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An Explicit Implicit Scheme for Cut Cells in

Embedded Boundary Meshes∗

Sandra May† Marsha Berger‡

We present a new mixed explicit implicit time stepping scheme for solving the
linear advection equation on a Cartesian cut cell mesh. Our scheme uses a standard
second-order explicit scheme on Cartesian cells away from the embedded boundary.
On cut cells, a second-order implicit scheme is used. This approach overcomes the
small cell problem – that standard schemes are not stable on the arbitrarily small
cut cells – while keeping the cost fairly low. We examine several approaches for
coupling the schemes. For one of them, which we call flux bounding, we can show
a TVD result. We also discuss the solution of the resulting implicit systems. All
components of the scheme have been kept simple enough to afford the extension of
the scheme to three dimensions. Numerical results in one, two, and three dimen-
sions indicate that the resulting scheme is second-order accurate in L1 and between
first- and second-order accurate along the embedded boundary.

1. Introduction

The popularity of Cartesian cut cell methods continues to grow, due to the ease of grid genera-
tion for arbitrarily complicated domains and the efficiency of using Cartesian grids over most of
the domain. The drawbacks continue as well - the difficulty of obtaining accurate solutions at
the irregularly shaped cut cells where the geometry intersects the Cartesian grid. In addition,
for problems where the integration method of choice is an explicit scheme, the so-called small
cell problem remains an issue: explicit schemes are not stable on the arbitrarily small cut cell
volumes without doing something special.
Several methods have been proposed to deal with the small cell problem. Cell merging

[6, 36] is the most obvious idea but is much more difficult to do well than one would think.
To our knowledge it has not yet been implemented in a three dimensional code that can
automatically and robustly handle complicated geometry. Flux redistribution [15, 34, 18]
has been implemented in three dimensions, but is only first order accurate at the cut cell
boundaries. H-box methods [12, 11, 22] are second-order accurate, but are very complicated
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and have not yet been implemented in three dimensions. So the final word on cut cell methods
has not yet been written.

The goal of this research is to explore another obvious idea that for the most part seems to
have been overlooked - treat the cut cells implicitly, even if the rest of the domain is updated
with an explicit method. This should guarantee stability, allowing us to look directly at the
accuracy issues. Since the implicit scheme is only used at the boundary, the cost won’t be
high. It is also a very intuitive approach for enabling an existing code that uses an explicit
time stepping scheme on Cartesian grids to handle more complicated geometry. The main
challenge is how to connect the explicit and the implicit scheme. We note that the approach
examined in this work does not correspond to a classical IMEX approach: instead of using the
explicit and implicit scheme on different operators of the equation, we use an implicit scheme
on cells close to the embedded boundary and an explicit scheme elsewhere.

The idea of using a mixed explicit implicit scheme has been considered before. An early
work [19] based on this approach uses either an implicit or explicit scheme based on the CFL
number of each characteristic field, a related but more complicated approach. Jebens et al. [23]
develop a partially implicit scheme in the context of cut cells, and provide an ODE-stability
analysis for the time stepping scheme. However they do not discuss the spatial discretization,
or the stability and conservation properties of their finite volume scheme, nor do they present
accuracy studies. These aspects are a major focus of our paper. Some elements of our work are
similar to those in [31], where fluxes are computed using an implicit (for inflow) and explicit
(for outflow) scheme.

We develop the combined scheme in the context of the linear advection equation for an in-
compressible velocity field. Overcoming the small cell problem for the linear advection equation
is an essential ingredient of our longer-term goal of extending an existing projection algorithm
[4, 2, 8, 9] for solving the incompressible Euler and Navier-Stokes equations from Cartesian
grids to cut cell grids. The projection method is based on 2 steps: Step 1, the prediction of
the velocity field at the new time step when ignoring the incompressibility condition; and Step
2, the projection. In Step 1, a predictor-corrector approach based on a second-order MUSCL
scheme is used. This explicit time stepping scheme leads to the small cell problem. To overcome
this issue, we use our new explicit implicit scheme. We note that once the divergence-free ve-
locities on edges/faces have been computed in the predictor step, the corrector step essentially
treats the linear advection step we study here.
Our implementation is based on BoxLib [7], a library for massively parallel AMR applica-

tions. For the Cartesian cells away from the boundary we use VarDen, an implementation of the
projection method referenced above. For the generation of the cut cells, we use patchCubes, a
variant of the cubes mesh generator that is part of Cart3D package [14, 1]. The combination
of these packages sets the framework for a parallel, three dimensional, adaptively refined flow
solver for complex geometries once all the parts are done.
Our approach is to use MUSCL for the explicit scheme and trapezoidal time stepping (com-

bined with a second-order finite volume scheme in space) for the implicit scheme. To couple
them, we use what we refer to as flux bounding. Under suitable conditions we can show a total
variation diminishing (TVD) result using flux bounding. Our numerical results in two and
three dimensions show that our new algorithm is second-order accurate measured in the L1

norm over the whole domain and between first- and second-order accurate along the embedded
boundary.
The paper is organized as follows. In section 2 we discuss how to connect the explicit and

implicit schemes in one dimension. We prove a theoretical result showing that among the
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Figure 1: 1d model problem: Equidistant grid with one small cell of length α∆x labeled as cell
0.

two obvious choices for connecting the schemes, only flux bounding leads to a TVD result.
In section 3 we discuss the extension of the mixed scheme to multiple dimensions. Section
4 focuses on how to solve the resulting sparse linear system. Since it only couples the cells
close to the embedded boundary it is a much easier task than solving implicitly over the entire
domain. Section 5 shows convergence studies for the linear advection equation for various test
problems, as well as computational results for the incompressible Euler equations. This is just
to show that these parts of the algorithm would carry over, although we do not discuss the
projection algorithm further in this paper. We end with future directions for this research.

2. The scheme in one dimension

We consider the linear advection equation

st + usx = 0, u > 0 constant, (1)

with CFL number λ = u∆t
∆x . Our mixed explicit implicit scheme uses (i) explicit time stepping

on the Cartesian cells away from the embedded boundary, and (ii) implicit time stepping on
cut cells. This way we avoid the small cell problem, and the overall cost is kept relatively
low since only cells close to the boundary are treated implicitly. The challenge is to find a
suitable way of transitioning between the schemes that ensures mass conservation and avoids
unnecessary loss of accuracy.

We use MUSCL (Monotonic Upwind Scheme for Conservation Laws) [40, 16] for the explicit
scheme. This scheme is well-established and has been implemented in many scientific codes.
In addition, the projection algorithm in Varden uses that scheme in Step 1 of the algorithm.
In one dimension, the MUSCL scheme for the linear advection equation (1) on an equidistant
grid is given by

sn+1
i = sni −

∆t

∆x

(

F
n+1/2
i+1/2 − F

n+1/2
i−1/2

)

, with F
n+1/2
i+1/2 = u

(

sni + (1− λ)snx,i
∆x

2

)

(2)

and snx,i ≈ ∂xs(xi, t
n), computed using a standard slope limiter [26].

We use a model problem to study the behavior of the transition from explicit to implicit in
the neighborhood of a cut cell. Consider the mesh shown in Figure 1: we use an equidistant
grid with mesh width ∆x except for one small cell with mesh width α∆x, labeled as cell 0.
Here, α ∈ (0, 1] denotes the volume fraction – the ratio of the small cell to full cell volume.
On the small cell 0, we use an implicit scheme for stability. If we used the explicit MUSCL

scheme, we would need to adjust the time step to satisfy ∆t ≤ α∆x/u which is not feasible
since α can be very small. For example, in our computations in two dimensions, the smallest
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Figure 2: Cells with indices less or equal to -2 and greater or equal to 2 have been updated
(empty circles) using fluxes computed by the explicit scheme (green lines); the neigh-
borhood of the small cell has not yet been done.
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(a) Cell bounding: values sn+1

−2 and s
n+1

2 are input for implicit scheme.

tn+1

tn
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(b) Flux bounding: explicit fluxes F
n+1/2

−3/2 and F
n+1/2

3/2 are input for implicit
scheme.

Figure 3: Two approaches for switching the schemes: cell bounding and flux bounding. In
both cases, the small cell uses implicit fluxes (blue line). The options differ in how
the explicit and implicit schemes are connected (indicated by the pink color).

volume fraction α is between 10−3 and 10−6. Our goal is to choose ∆t only based on the size
of the Cartesian cells. This is the small cell problem.
The region of implicitly treated cells should be as small as possible. If only cell 0 was treated

implicitly, the explicit update of cell 1 would not have the right domain of dependence. If both
cell 0 and 1 were treated implicitly (but not cell -1), then our algorithm would not carry over to
systems of equations with a characteristic in the other direction. We are thus led to considering
all 3 cells, -1, 0 and 1, to be in the implicit region.
In the example in Figure 2, cells with indices less than or equal to −2 or greater than or

equal to 2 are updated with the explicit MUSCL scheme. Note that we can use the standard
MUSCL scheme (2) for this step; however we do need to modify the computation of the slope
on cell 1, which uses the value of the small cell 0. The cell 1 gradient is needed to compute
the incoming flux for cell 2. We will discuss slope reconstruction in the presence of irregular
cells later in this section.
We consider two different approaches for switching between the explicit and implicit scheme

which we call cell bounding and flux bounding. In cell bounding, we use the values of the
explicitly updated cells at time tn+1 as input for the implicit scheme. This is shown in Figure
3(a). In flux bounding, we use the fluxes that have been used to update the explicitly treated
cells as input for the implicit scheme as shown in Figure 3(b). We will show that flux bounding
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has superior stability and monotonicity properties.
We examine these two ways of switching more closely using a combination of explicit and

implicit Euler time stepping, both using upwind differencing (without slope reconstruction)
in space. Explicit Euler time stepping, or the upwind scheme, corresponds to the MUSCL
scheme with gradients set to zero. Implicit Euler time stepping is known to be the most
stable way of time stepping. If this way of transitioning shows instabilities, it will also cause
problems when used in combination with a second-order implicit time stepping scheme with
slope reconstruction (which is what we use for the computational results).

2.1. Cell bounding

Using the upwind scheme on cells −2 and 2 results in

sn+1
−2 = sn−2 − λ

(
sn−2 − sn−3

)
,

sn+1
2 = sn2 − λ (sn2 − sn1 ) .

Implicit Euler time stepping applied on cells −1, 0, and 1 gives

sn+1
−1 = sn−1 − λ

(
sn+1
−1 − sn+1

−2

)
,

sn+1
0 = sn0 −

λ

α

(
sn+1
0 − sn+1

−1

)
,

sn+1
1 = sn1 − λ

(
sn+1
1 − sn+1

0

)
.

Note that cell −1 uses usn+1
−2 as incoming flux. Since the value sn+1

−2 has already been updated

explicitly, we can compute the values sn+1
−1 , sn+1

0 , and sn+1
1 in turn.

Unfortunately, this formulation is not conservative. The update on cell −2 uses usn−2 as
outgoing flux whereas the update on cell −1 uses usn+1

−2 as incoming flux. In general these two
values will not match resulting in a loss or gain of mass. A similar problem occurs for the flux
between cells 1 and 2.

To ensure mass conservation, we need a postprocessing step to fix the mass conservation.
There are two possible options: we can either add the mass difference to the explicitly treated
cell (cell −2) or to the implicitly treated cell (cell −1). Both of these options might lead to a
loss of monotonicity as shown in the following.

Lemma 2.1. Consider the following scheme: (i) compute sn+1
−2 using the explicit scheme, (ii)

compute preliminary state s̃n+1
−1 using the implicit scheme, (iii) adjust s̃n+1

−1 accounting for the

difference in mass resulting in sn+1
−1 , i.e.,

(i) : sn+1
−2 = sn−2 − λ

(
sn−2 − sn−3

)
, (3a)

(ii) : s̃n+1
−1 = sn−1 − λ

(
s̃n+1
−1 − sn+1

−2

)
, (3b)

(iii) : sn+1
−1 = s̃n+1

−1 + λsn−2 − λsn+1
−2 . (3c)

This scheme can create overshoots and is not monotonicity preserving.

Proof. Suppose sni = 0 for i ≤ −3 and sni = 1 for i ≥ −2. A short computation shows

sn+1
−1 = 1 +

λ3

1 + λ
> 1,

for λ > 0. This is outside of the range of values of sni and therefore is an overshoot. Also,
monotonicity will not be preserved, since sn+1

i = 1 for i ≥ 3.
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The other option is also not monotonicity preserving.

Lemma 2.2. Consider the following scheme: (i) compute a preliminary state ŝn+1
−2 using the

explicit scheme, (ii) compute sn+1
−1 using the implicit scheme, (ii) adjust ŝn+1

−2 accounting for

the difference in mass resulting in sn+1
−2 , i.e,

(i) : ŝn+1
−2 = sn−2 − λ

(
sn−2 − sn−3

)
, (4a)

(ii) : sn+1
−1 = sn−1 − λ

(
sn+1
−1 − ŝn+1

−2

)
, (4b)

(iii) : sn+1
−2 = ŝn+1

−2 + λsn−2 − λŝn+1
−2 . (4c)

This scheme is not monotonicity preserving for λ ∈
(√

5−1
2 , 1

]

.

Proof. Consider again sni = 0 for i ≤ −3 and sni = 1 for i ≥ −2. Simple calculations show

sn+1
−2 = 1− λ+ λ2 and sn+1

−1 =
1 + λ− λ2

1 + λ
.

Therefore,
sn+1
−2 ≤ sn+1

−1 ⇔ λ2 + λ− 1 ≤ 0.

This is true for λ ≥
√
5+1
2 and λ ≤

√
5−1
2 ≈ 0.62.

Remark 2.1. We remark that without the conservation fixup step, there is no monotonicity
problem with the combined explicit/implicit scheme. Simple calculations show that the transi-
tion between explicit to implicit and back, as well as the cells surrounding the small cell where
the mesh width changes, all preserve monotonicity.

2.2. Flux bounding

Next we examine flux bounding more closely. As with cell bounding, we first update the
explicitly treated cells −2 and 2,

sn+1
−2 = sn−2 − λ

(
sn−2 − sn−3

)
,

sn+1
2 = sn2 − λ (sn2 − sn1 ) .

For flux bounding, we use the fluxes F−3/2 = usn−2 and F3/2 = usn1 , computed with the explicit
upwind scheme, as input for the implicitly treated cells. Therefore, it only remains to choose
the fluxes F−1/2 and F1/2. Since we want to treat the small cell fully implicitly, we choose
implicit Euler time stepping for these fluxes. This results in the update formulae

sn+1
−1 = sn−1 − λ

(
sn+1
−1 − sn−2

)
, (5a)

sn+1
0 = sn0 −

λ

α

(
sn+1
0 − sn+1

−1

)
, (5b)

sn+1
1 = sn1 − λ

(
sn1 − sn+1

0

)
. (5c)

This approach of connecting the schemes ensures mass conservation by construction.

Remark 2.2. We refer to cells −1 and 1 as transition cells.

Unlike cell bounding, we can show a positive result for flux bounding.
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Lemma 2.3. The scheme described in equations (5a)-(5c) is monotonicity preserving for 0 ≤
λ ≤ 1.

Proof. We focus on cells -2 to 2. Suppose WLOG that sni ≤ sni+1. We need to show that

sn+1
i ≤ sn+1

i+1 . Using the notation C(a1, . . . , an) to denote a convex combination of elements
a1, . . . , an, there holds

sn+1
−1 =

1

1 + λ
sn−1 +

λ

1 + λ
sn−2 = C(sn−1, s

n
−2) ≥ sn+1

−2

as sn+1
−2 = C(sn−2, s

n
−3). Further,

sn+1
0 =

1

1 + λ
α

sn0 +
λ
α

1 + λ
α

sn+1
−1 ≥

1

1 + λ
α

sn+1
−1 +

λ
α

1 + λ
α

sn+1
−1 = sn+1

−1

as sn+1
−1 = C(sn−1, s

n
−2) ≤ sn0 . Finally, using sn+1

0 = C(sn0 , s
n
−1, s

n
−2) as well as

sn+1
1 = (1− λ) sn1 + λsn+1

0 = C(sn1 , s
n
0 , s

n
−1, s

n
−2),

and the monotonicity of data at tn, there holds

sn+1
1 = (1− λ) sn1 + λsn+1

0 ≥ sn+1
0 ,

sn+1
2 = (1− λ)sn2 + λsn1 ≥ sn+1

1 ,

which implies the claim.

Next, we consider the mixed scheme consisting of the second-order MUSCL scheme and
the first-order implicit Euler time stepping scheme with piecewise constant data. To be more
precise, the scheme is

sn+1
−3 = sn−3 −

∆t

∆x

[

F
n+1/2
−5/2 − F

n+1/2
−7/2

]

, (MUSCL),

sn+1
−2 = sn−2 −

∆t

∆x

[

usn−2 − F
n+1/2
−5/2

]

,

sn+1
−1 = sn−1 − λ

[
sn+1
−1 − sn−2

]
,

sn+1
0 = sn0 −

λ

α

[
sn+1
0 − sn+1

−1

]
,

sn+1
1 = sn1 − λ

[
sn1 − sn+1

0

]
,

sn+1
2 = sn2 −

∆t

∆x

[

F
n+1/2
5/2 − usn1

]

,

sn+1
3 = sn3 −

∆t

∆x

[

F
n+1/2
7/2 − F

n+1/2
5/2

]

, (MUSCL),

(6)

where the slopes snx,i have been computed using the minmod limiter and the slopes for fluxes
F−3/2 and F3/2 have been set to zero.

Theorem 2.1. The scheme (6) is TVD for the linear advection equation (1) for 0 ≤ λ ≤ 1, if
the exact solution has compact support.
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The proof is somewhat lengthy and is given in Appendix A. Note that this also implies that
the mixed scheme (6) is monotonicity preserving, and therefore this would be an alternative
proof of Lemma 2.3. However we presented the proof of Lemma 2.3 since it shows the main
properties of flux bounding in a simpler setting.

Based on these positive results for flux bounding, and on the negative results for cell bound-
ing, we use flux bounding to connect the explicit and the implicit scheme in one, two, and three
dimensions.

2.3. Choice of the implicit scheme

So far we have chosen an explicit scheme and have decided on how to connect the explicit and
the implicit scheme. It remains to choose an implicit scheme. We need a second-order implicit
time stepping scheme. In addition, we would like to take into account that our cut cells can be
arbitrarily small. Therefore, we would like to use a scheme that is unconditionally TVD/SSP
(strong stability preserving). Unfortunately, there is no second-order implicit scheme with this
property [24, 38].

Currently, we use the implicit trapezoidal rule, which is given by

yn+1 = yn +
∆t

2

(
f(yn) + f(yn+1)

)

for the ODE d
dty(t) = f(y(t)). One major reason for this decision was the following. The

MUSCL scheme evaluates the flux at time tn+1/2. For the mixed scheme to be exact for linear
functions, we need an implicit scheme that also (on average) evaluates the flux at tn+1/2. The
trapezoidal rule is the simplest method that has this property. We also looked at other schemes
as TR-BDF2 or some versions of L-stable SDIRK scheme that on average evaluate the flux
at tn+1/2. These schemes have two implicit solves, which makes them more expensive, while
having similar issues in terms of monotonicity as the trapezoidal rule.

For the space reconstruction on the non-equally spaced cells −1, 0, and 1, we use a stan-
dard least squares slope reconstruction – which extends in a straight-forward way to higher
dimensions [5]. We compute the unlimited least squares slope sx,i as solution to the problem
minsx,i‖r‖2 with

r =

[
xi+1 − xi
xi−1 − xi

]

sx,i −

[
si+1 − si
si−1 − si

]

and xi denoting the centroid of cell i. We compute limited slopes by applying the minmod slope
limiter [26].
The full scheme then has the form

sn+1
−2 = sn−2 −

∆t

∆x

[

F
n+1/2
−3/2 − F

n+1/2
−5/2

]

, (MUSCL),

sn+1
−1 = sn−1 −

∆t

∆x

[

F T
−1/2 − F

n+1/2
−3/2

]

,

sn+1
0 = sn0 −

∆t

α∆x

[

F T
1/2 − F T

−1/2

]

,

sn+1
1 = sn1 −

∆t

∆x

[

F
n+1/2
3/2 − F T

1/2

]

,

sn+1
2 = sn2 −

∆t

∆x

[

F
n+1/2
5/2 − F

n+1/2
3/2

]

, (MUSCL),

(7)
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Table 1: Error for mixed scheme for taking one time step and computing up to time T .

Final time ∆x L1 error order L∞ error order

1 step error 1/80 2.39e-05 – 2.28e-03 –
1/160 2.95e-06 3.02 5.52e-04 2.04
1/320 3.65e-07 3.01 1.36e-04 2.02

1 period error 1/80 2.10e-04 – 1.58e-03 –
1/160 5.68e-05 1.89 3.51e-04 2.17
1/320 1.48e-05 1.94 7.41e-05 2.24

with
F T
i+1/2 =

u

2

(

sni + snx,i(xi+1/2 − xi) + sn+1
i + sn+1

x,i (xi+1/2 − xi)
)

.

We apply this mixed scheme to a linear test function and take one time step. It is easily
verified numerically that the mixed scheme is exact for this test, and does not cause errors on
the transition cells −1 and 1 or in the small cell 0. When applying the scheme to a general
smooth test function using unlimited slope reconstruction, we observe second-order one-step
errors on the transition cells due to switching schemes and on the small cell. However, as often
observed with embedded boundary methods, these errors do not accumulate in the usual way,
as our numerical results confirm. This is discussed further below.

Use of the trapezoidal rule unfortunately leads to a combined scheme (see (7)) that is not
TVD, so is not guaranteed to preserve the monotonicity we were seeking earlier. Our plan is
to use an FCT (flux corrected transport) approach [13, 42] combining trapezoidal rule with
slope reconstruction with implicit Euler time stepping with piecewise constant data, which,
based on Theorem 2.1, would result in a TVD scheme.

2.4. Numerical results in one dimension

We conclude the description of the one-dimensional method with numerical results concerning
the accuracy of the scheme. We compute on the grid shown in Figure 1 with α = 10−4. We

use smooth initial data given by sin
(

2πx
1+α∆x

)

with periodic boundary conditions, and solve

st + 2sx = 0 with λ = 0.8 on the interval [0, 1 + α∆x]. The L1 error has been normalized to
account for the changing domain length.

We examine the results for taking one time step, as well as for running until time T =
0.5 · (1 + α∆x), when the test function is back to its original position. Both results are shown
in Table 1. The second-order convergence of the error in the L∞ norm for taking one time step
confirms the theoretical considerations about reduced accuracy on the transition and cut cells.
However, the second-order convergence of the error in both norms for computing up to time
T also confirms that the one step error does not accumulate in the usual way and that the
mixed scheme is indeed fully second-order accurate for this test. This is a previously known
and interesting phenomena, see, e.g. [32, 41], also [20].
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ui+1/2,j

vi,j−1/2

ui−1/2,j

sij

vi,j+1/2

Figure 4: Notation used to denote the cell centered and edge centered variables.

3. The scheme in multiple dimensions

In this section, we describe the extension of the mixed scheme to multiple dimensions. We
will focus on the extension to two dimensions as the extension to three dimensions follows the
same ideas but is technically more complicated. We will remark on complications in three
dimensions at the end of this section.

In two dimensions, we solve the linear advection equation

st + (us)x + (vs)y = 0. (8)

Here, s(x, y, t) denotes a scalar field located at the cell centroid, as shown in Figure 4 in the
case of a cut cell. For a second-order scheme, we can identify the unknown snij , which represents
the cell average of cell (i, j) at time tn, with the value at the cell centroid.

Let u = (u, v) denote an edge centered divergence-free velocity field that satisfies (up to
machine precision)

u
n+1/2
i+1/2,j − u

n+1/2
i−1/2,j

∆x
+

v
n+1/2
i,j+1/2 − v

n+1/2
i,j−1/2

∆y
= 0

for Cartesian cells and

u
n+1/2
i+1/2,jβi+1/2,j − u

n+1/2
i−1/2,jβi−1/2,j

∆x
+

v
n+1/2
i,j+1/2βi,j+1/2 − v

n+1/2
i,j−1/2βi,j−1/2

∆y
= 0

for cut cells (see Figure 4 for velocity centering). Here, βi+1/2,j , βi,j+1/2 ∈ [0, 1] represent the
area fractions of cut cell edges (i + 1/2, j) and (i, j + 1/2). We assume no flow boundary
conditions on the embedded boundary Γ given by u · n = 0 on Γ, with n denoting the outer
normal vector of the embedded object.

As explicit scheme we use an unsplit version of the MUSCL scheme. Unsplit schemes in two
dimensions were first introduced by Colella [17]. The scheme is significantly more complicated
in two dimensions than in one dimension since it has transverse derivatives for corner-coupling.
We will not give a detailed description here and instead refer to Almgren et al [4].

We use flux bounding to switch between the explicit and the implicit scheme. As in one
dimension, we introduce transition cells. These are full Cartesian cells that share an edge with
a cut cell as shown in Figure 5. The update formula for cut cells uses implicit fluxes for all
existing edges. The update formula for transition cells uses implicit fluxes on edges shared
with cut cells and explicit fluxes on edges shared with Cartesian cells.
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T

Figure 5: Switching between schemes in two dimensions: The domain used in the simulation
corresponds to the interior of the circle. ‘Transition’ cells (marked with ‘T’) are full
Cartesian cells that share an edge with a cut cell. Cut cells are marked with yellow
color, implicit fluxes by a bold, blue line. The remaining fluxes are explicit.

In particular, the flux between two transition cells is computed using the MUSCL scheme.
Due to corner-coupling (essentially the use of a transverse derivative in computing the normal
edge state), this could involve a cut cell for the evaluation of a transverse derivative. Therefore,
some minor adjustments of the MUSCL scheme due to the presence of cut cells are necessary
but straightforward, involving only the cut cell gradient computation (described next) and
prediction of cut cell edge states. For details see [28].

Analogous to one dimension, our mixed algorithm follows the following structure: given snij ,

(i) compute all explicit fluxes using the MUSCL scheme and update all fully explicitly treated
cells to sn+1

ij ;

(ii) compute all implicit fluxes and update cut cells and transition cells to sn+1
ij .

We again use trapezoidal rule time stepping combined with linear reconstruction in space.
At both cut and transition cells, we use a least squares formulation to compute the unlimited
gradient. For limiting we use the LP limiter developed specifically for cut cells [29]: this limiter
limits the x- and y-slope separately, reducing numerical diffusion compared to a scalar limiter,
while satisfying a positivity result. We also apply the LP limiter on transition cells which need
special treatment since the transition cell centroid is not coordinate-aligned with the cut cell
centroid.

For a cut cell, the update is given by

sn+1
ij = snij −

∆t

αij∆x∆y

[

F T
i+1/2,j − F T

i−1/2,j +GT
i,j+1/2 −GT

i,j−1/2

]

(9)

with αij ∈ (0, 1) representing the volume fraction,

F T
i+1/2,j =

1

2
u
n+1/2
i+1/2,jβi+1/2,j∆y(sni+1/2,j + sn+1

i+1/2,j),
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and

sni+1/2,j =
{

snij + (xi+1/2,j − xij)s
n
x,ij + (yi+1/2,j − yij)s

n
y,ij if u

n+1/2
i+1/2,j > 0,

sni+1,j + (xi+1/2,j − xi+1,j)s
n
x,i+1,j + (yi+1/2,j − yi+1,j)s

n
y,i+1,j if u

n+1/2
i+1/2,j < 0.

Here (xi+1/2,j , yi+1/2,j) denotes the location of the edge midpoint of face (i+ 1/2, j), (xij , yij)
denotes the centroid of cut cell (i, j), and sx,ij and sy,ij refer to the reconstructed x- and
y-slopes respectively in cell (i, j). The fluxes GT

i,j+1/2 are defined analogously.
The update of a transition cell uses both explicit and implicit fluxes. Consider for example

a transition cell (i, j) whose cell neighbors (i+ 1, j) and (i, j + 1) are cut cells and whose cell
neighbors (i− 1, j) and (i, j − 1) are Cartesian cells. Then, the update is given by

sn+1
ij = snij −

∆t

∆x∆y

[

F T
i+1/2,j − F

n+1/2
i−1/2,j +GT

i,j+1/2 −G
n+1/2
i,j−1/2

]

, (10)

with F
n+1/2
i−1/2,j and G

n+1/2
i,j−1/2 representing the MUSCL fluxes.

Remark 3.1. As in two dimensions, we also use a fully unsplit version of the explicit MUSCL
scheme in three dimensions based on the ideas of Saltzmann [37]. (See also [33] for more
information about unsplit schemes in three dimensions.) The scheme includes face neighbors,
edge neighbors, and node neighbors in the computation of the fluxes. As a consequence, the
scheme is stable for a CFL number of 1.0.
The extension of the mixed explicit implicit scheme to three dimensions follows the same

ideas as the extension to two dimensions. We define transition cells in three dimensions as
both the face and edge neighbors of cut cells. As in two dimensions, the flux between a cut cell
and a transition cell uses implicit time stepping, whereas the flux between Cartesian transition
and flow cells is computed with the explicit scheme. On transition cells we have disabled the
use of node neighbors in the flux computation of the MUSCL scheme and only use face and
edge neighbors. If this version was used in the whole domain, this would lead to a reduced
CFL number of 0.8 (compared to 1.0) [2]. However, one can show [10] that in many cases,
one can take a larger time step at the boundary on a cut cell and still maintain stability. In
particular, in the case of a first order scheme with a cut cell volume that is at least half the
regular cell size, a full CFL can still be used. In our numerical results in three dimensions we
have not observed instabilities using a CFL number of up to 0.95.

4. Solving the implicit systems

An implicit system coupling the cut cells and transitions cells needs to be solved at each time
step. Note that the number of unknowns is one dimension lower than the number of overall
grid cells. In two dimensions on a Cartesian grid with N cells in each direction, we expect
O(N) unknowns in the implicit system, so the overall increase in cost is reasonable.
We currently use an inexact damped Newton method to solve the implicit systems. Let

Z ∈ R
m be the vector of unknown values in cut and transition cells. Let the function F (Z)

incorporate the corresponding updates of the form (9) and (10), respectively, so that we can
write the system to be solved in the form F (Z) = 0.
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For an exact Newton method, we would need to build the Jacobian
(
∂F (Z)
∂Z

)m

i,j=1
based on

the second-order implicit scheme described above, which in particular includes (limited) slope
reconstruction. Instead, we use an approximate Jacobian based on using trapezoidal time
stepping with piecewise constant data. This has the advantages that the Jacobian is very
sparse and strictly diagonal dominant as shown in the following lemma. In particular, this
implies that the linear systems that need to be solved in each Newton iteration are well-posed.
Approximate Jacobians are a commonly used tool in computational fluid dynamics calculations
[35, 27].

Lemma 4.1. We consider the Jacobian J corresponding to the mixed explicit implicit scheme
with piecewise constant data for the implicit scheme. Let the velocity field be divergence-free
and let the CFL condition

max

(

max
i,j

|ui+1/2,j |∆t

∆x
,max

i,j

|vi,j+1/2|∆t

∆y

)

< 1

be satisfied for Cartesian cells in two dimensions, and

max

(

max
i,j,k

|ui+1/2,j,k|∆t

∆x
,max
i,j,k

|vi,j+1/2,k|∆t

∆y
,max
i,j,k

|wi,j,k+1/2|∆t

∆z

)

<
2

3

in three dimensions. We assume that the geometry is sufficiently resolved and that the velocity
field satisfies u · n = 0 on the embedded boundary. Then, the matrix J

1. has at most 2d− 1 non-zero, non-diagonal entries in a row (d denoting the dimension),

2. has real entries with the entries on the diagonal being positive,

3. is strictly diagonally dominant.

Remark 4.1. Note that the implicit scheme is only used at embedded boundaries. Therefore,
other boundaries can be ignored.

Proof. In the proof we focus on the two-dimensional case. The three-dimensional proof is
completely analogous unless otherwise indicated. We use the shorthand notation

u± = u
n+1/2
i±1/2,j , v± = v

n+1/2
i,j±1/2.

The proof relies on the incompressibility condition given by

u+βi+1/2,j − u−βi−1/2,j

∆x
+

v+βi,j+1/2 − v−βi,j−1/2

∆y
= 0.

Here, β(·) ∈ [0, 1] corresponds to the area fraction on each face, i.e., β(·) = 1 for a full Cartesian
face, and β(·) = 0 for a non-existing face. This condition implies in particular that every cell
has inflow and outflow faces, which in turn implies claim 1.

To show claim 2, that the entries on the main diagonal are positive, we define

U± = ±
∆t

2Vij
∆y · u± · βi±1/2,j , V± = ±

∆t

2Vij
∆x · v± · βi,j±1/2.
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Here, Vij denotes the area of cell (i, j). The entries on the main diagonal are given by

aii = 1 + U+ · I{u+>0}
︸ ︷︷ ︸

>0

+U− · I{u−<0}
︸ ︷︷ ︸

>0

+V+ · I{v+>0}
︸ ︷︷ ︸

>0

+V− · I{v−<0}
︸ ︷︷ ︸

>0

> 1,

with I{u+>0} = 1 if u+ > 0 and I{u+>0} = 0 otherwise. This concludes the proof of claim 2.
For claim 3, let us first consider the situation of a cut cell. The sum of the absolute values

of the off-diagonal entries is given by

∑

j 6=i

|aij | = −U+ · I{u+<0} − U− · I{u−>0} − V+ · I{v+<0} − V− · I{v−>0}.

This implies

|aii| −
∑

j 6=i

|aij | = 1 + U+ · I{u+>0} + U− · I{u−<0} + V+ · I{v+>0} + V− · I{v−<0}

+ U+ · I{u+<0} + U− · I{u−>0} + V+ · I{v+<0} + V− · I{v−>0}

= 1 + U+ + U− + V+ + V−.

Due to the incompressibility condition, there holds U+ + U− + V+ + V− = 0, which implies
|aii| −

∑

j 6=i|aij | = 1.
We now examine the case of a transition cell for which there are differences between two and

three dimensions. Based on the condition that the geometry is sufficiently resolved, we deduce
that a transition cell has at most d cut cell face neighbors. (Otherwise split each Cartesian
cell in 2d cells; then every transition cell has at most d cut cell neighbors.) Using the same
argument as used for a cut cell, there holds |aii| ≥ 1. As explicit fluxes contribute to the right
hand side of the linear system, the row of J corresponding to this cell has at most d non-zero,
non-diagonal entries that are given by either U+, U−, . . . or W−. Based on the CFL condition,
there holds

max (|U+|, |U−|, |V+|, |V−|, |W+|, |W−|) < ν(d)

with ν(d) = 1
2 for d = 2 and ν(d) = 1

3 for d = 3. Therefore,

|aii| −
∑

j 6=i

|aij | > 1− d ·
1

d
= 0,

which implies the claim.

In our inexact Newton method, we use ‖J−1F (Z(k))‖∞/‖J−1F (Z(0))‖∞ as stopping crite-
rion. We measure the error in the maximum norm (instead of, e.g., the L1 or L2 norm) to
avoid significant errors for solving the implicit system on the potentially very small cut cells,
which would result in computing unstable numerical fluxes for cut cells. Depending on the
accuracy needed, we usually ask for a reduction of the residual by 4-7 orders of magnitude.

There is an issue of convergence stalling when the implicit scheme is used with limited slopes.
In each step of the Newton method, we use a line search based on backtracing to determine the
optimal step length of the Newton update. If the step length algorithm results in the smallest
possible step length 2−12, we freeze the slopes. In most cases this results in convergence of the
method in the next iteration. In some cases the convergence stalling continues; we then accept
the latest iterate as the solution. We will examine this issue more closely in the future when
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β

Figure 6: Grid setup for the ramp test in two dimensions: the values of both cut cells (marked
in yellow) and transition cells (marked in light blue) are determined by an implicit
system. The red line indicates the splitting in patches.

we will develop an FCT approach for coupling our scheme with implicit Euler time stepping
in order to guarantee TVD stability.

For practical purposes, we need to be able to solve the implicit system in the context of
several patches. This is essential for mesh refinement and parallel computing. We currently
use a block-Jacobian approach. Consider the example of the ramp test shown in Figure 6. We
split the grid in two patches following the red line. Let the corresponding Jacobian J of the
first-order space discretization be given by
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In our block-Jacobian approach we ignore contributions connecting the two patches, in this case
the two contributions marked by a red square in the matrix representation. These correspond
to the fluxes marked by the red arrows in Figure 6. Instead, we invert the blocks individually
and treat the fluxes marked with the red arrows as fixed Dirichlet inflow data (evaluated using
the previous iterate). The communication between patches takes place via the update of ghost
cells after each Newton iteration. This approach worked very well for our parallel tests using
unlimited slopes and up to 12 cores. More extensive studies that solve the implicit system
using a higher level of parallelism will be future work.

5. Numerical results

This section presents numerical results in two and three dimensions. All tests were run on a 12
core Dell precision desktop machine. Parallel performance scaling studies will be future work.
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5.1. Numerical results in two dimensions

In the following experiments we will examine the error e measured both in the L1 norm and
in the L∞ norm over the whole domain given by

L1(e) =
∑

i,j

|eij | Vij and L∞(e) = max
i,j

|eij |,

with eij denoting the pointwise error at the cell centroid and Vij denoting the area of cell (i, j).
Given that the MUSCL scheme is a second-order scheme and that the boundary has lower
dimensionality, we expect L1(e) to converge with second order provided that the scheme close
to the boundary is at least first-order accurate. To get a better idea of the error close to the
boundary, we also examine L∞(e).

In the following tests, we compute the time step based on the CFL number λ as

∆t = λmin

(
∆x

maxi,j |ui+1/2,j |
,

∆y

maxi,j |vi,j+1/2|

)

.

(Note that this formula does not take the size of cut cells into account.) We use λ = 0.9 to
satisfy the time step restriction for the MUSCL scheme. We use ∆x = ∆y but this is not a
requirement.

5.1.1. Advection along a ramp

We start with advection along a ramp: we intersect a ramp with angle β with a Cartesian
grid. This is sketched in Figure 6. We note that one can easily construct a Cartesian grid
without cut cells for this simple geometry (as is the case for most of the tests presented here).
However, these simple tests are very suitable for testing the properties of our mixed explicit
implicit scheme.

To test the accuracy of our scheme we use unlimited gradients both for our explicit and
implicit scheme. Our test function is a one-dimensional quadratic function with respect to the
line that is perpendicular to the ramp. Since the MUSCL scheme is exact for quadratics, we
expect the error in the interior of the domain to be close to machine precision, and all error
should be caused by switching schemes in the transition cells and by the irregularity of the cut
cells. The velocity field is given by (u, v)T = (2, 2 tan(β))T and the final time is T = 0.1.

The results are shown in Table 2. We observe second-order convergence of L1(e). The error
measured in the L∞ norm varies with the grid angle. For all angles though the convergence
rates are better than first order but less than second order. It is clearly seen in the table that
the maximum error is not a smooth function of the angle or the mesh width, as there is no
smoothness in the cut cells.
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Table 2: Ramp test: Error and convergence rate for mixed scheme for different ramp angles.

Angle β ∆x L1(e) order L∞(e) order

5◦ 1/32 1.425e-06 – 2.992e-04 –
1/64 2.112e-07 2.75 9.806e-05 1.61
1/128 5.287e-08 2.00 2.616e-05 1.91
1/256 1.362e-08 1.96 8.284e-06 1.66
1/512 3.656e-09 1.90 2.998e-06 1.47

20◦ 1/32 4.014e-06 – 4.139e-04 –
1/64 1.106e-06 1.86 1.532e-04 1.43
1/128 2.902e-07 1.93 5.226e-05 1.55
1/256 7.837e-08 1.89 2.220e-05 1.24
1/512 2.082e-08 1.91 8.742e-06 1.34

30◦ 1/32 7.347e-06 – 4.974e-04 –
1/64 1.997e-06 1.88 1.996e-04 1.32
1/128 5.384e-07 1.89 7.509e-05 1.41
1/256 1.447e-07 1.90 2.935e-05 1.35
1/512 3.884e-08 1.90 1.160e-05 1.34

40◦ 1/32 1.071e-05 – 4.482e-04 –
1/64 2.657e-06 2.01 1.738e-04 1.37
1/128 6.702e-07 1.99 6.100e-05 1.51
1/256 1.699e-07 1.98 2.186e-05 1.48
1/512 4.305e-08 1.98 8.439e-06 1.37

5.1.2. Advection in interior of circle

The next test is advection with a variable velocity field in the interior of a circle. The circle
has radius 1.0. The velocity field is given by (u, v)T = (−2y, 2x)T . The initial condition is
chosen as

s(x, y, 0) = 1 + exp
(
−60 ·

(
(x− 0.85)2 + y2

))

and the final time is T = π, when the test function is back to its original position. We again
use unlimited gradients.

Figure 7 shows the solution at the final time for a run with ∆x = 1.43653/128. The contour
lines indicate that the shape of the test function has been very well preserved, including along
the cut cells.

For this test, we expect the maximum error to be located at the peak of the test function,
which has a distance of 0.85 from the circle midpoint and therefore lies close to the boundary
but in the interior of the domain. To get a fair assessment of our method, we measure the L1

and L∞ error (i) over all cells, (ii) over cut cells only, and (iii) over transition cells only. The
results for these errors measured in the L∞ norm are shown in Figure 8. The lines correspond
to the slopes of least squares fits. The precise numbers of the slopes are given in Table 3.
For the least squares fit we include samples with grid sizes smaller than 10−2. The results
are similar to the ramp test: L1(e) converges with second order, while the maximum error
measured over cut cells and transition cells converges with a rate that lies between 1 and 2.
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Figure 7: Circle test: solution at final time for mesh width ∆x = 1.43653/128. Left: Full
solution; right: zoom.
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Figure 8: Circle test: L∞ error measured over different sets of cells: measured over all cells
(L∞

all), measured over cut cells only (L∞
C ), and measured over transition cells only

(L∞
T ).

Table 3: Circle test: convergence rates computed by a least squares fit involving all tests with
mesh width ∆x ≤ 10−2.

Error computed over: L1 error L∞ error

all cells 2.03 1.91
cut cells only 1.49 1.41
transition cells only 1.76 1.39
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Table 4: Ramp test using discontinuous initial data: Maximum values measured over cut cells
and transition cells only (C/T) and over fully explicitly treated Cartesian cells only
(flow), respectively.

∆x β = 5◦ β = 20◦ β = 30◦ β = 40◦

flow C/T flow C/T flow C/T flow C/T

1/32 1.004 1.000 1.017 1.000 1.053 1.000 1.076 1.000
1/64 1.004 1.000 1.017 1.000 1.030 1.000 1.033 1.000
1/128 1.004 1.000 1.024 1.000 1.030 1.000 1.033 1.000
1/256 1.004 1.000 1.017 1.000 1.030 1.014 1.033 1.000
1/512 1.004 1.000 1.031 1.007 1.030 1.000 1.033 1.000

5.1.3. Discontinuity advected along ramp

In this section we compare the one-dimensional theory about the hybrid scheme’s monotonicity
from section 2.2 with two-dimensional numerical experiments of advection of a discontinuity
along a ramp. Again we use the ramp indicated in Figure 6. The initial data is discontinuous
with respect to the line perpendicular to the ramp: cells with centroids to the left of the line
have the value 1 and to the right have value 0. We take 1 time step.

For this test we use MUSCL with MC limiter as explicit scheme and implicit Euler time
stepping without slope reconstruction as implicit scheme, combined using flux bounding. This
approximately imitates the setup of the TVD result reported in Theorem 2.1. It is well-known
that advection in diagonal direction can lead to significant overshoot for second-order schemes
if one-dimensional, limited slope reconstructions are used, see e.g. the discussion in [30].
Therefore, we do expect to see some overshoot. The goal of this test is to compare the lack of
monotonicity over the cut/transition cells and the explicitly treated flow cells, by measuring
their minimum and maximum values.

For the flow cells, we observe undershoots between 10−6 and 10−15. The overshoots for
various scenarios are reported in Table 4. The amount of overshoot depends on the angle.
For a ramp angle of 5 degrees, when the flow is still fairly well aligned with the Cartesian
coordinate directions, there is very little overshoot. For almost diagonal advection, there is
significant overshoot even though we use the MC limiter.

More interesting to us is the behavior on cut and transition cells. We always observe a
minimum value of zero up to machine precision. For the maximum value, the table shows a
slight overshoot in only two cases. In both cases, the overshoot is caused by a transition cell.
The maximum overshoot on only cut cells is 10−10 in all cases tested. These results indicate
that the one-dimensional flux bounding theory carries over to two dimensions.

Next, we examine numerically another theoretical consideration from one dimension con-
cerning the monotonicity (or lack thereof) of the trapezoidal time stepping (without slope
reconstruction): we use 0-1 discontinuous data and place the jump directly in front of a very
small cell. In the limit as α → 0 we would expect a maximum value of 2 in the small cell in the
next time step [28]. To imitate that test in two dimensions, we use β = 30◦ and ∆x = 1/512
and place the discontinuity in front of a cell with αij = 5.0 ·10−7. Taking one time step results
in a value of 1.997 on that small cell, which is consistent with our one-dimensional theoretical
considerations. For comparison, we repeat the test using implicit Euler time stepping (without
slope reconstruction) as implicit scheme. For this setup, the overshoot on this tiny cell is 10−11.
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Figure 9: Passively advected scalar (left) and vorticity (right) for flow past a half-cylinder.

Overall, the results for this test indicate that for problems with discontinuous initial data
and/or shocks, some additional procedure will be needed. One possibility is an FCT approach
that combines trapezoidal time stepping with implicit Euler time stepping. Another possibility
is to use a discontinuity detector [25] and only apply the more diffusive scheme at these isolated
‘problem’ cells.

5.1.4. Incompressible Euler equations

We conclude the section on two dimensional numerical results with an example involving the
full incompressible Euler equations

ut + (u · ∇)u+∇p = 0,

∇ · u = 0.

The main incentive for developing the mixed explicit implicit time stepping scheme was to
extend an existing solver for the incompressible Euler equations from Cartesian grids to Carte-
sian embedded boundary grids. In this test, we solve the full nonlinear equations, and use the
mixed explicit implicit scheme for both update of the velocity field and the passively advected
scalar.
In Step 1 of the projection method [4, 2, 8, 9], a velocity field at cell edges is predicted at

time tn+1/2, and then a MAC-projection is applied to make the velocity field divergence-free
(up to machine precision), resulting in UM . Next, an equation of the form

U∗ − Un

∆t
+

[
(UM · ∇)U

]n+1/2
+∇pn−1/2 = 0 (11)

is solved for U∗, where the lagged pressure is treated as a source term. Then, in Step 2, Un+1

is derived from U∗ by applying a projection.
Our extension of this algorithm to embedded boundary grids follows the same outline. When

solving equation (11) on a cut cell grid, we face the small cell problem. We overcome this
problem by using our new mixed explicit implicit scheme. Note that equation (11) is very
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similar to the linear advection equation (8). Then, in Step 2, we apply a projection that has
been adjusted to the presence of cut cells. More details can be found in [28].

We compute flow around a half-cylinder roughly following the test setup in [3]. The test
domain is given by [0, 8] × [0, 24] and we cut out a half-cylinder with diameter D = 2.0. We
use inflow and outflow boundary conditions at the low and high y boundary, respectively, and
slip wall boundary conditions on both x boundaries. The inflow is given by v = 1. We use
a projection step to compute the initial velocity field, and add a small perturbation of size
0.01 close to the inflow boundary to break the symmetry. In addition to the velocity field, we
compute the behavior of a passively advected scalar which is advected in from the low y edge.
We stop the simulation at time T ≈ 51.5 when the flow is periodic.
Figure 9 shows the passively advected scalar variable on the left and the vorticity field on

the right, using 128 cells in the x direction. For both the update of the velocity field and the
advection of the scalar, we use the mixed explicit implicit time stepping scheme with limited
slopes. To be more precise, we use MUSCL with MC limiter as explicit scheme and trapezoidal
time stepping with LP limiter as implicit scheme. We did not observe stability issues.

5.2. Numerical results in three dimensions

This example is included to show that the ideas and results previously presented carry over to
three dimensions. We compute the L1 and L∞ norm analogously to two dimensions. For this
example we take the CFL number to be λ = 0.9, where the time step is computed using

∆t = λmin

(
∆x

maxi,j,k|ui+1/2,j,k|
,

∆y

maxi,j,k|vi,j+1/2,k|
,

∆z

maxi,j,k|wi,j,k+1/2|

)

.

We take ∆x = ∆y = ∆z.

5.2.1. Advection along a ramp

Consider advection along a three-dimensional ramp. The velocity field is given by

(u, v, w) = (1, tan(20◦), tan(35◦)).

The geometry setup is explained in Figure 10: a plane is cut out of the bounding box [0, 1]3.
The plane is determined by the two vectors ~a and ~b. We choose ~a = (u, v, w) to guarantee that
the flow is parallel to the ramp. The vector ~b is arbitrary. We use ~b = (0, 1, tan(15◦)).
The exact solution is a quadratic moving tangent to the plane; the value of the quadratic

depends only on the distance of a point (x, y, z) to the plane that passes through (0, 0, 0) and
has (u, v, w) as normal. This closely mimics the two dimensional ramp test, where all the error
is at the boundary cells, since a pure MUSCL scheme is exact for quadratics.
Figure 11 shows the error measured both in the L1 and the L∞ norm over the whole domain.

The slopes of the solid lines correspond to convergence orders computed by a least squares fit
and are given by 1.92 and 1.33, respectively. This confirms that our new scheme is second-order
accurate in L1 and between first- and second-order accurate in L∞.
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Figure 10: Setup of the ramp test in 3d: the (darker) grey plane is cut out of the bounding
box [0, 1]3. The flow domain corresponds to area above the plane. The small arrows
indicate the flow direction. Both the low x face and low y face of the box are inflow
boundaries.
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Figure 11: Ramp test: Error plots for the L1 and the L∞ error over the whole domain. The
slopes of the solid lines are computed by a least squares fit and are given by 1.92
and 1.33, respectively.

22



6. Conclusions and Future Plans

We have presented a mixed explicit implicit time stepping scheme for overcoming the small cell
problem for the linear advection equation. The scheme uses an implicit scheme, the trapezoidal
rule with slope reconstruction, on cut cells and the explicit MUSCL scheme on cells away from
boundary. The change in scheme happens in transitions cells – Cartesian cells that share at
least one edge/face with a cut cell. Transition cells use implicit fluxes for edges / faces shared
with cut cells and explicit fluxes otherwise, a technique that we call flux bounding and that
is conservative by construction. Numerical results in two and three dimensions show that the
resulting scheme is second-order accurate in L1 and between first- and second-order accurate
along the embedded boundary, and quite stable. We plan to investigate improvements in the
discretization at the cut cells, where by using a higher order reconstruction, and possibly a
higher order integration rule for the fluxes, a fully second order scheme will result. We also
have ideas for how to improve the convergence rate on transition cells.

In one dimension we can show a TVD result for combining MUSCL with implicit Euler time
stepping by means of flux bounding. There is no such result using trapezoidal time stepping
with slope reconstruction. Theoretical considerations in one dimension and numerical tests
in two dimensions confirm that for computations involving discontinuities and/or shocks, an
additional procedure such as an FCT-type approach that combines implicit Euler time stepping
with the second-order trapezoidal rule will be necessary. We plan to pursue this direction in
the near future as it would be an essential step towards extending this method from the linear
advection equation to the compressible Euler equations. We will also continue extending the
incompressible flow solver from Cartesian grids to cut cell meshes. The most important step
is extending the projection step in three dimensions to cut cells.
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A. Proof of Theorem 2.1

Theorem A.1 (Restatement of Theorem 2.1). The scheme (6) is TVD for the linear advection
equation (1) for 0 ≤ λ ≤ 1, if the exact solution has compact support.

Proof. We cannot directly apply Harten’s theorem [21, 39] to show that the scheme is TVD,
but we imitate its proof in order to show

∑

i

|sn+1
i+1 − sn+1

i | ≤
∑

i

|sni+1 − sni |. (12)
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We split the sum on the left hand side in the following way

∑

i

|sn+1
i+1 − sn+1

i | =
∑

i≤−3

|sn+1
i+1 − sn+1

i |+
∑

i≥2

|sn+1
i+1 − sn+1

i |

+ |sn+1
−1 − sn+1

−2 |+ |sn+1
0 − sn+1

−1 |+ |sn+1
1 − sn+1

0 |+ |sn+1
2 − sn+1

1 |. (13)

We estimate the sums
∑

i≤−3|s
n+1
i+1 − sn+1

i | and
∑

i≥2|s
n+1
i+1 − sn+1

i | in the first line (whose
behavior is dominated by the explicit scheme) and the four terms in the second line (whose
behavior is dominated by the implicit scheme) separately.
Terms involving the explicit scheme: The MUSCL scheme can be written as

sn+1
i = sni − Cn

i−1/2

(
sni − sni−1

)

with

Cn
i−1/2 = λ

sni + (1− λ)snx,i
∆x
2 − sni−1 − (1− λ)snx,i−1

∆x
2

sni − sni−1

,

which satisfy 0 ≤ Cn
i−1/2 ≤ 1 for the chosen limiter. This relation holds on all cells with indices

i ≤ −2 or i ≥ 2 (with snx,−2 = snx,1 = 0). This implies for i ≤ −3 and i ≥ 2 the relation

|sn+1
i+1 − sn+1

i | ≤ (1− Cn
i+1/2)|s

n
i+1 − sni |+ Cn

i−1/2|s
n
i − sni−1|.

Taking the compact support into account, there holds

∑

i≤−3

|sn+1
i+1 − sn+1

i | ≤
∑

i≤−3

|sni+1 − sni | − Cn
−5/2|s

n
−2 − sn−3| (14)

and ∑

i≥2

|sn+1
i+1 − sn+1

i | ≤
∑

i≥2

|sni+1 − sni |+ Cn
3/2|s

n
2 − sn1 |. (15)

Terms involving the implicit scheme: To estimate the remaining four terms in the second line
of equation (13) in terms of data at time tn we exploit the convexity of the implicit scheme.
We write the updates for sn+1

−1 and sn+1
0 as

sn+1
−1 = λ−1s

n
−1 + (1− λ−1)s

n
−2 and sn+1

0 = λ0s
n
0 + (1− λ0)s

n+1
−1

with λ−1 = 1/(1 + λ) and λ0 = 1/(1 + λ/α), λ−1, λ0 ∈ (0, 1]. Then we have the following
estimates: for the difference |sn+1

2 − sn+1
1 |, we get

|sn+1
2 − sn+1

1 | = |(1− Cn
3/2)s

n
2 + Cn

3/2s
n
1 − (1− λ)sn1 − λsn+1

0 |

≤ (1− Cn
3/2)|s

n
2 − sn1 |+ λ|sn1 − sn+1

0 |.

For the difference |sn+1
1 − sn+1

0 |, there holds

|sn+1
1 − sn+1

0 | = |(1− λ)sn1 + λsn+1
0 − sn+1

0 | = (1− λ)|sn1 − sn+1
0 |

with
|sn1 − sn+1

0 | = |sn1 − λ0s
n
0 − (1− λ0)s

n+1
−1 | ≤ |sn1 − sn0 |+ (1− λ0)|s

n
0 − sn+1

−1 |.
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For the difference |sn+1
0 − sn+1

−1 |, we get

|sn+1
0 − sn+1

−1 | = |λ0s
n
0 + (1− λ0)s

n+1
−1 − sn+1

−1 | = λ0|s
n
0 − sn+1

−1 |.

This implies

|sn+1
2 − sn+1

1 |+ |sn+1
1 − sn+1

0 |+ |sn+1
0 − sn+1

−1 |

≤ (1− Cn
3/2)|s

n
2 − sn1 |+ |sn1 − sn+1

0 |+ λ0|s
n
0 − sn+1

−1 |

≤ (1− Cn
3/2)|s

n
2 − sn1 |+ |sn1 − sn0 |+ |sn0 − sn+1

−1 |.

Finally, there holds

|sn0 − sn+1
−1 | = |sn0 − λ−1s

n
−1 − (1− λ−1)s

n
−2| ≤ |sn0 − sn−1|+ (1− λ−1)|s

n
−1 − sn−2|

as well as

|sn+1
−1 − sn+1

−2 | = |λ−1s
n
−1 + (1− λ−1)s

n
−2 − (1− Cn

−5/2)s
n
−2 − Cn

−5/2s
n
−3|

≤ λ−1|s
n
−1 − sn−2|+ Cn

−5/2|s
n
−2 − sn−3|.

To summarize, we get

|sn+1
2 − sn+1

1 |+ |sn+1
1 − sn+1

0 |+ |sn+1
0 − sn+1

−1 |+ |sn+1
−1 − sn+1

−2 |

≤ (1− Cn
3/2)|s

n
2 − sn1 |+ |sn1 − sn0 |+ |sn0 − sn−1|+ |sn−1 − sn−2|+ Cn

−5/2|s
n
−2 − sn−3|.

Therefore, we have estimated all terms in (13). Putting the results in equations (14) and (15)
as well as our results for the implicit terms together implies the claim (12).
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