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Abstract. We are aiming to identify the thin insulating inhomogeneities and

small conductive inhomogeneities inside an electrically conducting medium by using

multi-frequency electrical impedance tomography (mfEIT). The thin insulating

inhomogeneities are considered in the form of tubular neighborhood of a curve and

small conductive inhomogeneities are regarded as circular disks. Taking advantage of

the frequency dependent behavior of insulating objects, we give a rigorous derivation of

the potential along thin insulating objects at various frequencies. Asymptotic formula

is given to analyze relationship between inhomogeneities and boundary potential at

different frequencies. In numerical simulations, spectroscopic images are provided

to visualize the reconstructed admittivity at various frequencies. For the view of

both kinds of inhomogeneities, an integrated reconstructed image based on principle

component analysis (PCA) is provided. Phantom experiments are performed by using

Swisstom EIT-Pioneer Set.
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1. Introduction

Multi-frequency electrical impedance tomography (mfEIT) is a noninvasive method to

provide the images of the conductivity and permittivity at various frequencies ranging

from 1 kHz to 1 MH inside an electrically conducting object [12, 13, 15, 25, 29]. Recently,

multi-frequency imaging techniques have been paid considerable attention due to their

advantages in probing thin insulating inhomogeneities with their widths. Their potential

applications include biomedical imaging to probe biological tissues comprising insulating

cell membranes [10, 11, 14, 18, 23, 26] and non-destructive testing (NDT) to probe

insulating cracks [17, 19, 20, 22, 30].

In mfEIT, we inject ac currents using surface electrodes to produce the time-

harmonic electrical field inside the imaging object. The induced electrical field is

determined by the distribution of effective conductivity and permittivity, the geometry of

the object, electrode positions, the applied frequency, and others [26]. In the presence of

thin insulating inhomogeneities or insulating membranes, the time-harmonic electrical

potential near these inhomogeneities varies significantly with the applied frequency.

In particular, the potential jump across the thin insulating inhomogeneities changes

a lot with frequency, because currents pass through a thin insulating inhomogeneity

as frequency increases. Those variations with frequency are conveyed to the boundary

voltages [22, 23, 30]. Multi-frequency EIT (mfEIT) can take advantage of this frequency-

dependent behavior to measure tissue anomalies and thin insulating inhomogeneities

with their thickness.

One challenging issue is how to link the spectroscopic information obtained from

mfEIT to the structural information of an imaging object containing thin insulating

inhomogeneities. We need to describe the role of the thin insulating inhomogeneities by

understanding the frequency-dependent interplays between the real and imaginary parts

of the complex potentials due to the change of the refraction along the thin insulating

inhomogeneities as frequency varies.

This paper deals with this challenging issue of the spectroscopic mfEIT by means

of rigorous mathematical analysis with both numerical and experimental validations.

We start with the simplest model of a linear-shaped thin insulating inhomogeneity

with a uniform thickness, in order to provide a basis of the rigorous expression on the

frequency-dependent behavior of the potential due to the influence of thin insulating

inhomogeneities. Through a rigorous asymptotic analysis, we provide the behavior of

the time-harmonic potential uω across the linear inhomogeneity with respect to angular

frequency ω. To be precise, the frequency-dependent variation of the exterior normal

derivative ∂uω

∂ν
on the boundary of the inhomogeneity can be approximately described

in terms of the thickness (2δ), the contrast ratio between the background admittivity

σb + iωǫb and the inhomogeneity permittivity ǫc:
∣∣∣∣
∂uω

∂ν

∣∣∣∣ ≈
ω

2δ

|[uω]|

|(σb + iωǫb)/ǫc|
.

Assuming the above approximation for a more general shape of thin insulators, we
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could get better understanding on spectroscopic admittivity images being reconstructed

from standard mfEIT algorithm. In a special case of inclusions (highly conducting

disks and linear insulating segments) inside the imaging object, we derive a formula for

detecting both inhomogeneities. Finally, various numerical simulations are performed

at multiple frequencies to give spectroscopic reconstructed images. Using spectroscopic

images, an integrated image based on principle component analysis (PCA) is presented.

In addition, we take use of Swisstom EIT-Pioneer set to carry out phantom experiments

at a frequency range from 50kHz to 250kHz.

2. Mathematical model

For rigorous analysis, we use the simplified two-dimensional model by considering axially

symmetric cylindrical sections under the assumption that the out-of-plane current

density is negligible in an imaging slice. We assume a two dimensional electrically

conducting domain Ω with its connected C2-boundary ∂Ω. We denote the conductivity

distribution of the domain by σ and the permittivity distribution by ǫ. Inside Ω,

there exist thin insulating objects Ck, k = 1, 2, . . . , NC and small conductive objects

Dk, k = 1, 2, . . . , ND. Let D = ∪ND

k=1Dk and C = ∪NC

k=1Ck denote the collections of the

conductive objects and thin insulating objects, respectively. Since the conductivity σ

and permittivity ǫ change abruptly across the thin objects and conductive objects, we

denote

γω(x) =





γωc = σc + iωǫc for x ∈ C,

γωd = σd + iωǫd for x ∈ D,

γωb = σb + iωǫb for x ∈ Ω\(D ∪ C),

(1)

Because the thin objects Ck are highly insulating, we consider the following extreme

contrast case:

σc/σb ≈ 0.

In the frequency range below 1MHz ( ω
2π

≤ 106), we inject a sinusoidal current

g(x) sin(ωt) at x ∈ ∂Ω where g is the magnitude of the current density on ∂Ω and

g ∈ H
−1/2
⋄ (∂Ω). Here H

−1/2
⋄ (∂Ω) := {φ ∈ H−1/2(∂Ω) : 〈φ, 1〉 = 0} with 〈 , 〉 being

the duality pair between H−1/2(∂Ω) and H1/2(∂Ω). The injected current produces the

time-harmonic potential uω in Ω which is dictated by
{

∇ · (γω∇uω) = 0 in Ω,

γω ∂uω

∂ν
= g on ∂Ω,

(2)

where γω = σ + iωǫ is the admittivity distribution, ν is the outward unit normal

vector on ∂Ω, and ∂
∂ν

is the normal derivative. Setting
∫
∂Ω
uωds = 0, we can obtain

a unique solution uω to (2) from the Lax-Milgram theorem. Hence, we can define

the Neumann-to-Dirichlet map Λω : H
−1/2
⋄ (∂Ω) → H

1/2
⋄ (∂Ω) by Λω(g) = uω|∂Ω.

Using NE−channel multi-frequency EIT system, we may inject NE number of linearly

independent currents at several angular frequencies ω1, . . . , ωNω and measure the induced
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corresponding boundary voltages. We collect these current-voltage data {Λωj
(gk) : k =

1, . . . , NE, j = 1, . . . , Nω} at various frequencies ranging from 10Hz to 1MHz. The

inverse problem is to identify the thin insulators Ck and small conductive objects Dk

from measured current-voltage data in multi-frequency EIT system.

To carry out detailed analysis, we will restrict our considerations to geometric

structures of C and D. We assume that each thin insulating inhomogeneity Ck has a

uniform thickness of δk and is a neighborhood of a C3−smooth open curve Lk:

Ck = {x+ hνx : x ∈ Lk, − δk < h < δk}, (k = 1, 2, . . . , NC), (3)

where νx is the unit normal vector at x on the curve Lk. The thickness to the length

ratio is assumed to be very small, that is, δk ≈ 0. We also assume that each small

conductive object has the form

Dk := zk + δDBk, (k = 1, 2, . . . , ND), (4)

where zk is the center of Dk, Bk is a bounded smooth reference domain centered at (0, 0)

and δD is related to the diameter of Dk. We assume that Ck and Dk are well separated

from each other as well as from the boundary ∂Ω, i.e., the separation distance is much

larger than the characteristic size of the conductors or thickness of the insulators. Note

that in the non-resolved case, where the distance between small conductors or insulators

is of order of the characteristic size of Dk or thickness of Ck, the conductors and the

insulators can not be determined separately. Only equivalent targets can be imaged

using boundary measurements (see [4]). Therefore, throughout this paper, we assume

that there exists a positive constant d0 > 0 [1, 2] such that

infk 6=k′ dist(Dk, Dk′) ≥ d0, infk 6=k′ dist(Ck, Ck′) ≥ d0,

dist(C, ∂Ω) ≥ d0, dist(D, ∂Ω) ≥ d0, distk,j(Ck, Dj) ≥ d0.
(5)

3. Methods

In this part, we will focus on rigorous analysis of the frequency-dependent behaviors of

the complex potential uω around the thin insulating inhomogeneities. We will derive an

explicit formula for detecting positions of conductive inhomogeneities and thin insulating

inhomogeneities by using asymptotic expansions of uω. The explicit formula depends

on the operating frequency ω and the insulator thickness δk.

To start with, since each thin object Ck is highly non-conductive, there is a

noticeable potential jump along the thin insulating objects [1, 23, 30]. For ease of

notation, we define exterior(+)/interior(−) normal derivative on the boundary of Ck as

follows:
∂uω

∂ν
(x− δkνx)|± = lims→0+

∂uω

∂ν
(x− δkνx ∓ sνx)

∂uω

∂ν
(x+ δkνx)|± = lims→0+

∂uω

∂ν
(x+ δkνx ± sνx)

(x ∈ Lk).

Denote by [uω]k and
[
∂uω

∂ν

]
k
the jump of the potential and the jump of its normal

derivative across the boundary of the thin insulating object Ck, respectively:

[uω]k(x) := uω(x+ δkνx)− uω(x− δkνx),[
∂uω

∂ν

]
k
(x) := ∂uω

∂ν
(x+ δkνx)|+ − ∂uω

∂ν
(x− δkνx)|+,

(x ∈ Lk). (6)
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Then, based on the above notations, we have the following theorem for jump conditions

across thin insulating inhomogeneities:

Theorem 3.1. Let Ck = {x : |x1| ≤ ℓk, |x2| ≤ δk} be a tubular neighbourhood of segment

Lk = {x : |x1| ≤ ℓk, x2 = 0} as shown in Figure 1. Let L⋄
k = {x ∈ Lk : dist(x, ∂Lk) >

c0} for c0 > 0 and C⋄
k = {x + hνx : x ∈ L⋄

k, − δk < h < δk}, (k = 1, 2, · · · , NC).

For δk ≈ 0, the jump of potential and the jump of normal derivative across C⋄
k can be

approximated by

[uω]k(x) = 2δk
λc(ω)

∂uω

∂ν
(x− δkνx)|+ +O(δ2k ln δk)[

∂uω

∂ν

]
k
(x) = O(δk ln δk)

(x ∈ L⋄
k), (7)

with

λc(ω) =
σc + iωǫc
σb + iωǫb

. (8)

x1-axis

x2-axis

L⋄
k Lk

Ck

δk

C⋄
k

−ℓk ℓk

c0 c0

Figure 1. Linear object model.

Proof. The potential uω in (2) can be expressed as

uω(x) = Hk(x) +

∫

∂Ck

Γ(x, x′)φk(x
′)dsx′ in Ω,

where Γ(x, x′) := − 1
2π

ln |x − x′| is the fundamental solution of Laplacian in two

dimensions, Hk is a harmonic function in a neighborhood of Ck, and

φk = (λc − 1)
∂uω

∂ν

∣∣∣
−
=

(
1−

1

λc

)
∂uω

∂ν

∣∣∣
+

on ∂Ck. (9)

To be precise, Hk can be expressed in the following form:

Hk = −
1

γωb
SΩg +DΩ(Λω(g)) +

ND∑

j=1

SDj
ψDj

+
∑

j 6=k

SCjφj,

where ψDj
=

(
γω
d

γω
b
− 1

)
∂uω

∂ν

∣∣∣
−
on ∂Dj, SΩ, SDj

, SCj are the single layer potentials over

the domain Ω, Dj, Cj respectively and DΩ is the double layer potential over the domain

Ω; see [2, 3, 26].

From the transmission conditions across Ck, φk satisfies

(
λI −K∗

Ck

)
φk =

∂Hk

∂ν
on ∂Ck, (10)
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where λ = λc+1
2(λc−1)

and K∗
Ck
φ is given by

K∗
Ck
φ(x) :=

1

2π

∫

∂Ck

〈x′ − x, νx〉

|x− x′|2
φ(x′)dsx′ , x ∈ ∂Ck. (11)

Now, we compute
[
∂uω

∂ν

]
k
(x) for x = (s, 0) ∈ L⋄

k. From (10), we have
(
λI −K∗

Ck

)
φk(s, δk)−

(
λI −K∗

Ck

)
φk(s,−δk)

=
∫ δk
−δk

d2Hk(s,t)
dt2

dt for (s, 0) ∈ L⋄
k.

(12)

For convenience, let ∂Ck = ∂Ck
♯ ∪ L+

k ∪ L−
k where ∂Ck

♯ = {x ∈ ∂Ck : |x1| > ℓk − c0/2}

and L±
k = {x ∈ ∂Ck : |x1| ≤ ℓk − c0/2, x2 = ±δk} as described in Figure 2.

x1-axis

x2-axis

L⋄
k Lk

δk

−ℓk ℓk

c0 c0

Figure 2. ∂Ck can be divided as three parts; green color stands for ∂Ck
♯, red color is

L+

k and blue color is L−

k .

Then, when x = (s,−δk), K
∗
Ck
φk(x) can be written as

2πK∗
Ck
φk(s,−δk) =

∫

∂Ck
♯

〈x′ − (s,−δk), νx〉

|(s,−δk)− x′|2
φk(x

′)dx′

+

∫

L+

k

〈x′ − (s,−δk), νx〉

|(s,−δk)− x′|2
φk(x

′)dx′ +

∫

L−

k

〈x′ − (s,−δk), νx〉

|(s,−δk)− x′|2
φk(x

′)dx′.

Since Lk is a line, x
′−(s,−δk) is perpendicular to νx for x

′ ∈ L−
k and 〈x′−(s,−δk), νx〉 =

2δk for x′ ∈ L+
k , which directly yield

2πK∗
Ck
φk(s,−δk) =

∫

∂Ck
♯

〈x′ − (s,−δk), νx〉

|(s,−δk)− x′|2
φk(x

′)dx′ +

∫

L+

k

〈x′ − (s,−δk), νx〉

|(s,−δk)− x′|2
φk(x

′)dx′

=

∫ ℓk−c0/2

−ℓk+c0/2

2δk
|s− s′|2 + (2δk)2

φk(s
′)ds′ +

∫

∂Ck
♯

〈x′ − (s,−δk), νx〉

|(s,−δk)− x′|2
φk(x

′)dx′.

(13)

Analogously, it follows that

2πK∗
Ck
φk(s, δk) =

∫ ℓk−c0/2

−ℓk+c0/2

2δk
|s− s′|2 + (2δk)2

φk(s
′)ds′ +

∫

∂Ck
♯

〈x′ − (s, δk), νx〉

|(s, δk)− x′|2
φk(x

′)dx′.

(14)

since x′−(s, δk) is perpendicular to νx for x
′ ∈ L+

k and 〈x′−(s, δk), νx〉 = 2δk for x
′ ∈ L−

k .

Combining formulas (13) and (14) yields

K∗
Ck
φk(s, δk)−K∗

Ck
φk(s,−δk) = Tkφ

♯
k(s) + E(s) for (s, 0) ∈ L⋄

k, (15)
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where

Tkφ
♯
k(s) =

1

2π

∫ ℓk−c0/2

−ℓk+c0/2

2δk
|s− s′|2 + (2δk)2

φ♯
k(s

′)ds′, (16)

φ♯
k(s) = φk(s, δk)− φk(s,−δk) =

(
1−

1

λc

)[
∂uω

∂ν

]

k

(s, 0), (17)

and E(s) for (s, 0) ∈ L⋄
k is given by

E(s) =
1

2π

∫

∂Ck
♯

{
〈x′ − (s, δk), νx〉

|(s, δk)− x′|2
−

〈x′ − (s,−δk), νx〉

|(s,−δk)− x′|2

}
φk(x

′)dsx′ .

Since H(x) is harmonic in a neighborhood of Ck,

sup
(s,0)∈L⋄

k

∣∣∣∣
∫ δk

−δk

d2Hk(s, t)

dt2
dt

∣∣∣∣ ≤ 2δk‖∇∇Hk ‖C2(Ck) = O(δk). (18)

Moreover, the term E(s) can be estimated by the mean-value theorem. Using the fact

that c0/2 ≤ dist(L⋄
k, ∂Ck

♯) and |〈x′ − (s,±δk), νx〉| ≤ 2δk, we get

sup
(s,0)∈L⋄

k

|E(s)| ≤
16

c20
‖φk‖L1(C♯

k
)δk = O(δk). (19)

Therefore, it follows from (12)-(19) that

(λI − Tk)φ
♯
k(s) =

∫ δk

−δk

d2Hk(s, t)

dt2
dt+ E(s) for (s, 0) ∈ L⋄

k. (20)

Note that

Tkφ
♯
k(s) =

1

2π

∫ ℓk−c0/2

−ℓk+c0/2

2δk
|s− s′|2 + (2δk)2

(φ♯
k(s

′)− φ♯
k(s))ds

′,

+ φ♯
k(s)

1

2π

∫ ℓk−c0/2

−ℓk+c0/2

2δk
|s− s′|2 + (2δk)2

ds′. (21)

Direct computation yields

1

2π

∫ ℓk−c0/2

−ℓk+c0/2

2δk
|s− s′|2 + (2δk)2

ds′,

=
1

2π

(
arctan

ℓk − c0/2− s

2δk
− arctan

−ℓk + c0/2− s

2δk

)
,

=
1

2
+

(
−

2

ℓk − c0/2− s
+

2

−ℓk + c0/2− s

)
δk +O(δ3k),

=
1

2
−

4(ℓk − c0/2)

(ℓk − c0/2)2 − s2
δk +O(δ3k).

For s ∈ L⋄
k, we have

(ℓk − c0/2)
2 − s2 ≥ (ℓk − c0/2)

2 − (ℓk − c0)
2 = c0(ℓk − 3c0/4).
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Therefore, we obtain that

1

2π

∫ ℓk−c0/2

−ℓk+c0/2

2δk
|s− s′|2 + (2δk)2

ds′ =
1

2
+O(δk). (22)

Since ∂γω

∂x1
= 0 in a neighborhood of C⋄

k ,
∂uω

∂x1
is a weak solution of ∇ · (γω ∂uω

∂x1
) = 0

near the region C⋄
k . Hence, φ

♯
k(s) is differentiable for (s, 0) ∈ L⋄

k, and φ
♯
k(s)− φ♯

k(s
′) can

be estimated by

|φ♯
k(s)− φ♯

k(s
′)| ≤

∥∥∥∥
d

ds
φ♯
k(s)

∥∥∥∥
L∞(L⋄

k
)

|s− s′| for (s′, 0), (s, 0) ∈ L⋄
k. (23)

From the above estimate (23), we have
∣∣∣∣∣
1

2π

∫ ℓk−c0/2

−ℓk+c0/2

2δk
|s− s′|2 + (2δk)2

(φ♯
k(s

′)− φ♯
k(s))ds

′

∣∣∣∣∣ (24)

≤

∥∥∥ d
ds
φ♯
k(s)

∥∥∥
L∞(L⋄

k
)

2π

∫ ℓk−c0/2

−ℓk+c0/2

2δk
|s− s′|2 + (2δk)2

|s− s′|ds′ = −

∥∥∥∥
d

ds
φ♯
k(s)

∥∥∥∥
L∞(L⋄

k
)

2δk
π

ln 2δk

+

δk

∥∥∥ d
ds
φ♯
k(s)

∥∥∥
L∞(L⋄

k
)

2π
ln
[
((ℓk −

c0
2
− s)2 + 4δ2k)((ℓk −

c0
2
+ s)2 + 4δ2k)

]

= O(δk ln δk).

From (22) and (24), Tkφ
♯
k(s) in (21) can be estimated by

Tkφ
♯
k(s) =

1

2
φ♯
k(s) +O(δk ln δk). (25)

Combining (17), (20) and (25), we arrive at
(
λ−

1

2

)
φ♯
k(s) = O(δk ln δk),

[
∂uω

∂ν

]

k

(s, 0) =
λc

λc − 1
φ♯
k(s) = O(δk ln δk) for (s, 0) ∈ L⋄

k. (26)

It easily follows from the above analysis and transmission condition that

[uω]k(s) = uω(s, δk)− uω(s,−δk) =

∫ δk

−δk

d

dt
uω(s, t)dt

= 2δk
∂uω

∂x2
(s,−δk)|− +

∫ δk

−δk

d

dt
uω(s, t)−

∂uω

∂x2
(s,−δk)|−dt

where

|

∫ δk

−δk

d

dt
uω(s, t)−

∂uω

∂x2
(s,−δk)|−dt|

≤

∫ δk

−δk

∣∣∣∣
d

dt
uω(s, t)−

∂uω

∂x2
(s,−δk)|−

∣∣∣∣ dt ≤ Cδ2k ln δk.
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Then we have

[uω]k(s) =
2δk
λc(ω)

∂uω

∂ν
(s,−δk)|+ +O(δ2k ln δk) for (s, 0) ∈ L⋄

k. (27)

Remark 3.2. The approximation formulas given in (7) can be proved for special cases

of thin insulators by using layer potential techniques. Unfortunately, the proof of (7)

in general still remains a challenging issue due to technical difficulties in obtaining a

uniform estimate for the Hessian matrix of uω in C⋄
k with respect to δk. For the numerical

proof of the jump conditions in (7), we refer to [30].

3.1. Effective zero-thickness model

It is very difficult to numerically solve uω in (2) due to the potential discontinuity across

the thin insulating inhomogeneities. One way to deal with thin objects is to treat them

as lower dimensional interfaces. In our case, the thin insulating objects can be considered

as curves. Based on the above Theorem 3.1, we can describe an effective zero-thickness

model by imposing the jump conditions of [uω]k and
[
∂uω

∂ν

]
k
on the curves Lk. This

means that the potential uω can be approximated by the corresponding potential ũω

satisfying the following effective zero-thickness model:




∇ · ((γωb + (γωd − γωb )χD)∇ũ
ω) = 0 in Ω \ ∪NC

k=1Lk,[
∂
∂ν
ũω

]
Lk

= 0, k = 1, 2, . . . , NC ,

[ũω]Lk
= 2δk

1
λc(ω)

∂ũω

∂ν
|+, k = 1, 2, . . . , NC ,

γωb
∂ũω

∂ν
= g on ∂Ω,

(28)

where χD is the characteristic function of D and

[ũω(x)]Lk
:= lims→0+ (ũω(x+ sνx)− ũω(x− sνx))[

∂ũω

∂ν
(x)

]
Lk

:= lims→0+
(
∂ũω

∂ν
(x+ sνx)−

∂ũω

∂ν
(x− sνx)

) (x ∈ Lk).(29)

Since uω ≈ ũω in {x ∈ Ω : dist(x, ∂Ω) < d0
2
}, the forward model (2) and the effective

zero-thickness model (28) have basically the same Neumann-to-Dirichlet data in terms

of the inverse problem. From now on, let uω denote the solution of (28) for ease of

notation. From the above zero-thickness model, the boundary condition along curve Lk

depends on thickness δk of thin insulating objects as well as the value of λc(ω) which

is related with injected current frequency ω. From the above Theorem 3.1, the jump

of the potential across Ck depends on angular frequency ω as well as the thickness δk.

At high frequencies, the admittivity ratio |λc(ω)| is away from 0, and there will be no

potential jump when δk ≈ 0. Whereas, at low frequencies, |λc(ω)| is close to zero since

σc/σb ≈ 0 and potential jump happens across Ck. For easy understanding, changes of

potential distribution near thin insulating objects are given in Figure 3. Based on the

above analysis, we consider separately the following two cases [21]:

• High-frequency case: δk ≈ 0 and 0 < c1 ≤ |λc(ω)|.

• Low-frequency case: |λc(ω)| ≈ 0 and δk ≈ 0 with |λc(ω)|
−1δk ≈ β and 0 < β <∞.
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D1

D2 C2

C1

I

(a) (b) (c)

Figure 3. Changes of potential distribution near thin insulating objects with

frequencies: (a) 10Hz, (b) 10kHz, (c) 500kHz.

In the upcoming sections, asymptotic formulas connecting the boundary potential and

inhomogeneities are used to derive an explicit formula for identification of thin insulating

objects and small conductive inhomogeneities inside Ω.

3.2. High-frequency case: δk ≈ 0 and 0 < c1 ≤ |λc(ω)|

In high-frequency case, we suppose that the injected current frequency ω is not that

low, so that |λc(ω)| is away from zero. When the thickness δk goes to zero, the potential

jump along Ck also goes to zero according to approximation formula (7) as well as

Figure 3. Therefore, the proposed problem can be regarded as traditional impedance

boundary value problem and the influence of thin insulating inhomogeneities on the

high-frequency current-voltage data is very weak. In this case, the following boundary

voltage asymptotic expansion holds at high-frequencies. For detailed analysis and similar

proof, one may refer to [1, 7, 8, 9] in which the proof can be immediately extended to

the complex valued equation.

Theorem 3.3 (Asymptotic expansion at high-frequencies). Let λc(ω) and δk satisfy

the conditions stated in high-frequency case. Assume that uω is a solution of the

effective zero-thickness model (28) and u0 is the solution of equation (2) with γω = γωb .

Assume that all Lk are line segments with endpoints Pk, Qk. For x ∈ ∂Ω, when the

injection current frequency is high, the perturbations of voltage potential uω due to small

conductive objects Dk and thin insulating objects Ck can be expressed as
(
−
1

2
I +KΩ

)
[uω − u0](x)

= −

NC∑

k=1

∫

Lk

δkAk(x
′, λc(ω))∇u0(x

′) · ∇Γ(x, x′)dsx′

− δ2D

ND∑

k=1

∇Γ(x, zk) ·M(λd(ω), Bk)∇u0(zk) +O(δ2k) +O(δ3D), (30)

where Ak(x, λc(ω)) is a 2 × 2 symmetric matrix whose eigenvectors are unit normal

vector νk(x) and unit tangential vector τk(x) to Lk and the corresponding eigenvalues
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are 2(1− 1
λc(ω)

) and 2 (λc(ω)− 1), respectively. Moreover, M(λd(ω), Bk) is polarization

tensor given by

Mij :=

∫

∂Bk

yj(λd(ω)I −K∗
Bk
)−1(νx · ∇x

i)(y)dsy, i, j = 1, 2, (31)

with

λd(ω) =
(σd + σb) + iω(ǫd + ǫb)

2((σd − σb)− iω(ǫd − ǫb))
. (32)

Remark 3.4. In Theorem 3.3, the matrix Ak is only related to the geometry of the

thin insulators and admittivity ratio λc(ω). Since σc is very small, the ratio λc(ω)

changes much with respect to the operating frequency ω. On the other hand, polarization

tensor M(λd(ω), Bk) is related with the geometry of small conductors and admittivity

distribution. When Dk is a circular disk, M(λd(ω), Bk) can be explicitly written as

M(λd(ω), Bk) = |Bk|
λd(ω)

I. Since σd is realtively large compared with the background

conductivity σb and σd−σb is away from zero, λd(ω) varies little with respect to frequency.

Thus conductive objects are insensitive to the boundary measurements.

Theorem 3.3 shows that the measured boundary data are influenced by insulating

objects and conductive objects since the first term on the right-hand side of formula

(30) is only related with thin insulators while the second term is only related with

small conductors. Depending on the magnitude of ω, δk and δD, the dominative term

on right-hand side of formula (30) may be alternative. To see the effect of ω, δk and δD
on the measured boundary data more clearly, we need further analysis on the expansion

formula in Theorem 3.3.

To avoid any confusion, we will adopt the following notations: x = (x1, x2) denotes

a point in R
2 and x = x · (1, i) will be the corresponding point in C. Let g = a · ν on

∂Ω where a is a unit vector in R
2. Similarly, a = a · (1, i), the center zk of each small

conductor Dk can be expressed as zk = zk · (1, i), the endpoints of line segment Lk can

be written as Pk = Pk · (1, i), and Qk = Qk · (1, i). Then we have the following result.

Theorem 3.5 (Identification of thin insulators and small conductors). Let λc(ω)

and δk satisfy the conditions stated in high-frequency case. Assume that all the thin

inhomogeneities are line segments and all the small conductive objects are disks. Then

(−1
2
I +KΩ)[u

ω − u0] on the boundary ∂Ω can be expressed as

ℜ

{
(−

1

2
I +KΩ)[u

ω − u0](x)

}
= ℜ{Gℜ(x)}+O(δ2k) +O(δ3D), (33)

ℑ

{
(−

1

2
I +KΩ)[u

ω − u0](x)

}
= ℜ

{
Gℑ(x)

}
+O(δ2k) +O(δ3D), (34)

where Gℜ and Gℑ are meromorphic functions:

dGℜ(x)

dx
=

NC∑

k=1

C
ℜ
k (ω, δk)

(
1

x−Qk

−
1

x−Pk

)
−

ND∑

k=1

D
ℜ
k (ω, δD)

1

(x− zk)2
(35)

dGℑ(x)

dx
=

NC∑

k=1

C
ℑ
k (ω, δk)

(
1

x−Qk

−
1

x−Pk

)
−

ND∑

k=1

D
ℑ
k (ω, δD)

1

(x− zk)2
(36)
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and

C
ℜ
k (ω, δk) =

δk
π

(
ℜ{(λc(ω)− 1)}aτk + iℜ{(1−

1

λc(ω)
)}aνk

)
(37)

C
ℑ
k (ω, δk) =

δk
π

(
ℑ{λc(ω)− 1}aτk + iℑ{1−

1

λc(ω)
}aνk

)
(38)

D
ℜ
k (ω, δD) = −ℜ

{
|Bk|δ

2
D

2πλd(ω)

}
a, D

ℑ
k (ω, δD) = −ℑ

{
|Bk|δ

2
D

2πλd(ω)

}
a. (39)

Here, aνk = a · νk, aτk = a · τk.

Proof. Since Bk is a disk, the formula (31) gives M(λd(ω), Bk) = |Bk|
λd(ω)

I. Hence, the

formula (30) in Theorem 3.3 can be expressed as
(
1

2
I +KΩ

)
[uω − u0](x) = Φ(x) +O(δ2k) +O(δ3D) (x ∈ ∂Ω), (40)

where Φ is

Φ(x) = −

NC∑

k=1

δk

∫

Lk

(Ak a) · ∇Γ(x, x′)dsX′ −
δ2D
2π

ND∑

k=1

|Bk|

λd(ω)

x− zk
|x− zk|2

· a. (41)

We use a = aνkνk + aτkτk to get

Φ(x) = −
1

2π

NC∑

k=1

δk

∫

Lk

(
2(1−

1

λc(ω)
)aνkνk + 2(λc(ω)− 1)aτkτk

)
·
x− x′

|x− x′|2
dsx′

−
δ2D

2πλd(ω)

ND∑

k=1

|Bk|
x− zk
|x− zk|2

· a (x ∈ ∂Ω). (42)

From now on, we shall identify R
2 with the complex plane C and use similar ideas

as those in [1, 6]. Since λc(ω), λd(ω) as well as uω are complex, we will consider real

and imaginary parts of Φ(x) separately.

The real part of Φ(x) for x ∈ ∂Ω can be expressed as

ℜ{Φ(x)} = ℜ

{
−

1

2π

NC∑

k=1

δk

∫

Lk

ξ

x− x′
dsx′ −ℜ

{
δ2D

2πλd(ω)

} ND∑

k=1

|Bk|
a

x− zk

}
, (43)

where ξ= ξ · (1, i) and ξ is

ξ = ℜ{2(1−
1

λc(ω)
)aνkνk + 2(λc(ω)− 1)aτkτk}. (44)

Since Lk is the segment with endpoints Pk, Qk, it can be written as Pk+ t(Qk−Pk), 0 ≤

t ≤ 1. Therefore, Lk has its unit tangent vector τ k =
Qk−Pk

|Pk−Qk|
and its unit normal vector

νk = i Qk−Pk

|Pk−Qk|
in C. Hence, the integral term in (43) can be written as

∫

Lk

ξ

x− x′
dsx′ = |Qk −Pk|

∫ 1

0

ξ

(x−Pk)− t(Qk −Pk)
dt

=
ξ|Qk −Pk|

Qk −Pk

ln
x−Pk

x−Qk

.
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From (44), we have

ξ|Qk −Pk|

Qk −Pk

=
|Qk −Pk|

Qk −Pk

(
2ℜ{1−

1

λc(ω)
}aνk

i(Qk −Pk)

|Pk −Qk|
+ 2ℜ{λc(ω)− 1}aτk

Qk −Pk

|Pk −Qk|

)

= 2ℜ{λc(ω)− 1}aτk + i2ℜ{1−
1

λc(ω)
}aνk .

Therefore, (43) can be simplified as

ℜ{Φ(x)} = ℜ

{
NC∑

k=1

C
ℜ
k (ω, δk) ln

x−Qk

x−Pk

+

ND∑

k=1

D
ℜ
k (ω, δD)

1

x− zk

}
, (45)

where C
ℜ
k (ω, δk) and D

ℜ
k (ω, δD) are the quantities defined in (37) and (39). From (45),

the real part of Φ can be viewed as the real part of the meromorphic function Gℜ(x)

given by

Gℜ(x) :=

NC∑

k=1

C
ℜ
k (ω, δk) ln

x−Qk

x−Pk

+

ND∑

k=1

D
ℜ
k (ω, δD)

1

x− zk
. (46)

Since Gℜ(x) is holomorphic except at the points Pk,Qk, zk and the segments PkQk (see,

for instance, [27]), it has complex derivative near ∂Ω in the complex plane:

dGℜ(x)

dx
=

NC∑

k=1

C
ℜ
k (ω, δk)

(
1

x−Qk

−
1

x−Pk

)
−

ND∑

k=1

D
ℜ
k (ω, δD)

1

(x− zk)2
. (47)

A similar argument applies for the imaginary part of Φ(x).

The followings remark on Theorem 3.5 is in due.

Remark 3.6. According to Theorem 3.5, both Gℜ(x) and Gℑ(x) can be viewed as known

quantities from the knowledge of (−1
2
I +KΩ)[u

ω − u0] on ∂Ω. This theorem states that
dGℜ(x)

dx
is a meromorphic function in C with simple poles at the endpoints Pk, Qk of the

segments Lk and poles of order 2 at the center zk of Dk. Hence, the residues of dGℜ(x)
dx

at the endpoints are given by

Res

(
dGℜ(x)

dx
,Qk

)
= C

ℜ
k (ω, δk) = −Res

(
dGℜ(x)

dx
,Pk

)
. (48)

The information of the center of Dk is contained in the following function

w(x) :=

ND∑

k=1

D
ℜ
k (ω, δD)

1

(x− zk)2
. (49)

Then the function w′(x)
w(x)

will have simple poles at the poles of w(x). Hence, these center

points can be identified from boundary measurements [16].
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The above analysis shows that the effect of thin insulators on the boundary data

highly depends on the frequency, while the effect of small conductive objects does not

depend on the operating frequency that much. This relation leads to the assertion

that we can detect the small conductors when the frequency is very high and both thin

insulators and small conductors when the frequency decreases. Numerical simulations in

the later part of this paper will illustrate this important observation. We can similarly

analyze C
ℑ
k (ω, δk) and D

ℑ
k (ω, δD). For the low frequency case, we have the following

results.

3.3. Low-frequency case: |λc(ω)| ≈ 0 and δk ≈ 0 with |λc(ω)|−1δk ≈ β and

0 < β < ∞

In the low-frequency case, the admittivity contrast λc(ω) is getting close to zero. As

thickness δk goes to zero, we suppose that

1

|λc(ω)|
δk ≈ β. (50)

Then by approximation (7), the potential jump along each thin insulator can not be

ignored. According to [1, 5, 9, 21], we have the following asymptotic expansion formula

of the potential uω for low frequency current.

Theorem 3.7 (Asymptotic expansion at low frequencies). In the low-frequency regime,

we have the following asymptotic formula for the boundary perturbations of the potential

uω:
(
−
1

2
I +KΩ

)
[uω − u0](x) = −δ2D

ND∑

k=1

∇Γ(x, zk) ·M(λd, Bk)∇u0(zk)

+

NC∑

k=1

∫

Lk

∂Γ(x, x′)

∂νx′

[uω]k(x
′)dx′ +O(δ2k) +O(δ3D). (51)

In this case, since the potential jump [uω]k(x) =
2δk

λc(ω)
∂uω

∂ν
(x − δkνx)|+ along Lk is

very large and could not be ignored, the effect of small conductors on the perturbations

of the boundary voltage is hidden by the insulators. Although we cannot write (51) in

an explicit way, we know that it is related with the endpoints as well as the potential

jump along the thin insulators. When multiple thin insulators are well separated from

each other, we can always image them from boundary measurements. However, small

conductors at low frequencies are invisible since the thin insulators will dominate the

boundary measurements. Note that (50) gives the optimal range of operating frequencies

to use for optimal imaging of the thin insulators.

3.4. Spectroscopic analysis

Based on the above analysis in low- and high-frequency regimes, we mathematically

derived the frequency dependency of the current-voltage data in a rigorous way. The

current-voltage data is mainly affected by the outermost thin insulators when the
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frequency is low, whereas the data mainly depends on the small conductors when the

frequency is high. With this observation, we can detect the outermost thin insulators

at low frequencies. As the frequency increases, the small conductors become gradually

visible whereas thin insulators fade out (thicker insulator fades out at higher frequency

than thinner one). Hence, multi-frequency EIT system allows to probe these frequency

dependent behavior. On the other hand, we could not give a clear range of the frequency

to best identify thin objects or small conductors since the penetrating frequency is not

only depending on thickness δk but also relying on admittivity contrast between γc and

γb, geometry, relative size between δk and domain Ω, position distribution, etc. We plan

to deal with this challenging issue in the future.

4. Numerical simulations

In this section, we will verify our mathematical analysis through various numerical

simulations by using multi-frequency Electrical Impedance Tomography (mfEIT). The

rough procedure of mfEIT using the standard sensitivity matrix [14, 26] is as follows:

(i) NE electrodes E1, E2, · · · , ENE
are attached on the boundary of Ω with a unform

distance between adjacent electrodes. Inject current between all adjacent pair of

electrodes Ek, Ek+1 at various angular frequencies (ω1, ω2, · · · , ωNω).

(ii) Solve the forward problem using finite element method (FEM) to compute the

potential uωk due to k-th injection current and collect simulated boundary voltage

data Vω = (V 1,1
ω , · · · , V NE ,NE

ω ), where V k,j is the jth boundary voltage subject

to the kth injection current, which is given by V j,k
ω =

∫
Ω
γω∇uωk · ∇uωj dx. (In

real experiment, we do not use V k−1,k
ω , V k,k

ω , V k,k+1
ω due to the unknown contact

impedance.)

(iii) Discretizing the domain Ω into M elements or pixels as Ω =
∑M

k=1 Tk, compute the

standard sensitivity matrix (see [14, 26]). We use the standard linearized method

to reconstruct the admittivity images δγω = {δγωT1 , δγ
ω
T2
, · · · , δγωTM}T from the

boundary data Vωj
. Here, the reference homogeneous admittivity was subtracted.

The numerical simulations are performed on a unit disk Ω = {(x, y) : x2 + y2 < 1}

with 16 electrodes equally spaced around its circumference. Inside the unit disk, we

consider the following numerical models with two conductive objects and several thin

insulating objects inside as shown in Figure 4. In Figure 4 (a), two thin insulating

inhomogeneities with the same thickness and two conductive objects are placed inside

a homogenous domain so that we can investigate the effect of current frequencies on

the reconstructed images. Thereafter, in Figure 4 (b), we will take use of a simulation

model with two conductive objects encircled by a rectangular insulating object C1. The

thickness of the three thin insulating objects is 5∗10−4 in Figure 4 (a, b). The admittivity

distribution is a piecewise constant in each subdomain as shown in Figure 4 (c). A

wide range of current frequencies is applied and the resulting boundary potential are

collected. The selected spectroscopic images of admittivity distribution are shown in
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D1

D2

C1

D2D1

C1

C2

Admittivity distribution

D1, D2

C1, C2

otherwise

γωd = 10 + iω ∗ 106 ∗ ǫ0

γωc = 10−6 + iω ∗ 102 ∗ ǫ0

γωb = 1 + iω ∗ 104 ∗ ǫ0

ǫ0 = 8.85 ∗ 10−12F/m

(a) (b) (c)

Figure 4. Two different numerical models: (a) Two thin insulating inhomogeneities

C1, C2 with same thickness and two small conductive objects and (b) two small

conductive objects D1 and D2, and a rectangular insulating inhomogeneity encircling

D2; (c) Admittivity distribution for thin insulating inhomogeneities C1, C2 and small

conductive objects D1, D2.

Figure 5 where the admittivity distribution is reconstructed at frequencies ω = 10Hz,

1kHz, 50kHz, 150kHz, 250kHz and 500kHz.

4.1. Multi-frequency images

Figure 5 shows the reconstructed spectroscopic images when the simulation model is

Figure 4 (a); When current is injected at low frequencies ( ω
2π

= 10Hz, 1kHz), two small

conductive objects are invisible since the low frequency currents are blocked by the thin

insulating inhomogeneities and the boundary potential is mostly influenced by the thin

insulating objects. As frequency increases, the currents at frequencies 50kHz and 150kHz

0.01 1 50 150 250 500
ω
2π
(kHz)

σ

ωǫ

Figure 5. Reconstructed admittivity distribution when current is injected at

frequencies ω = 10Hz, 1kHz, 50kHz, 150kHz, 250kHz, 500kHz. The second row

contains reconstructed images for normalized conductivity σ (S/m), and the third

row is reconstructed images for normalized ωǫ (S/m).

begin to penetrate the thin insulating objects and conductive objects start appearing in

the reconstructed images. Finally, when the currents are applied at frequencies 250kHz

and 500kHz, both conductive objects are visible in the reconstructed images because

the potential is mainly affected by the conductive objects D1, D2.
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0.01 1 50 150 250 500
ω
2π
(kHz)

σ

ωǫ

Figure 6. Reconstructed admittivity distribution when current is injected at

frequencies ω = 10Hz, 1kHz, 50kHz, 150kHz, 250kHz, 500kHz. The second row

contains reconstructed images for normalized conductivity σ (S/m), and the third

row is reconstructed images for normalized ωǫ (S/m).

As to the second numerical model in Figure 4 (b), we illustrate the reconstructed

spectroscopic images in Figure 6. Similarly, conductive object surrounded by the

rectangular insulating object is not visible at low frequencies 10kHz and 1kHz because

the currents can not pass through the thin insulating objects. On the other hand, when

frequency increases from 50kHz to 250kHz, the insulating rectangular ’wall’ starts to

fade out because the current begins to penetrate insulating object and the boundary

voltage is influenced by the internal conductive object. When the frequency is very

high (500kHz), the insulating rectangular object C1 disappears and only conductive

objects are visible in the reconstructed image. It is due to the fact that the data are

mainly influenced by conductive objects. From the point of view of inverse problem,

the spectroscopic images can give the spectroscopic information for the thin insulating

objects C1, C2 by providing how much the boundary potential is affected by thin

insulating inhomogeneities at various frequencies. The influence of thin insulating

objects on the boundary measurements decreases as the frequency increase. The

dominant influence at low frequencies is from insulating objects while the boundary

potential is dominated by conductive objects at high frequencies.

4.2. Fusion of multi-frequency images

Now we are considering to construct an integrated image based on an investigation

of principal component analysis (PCA) where the information of both thin insulating

objects and small conductive objects can be extracted from the integrated image. PCA

is a useful tool in extracting the dominant features (principal components) from a set

of reconstructed images at various frequencies [24, 28]. In order to implement this

approach, we first obtain the reconstructed images at a broad range of frequencies

ω = ω1, ω2, · · · , ωNω and each reconstructed admittivity. Then we represent each image

by anM×1 column vector δγωj
, j = 1, 2, · · · , Nω where δγωj

= {δγ
ωj

T1
, δγ

ωj

T2
, · · · , δγ

ωj

TM
}T .
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Then average admittivity at ω can be defined as

δγω =
1

Nω

Nω∑

j=1

δγωj
. (52)

We define the mean oscillation of δγω by the vector

ˆδγj = δγωj
− δγω. (53)

Since the real part of admittivity is σ and its imaginary part is ωǫ, we resolve the set

of admittivities and deal with the real and imaginary part separately.

Let ˆδσj be the real part of ˆδγj. This set of vectors is then subject to principal

component analysis which tries to find a set ofNω orthogonal vectors and their associated

eigenvalues. Both information can best describe the distribution of the admittivity. The

vectors and scalars are the eigenvectors and eigenvalues of the covariance matrix

Cσ =
1

Nω

Nω∑

j=1

ˆδσj
ˆδσj

T
= δ̂σ δ̂σ

T

, (54)

where δ̂σ = [ ˆδσ1
ˆδσ2

ˆδσ3 · · · ˆδσNω ] is of size M × Nω and the covariance matrix Cσ

is of size M ×M with M the pixel number of the admittivity distribution. Using the

singular value decomposition, the covariance matrix Cσ can be written as

Cσ = δ̂σ δ̂σ
T

= UΛUT =
M∑

i=1

λiuiu
T
i , (55)

where λi is the eigenvalue of δ̂σδ̂σ
T

with λ1 ≥ λ2, · · · ≥ λM and ui is the corresponding

eigenvector. Note that in practice, the number of frequencies (Nω) is much smaller than

the pixel number (M) of the reconstructed images. Therefore, we consider N(< Nω)

leading eigenvectors of the covariance matrix that are chosen as those with the largest

associated eigenvalues, where N depends on the signal-to-noise ratio (SNR). Then the

principal components for any admittivity image δσωj
, j = 1, · · · , Nω, can be written as

pi = uT
i (δσωj

− δσω). (56)

for i = 1, 2, · · · , N . Here pi represents the data projected into the N−dimensional space

of eigenvectors. In order to enhance the image details, we rewrite δ̂σ in terms of singular

value decomposition

δ̂σ =
Nω∑

i=1

√
λiuivi

T , (57)

where vi is the eigenvectors of Cσ
T and ui = δ̂σvi. We construct the following matrix

from the principal components of δσωj

˜δσω =
N∑

i=1

uivi
T , (58)
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where ˜δσω is a matrix of sizeM×Nω. The new admittivity distribution can be obtained

by

δσω =
1

Nω

Nω∑

j=1

˜δσω,j, (59)

where ˜δσω,j is the j−th column of ˜δσω. Similarly, we can obtain the imaginary part of

integrated admittivity distribution. In our case, only N = 2 eigenvectors corresponding

to the two largest eigenvalues are chosen to obtain the new images. The images

corresponding the configurations in Figure 4 (a,b) are shown respectively in Figures 7

and 8. The integrated images show both on the thin insulating and the small conductive

objects.

0.01kHz

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · · 500kHz Integrated image
ω
2π

σ

ωǫ

Figure 7. Integrated image of real and imaginary part of normalized admittivity

distribution for numerical model in Figure 4 (a).

0.01kHz

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · · 500kHz Integrated image
ω
2π

σ

ωǫ

Figure 8. Integrated image of real and imaginary part of normalized admittivity

distribution for numerical model in Figure 4 (b).
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5. Phantom experiments

In this section, we present phantom experiments by using 32-channel mfEIT system

(EIT-Pioneer Set made by Swisstom, Switzerland) to illustrate the frequency dependent

behavior of the reconstructed images. The available injection current frequency of the

Swisstom EIT-Pioneer Set is set between 50 kHz and 250 kHz.

Figure 9. Configuration of phantom experiments by using Swisstom EIT-Pioneer Set.

Figure 9 shows the configuration of phantom experiment. We use a cylindrical

tank with 360 mm in diameter and 32 equally-spaced electrodes are attached. The

tank is filled with agar-gelatin mixture. Inside the phantom, there are two conductive

objects with a diameter of 30 mm and four very thin kitchen wrap with 1 µm thickness.

One conductive object is encircled by four very thin kitchen wrap. We injected current

of 1 mA at various frequencies of 50 kHz, 100 kHz, 150 kHz, 180kHz, 200 kHz and

250 kHz. Figure 10 (a) presents the reconstructed images at six different frequencies.

The insulating wraps appear as a solid object from 50 kHz to 100 kHz since currents

cannot penetrate the insulating wrap. As we expected by numerical experiments in

the previous section, the insulating wrap starts to fade out at frequency 150 kHz and

totally disappear at 250kHz. All the experimental results shown in Figures 10 (a) are

consistent with the numerical simulations in the previous section. As for the fusion of

multi-frequency images, the experiments are conducted at a wide range of frequencies

from 50kHz to 250kHz with a step size 10kHz since the minimum frequency step of

Swisstom EIT-Pioneer Set is fixed at 10kHz. The integrated image is shown in Figure

10 (b) where both two conductive objects and the surrounding insulating wrap are

visible.

6. Conclusion

In this work, we have provided a rigorous mathematical formula for the jump of potential

and normal derivative across the thin linear-shaped insulating inhomogeneities based on
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ω
2π 50kHz 100kHz 150kHz 180kHz 200kHz 250kHz

(a) (b)

Figure 10. (a) Spectroscopic images of normalized admittivity distribution from low

frequencies to high frequencies; (b) Fusion of multi-frequency images.

layer potential techniques. The potential jump is related with the thickness of insulating

objects as well as the current frequencies. Based on these jump conditions, we have

developed two asymptotic expansions for current-voltage data perturbations due to

thin insulators and small conductors at various frequencies. Using these two asymptotic

expansions, we have mathematically shown that at high frequencies we can visualize

the small conductors, while at low frequencies we can only get the information of thin

insulators. Based on this mathematical analysis, we conclude that multiple frequencies

help us to handle the spectroscopy behavior of the current-voltage data with respect to

thin insulators and small conductors. When the frequency increase from very low to

very high, we can continuously observe the images of thin insulators (low frequency),

both thin insulators and small conductors (not too low, not too high frequency), and

only small insulators (high frequency). The mathematical results are supported by a

variety of numerical illustrations and phantom experiments.
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