields the desired result after rearranging.

Proposition 6.11. By deriving (6.30) m− 1 times in y and n− 1 times in z, the coefficients in (6.1) can
be calculated as follows

cm,n
i,j =

δ{i+j≡1 mod 2}
4m+n−2

m−1∑

k=1

n−1∑

ℓ=1

ℓ∑

p=0

k∑

q=0

k−q∑

r=0

∑

s,t≥0

2kk

m− 1

(
2m− k − 3

m− k − 1

)
2ℓℓ

n− 1

(
2n− ℓ− 3

n− ℓ− 1

)
· . . .

. . . ·
(
ℓ+ 1

p

)(
ℓ− p

q

)(
ℓ+ r

r

)(
m+ n− 2− ℓ− r

s

)(
m+ n− 2− p− q − r − s

t

)
· . . .

. . . ·
(
m+ n− 1

i− p− s

)(
m+ n− 1− i+ p+ s

j − q − r − t

)
(−1)

3(i+j)+1
2 +p+s+r+t.

Furthermore, cm,n
i,j is zero for i+ j > 2(m+ n)− 3.

Proof. Letting v(y) :=
√
c2 − y and w(z) :=

√
d2 − z (which have the same behaviour but different constants

to their namesakes above), we begin by rewriting (6.30),

Im,n =
[
ym−1zn−1

] π

vw

(
v + aw − iab

(v + aw + iab)(v + aw − iab)
+

iab

(v + aw)2 + a2b2

)

= Re
[
ym−1zn−1

] π

v(y)w(z)

1

v(y) + aw(z) + iab
, (6.35)

since, clearly, Im,n is always real (and the second summand always imaginary).
For now, we assume that both n,m ≥ 2, and apply (6.32) to derive n− 1 times in z, arriving at

Im,n = Re
[
ym−1

] π

v(y)

1

(n− 1)!

n−1∑

ℓ=1

Bn−1,ℓ

( d

dz
w(z), . . .

)∣∣∣
z=0

dℓ

dwℓ

1

w

1

v(y) + aw + iab

∣∣∣
w=d

Using the PFD in w, we see that

dℓ

dwℓ

1

w

1

v(y) + aw + iab

∣∣∣
w=d

=
dℓ

dwℓ

1

v(y) + iab

( 1

w
− a

v(y) + aw + iab

)∣∣∣
w=d

=
ℓ!(−1)ℓ

v(y) + iab

( 1

wℓ+1
− aℓ+1

(v(y) + aw + iab)ℓ+1

)∣∣∣
w=d

=
ℓ!(−1)ℓ

v(y) + iab

1

dℓ+1

(
1− (ad)ℓ+1

(v(y) + ad+ iab)ℓ+1

)
.
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Together with (6.34), we can continue manipulating Im,n,

Im,n = Re
[
ym−1

] π

v(y)

1

v(y) + iab

1

(n− 1)!
· . . .

. . . ·
n−1∑

ℓ=1

(−2d)ℓ−2n+2(2n− ℓ− 3)!

(ℓ− 1)!(n− ℓ− 1)!

ℓ!(−1)ℓ

dℓ+1

(
1− (ad)ℓ+1

(v(y) + ad+ iab)ℓ+1

)

= Re
[
ym−1

] π

v(y)

1

v(y) + iab

n−1∑

ℓ=1

2ℓ+1

(2d)2n−1

ℓ

n− 1

(
2n− ℓ− 3

n− ℓ− 1

)(
1− (ad)ℓ+1

(v(y) + ad+ iab)ℓ+1

)
.

Using

1− (ad)ℓ+1

(v(y) + ad+ iab)ℓ+1

=
1

(v(y) + ad+ iab)ℓ+1

(ℓ+1∑

p=0

(
ℓ+ 1

p

)
(ad)p(v(y) + iab)ℓ+1−p − (ad)ℓ+1

)

this collapses further to

Im,n = Re
[
ym−1

] π

v(y)

n−1∑

ℓ=1

ℓ∑

p=0

2ℓ+1

(2d)2n−1

ℓ

n− 1

(
2n− ℓ− 3

n− ℓ− 1

)(
ℓ+ 1

p

)
(ad)p(v(y) + iab)ℓ−p

(v(y) + ad+ iab)ℓ+1
.

Applying the product rule, we observe first that

dj

dvj
1

v(v + ad+ iab)ℓ+1
=

j∑

r=0

(
j

r

)
(−1)j

r!(ℓ+ j − r)!

ℓ!

1

vr+1(v + ad+ iab)ℓ+1+j−r

= j!(−1)j
j∑

r=0

(
ℓ+ r

r

)
1

vj−r+1(v + ad+ iab)ℓ+1+r
,

where we reversed the order of summation for the last equation. Consequently, with j = k − q, once more
due to the product rule, Im,n is equal to

Re
π

(m− 1)!

n−1∑

ℓ=1

ℓ∑

p=0

2ℓ+1

(2d)2n−1

ℓ

n− 1

(
2n− ℓ− 3

n− ℓ− 1

)(
ℓ+ 1

p

)m−1∑

k=1

Bm−1,k

( d

dy
v(y), . . .

)∣∣∣
y=0

· . . .

. . . ·
min(k,ℓ−p)∑

q=0

(
k

q

)
(ℓ− p)!

(ℓ− p− q)!
(c+ iab)ℓ−p−q

k−q∑

r=0

(
ℓ+ r

r

)
(ad)p(k − q)!(−1)k−q

ck−q−r+1(c+ ad+ iab)ℓ+1+r

= Reπ
m−1∑

k=1

n−1∑

ℓ=1

2k+1

(2c)2m−1

k

m− 1

(
2m− k − 3

m− k − 1

)
2ℓ+1

(2d)2n−1

ℓ

n− 1

(
2n− ℓ− 3

n− ℓ− 1

)
· . . .

. . . ·
ℓ∑

p=0

k∑

q=0

k−q∑

r=0

(
ℓ+ 1

p

)(
ℓ− p

q

)(
ℓ+ r

r

)
(−1)qcq+r(ad)p(c+ iab)ℓ−p−q

(c+ ad+ iab)ℓ+r+1
.

To find the respective powers of c and ad, we pull out the maximal power of the denominator — multiplied
by its conjugate to make it real; recalling δ+ = (c+ ad)2 + a2b2 = (c+ ad+ iab)(c+ ad− iab) — to find

Im,n =
4π

(4δ+)m+n−1c2m−1d2n−1
Re

∑

k,ℓ,p,q,r

2kk

m− 1

(
2m− k − 3

m− k − 1

)
2ℓℓ

n− 1

(
2n− ℓ− 3

n− ℓ− 1

)(
. . .

p, q, r

)
· . . .

. . . · (−1)qcq+r(ad)p(c+ iab)ℓ−p−q(c+ ad+ iab)m+n−2−ℓ−r(c+ ad− iab)m+n−1, (6.36)
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where we will denote
(

. . .

k, ℓ,m, n, p, q, r

)
:=

2kk

m− 1

(
2m− k − 3

m− k − 1

)
2ℓℓ

n− 1

(
2n− ℓ− 3

n− ℓ− 1

)(
ℓ+ 1

p

)(
ℓ− p

q

)(
ℓ+ r

r

)

for brevity, and will often collect consecutive letters with a hyphen, e.g. k−n for k, ℓ,m, n. As the penultimate
step, we expand the last line of (6.36) to

∑

s≥0

∑

t≥0

∑

g≥0

∑

h≥0

(
m+ n− 2− ℓ− r

s

)(
m+ n− 2− p− q − r − s

t

)(
m+ n− 1

g

)
· . . .

. . . ·
(
m+ n− 1− g

h

)
(−1)g+h+m+n+q+1ch+q+r+t(ad)g+p+s(iab)2(m+n)−3−g−h−p−q−r−s−t.

Finally, we collect like powers of c and ad as powers of i = h+ q + r + t and j = g + p+ s, respectively,

Im,n =
π

δm+n−1
+ c2m−1d2n−1

Re

2(m+n)−3∑

i,j=0

∑

k,ℓ,p,q,r,s,t

(
. . .

k, ℓ,m, n, p, q, r, s, t

)(
m+ n− 1

j − p− s

)
· . . .

. . . ·
(
m+ n− 1− j + p+ s

i− q − r − t

)
(−1)i+j+p+r+s+t+m+n+1

4m+n−2
ci(ad)j(iab)2(m+n)−3−i−j

(6.37)

=
π

δm+n−1
+ c2m−1d2n−1

Re

2(m+n)−3∑

i,j=0

∑

k,ℓ,p,q,r,s,t

(
. . .

k, ℓ,m, n, p, q, r, s, t

)(
m+ n− 1

j − p− s

)
· . . .

. . . ·
(
m+ n− 1− j + p+ s

i− q − r − t

)
i−i−j+1(−1)p+r+s+t

4m+n−2
ci(ad)j(ab)2(m+n)−3−i−j

=:
π

δm+n−1
+ c2m−1d2n−1

2(m+n)−3∑

i,j=0

cm,n
i,j ci(ad)j(ab)2(m+n)−3−i−j .

Observe that due to the fact that we only consider the real parts of the sum, i+ j has to be an odd number,
so that the power of i is even.

The claim that i + j has to be less than 2(m + n) − 3 follows easily from the binomial coefficient in i,
because it implies that (estimating t by its maximal value, which can be read off from the corresponding
binomial coefficient)

i− q − r − t ≤ m+ n− 1− j + p+ s

=⇒ i + j ≤ m + n − 1 + p + q + r + s + t ≤ 2(m + n) − 3.

Now, after having disassembled Im,n into its parts, we are able to insert the indicators we later want to
look for — meaning we multiply by viwjymzn — and try to reassemble the whole thing once more.

Proposition 6.12. Denoting g(v, w) := (cv + adw)2 + a2b2, it can be seen that the generating function of
the numerator in Im,n is

N(v, w, y, z) :=
∑

i,j≥0,m,n≥1

cm,n
i,j (cv)i(adw)j(ab)2(m+n)−3−i−jymzn

= Re
yz√

1− g(v, w)y
√
1− g(v, w)z

g(v, w)

cv
√

1− g(v, w)y + adw
√
1− g(v, w)z + iab

(6.38)

=
g(v, w)yz√

1− g(v, w)y
√
1− g(v, w)z

cv
√
1− g(v, w)y + adw

√
1− g(v, w)z

(cv
√
1− g(v, w)y + adw

√
1− g(v, w)z)2 + a2b2

,
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and for the coefficients alone, with h(v, w) := (v + w)2 + 1,

C(v, w, y, z) :=
∑

i,j≥0,m,n≥1

cm,n
i,j viwjymzn

= Re
yz√

1− h(v, w)y
√

1− h(v, w)z

h(v, w)

v
√

1− h(v, w)y + w
√

1− h(v, w)z + i

=
h(v, w)yz√

1− h(v, w)y
√
1− h(v, w)z

v
√
1− h(v, w)y + w

√
1− h(v, w)z

(v
√

1− h(v, w)y + w
√

1− h(v, w)z)2 + 1
.

Remark 6.13. Using (6.30) and (6.9), we can deduce that

Im,n =
π

δm+n−1
+ c2m−1d2n−1

[
ymzn

]
Re

yz√
1− δ+y

√
1− δ+z

δ+

c
√
1− δ+y + ad

√
1− δ+z + iab

Comparing this with (6.38), we immediately see the correspondence (by setting v, w = 1, because g
∣∣
v=1,w=1

=

δ+) — the knowledge we gain with N(v, w, y, z) is the ability to determine a single coefficient as opposed to
the whole numerator. △

Proof of Proposition 6.12. As outlined in Subsection 6.2, we take (6.37) and extend the summation to ∞ for
all parameters except ℓ (the binomial coefficients ensure that only finitely many terms are non-zero, except
for r, where we need change the order of summation and use k ≥ q+ r to enforce r ≤ k− q), and interchange
order so that we can sum, first in j and i,

N(v, w, y, z) = Re
∑

j,k,ℓ,m,n,p,q,r,s,t

(
. . .

k, ℓ,m, n, p, q, r, s, t

)(
m+ n− 1

j − p− s

)
(−1)m+n+1+j+p+r+s+t

4m+n−2
· . . .

. . . · (adw)j(iab)2(m+n)−3−jymzn
∞∑

i=q+r+t

(
m+ n− 1− j + p+ s

i− q − r − t

)(−cv
iab

)i

= Re
∑

j,k,ℓ,m,n,p,q,r,s,t

(
. . .

k − n, p− t

)(
m+ n− 1

j − p− s

)
(−1)m+n+1+j+p+r+s+t

4m+n−2
· . . .

. . . · (adw)j(iab)2(m+n)−3−jymzn
(−cv
iab

)q+r+t(
1− cv

iab

)m+n−1−j+p+s

= Re
∑

k,ℓ,m,n,p,q,r,s,t

(
. . .

k − n, p− t

)
(−1)m+n+1+q

4m+n−2
(cv)q+r+t(iab)2(m+n)−3−q−r−t · . . .

. . . · ymzn
(
1− cv

iab

)m+n−1(adw
iab

)p+s ∞∑

j=0

(
m+ n− 1

j

)( −adw
iab− cv

)j

= Re
∑

k,ℓ,m,n,p,q,r,s,t

(
. . .

k − n, p− t

)
(−1)m+n+1+q

4m+n−2
· . . .

. . . · (cv)q+r+t(adw)p+s(iab)2(m+n)−3−p−q−r−s−tymzn
(
1− cv + adw

iab

)m+n−1

,

where the last line uses (1− cv
iab )(1− adw

iab−cv ) = 1− cv+adw
iab . We continue by summing in t and s, which are
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just applications of the binomial theorem,

= Re
∑

k−n,p−s

(
. . .

k − n, p− s

)
(−1)m+n+1+q

4m+n−2
(cv)q+r(adw)p+s(iab)2(m+n)−3−p−q−r−s · . . .

. . . · ymzn
(
1− cv + adw

iab

)m+n−1 m+n−2−p−q−r−s∑

t=0

(
m+ n− 2− p− q − r − s

t

)( cv
iab

)t

= Re
∑

k−n,p−r

(
. . .

k − n, p− r

)
(−1)m+n+1+q

4m+n−2
(iab)2(m+n)−3−p−q−rymzn

(
1− cv + adw

iab

)m+n−1

· . . .

. . . · (cv)q+r(adw)p
(
1 +

cv

iab

)m+n−2−p−q−r m+n−2−ℓ−r∑

s=0

(
m+ n− 2− ℓ− r

s

)( adw

cv + iab

)s

= Re
∑

k−n,p−r

(
. . .

k − n, p− r

)
(−1)m+n+1+q

4m+n−2
(cv)q+r(adw)p(iab)2(m+n)−3−p−q−rymzn · . . .

. . . ·
(
1− cv + adw

iab

)m+n−1(
1 +

cv + adw

iab

)m+n−2−p−q−r(
1 +

adw

cv + iab

)p+q−ℓ

.

Next we sum in n, setting g(v, w) := (cv + adw)2 + a2b2 = −(iab)2(1− cv+adw
iab )(1 + cv+adw

iab ),

= Re
∑

k−m,p−r

(
. . .

k −m, p− r

)
(−1)m+1+q

4m−2
(cv)q+r(adw)p(iab)2m−3−p−q−rym

(
1− cv + adw

iab

)m−1

· . . .

. . . ·
(
1 +

cv + adw

iab

)m−2−p−q−r(
1 +

adw

cv + iab

)p+q−ℓ ∞∑

n=ℓ+1

2ℓℓ

n− 1

(
2n− ℓ− 3

n− ℓ− 1

)(gz
4

)n

= Re
∑

k−m,p−r

(
. . .

k −m, p− r

)
(−1)m+1+q

4m−2
(cv)q+r(adw)p(iab)2m−3−p−q−rym

(
1− cv + adw

iab

)m−1

· . . .

. . . ·
(
1 +

cv + adw

iab

)m−2−p−q−r(
1 +

adw

cv + iab

)p+q−ℓ(gz
4

)ℓ+1

2ℓ
∞∑

n=0

ℓ

n+ ℓ

(
2n+ ℓ− 1

n

)(gz
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∑
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(
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)
(−1)m+q
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. . . ·
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√
1− gz

)ℓ
,

where we used (6.17) for the last equation and distributed one surplus power back to its constituent factors.
In the case of ℓ = 0, (6.17) is not applicable, so we would have to subtract the entire term with ℓ set to

0. As is immediately obvious from the last display, this only affects the case that n = 1 (because the only
remaining power of z is z1), and we will not deal with the case m = 1 ∨ n = 1 here, as they can be done in
exactly the same way as for the general case (e.g. starting from (6.35), where either y or z can then be set
to zero and the derivatives only need to be considered for the other variable).

Similarly, we tackle the sum in m (again ignoring the error for k = 0), allowing us to also deal with the
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sum in k,

= Re
∑
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Next, we sum in r, by (6.15),

= Re
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as well as in p,
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Finally, we wrap things up by summing in ℓ,

= Re
yz√
1− gy

(cv + adw)2 + a2b2
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.

As it turns out, this formula also holds for the case m = 1∨n = 1 that we have omitted thus far. The proof
is left as an exercise to the reader.

The form of the function C(v, w, y, z) is easily seen by using (6.9) — or more heuristically, setting
a = b = c = d = 1 in N(v, w, y, z). This finishes the proof.

Proposition 6.14. If any of the following conditions is not met, the coefficient cm,n
i,j is zero,

i+ j ≡ 1 mod 2, i+ j ≤ 2(m+ n)− 3, (i ≥ 2m− 1 ∨ j ≥ 2n− 1).

If the first two conditions are met, the coefficients can be calculated as follows

cm,n
i,j =

i∑
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j∑
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)
.

Proof. Instead of explicit differentiation, we will reverse the process of calculating a generating function, and
“disassemble” C(v, w, y, z) in a particular way. However, we will still use the information we have already,
i.e. that i + j must be odd and less than 2(m + n) − 3 (e.g. from the representation in Proposition 6.11).
First we calculate
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having used (6.13), (6.14) and (6.15). Extracting the appropriate powers of y, z, we continue

cm,n
i,j = Re
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Firstly, the restriction of the range in r, s comes from the last binomial coefficient, because clearly the lower
entry needs to be positive, and the upper one needs to be larger than the lower one. Also, like i+ j, we see
that r + s has to be odd for the term to contribute to the (real part of the) sum. From this we can read off
the formula for the coefficients claimed in the proposition.

We use r + s ≡ 1 mod 2 to split the sum into (r = 2p even, s = 2q + 1 odd) and (r = 2p+ 1 odd, s = 2q
even) for p, q ∈ N,

cm,n
i,j =

⌊ i
2⌋∑

p=0

⌊ j−1
2 ⌋∑
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(−1)m+n+p+q

(
2p+ 2q + 1

2q + 1

)(
p− 1

2

m− 1

)(
q

n− 1

)
· . . .

. . . ·
(

m+ n− 1

m+ n+ p+ q − i+j+1
2

)(
i+ j − 2p− 2q − 1

i− 2p

)
+ . . .

. . .+

⌊ i−1
2 ⌋∑

p=0

⌊ j
2⌋∑

q=0

(−1)m+n+p+q

(
2p+ 2q + 1

2q

)(
p

m− 1

)
· . . .

. . . ·
(
q − 1

2

n− 1

)(
m+ n− 1

m+ n+ p+ q − i+j+1
2

)(
i+ j − 2p− 2q − 1

i− 2p− 1

)
.

Now, if i ≤ 2(m−1), we see that p < m−1 in the second sum, and similarly, if j ≤ 2(n−1) then q < n−1 in
the first sum, which means all terms in the sums are zero due to the binomial coefficients

(
p

m−1

)
and

(
q

n−1

)
.

This finishes the proof.

Remark 6.15. After having investigated the quantity Im,n intensely while trying to prove Theorem 6.1, we
are convinced that

cm,n
i,j ≥ 0, ∀m,n ∈ N, ∀i, j ∈ N0.

However, we have not seriously attempted to prove this. △
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