
Large deformation shape uncertainty

quantification in acoustic scattering

R. Hiptmair and L. Scarabosio and C. Schillings and Ch. Schwab

Research Report No. 2015-31

November 2015
Latest revision: June 2016

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________



Large deformation shape uncertainty quantification

in acoustic scattering∗

R. Hiptmair, L. Scarabosio, C. Schillings, Ch. Schwab

June 27, 2016

Abstract

We address shape uncertainty quantification for the two-dimensional Helmholtz trans-
mission problem, where the shape of the scatterer is the only source of uncertainty. In
the framework of the so-called deterministic approach, we provide a high-dimensional
parametrization for the interface. Each domain configuration is mapped to a nominal
configuration, obtaining a problem on a fixed domain with stochastic coefficients. To
compute surrogate models and statistics of quantities of interest, we apply an adaptive,
anisotropic Smolyak algorithm, which allows to attain high convergence rates that are
independent of the number of dimensions activated in the parameter space. We also de-
velop a regularity theory with respect to the spatial variable, with norm bounds that are
independent of the parametric dimension. The techniques and theory presented in this
paper can be easily generalized to any elliptic problem on a stochastic domain.

1 Introduction

In nano-optics applications, imperfections in the manufacturing process may lead to a consid-
erable uncertainty in the shape of nano-devices. The aim of the present work is to quantify
how such shape variations affect the optical response of a nano-sized scatterer to some electro-
magnetic excitation. Our focus is on the estimation of surrogate models (interpolation) and
statistics (quadrature) of quantities of interest.

Since the shape fluctuations cannot be considered to be small compared to the scatterer size,
a perturbative approach [23,25] is not suitable for our framework. On the other hand, the slow
convergence rate of Monte Carlo sampling renders it computationally inefficient for such kind
of applications, since each sample would require the numerical solution of a full electromagnetic
field problem. Adopting the multilevel version of the Monte Carlo algorithm (MLMC) would
still require a massive computational effort in order to reach a certain accuracy. Furthermore,
Monte Carlo algorithms, while being very simple as quadrature rules, are not well suited for
interpolation.

Instead, in the present work we model the uncertain shape through a high-dimensional
parametrization approach, and then apply an algorithm for interpolation and quadrature that,
exploting some regularity properties of the quantity of interest, allows to achieve convergence
rates which are much higher than the ones attainable with Monte Carlo algorithms and do not
suffer from the so-called ‘curse of dimensionality’.

We illustrate the method on a two-dimensional Helmholtz transmission problem with an
incoming plane wave, where the material parameters are assumed to be known exactly; the
shape of the scatterer is thus the only source of uncertainty. We are going to focus on the case
of a particle in free space, of which the geometry is depicted in Figure 1.1.

∗Research supported by ERC under Grant AdG247277 and by ETH under CHIRP Grant CH1-01 11-1.
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Figure 1.1: Particle in free space

1.1 Model problem

Let (Ω,A,P) be a probability space, with A a σ-algebra on the power set P(Ω) and P a
probability measure on (Ω,A). For every ω ∈ Ω, we formally define Γ(ω) to be the boundary
of the scatterer, D1(ω) the exterior unbounded domain, and D2(ω) the domain occupied by the
scatterer. We assume that D1(ω) ∪ Γ(ω) ∪D2(ω) = R2 for every ω ∈ Ω.

The transmission problem for the Helmholtz equation can be written as
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










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


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−∇ · (α(Γ(ω),x)∇u)− k2(Γ(ω),x)u = 0 in R2,

JuKΓ(ω) = 0, Jα(Γ(ω),x)∇u · nKΓ(ω) = 0,

lim
|x|→∞

√

|x|
(

∂

∂ |x| − ik1

)

(u(ω)− ui)(x) = 0,

for P–a.e. ω ∈ Ω,

(1.1a)

(1.1b)

(1.1c)

with uniformly positive, real-valued, piecewise-constant coefficients in each subdomain:

α(Γ(ω),x) =

{

1 if x ∈ D1(ω),

µ if x ∈ D2(ω),
k2(Γ(ω),x) =

{

k21 if x ∈ D1(ω),

µ k22 if x ∈ D2(ω).
(1.2)

The unknown u = u(ω,x) represents the total field, whereas k1 and k2 denote the wavenumbers
in free space and in the scatterer, respectively; µ is a positive real coefficient. In equation (1.1b),
the symbol J·KΓ(ω) denotes the jump across the random interface Γ(ω). Equation (1.1c) is the
so-called Sommerfeld radiation condition, where ui(x) = eik1·x is the incoming plane wave, with
k1 the wavevector. The Sommerfeld radiation condition corresponds to the radiation condition
in free space.

We work in the large wavelength regime, which excludes the presence of resonant geometric
structures; thus, the results of this work are not restricted to the Helmholtz equation, but also
hold for any elliptic equation.

The two-dimensional Helmholtz equation describes the scattering of an electromagnetic
wave from a cylinder of infinite length, and the unknown u corresponds to the out-of-plane
component of the electric field (TE mode) or of the magnetic field (TM mode), depending on
the meaning conferred to the coefficients in the equation (see e.g. [36]). The same results and
methodology presented in this paper, however, still hold for the three-dimensional Helmholtz
equation, when the Fourier harmonics used to model the shape variations (see Section 2) are
replaced by spherical harmonics.
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1.2 Outline and related work

The parametric approach to represent the uncertainty was developed by Ghanem and Spanos
(e.g. [20]) from the pioneering ideas of Wiener [41]. In this framework, in Section 2 we give
a probabilistic description of the interface Γ = Γ(ω), so that it will then depend on ω ∈ Ω
indirectly through a deterministic high-dimensional parameter representing the stochasticity.
In particular, we express the variations of the scatterer boundary through an affine combination
of a finite number of independent, uniformly distributed random variables, as it is commonly
done to model the stochastic diffusion coefficient in the scalar diffusion model (see [13, 14, 39],
just to mention some). Such an expansion can be regarded as an approximation to the exact
probability distribution of the interface [43].

In Section 3, we use the domain mapping approach introduced by Xiu and Tartakovsky
in [40,43] to map each domain realization to a nominal configuration, fixed for all realizations,
using a parameter-dependent map. A similar technique has been adopted in [9] and [24] too.
An alternative method is the fictitious domain approach introduced by Canuto and Kozubek
in [8].

The domain mapping allows us, in Section 4, to write a variational formulation for (1.1)
on the nominal configuration with parameter-dependent coefficients, bringing the problem to
a framework for which theory and discretization algorithms are well established.

In Section 5, we address the discretization of the latter variational formulation with respect
to the parameter representing the stochasticity. Two main methods can be used: the stochastic
Galerkin and the stochastic collocation method.

The stochastic Galerkin approach (see [39] for a comprehensive review) is not well suited
for our application, the reason being that the coefficients in the PDE on the nominal config-
uration do not depend in an affine way on the high-dimensional parameter. In this case, the
manipulation of the equations required by the stochastic Galerkin method, apart from leading
to a fully coupled system of equations, would not be straightforward at all. We use instead a
sparse collocation method. Stochastic collocation was introduced independently by Babuška,
Nobile and Tempone in [2] and by Xiu and Hesthaven in [42]; we refer to [3] for a comparison of
stochastic collocation with stochastic Galerkin in terms of accuracy versus computational work.
To overcome the so-called curse of dimensionality due to the high dimension of the parameter
space, the algorithms developed for both stochastic Galerkin and stochastic collocation employ
sparse tensor approximation, and the convergence rates are shown to be independent or very
weakly dependent on the number of dimensions considered. Here, we use the sparse adaptive
Smolyak algorithm for stochastic quadrature and interpolation described in [37], and pioneered
in the earlier work [19] of Gerstner and Griebel.

In the same section we also discuss the fulfillment, in our framework, of the key assumption
of all convergence theorems, that is the holomorphy of the Q.o.I. (e.g. the solution to (1.1)
or linear functionals of it) with respect to an extension of the high-dimensional parameter to
the complex plane. Due to the domain transformation introduced in Section 4, we need a
stronger regularity constraint for the scatterer boundary than the one that is usually needed
for the diffusion coefficient in elliptic problems on deterministic domains. Similar regularity
results are shown in [24] and [9]. However, [24] addresses the smoothness of the Q.o.I. with
respect to the real-valued parameter, whose analysis is different than when the parameter is
complex-valued. In [9], the smoothness results refers to the holomorphic extension of the Q.o.I.
to complex polyellipses. Nevertheless, we believe that our regularity analysis is still of interest
for the reader because, differently from [9], the regularity of the solution is obtained not from
direct calculations but from a more general result shown in [12], so that our approach is more
easily generalizable to a wide class of partial differential equations.

In Section 6, we address the space discretization on the nominal configuration and couple it
to the results of the previous section. For the spatial problem, we use a finite element discretiza-
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tion. We point out that a boundary element formulation (as used, for example, in [25]) is not
applicable in the context of the mapping approach, due to variable coefficients in the resulting
variational formulation. After discussing space regularity results for the solution at each collo-
cation point, we couple finite element convergence estimates to convergence estimates for sparse
stochastic collocation, obtaining convergence results for the fully discretized problem and linear
output functionals. We first consider the simpler case of uniform finite element discretization
for all the parameter realizations, and then the case when different space discretizations are
used for different collocation points. For the former approach, the procedure that we present is
quite similar to the one presented in [9]. There, however, the convergence rates presented for
the sparse grid error are not independent of the number of dimensions involved, and the effect
of the amplitude of the stochastic perturbations on the smoothness of the solution and thus on
the convergence rate of the finite element discretization is not taken into account. The results
that we obtain for the case that the space discretization is different for each collocation point
can be thought as a starting point for a parameter-adaptive space discretization to reduce the
global computational effort, with a similar strategy as the ones proposed in [5] and [17] in the
stochastic Galerkin framework.

In Section 7, we show that in numerical experiments we achieve the predicted theoretical
convergence rates for both sparse interpolation and sparse quadrature on the nominal configu-
ration.

In Section 8, we address the difficulties that arise for computing moments of the solution
in physical space, where the interface is different for each realization. These are due to the
discontinuity of the material properties across the interface (see (1.2)). Similar problems were
encountered in [33] in the framework of the second order wave equation with discontinous
random velocity.

2 Parametrization of the interface

In the first part of this section, we give a probabilistic model for the interface Γ. Using the
probabilistic characterization, in the second part of the section we convert the stochastic prob-
lem to a deterministic problem on a high-dimensional parameter domain; this approach is
particularly relevant in the perspective of a discretization, since we will see that, differently
from the probability space Ω, the space where the deterministic parameter lives is suitable for
discretization.

2.1 Probabilistic modeling of the interface

In order to have a simple representation of the interface , we require:

Assumption 2.1. For P–a.e. ω ∈ Ω, the domain D2(ω) is star-shaped with respect to the origin
and the interface Γ(ω) is of class C1.

In this way, D2(ω) can be fully described by a stochastic, angle-dependent radius r =
r(ω, ϕ) ∈ Ck

per([0, 2π)) for P–a.e. ω ∈ Ω and some k ≥ 1, representing the interface Γ = Γ(ω).
The techniques we are going to present can be extended to the case of an interface that is only
piecewise of class Ck (k ≥ 1), but for ease of treatment we will not consider this case.

As it is commonly done in the framework of partial differential equations with stochastic
diffusion coefficient (see e.g. [13, 14, 39]), we expand the uncertain radius as:

r(ω, ϕ) = r0(ϕ) +
J
∑

j=1

cjY2j−1(ω) cos(jϕ) + sjY2j(ω) sin(jϕ), ϕ ∈ [0, 2π), J ∈ N, ω ∈ Ω. (2.1)
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In this formal expression, r0 = r0(ϕ) ∈ Ck
per([0, 2π)), k ≥ 1, is referred to as the nominal shape,

and it can be considered as an approximate parametrization of the mean shape. The truncation
of the expansion in (2.1) is commonly referred to in the literature [2] as finite noise assumption.
In the following, in particular in Section 6, we will ensure that all the estimates we will obtain
hold uniformly in the truncation parameter J ∈ N.

The random variables {Yj}2Jj≥1 are assumed to satisfy:

Assumption 2.2. {Yj}2Jj≥1 are i.i.d. with Yj ∼ U([−1, 1]) for every 1 ≤ j ≤ 2J and every
J ∈ N.

In particular {Yj}2Jj≥1 have compact image, namely |Yj| ≤ 1 for every j. Thus, the only
way to have a J-independent bound on the radius expansion (2.1) and a decay of its Fourier
coefficients is to impose some constraints on the real coefficient sequences.

To ensure P-a.s. boundedness and positivity at each angle ϕ for the stochastic radius r, we
require that r = r(ω, ϕ) varies inside the range [ r0(ϕ)

2
, 3r0(ϕ)

2
]:

Assumption 2.3. The coefficient sequences C and S in (2.1) satisfy

∑

j≥1

(|cj|+ |sj|) ≤
r−0
2
,

with r−0 = infϕ∈[0,2π)r0(ϕ) > 0.

For the Fourier coefficients, we require them to have a ‘sufficiently fast’ polynomial decay, in
the sense made precise below. This can be ensured by either of the two following assumptions:

Assumption 2.4.A. The sequences C := (cj)j≥1 and S := (sj)j≥1 have a monotonically de-

creasing majorant which belongs to ℓp(N) with 0 < p < 1
2
, and the sequences (j|cj|p)j≥1 and

(j|sj|p)j≥1 have a monotonically decreasing majorant.

Assumption 2.4.B. For every ω ∈ Ω, the radius r(ω, ϕ) as given in (2.1) belongs to Ck
per
([0, 2π)),

for an integer k ≥ 3, with an ω-independent norm bound.

We will see in Section 6, more precisely in Lemma 6.1, that Assumption 2.4.A implies
Assumption 2.4.B, with a smoothness parameter k = k(p), but only if p is small enough.
Conversely, we have:

Proposition 2.5. If Assumption 2.4.B is fulfilled, then the coefficients in (2.1) satisfy

|cj| ≤ C(k)
1

1 + jk
, |sj| ≤ C(k)

1

1 + jk
j ≥ 1, (2.2)

with the same k as in Assumption 2.4.B and for a positive constant C(k) dependent on k but
independent of j ≥ 1.

In particular, the sequences C and S have a monotonically decreasing majorant belonging
to ℓp(N) for every p > 1

k
; since k ≥ 3, we can choose p to be 0 < p < 1

2
. In other words, if

Assumption 2.4.B holds, then also Assumption 2.4.A does.

Proof. This is a consequence of the relationship between smoothness of a function and decay of
its Fourier coefficient. We refer to the subsection A.2 in the appendix for the detailed proof.
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Remark 2.6. Equation (2.1) can be rewritten as

r(ω, ϕ) = r0(ϕ) +
L
∑

l=1

βlYl(ω)ψl(ϕ), ϕ ∈ [0, 2π), L ∈ N, (2.3)

with ψl = cos( l+1
2
ϕ) and βl = c l+1

2
if l is odd, ψl = sin( l

2
ϕ) and βl = s l

2
if l is even. The

truncation L is given by L = 2J , with J as in (2.1).
In general, any basis (ψl)l≥1 of L

2
per
([0, 2π)) could be considered, provided that ψl ∈ C1

per
([0, 2π))

for each l ≥ 1. Nevertheless, the choice of the Fourier basis is particularly relevant in view of
possible applications, when, for instance, r0 is a circle and (2.3) is obtained from the Karhunen-
Loève expansion of a rotationally invariant covariance kernel.

2.2 Parametric formulation

In this subsection we recall via application to our case the standard parametrization procedure
followed in stochastic Galerkin and stochastic collocation frameworks; we refer to [39] for an
exhaustive survey of the topic.

From Assumption 2.2, we know that for each random variable Yj : Ω → Pj, 1 ≤ j ≤ 2J ,
with Pj = [−1, 1] endowed with the Borel σ-algebra Σj, the distribution µj of Yj is the uniform

distribution. Then the sequence (Yj)
2J
j≥1 defines a map

Y : Ω → PJ :=
2J
⊗

j=1

Pj = [−1, 1]2J , ω 7→ (Yj(ω))
2J
j=1 , (2.4)

measurable with respect to the product σ-algebra Σ :=
⊗2J

j=1 Σj on PJ . PJ is commonly
referred to as the parameter space.

The random variables Yj being independent, the distribution of Y is the product probability

measure µ :=
⊗2J

j=1 µj.

Now, we denote by y = (yj)
2J
j=1 ∈ PJ one realization of the random variable Y , so that we

can rewrite (2.1) as

r(y, ϕ) = r0(ϕ) +
J
∑

j=1

cjy2j−1 cos(jϕ) + sjy2j sin(jϕ), y = (yj)
2J
j=1 ∈ PJ , ϕ ∈ [0, 2π). (2.5)

Remark 2.7. In Assumption 2.2, the uniform distribution hypothesis for the random variables
serves as a model and can be easily relaxed (see subsection A.3 in the appendix). The requirement
that the random variables are mutually independent is instead harder to loosen. This is due to
the fact that, if such condition is not fulfilled, then the joint probability distribution µ cannot be
expressed as product of the univariate distributions anymore and one would need to adapt the
theoretical convergence analysis under some assumptions on µ.

3 Mapping to nominal geometry

In the first subsection we give a general description of the approach, while in the second
subsection we apply it to our specific case of a particle in free space.
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3.1 General description

To overcome the unboundedness of the domain, consider, in the domain with interface Γ(y),
a circle ∂KR of arbitrary radius R containing the scatterer D2(y) in its interior. We consider
∂KR to be fixed for all realizations y ∈ PJ , J ∈ N, and we denote by KR the region enclosed
inside ∂KR, no matter which realization Γ(y) of the interface is considered.

Following the approach introduced, for instance, in [12], [24] and [43], we consider a nominal
configuration of the domainKR, where the interface Γ̂ is fixed, i.e. independent of the realization
y, and a bijective parameter-dependent mapping

Φ(y) : KR −→ KR (3.1)

(x̂1, x̂2) 7→ (x1, x2)

from the nominal configuration to the domain KR with interface Γ(y).
A possible choice for Γ̂ is the interface associated to the nominal radius r0, or, in other

words, to the case when y = 0. In the following, we denote by D̂2 the scatterer region when
the interface is Γ̂, and D̂1 := R2 \ D̂2. In order to preserve the well-posedness of the problem
as it will be discussed in Section 4, we formulate the following assumptions on Φ:

Assumption 3.1. For every y ∈ PJ and an integer k ≥ 1, the mapping Φ(y) : KR → KR

fulfills the following properties:

(i) Φ(y) is a Ck-orientation preserving diffeomorphism in each of the two subdomains D̂1∩KR

and D̂2, with uniformly bounded norms, i.e.:

‖Φ(y)‖Ck
p̂w

(KR) ≤ C1, ‖Φ−1(y)‖Ck
pwy

(KR) ≤ C2,

where C1 and C2 are independent of the truncation dimension J ∈ N, and ‖·‖Ck
p̂w

(KR) :=

‖·‖
Ck(D̂1∩KR)∪Ck(D̂2)

(similarly in ‖·‖Ck

pwy(KR)
the discontinuities are allowed across Γ(y)).

(ii) Φ(y) is the identity on ∂KR:

Φ(y, x̂) = x̂ for all x̂ ∈ ∂KR.

(iii) Let σ1 = σ1(y,x), σ2 = σ2(y,x) be the singular values of DΦ−1(y); we require that there
exist constants σmin, σmax > 0 independent of the truncation dimension J ∈ N such that

σmin ≤ ‖σ1(y, ·)‖C0
pwy

(KR), ‖σ2(y, ·)‖C0
pwy

(KR) ≤ σmax for all y ∈ PJ ,

(or, equivalently, analogous bounds hold for the singular values of DΦ(y)).

3.2 The domain mapping for a particle in free space

In this case, we choose r0(ϕ) as the boundary of the scatterer in the nominal configuration, and
map it to the boundary of the actual scatterer. The movement of the interface is propagated
in the regions inside and outside the scatterer using a mollifier. In formulae, we have:

x(y) = Φ(y, x̂) = x̂+ χ (x̂) (r(y, ϕ̂)− r0(ϕ̂)) , (3.2)

with ϕ̂ = arg(x̂) = arg(x) = ϕ. The map χ : KR → R+ ∪ {0} is a mollifier, satisfying the
following conditions:

• χ(x̂) = χ(‖x̂‖, r0), that is, χ acts on the radial component of x̂ ∈ KR, and its dependence
on the angle ϕ̂ is only due to the fact that it depends on r0 = r0(ϕ), ϕ ∈ [0, 2π);
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Figure 3.1: Mapping for the case of particle in free space.

• 0 ≤ χ(x̂) ≤ 1, x̂ ∈ KR, with χ(x̂) = 0 for ‖x̂‖ ≤ r−0
4

(r−0 being the quantity defined

in Assumption 2.3) and for ‖x̂‖ ≥ R̃ (R̃ ∈ R, sup[0,2π) r0(ϕ) +
r−0
2
< R̃ ≤ R), and with

χ(x̂) = 1 for ‖x̂‖ = r0;

• χ is monotonically increasing for
r−0
4

≤ ‖x̂‖ ≤ r0(ϕ) and monotonically decreasing for

r0(ϕ) ≤ ‖x̂‖ ≤ R̃.

The map is illustrated in Figure 3.1. It fulfills Assumption 3.1 if the cut-off function satisfies
the following:

Assumption 3.2. The mollifier χ in (3.2) has in D̂2 and in D̂1∩KR at least the same smooth-

ness as the nominal radius r0 has in [0, 2π). Furthermore, max
{

‖χ‖C1(D̂2)
, ‖χ‖C1(D̂1∩KR)

}

≤
Cχ, where Cχ ∈ R is such that 0 < Cχ <

1
√
2

(

r
−

0
2

+cχ

) for some cχ > 0.

We postpone the proof to Section 6 (Lemma 6.2).
In the region D̂1 ∩ KR, the multiplication by a mollifier is not, of course, the only way

of propagating the movement of the interface. Among the valid alternatives we mention, for
instance, the use of a harmonic extension [30,43] or of level set methods [1, 35].

4 Variational formulation and well-posedness of the model

problem

In the first subsection we derive the variational formulation for the model problem (1.1), while
in the second part of this section we address its well-posedness (in Hadamard’s sense).

4.1 Variational formulation

As in the previous section, we consider the spaceKR enclosed inside a circle of radius R > 0, the
latter fixed for all realizations y ∈ PJ , and containing the scatterer in its interior (see Figure
4.1). Then, using the Dirichlet-to-Neumann map (DtN, see [34, Section 2.6.3]), we can state
the variational formulation for (1.1) on the bounded domain KR. Applying the parametric
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description of the uncertain interface developed in Section 2, we obtain:

Find u(y) ∈ V :

ay(u(y), v) :=

∫

KR

α(y,x)∇u(y) · ∇v − k2(y,x) u(y) · v dx

−
∫

∂KR

DtN(u(y))v dS

=

∫

∂KR

(

−DtN(ui) +
∂ui
∂nR

)

v dS for all v ∈ V and all y ∈ PJ , (4.1)

where V := H1(KR) and nR is the outer normal to KR.
Now, we use the inverse of the map Φ(y), y ∈ PJ , introduced in Section 3, to map the

physical configuration with interface Γ(y) to the nominal configuration (with interface Γ̂).
Reordering the terms, we obtain the following parametric, variational formulation on the fixed,
deterministic configuration with interface Γ̂:

Find û(y) ∈ V̂ :

ây(û(y), v̂) =

∫

KR

α̂(y, x̂) ∇̂û(y) · ∇̂v̂ dx̂− k̂2(y, x̂) û(y) · v̂ dx̂

−
∫

∂KR

DtN(û(y))v̂ dS

=

∫

∂KR

(

−DtN(ui) +
∂ui
∂nR

)

v̂ dS for all v̂ ∈ V̂ and all y ∈ PJ , (4.2)

where V̂ = H1(KR) = V and

α̂(y, x̂) = DΦ(y)−1DΦ(y)−⊤ detDΦ(y)α(y,Φ−1(y)(x))

k̂2(y, x̂) = detDΦ(y)k2(y,Φ−1(y)(x)), (4.3)

with DΦ(y) the Jacobian matrix of Φ(y). In (4.2), ∇̂ denotes the gradient with respect to
x̂ ∈ KR, the coordinates in the nominal configuration.

Remark 4.1. Formulas (4.3) explain why we have to require k ≥ 1 in Assumption 3.1 and

p < 1
2
in Assumption 2.4.A (since in general DΦ and its inverse will depend on

∂r

∂ϕ
).

We are now in a position to give a rigorous definition for the solution to (4.1):

Definition 4.2. The function u(y), y ∈ PJ , is a solution to (4.1) if and only if its pullback
(Φ∗(y)u(y))(x̂) := u(Φ(y, x̂)) ∈ H1(KR) is a solution to (4.2).

4.2 Well-posedness of the model problem

As regards existence and uniqueness of the solution, they are ensured by the following theorem:

Theorem 4.3. The solution to the variational formulation (4.1) exists and is unique, for every
J ∈ N and every y ∈ PJ . Equivalently, if Assumption 3.1 is fulfilled, then (4.2) admits a
unique solution for every J ∈ N and every y ∈ PJ .
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ϕ
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ui

Figure 4.1: Domain considered in (4.1)

Proof. The boundedness of KR allows us to apply the Fredholm Alternative [31, Theorem 2.27]
to get existence of the solution to (4.2), while uniqueness is ensured by the sign properties of
the DtN map. We refer to subsection A.4 in the appendix for the detailed proof.

To have well-posedness of the problem, we still have to prove that the solution to (4.2)
depends continuously on the data, which in our case consist of the incoming wave ui. Thus,
we would desire to have a bound on the H1(KR)-norm of û by some norm of ui. This stability
property will be needed later for convergence purposes (Section 5).

Unfortunately, a y-uniform stability result cannot be achieved in general for the Helmholtz
equation. The reason being that, without any limitation on the wavenumber modulus, it can
happen that a small wavenumber excites resonances at the boundary of the scatterer, with an
uncontrollable increase of the amplitude of the field u in that region.

Therefore, we formulate the following hypothesis:

Assumption 4.4 (Large wavelength assumption). The wavenumbers in (1.2) satisfy the con-
dition:

k21, k
2
2 ≤ τ C(R), for some 0 < τ < min {1, µ} , (4.4)

with

C(R) = inf
w∈H1(KR)

|w|2H1(KR) + ‖w‖2L2(∂KR)

‖w‖2L2(KR)

. (4.5)

For reasons that will become clearer in Section 5, we need a bound for the solution on
the nominal configuration which is uniform over all the realizations, i.e. independent of the
truncation dimension J ∈ N and of y ∈ PJ in (2.5). To this aim, a necessary condition is
to prove coercivity of the bilinear form ây(·, ·) with a positive coercivity constant uniform in
J ∈ N. The following lemma shows that, if the domain mapping satisfies Assumption 3.1, then
Assumption 4.4 ensures uniform stability for (4.2) under some constraints on the constant τ :

Lemma 4.5. Let Assumption 3.1 be satisfied. There exists a constant 0 < T < 1 independent
of J ∈ N such that, if Assumption 4.4 holds with τ < T , then:

(a) the bilinear form ây(·, ·) in (4.2) is coercive, with coercivity constant independent of J ∈ N

and y ∈ PJ ;

(b) there exist positive constants B1, B2 independent of J ∈ N and of y ∈ PJ (but which do
depend on µ, σmin, σmax, k1, k2 and R) such that, for every y ∈ PJ :

‖û(y)‖H1(KR) ≤ B1 ‖ui‖
H

1
2 (∂KR)

+B2

∥

∥

∥

∥

∂ui
∂nR

∥

∥

∥

∥

H−
1
2 (∂KR)

. (4.6)

10



The bound is uniform over the realizations once we use the analytic expression for
∂ui
∂ni

,

i.e.
∂ui
∂nR

= k1 · nRe
ik1·x for the incoming wave.

Proof. Here we just give a sketch of the proof, the details can be found in subsection A.5 of
the appendix.

Using the upper and lower bounds for singular values of the mapping Φ given by Assumption
3.1 (iii) and the inequality (4.4) in Assumption 4.4, one obtains that ây(·, ·) is coercive with

coercivity constant independent of J ∈ N and y ∈ PJ if we choose T :=
σ4
min min{1,µ}

σ2
max max{1,µ} . This

proves part (a). Then part (b) follows immediately applying the stability bound given by the
Lax Milgram lemma.

The variational form (4.2) is now ready to be discretized. Notice that in this case two
discretizations are needed: the discretization in the parameter space and the discretization in
the physical space. The former will be considered in Section 5, while for the latter we will rely
on a standard finite element discretization, of which we will give more details in Section 6.

5 Stochastic collocation and Smolyak algorithm

In this section we address the parameter space discretization of (4.2) through stochastic colloca-
tion. In the first subsection we recall the main features of sparse interpolation and quadrature.
In the second subsection, we describe the sparse adaptive Smolyak algorithm used in our nu-
merical experiments to select the collocation points. In the third and last subsection, we show
that the hypothesis for the convergence theorems for the sparse interpolation and quadrature
hold for the Helmholtz transmission problem.

In the first two subsections, we present the results in the general case that the parameter
space is P := [−1, 1]d with d large and possibly infinite (in the latter case we write [−1, 1]∞ =
⊗∞

j=1[−1, 1] for the set of infinite sequences where every term is in [−1, 1]). When we apply

them to our model problem, we consider then PJ = [−1, 1]2J as parameter space (i.e. d = 2J).

5.1 High-dimensional sparse polynomial interpolation and quadra-
ture

Here we only recall the main definitions and properties that will be used in the continuation
of the paper. For an exhaustive survey on stochastic collocation, we refer to [2] and [42].
Details on sparse polynomial interpolation and sparse quadrature can be found in [10] and [37],
respectively.

Univariate operators and tensorization

Let
(

ζkj
)nk

j=0
be a sequence of distinct points in Pl = [−1, 1] (for a generic l ≥ 1), associated

with the weights
(

wk
j

)nk

j=0
. The the univariate polynomial interpolation operator Ik and the

univariate quadrature operator Qk associated with the points
{

ζk0 , . . . , ζ
k
nk

}

are defined as

Ikg =

nk
∑

i=0

g(ζki )l
nk

i , Qkg =

nk
∑

i=0

wnk

i · g(ζki ) =
∫ 1

−1

Ikg(ζ) dζ, (5.1)

where g is a real- or complex-valued function defined on [−1, 1] and lnk

i (y) =
∏nk

j=0
j 6=i

y−ζj
ζi−ζj

is the

Lagrange polynomial associated with the nodes
(

ζkj
)nk

j=0
.

Let I(·) be the exact integration operator. For the quadrature operators, we require:
11



Assumption 5.1. For each k ∈ N0, the univariate quadrature formula Qk associated to the
quadrature points

(

ζkj
)nk

j=0
satisfies:

(i) Qk is of order k, i.e. (I −Qk)(pk) = 0 for all pk ∈ Pk, with Pk the set of polynomials up
to the k-th degree;

(ii) one of the two following condition holds:

(a) wk
j > 0 for each 0 ≤ j ≤ nk;

(b) the Lebesgue constants λk of Ik, k ≥ 0, are bounded as λk ≤ C(k+1)θ for some θ ≥ 1.

The univariate interpolation and quadrature difference operators are defined as

∆I
k = Ik − Ik−1, ∆Q

k = Qk −Qk−1, k ≥ 0, (5.2)

where we set I−1 = 0, so that ∆I
0g = g(ζ0), and Q−1 = 0; moreover, we require ζ00 = 0, w0

0 = 1,
so that Q0g = g(0). Therefore, (5.1) can be rewritten as

Ik =
k
∑

j=0

∆I
j , Qk =

k
∑

j=0

∆Q
j . (5.3)

We remark that any univariate family of interpolation points can be used for the above con-
struction, in particular the sequences need not to be nested.

To extend these concepts to the multi-dimensional case, we introduce the set

F =
{

ν ∈ NN
0 : ♯ supp ν <∞

}

, (5.4)

with N0 = N ∪ {0} and the support of a multi-index defined as supp ν = {j ∈ N : νj 6= 0}.
To any multi-index ν ∈ F , we associate the set of multivariate points ζν =

⊗

j≥1

(

ζ
νj
i

)nνj

i=0
⊂

P and the tensorized multivariate operators

Iν =
⊗

j≥1

Iνj and ∆I
ν =

⊗

j≥1

∆I
νj
,

Qν =
⊗

j≥1

Qνj and ∆Q
ν =

⊗

j≥1

∆Q
νj
.

(5.5)

(5.6)

We refer to [10, p.608] and [37, p.9] for a more rigorous definition, using induction, of the
tensorized interpolation and quadrature operators respectively.

Sparse interpolation and quadrature operators

To define sparse interpolation and quadrature operators, we introduce the following notion:

Definition 5.2. (Definition 3.1 in [37]) A subset Λ ⊂ F of finite cardinality N is called
downward closed1 if {0} ⊂ Λ and if, for every ν ∈ Λ, ν 6= 0, it holds that ν − ej ∈ Λ for all

j ∈ supp ν, where ej ∈ {0, 1}N denotes the index vector with 1 in position j ∈ N and 0 in all
other positions i ∈ N \ {j}.

For any downward closed set Λ ⊂ F , the sparse interpolation and quadrature operator are

IΛ =
∑

ν∈Λ
∆I

ν , QΛ =
∑

ν∈Λ
∆Q

ν , (5.7)

1Also referred to in the literature as lower index sets or monotone index sets.
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with ∆I
ν and ∆Q

ν the multivariate difference operators defined in (5.5) and (5.6), respectively.
Theorem 2.1 in [10] and Theorem 4.2 in [37] ensure that these operators are well defined.

We have introduced the definitions for the case that g is a real- or complex-valued function,
but they can be extended in a straightforward way to functions taking values in separable
Banach spaces, see [10] and [37] for details.

Best N -term convergence rates for sparse interpolation and quadrature

For s > 1, we define the Bernstein ellipse in the complex plane as Es :=
{

w+w−1

2
: 1 ≤ |w| ≤ s

}

.

Given a sequence ρ := (ρl)l≥1, Eρ =
⊗

l≥1 Eρl denotes the tensorized polyellipse [12].
For the convergence results for the sparse interpolation and quadrature operators to hold,

we need that the function that we want to interpolate or of which we want to compute the
integral fulfills some regularity properties [12, 37, 38]:

(b, p, ε)-holomorphy assumption
Let g : P → V denote a bounded, continuous function of countably many variables y1, y2, ...,
defined on P = [−1, 1]∞ and taking values in a separable Hilbert space V . We require that:
(i) Given a positive sequence b = (bl)l≥1 ∈ ℓp(N) for some 0 < p < 1, there exists a real number
0 < ε < 1 such that, for every (b, ε)-admissible sequence of poly-radii, i.e. for every sequence
ρ = (ρl)l≥1 such that ρl > 1 and

∑

l≥1

(ρl − 1)bl ≤ ε, (5.8)

the solution map y 7→ g(y) admits a holomorphic extension to a set of the formOρ :=
⊗

l≥1 Oρl ,
with Oρl ⊂ C an open set containing Eρl , l ≥ 1.
(ii) g satisfies an a priori estimate (uniform upper bound)

sup
z∈Eρ

‖g(z)‖V ≤ B(ε) (5.9)

for a constant B = B(ε) independent of ρ and the dimension of the parameter space.
Lemma 5.2 in [12] ensures that, for s > 1, the open setOs := {z ∈ C : dist(z, [−1, 1]) < s− 1}

is an open neighborhood of Es. Then, it’s sufficient to verify the (b, p, ε)-holomorphy assumption
on sets of the form

Oρ =
⊗

l≥1

Oρl , with Oρl = {z ∈ C : dist(z, [−1, 1]) < ρl − 1} , l ≥ 1. (5.10)

Under the (b, p, ε)-holomorphy assumption, one can prove the following convergence results:

Theorem 5.3. (Theorem 4.4 in [10]) Let the (b, p, ε)-holomorphy assumption and Assumption
5.1 be satisfied. Then there exists a sequence (ΛN)N≥1 of downward closed sets ΛN ⊂ F such
that ♯ΛN = N and

‖g − IΛg‖L∞(P,V ) ≤ CN−s, s =
1

p
− 1. (5.11)

Theorem 5.4. (Lemma 4.10 in [37]) Let the (b, p, ε)-holomorphy assumption and Assumption
5.1 be satisfied. Then there exists a sequence (ΛN)N≥1 of downward closed sets ΛN ⊂ F such
that ♯ΛN ≤ N and

‖I(g)−QΛg‖V ≤ CN−s, s =
1

p
− 1. (5.12)

These two results show convergence rates which depend only on p, referred to as the “sparsity
class of the unknown”, while they do not depend on the number of dimensions activated.
This means that we can break the curse of dimensionality by algorithms which adaptively
construct downward closed index sets for the sparse interpolation and quadrature operators, as
the algorithm that we present in the next subsection.
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5.2 The sparse adaptive Smolyak algorithm

The idea is to identify the index set ΛN of the N indices in F giving the highest contribution to
the approximations (5.7). However, the index set ΛN built in this way would be nested but not
downward closed and, even worse, the cardinality of the set that should be considered grows
exponentially with the number of dimensions activated and it would be infinite in the case of
countably many parameters. To overcome this, one considers a local subset, referred to as the
reduced set of neighbors of a given finite set Λ ⊂ F , specifically [19]:

N (Λ) = {ν /∈ Λ : ν − ej ∈ Λ, for all j ∈ supp ν and νj = 0, all j > j(Λ) + 1} (5.13)

for any downward closed index set Λ, where j(Λ) = max {j : νj > 0 for some ν ∈ Λ}. Using
this set of neighbors, at each iteration at most one additional dimension can be activated.

The algorithm constructs then an anisotropic downward closed index set Λ comprising those
indices in N (Λ) which are expected to contribute most to the approximation (see [37] for more
details):

Algorithm 1 Sparse adaptive Smolyak algorithm.

1: function ASG

2: Set Λ1 = {0F} , k = 1 and compute ∆Q
0 (g).

3: Determine the reduced set of neighbors N (Λ1).
4: Compute ∆Q

ν (g) , for all ν ∈ N (Λ1).
5: while

∑

ν∈N (Λk)
‖∆Q

ν (g)‖V > tol do

6: Set Λk+1 = Λk ∪
{

µ ∈ N (Λk) : ‖∆Q
µ (g)‖V ≥ ϑmaxν∈NΛ

‖∆Q
ν (g)‖V

}

.
7: Determine the reduced set of neighbors N (Λk+1).
8: Compute ∆Q

ν (g) , for all ν ∈ N (Λk+1).
9: Set k = k + 1.
10: end while
11: end function

In line 6, ϑ ∈ [0, 1] is a parameter chosen at the beginning of the algorithm, and determining
how many indices in the reduced set of neighbors are included in the set Λ at each iteration.
For θ = 1, we have Λk+1 = Λk ∪ {ν̄} with ν̄ = argmaxν∈NΛ

‖∆Q
ν (g)‖V .

For the interpolation, the difference operators are the ones defined in (5.5). For each ν ∈ F ,
‖∆Q

ν (g)‖V is replaced by ‖∆I
ν(g)‖L∞(P,V ), and the stopping criterion

∑

ν∈N (Λk)
‖∆Q

ν (g)‖V ≤ tol

at line 5 of Algorithm 1 is substituted by the condition maxν∈N (Λk) ‖∆I
ν(g)‖V ≤ tol.

5.3 Analyticity and uniform boundedness of solutions to elliptic
PDEs

Let us now return to our model problem as stated in (4.2). We need to show that this case
satisfies the (b, p, ε)-holomorphy assumption, so that the convergence results stated in Theorem
5.3 and Theorem 5.4 hold.

To this aim, we replace the definition of (b, ε)-admissible sequence of polyradii by the
following:

Definition 5.5. A sequence ρ = (ρl)l≥1 of polyradii, with ρl > 1 for every l ∈ N, is said to
be (b, ε)∗-admissible if it is (b, ε)-admissible for a sequence b that has a monotonic majorant
in ℓp(F) for 0 < p < 1

2
and is such that (lbpl )l≥1 has a monotonic majorant, and if (5.8) is

replaced by
∑

l≥1

(ρl − 1)lbl ≤ ε. (5.14)
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We use the term (b, p, ε)∗-holomorphy assumption to denote the (b, p, ε)-holomorphy assumption
when (b, ε)-admissible sequences are replaced by (b, ε)∗-admissible sequences.

Proposition 5.6. Let the (b, p, ε)-assumption be replaced by the (b, p, ε)∗-assumption. Then
the algebraic convergence of the sparse interpolation and quadrature operators, prescribed by
Theorems 5.3 and 5.4 respectively, still holds with rate of convergence s = 1

p
− 2.

Proof. Since the sequence b has a monotonic majorant in ℓp(F) and the sequence (lbpl )l≥1 has
a monotonic majorant, then Lemma A.3 ensures that the sequence (lbl)l≥1 belongs to ℓq(F)
with q = p

1−p
. Applying Theorems 5.3 and 5.4 using the (b, p, ε)-assumption for the sequence

b̃ = (lbl)l≥1, we obtain the claim.

Remark 5.7. The condition expressed by the inequality in (5.14), differently from the condition
b ∈ ℓp(N), entails an implicit ordering of the dimensions of the parameter space with respect to
decreasing significance. However, thanks to Assumption 2.4.A, the bound ε in (5.14) does not
depend on the sequence b itself but on its (monotonically decreasing) majorant.

Remark 5.8. Condition (5.14) implies in particular condition (5.8) for the same sequence b.

Our plan is to show that the (b, p, ε)∗-holomorphy assumption is fulfilled for our model
problem.

As it is done in [12, Sect. 5.3], we choose the sequence b as

bl = ‖βlψl‖C0
per([0,2π))

+ ‖βlψ′
l‖C0

per([0,2π))
= |βl|+ l|βl|, l ≥ 1, (5.15)

with βl and ψl as in Remark 2.6, l ≥ 1. Notice that, thanks to Assumption 2.4.A on the
sequence (βl)l≥1 (i.e. existence of a monotonic majorant belonging to ℓp(N) with p < 1

2
), there

exist sequences of polyradii that are (b, ε)∗-admissible.
We show explicitly that the (b, ε)∗-holomorphy assumption is fulfilled when using the do-

main mapping (3.2). However, our results hold for a generic mapping fulfilling the following
conditions, slightly stronger than the ones in Assumption 3.1:

Assumption 5.9. (i) The domain mapping Φ = Φ(y), its Jacobian matrix DΦ(y) and its
inverse DΦ−1(y), y ∈ PJ , J ∈ N, admit a holomorphic extension to the subsets Oρ ⊂ CN as
defined in (5.10), for any (b, ε)∗-admissible sequence of polyradii ρ.
(ii) For every z ∈ Oρ, Φ = Φ(z) fulfills Assumption 3.1, with bounds possibly depending on ε.
For Assumption 3.1(i), the requirement on the diffeomorphism to be orientation-preserving is
replaced by: there exists a real constant σ− = σ(ε) > 0 independent of z ∈ Oρ such that

RedetDΦ(z) > σ(ε) for every z ∈ Oρ. (5.16)

Since in general the domain mapping Φ will depend on r = r(z), z ∈ Oρ, to have Assump-
tion 5.9 fulfilled we can expect that we need to ensure z-uniform bounds and holomorphy of
the radius and its derivative with respect to ϕ ∈ [0, 2π). We show that z-uniform bounds hold

for Re r(z), |r(z)| and
∣

∣

∣

∣

∂r

∂ϕ
(z)

∣

∣

∣

∣

, and that such bounds are sufficient for the mapping 3.2 to

satisfy Assumption 5.9. The analyticity proof is postponed to a later part of this subsection.
Let us first look at the uniform bound (5.9).

Assumption 2.3 ensures that there exist 0 < r−, r+ <∞ such that

r− ≤ r(y, ϕ) ≤ r+ for a.e. ϕ ∈ [0, 2π), all J ∈ N, and all y ∈ PJ (5.17)
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(more precisely in our case r− =
r−0
2
, r+ = r+0 +

r−0
2
, with r+0 = supϕ∈[0,2π) r0(ϕ) and r−0 as in

2.3). Moreover, Assumption 2.4.A guarantees (see e.g. subsection A.7 in the appendix) that
there exists a J- and y- independent constant 0 < Cr <∞ such that

∥

∥

∥

∂r

∂ϕ
(y)
∥

∥

∥

C0
per([0,2π))

≤
∥

∥

∥

∂r0
∂ϕ

∥

∥

∥

C0
per([0,2π))

+ Cr for all J ∈ N and all y ∈ PJ . (5.18)

Using these facts, we can prove the following:

Lemma 5.10. Let b be as in (5.15) and 0 < ε < r−

2
, with r− as in (5.17). Then, for every

(b, ε)∗-admissible sequence ρ and every z ∈ Oρ, with Oρ as in (5.10), we have the z-independent
bounds

r−

2
≤ Re r(z, ϕ), ϕ ∈ [0, 2π),

r−

2
≤ |r(z, ϕ)| ≤ r+ + ε, ϕ ∈ [0, 2π),

∣

∣

∣

∂r

∂ϕ
(z, ϕ)

∣

∣

∣
≤
∥

∥

∥

∂r0
∂ϕ

∥

∥

∥

C0
per

([0,2π))
+ Cr + ε, ϕ ∈ [0, 2π),

(5.19)

(5.20)

(5.21)

with r+ as in (5.17) and Cr as in (5.18).
In particular, the mapping Φ defined in (3.2) fulfills Assumption 5.9 (ii) if the mollifier

fulfills Assumption 3.2 and 0 < ε < min
{

cχ,
r−

2

}

.

Proof. The results follow immediately from the bounds (5.17) and (5.18). We refer to subsection
A.6 in the appendix for the complete proof.

The same argument used in the proof of Lemma 4.5 leads to:

Proposition 5.11. Let the sequence b be as in (5.15) and 0 < ε < r−

2
, with r− as in (5.17).

If the mapping Φ satisfies Assumption 5.9, then part (ii) of the (b, p, ε)∗-holomorphy as-
sumption is fulfilled, i.e. there exist constants B1 = B1(ε) and B2 = B2(ε) such that

sup
z∈Oρ

‖û(z)‖H1(KR) ≤ B1(ε) ‖ui‖H1(∂KR) +B2(ε)

∥

∥

∥

∥

∂ui
∂nR

∥

∥

∥

∥

L2(∂KR)

(5.22)

for every Oρ, with Oρ as in (5.10) and ρ any sequence of (b, ε)∗-admissible polyradii. The
constants B1 and B2 are independent of J ∈ N, y ∈ PJ and ρ.

In particular, the bound (5.22) holds for the mapping Φ given in (3.2) if the mollifier fulfills

Assumption 3.2 and 0 < ε < min
{

cχ,
r−

2

}

.

To prove that part (i) of the (b, p, ε)∗-holomorphy assumption holds, we first show the exis-
tence of a holomorphic extension for the parameter-dependent radius (2.5) and its ϕ-derivative;
from this, analyticity of the map Φ(y) and then of the solution to the PDE on the nominal
configuration follow. The proof is rather general and actually it applies, with minor modifica-
tions, to any elliptic PDE as long as the parameter-dependent configuration can be mapped to a
reference configuration through a mapping satisfying Assumption 5.9 and depending smoothly
(in a sense to be specified later, see Remark 5.14) on the stochastic quantity r = r(y).

Lemma 5.12. For every z ∈ Oρ, with Oρ as in (5.10) and ρ any (b, ε)∗-admissible sequence,

the maps z 7→ r(z) ∈ C1
per

([0, 2π)) and z 7→ ∂r

∂ϕ
(z) ∈ C0

per
([0, 2π)), with r = r(z) given by

(2.5), are holomorphic.
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Proof. Thanks to Hartogs’ theorem on separate analyticity (see e.g. [27, Section 2.4]), it is

sufficient to show that r(z) and
∂r

∂ϕ
(z) are holomorphic with respect to each of the variables

zl, for every l ≥ 1. Being both maps affine with respect to each of the zl, l ≥ 1, they are also
holomorphic in Oρl , l ≥ 1.

Let Diffk
+,p̂w(KR, KR) be the space of diffeomorphisms which are of order Ck in each of

the two subdomains D̂1 ∩KR and D̂2, and with determinant with positive real part. Since
algebraic sum, multiplication and division by holomorphic functions which are not zero is still
holomorphic, it follows immediately from Lemma 5.12 that:

Lemma 5.13. Let us consider the map Φ defined in (3.2) with mollifier fulfilling Assumption
3.2. Then the mappings z 7→ Φ(z, ·) ∈ Diff1

+,pw(KR, KR) and z 7→ detDΦ(z, ·) ∈ C0
pw
(KR) are

holomorphic in Oρ, with Oρ as defined in (5.10) for any (b, ε)∗-admissible sequence ρ.
Together with Lemma 5.10, this implies that the mapping defined in (3.2) (with Assumption

3.2 on the mollifier) satisfies Assumption 5.9.

Proof. It is easy to check that, thanks to Assumption 2.3, the denominators in (3.2) and in the
entries of DΦ(z) and DΦ−1(z) are never zero, for every z ∈ Oρ; thus z 7→ Φ(z), z 7→ DΦ(z)
and z 7→ DΦ−1(z) are holomorphic.

Remark 5.14. It is clear that our framework and in particular Lemma 5.13 fit not only the
specific map Φ given in (3.2), but any map involving composition of r with holomorphic maps,
as well as linear combinations, multiplications and divisions (when never zero), as long as
Assumption 5.9 is satisfied.

For the same reasons as for the previous lemma, we also have:

Lemma 5.15. Let Assumption 5.9 be fulfilled. Then the coefficients α̂(y), k̂2(y) as defined in
(4.3) are holomorphic when considered as maps from z ∈ Oρ to C0

p̂w
(KR).

This lemma implies immediately:

Lemma 5.16. Let Assumptions 4.4 and 5.9 hold, the former with τ < T and T as in Lemma
4.5. Then, if û is a solution to (4.2), the solution map z 7→ û(z), admits a holomorphic
extension to any open set Oρ ⊂ CN as defined in (5.10) with ρ a (b, ε)∗-admissible sequence.

For each variable zl, l ≥ 1, the complex derivative (∂zl û) (z) ∈ V̂ is the weak solution to the
variational problem:

Find (∂zl û) (z) ∈ V̂ :
∫

KR

(

α̂(z, x̂)∇̂∂zl û(z, x̂) · ∇̂v̂(x̂)− k̂2(z, x̂)∂zl û(z, x̂)v̂(x̂)
)

dx̂

−
∫

∂KR

DtN(∂zl û(z, x̂))v̂(x̂) dS = L0(z, v̂) for all v̂ ∈ V̂ and all z ∈ Oρ. (5.23)

The right-hand side L0 is given by

L0(z, v̂) =

∫

KR

−∂α̂

∂zl
(z, x̂)∇̂û(z, x̂) · ∇̂v̂(x̂) dx̂+

∂k̂2

∂zl
(z, x̂)û(z, x̂)v̂(x̂) dx̂.

In particular, this result holds if Assumption 4.4 if fulfilled (with τ < T ) and the domain
mapping is the one defined in (3.2).
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Proof. Lemma 5.15 shows that the bilinear form in (4.2), with y ∈ PJ , J ∈ N, replaced by
z ∈ Oρ, is holomorphic in Oρ. The right-hand side in (4.2) does not depend on the stochastic
parameter, so in this particular case we do not have to show its analyticity. Then, the result
follows from Theorem 4.1 in [12].

We summarize the results obtained so far in the following proposition:

Proposition 5.17. Let the parameter-dependent radius r(y) characterizing a star-shaped stochas-
tic interface be given by the expansion (2.5) and let Assumptions 2.2, 2.3, and 2.4.A hold. If the
map Φ(y) : KR → KR satisfies Assumption 5.9, then the solution û to (4.2) is holomorphic in
every Oρ as defined in (5.10), with ρ a (b, ε)∗-admissible sequence of polyradii and 0 < ε < r−

2
.

In particular, if the mapping is given by (3.2) with the mollifier fulfilling Assumption 3.2, then
the solution û to (4.2) is holomorphic in every Oρ with ρ a (b, ε)∗-admissible sequence and

0 < ε < min
{

cχ,
r−

2

}

.

Propositions 5.11 and 5.17 together give finally:

Theorem 5.18. Let Assumptions 2.2, 2.3, 2.4.A and 4.4 be satisfied. Then the (b, p, ε)∗-
holomorphy assumption is fulfilled for the domain mapping (3.2) with mollifier fulfilling
Assumption 3.2, and the convergence rates given by Theorems 5.3 and 5.4 are achieved
with s = 1

p
− 2.

For a generic domain mapping, the (b, p, ε)∗-holomorphy assumption is satisfied and the
convergence rates of Theorems 5.3 and 5.4 are achieved with s = 1

p
− 2 if the map fulfills

Assumption 5.9.

6 Spatial regularity and convergence of the finite ele-

ment solution

This section is devoted to first establishing the relationship between the order of summability
p of the coefficient series C = (cj)j≥1, S = (sj)j≥1 in (2.5) and the regularity of the solution
to (4.2) for a single parameter realization (subsection 6.1). This information is then used
to get the order of convergence of the finite element solution and couple it to the convergence
results for sparse interpolation and quadrature in the parameter space, so that in the end we get
convergence estimates for the fully discretized solution. The latter estimates are first obtained in
the simpler case that the same finite element discretization is used for all realizations (subsection
6.2.1); then, a more refined estimate is obtained for the case that the spatial discretization is
different for each interpolation / quadrature point (subsection 6.2.2), although these results are
restricted to nested sequences of points in the parameter space. Finally (subsection 6.3), the
above convergence results are extended for linear output functionals as quantities of interest.

6.1 Spatial regularity of the parametric solution

We are going to prove that, under summability assumptions on the coefficient sequences
C = (cj)j≥1, S = (sj)j≥1, the radius r = r(y, ϕ) given by (2.5) belongs to some regularity
class; this will imply smoothness of the coefficients in the mapped equation (4.2) and thus
smoothness of the solution.

It is important to highlight that, in view of the convergence estimates, we need norm bounds
which are independent of the truncation dimension J ∈ N in the radius expansion.

The theorem implying smoothness of the solution to a PDE from the smoothness of the
coefficients requires the latter to have essentially bounded derivatives. It turns out that the
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proper spaces in which to state regularity are the Sobolev spaces W k,∞ of functions with
essentially bounded weak derivatives up to the k-th order. However, since we do not want to
distinguish between weak and strong measurability of the coefficient maps ω 7→ α̂(ω), ω 7→ k̂(ω),
and, thus, of the solution map ω 7→ û(ω), we prefer to work in separable Banach spaces. For
this reason, we are going to state the regularity results in the spaces of piecewise-Ck functions.

6.1.1 From the regularity of the physical domain to the regularity of the PDE
coefficients

Stating the regularity of the subdomains D1(y) ∩ KR and D2(y) boils down to stating the
regularity of the radius r = r(y, ϕ), expressed by the following lemma:

Lemma 6.1. If the coefficient sequences C, S satisfy Assumption 2.4.A (i.e. C,S ∈ ℓp(N) for
0 < p < 1

2
), then the radius r(y) given by (2.5) satisfies

r(y) ∈ Ck
per([0, 2π)), ‖r(y)‖Ck

per([0,2π))
≤ C(C,S), for all J ∈ N and all y ∈ PJ , (6.1)

under the assumption that the nominal radius r0 belongs to Ck
per([0, 2π)) too. The constant C

depends on the regularity parameter k and on the sequences C = (cj)j≥1 and S = (sj)j≥1, but
not on the truncation dimension J ∈ N and on the realization y ∈ PJ . The regularity parameter
k is given by:

k =

{

⌊

1
p
− 1
⌋

if 1
p
− 1 is not an integer

1
p
− 2 otherwise.

(6.2)

In particular, if 0 < p < 1
4
, then Assumption 2.4.A implies Assumption 2.4.B.

Proof. The proof consists of elementary computations and we refer to subsection A.7 in the
appendix for it.

We now investigate how the boundary smoothness entails smoothness of the map Φ(y).
In particular, we show here that Assumption 3.1 is fulfilled in the case of the specific domain
mapping 3.2, with an order of smoothness k depending on the smoothness of the stochastic
radius. The same procedure can be adapted for other domain mappings.

Lemma 6.2. Let Assumptions 2.3 and 2.4.A be satisfied, and let the nominal radius r0 belong
to Ck

per([0, 2π)), with k as in (6.2). Then the mapping Φ given by (3.2), with a mollifier fulfilling
Assumption 3.2, satisfies Assumption 3.1, with k the smoothness parameter of the radius r.

Proof. The statement is quite clear from (3.2), once one observes that Φ(y) consists just of
scalings by r(y) and r0 smoothed by a function χ with the same smoothness as the nominal
radius. The technical proof can be found in the Appendix, subsection A.8.

From this we immediately have the following result, which holds in particular for the map
(3.2).

Corollary 6.3. Let Assumption 2.4.A hold and let the map Φ : PJ ×KR −→ PJ ×KR satisfy
Assumption 3.1.

Then, for every r(y) given by (2.5) and every y ∈ PJ , the coefficients α̂ and k̂2 in (4.2)
satisfy

‖α̂(y)‖Ck−1
p̂w

(KR) ≤ C1(C,S), ‖k̂2(y)‖Ck−1
p̂w

(KR) ≤ C2(C,S),
with ‖·‖Ck−1

p̂w
(KR) := ‖·‖

Ck−1(D̂1∩KR)∪Ck−1(D̂2)
, under the additional hypothesis (not needed if As-

sumption 2.4.B holds) that the nominal radius r0 belongs to Ck
per([0, 2π)). The constants C1

and C2 depend on the regularity parameter k and on the coefficient sequences C = (cj)j≥1,
S = (sj)j≥1, but they are independent of the truncation dimension J ∈ N and of and of y ∈ PJ ;
the regularity parameter k is the same as in Lemma 6.1.
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6.1.2 Regularity of the solution

We are going to state this result in three steps: local interior regularity, local regularity at the
interface Γ̂ and at the boundary ∂KR, and global regularity.

The local interior regularity is a consequence of Theorem 8.10 in [21]:

Theorem 6.4. Let Assumptions 2.3 and 2.4.A hold and let the nominal radius r0 belong to
Ck

per([0, 2π)), with k as in Lemma 6.1. If k ≥ 2, then, for any subdomain D′ such that D′ ⊂
KR ∩ D̂1 or D′ ⊂ D̂2, the solution û(y) to (4.2) belongs to Hk(D′) and satisfies

‖û(y)‖Hk(D′) ≤ C‖û(y)‖H1(KR), (6.3)

for C = C(a−,K, d′, k, |D̂1 ∩KR|, |D̂2|), where |D̂1 ∩KR| and |D̂2| denote the sizes of the two

subdomains, d′ = min
{

dist(D′, ∂KR), dist(D
′, Γ̂)

}

and

K = max

{

sup
y∈PJ ,J∈N

‖α̂(y)‖Ck−1
p̂w

(KR), sup
y∈PJ ,J∈N

‖k̂2(y)‖Ck−2
p̂w

(KR)

}

.

The symbol a− denotes the uniform coercivity constant as in Lemma 4.5 (a), depending on the
lower and upper singular value bounds σmin, σmax for DΦ−1(y) as from Assumption 3.1. In

(6.3) we denoted Ck−1
p̂w

(KR) := Ck−1
(

KR ∩ D̂1

)

∪ Ck−1
(

D̂2

)

and similarly for Ck−2
p̂w

(KR).

Furthermore, if Assumption 4.4 holds, then we have a J- and y-independent bound:

‖û(y)‖Hk(D′) ≤ C̃

(

‖ui‖
H

1
2 (∂KR)

+

∥

∥

∥

∥

∂ui
∂nR

∥

∥

∥

∥

H−
1
2 (∂KR)

)

(6.4)

with C̃ = C̃(R, a−,K, d′, k, |D̂1 ∩KR|, |D̂2|).

Proof. One can verify that, in Theorem 8.10 in [21], if the lower bound on the coercivity
constant and the upper bounds on the PDE coefficients and right-hand side are independent
on J ∈ N and y ∈ PJ , then the upper bound on ‖û(y)‖Hk(D′) is also uniform in J ∈ N and
y ∈ PJ .

In the case of equation (4.2), the lower bound on the coercivity constant is given by Lemma
4.5 (a), the upper bounds on the coefficients are ensured by Corollary 6.3, and the right-hand
side is independent of J ∈ N and y ∈ PJ .

If Assumption 4.4 holds, then we can use (5.22) to bound ‖û(y)‖H1(KR), obtaining (6.4).

The local regularity at the interface Γ̂ and at ∂KR follows from Theorem 4.20 in [31]:

Theorem 6.5. Let Assumptions 2.3 and 2.4.A hold, let the nominal radius r0 belong to
Ck

per([0, 2π)) and the map Φ : PJ × KR → PJ × KR fulfill Assumption 3.1, with k as in

Lemma 6.1. Moreover, let the interfaces Γ̂ and ∂KR be Ck−1,1. If k as in Lemma 6.1 is such
that k ≥ 2, then:

• for any subdomain D′ ( KR intersecting Γ̂ (but not ∂KR), the solution û(y) to (4.2)
belongs to Hk(D′ ∩ D̂1) ∪Hk(D′ ∩ D̂2) and satisfies

‖û(y)‖Hk(D′∩D̂1)∪Hk(D′∩D̂2)
≤ C‖û(y)‖H1(KR∩D̂1)∪H1(D̂2)

, (6.5)

where C = C(a−,K, d′, k, |KR|) with d′ = dist(D′, ∂KR) and the other constants defined
as in Theorem 6.4.
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• for any open set D′ intersecting ∂KR (but not Γ̂), the solution û(y) to (4.2) satisfies

‖û(y)‖Hk(D̂′∩KR) ≤ C‖û(y)‖H1(D̂′∩KR)

+ C

(

‖ui‖
Hk− 1

2 (∂KR)
+

∥

∥

∥

∥

∂ui
∂nR

∥

∥

∥

∥

Hk− 3
2 (∂KR)

)

,

where C = C(a−,K, d′, k, |KR|) with d′ = dist(D′, Γ̂) and the other constants defined as
in Theorem 6.4.

Furthermore, if Assumption 4.4 holds, then in both cases we have bounds on the norms which
are independent of the truncation dimension J ∈ N and of y ∈ PJ :

‖û(y)‖Hk(D′∩D̂1)
+ ‖û(y)‖Hk(D′∩D̂2)

≤ C̃1

(

‖ui‖
H

1
2 (∂KR)

+

∥

∥

∥

∥

∂ui
∂nR

∥

∥

∥

∥

H−
1
2 (∂KR)

)

,

‖û(y)‖Hk(D′∩KR) ≤ C̃2

(

‖ui‖
Hk− 1

2 (∂KR)
+

∥

∥

∥

∥

∂ui
∂nR

∥

∥

∥

∥

Hk− 3
2 (∂KR)

)

.

Here, we considered the domain truncated at ∂KR′ and ∂KR as an interface because As-
sumption 3.1 allows the mapping Φ and its inverse to be nonsmooth across ∂KR (and thus also
the coefficients α̂ and k̂2 may be non smooth).

Proof. The proof is very similar to the one for Theorem 6.4: following the proof of Theorem
4.20 in [31], one can observe that a J- and y-uniform lower bound on the coercivity constant
and J- and y-uniform upper bounds on the PDE coefficients and right-hand side ensure an
upper bound on ‖û(y)‖Hk(D′) that also uniform in J ∈ N and y ∈ PJ . Furthermore, applying
Theorem 4.20 in [31] to our case, we do not need to care about boundary terms across the
boundaries because we have no jumps of the solution or of its conormal derivative across Γ̂ and
∂KR.

Considering Theorems 6.4 and 6.5 together we get the following global result:

Theorem 6.6. Let Assumptions 2.3 and 2.4.A hold and let the nominal radius r0 belong
to Ck

per([0, 2π)), with k as in Lemma 6.1. Let the map Φ be given by (3.2) with the mollifier

fulfilling Assumption 3.2. Moreover, let the interface Γ̂ be Ck−1,1. If k as in Lemma 6.1 is
such that k ≥ 2, then û belongs to Hk(KR ∩ D̂1) ∪Hk(D̂2) and

‖û(y)‖Hk(KR∩D̂1)
+ ‖û(y)‖Hk(D̂2)

≤ C‖û(y)‖H1(KR),

with C = C(a−,K, k, |KR|) independent of J ∈ N and of y ∈ PJ . In particular, if Assump-
tion 4.4 holds, then we have the J- and y-independent bound

‖û(y)‖Hk(KR∩D̂1)
+ ‖û(y)‖Hk(D̂2)

≤ C̃

(

‖ui‖
Hk− 1

2 (∂KR)
+

∥

∥

∥

∥

∂ui
∂nR

∥

∥

∥

∥

Hk− 3
2 (∂KR)

)

, (6.6)

with C̃ = C̃(a−,K, k, |KR|), and a−, K defined as in Corollary 6.4.

Remark 6.7. As it is evident from (6.2), we have that k → ∞ as p→ 0.

Remark 6.8. Theorem 6.6 holds not only for the map (3.2), but for any map satisfying As-
sumption 3.1.
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6.2 Convergence of the fully discrete solution

The results stated in Theorems 5.3 and 5.4 assume that the solution û = û(y) to (4.2) at
the interpolation/quadrature points can be computed exactly, which is not usually the case in
applications. Here we study instead the convergence of the sparse interpolation/quadrature
algorithm coupled to a finite element discretization to compute the realizations. We consider
a simplicial mesh on KR, and assume that at ∂KR the exact DtN map is available. Since we
use a conforming discretization, for each y ∈ PJ existence and uniqueness and stability of the
discrete solution are inherited from the continuous case.

Throughout this subsection, k ∈ N denotes the spatial regularity of the exact solution as
from Theorem 6.6.

6.2.1 Convergence estimate for fixed finite element discretization

We first observe that:

Lemma 6.9. Let Assumptions 4.4 and 5.9 hold, the former with τ < T and T as in Lemma
4.5. Then the discrete finite element solution ûh(y) to (4.2) admits an analytic extension ûh(z)
to the complex domain, with the same domain of analyticity Oρ as the exact solution û(y) (Oρ

as defined in Eq.(5.10), with ρ a (b, ε)∗-admissible sequence) .

Proof. Since the Galerkin solution still satisfies the variational formulation (4.2) on the discrete,
finite-dimensional space, V̂h ⊂ V̂ , the proof is the same as for Lemma 5.16).

The convergence estimate for the fully discrete solution follows then simply applying the
triangle inequality:

Theorem 6.10. Let IΛûh and QΛûh denote the solutions obtained respectively from sparse
interpolation and quadrature of the discrete solution ûh to (4.2). Let Assumptions 4.4, 5.1 and
5.9 be fulfilled. Assume that the same finite element discretization is used for all parameter
realizations yν, ν ∈ Λ, with polynomial order q and Ndof degrees of freedom, and that a q-th

order boundary approximation is used for the interface Γ̂.
Then there exists a downward closed set Λ of cardinality at most N such that

‖û− IΛûh‖L∞(PJ ,V̂ ) ≤ CN
−min(k−1,q)

2
dof + C1N

−s, s =
1

p
− 2,

‖I(û)−QΛûh‖V̂ ≤ CN
−min(k−1,q)

2
dof + C2N

−s, s =
1

p
− 2,

(6.7)

(6.8)

with k ≥ 1 and s, C, C1, C2 > 0 independent of N , Ndof , of the truncation dimension J ∈ N

and of y ∈ PJ .

Proof. For each y ∈ PJ , we can write

‖û(y)− IΛûh(y)‖V̂ ≤ ‖û(y)− ûh(y)‖V̂ + ‖ûh(y)− IΛûh(y)‖V̂ . (6.9)

We highlight that when doing this splitting we exploit the fact that the same finite element
space is used for all collocation / quadrature points, so that we can define ûh(y) for all y ∈ PJ .

Thanks to the classical results on finite element convergence (see e.g. [29], where the interface
problem is considered), the first term is bounded by:

‖û(y)− ûh(y)‖V̂ ≤ C̃N
−min(k−1,q)

2
dof ‖û(y)‖Hk((KR∩D̂1))∪Hk(D̂2)
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for a constant C̃ > 0 depending only on the mesh; combining this estimate with (6.6) in
Theorem 6.6 (holding thanks to Assumptions 4.4 and 5.9), we obtain:

‖û(y)− ûh(y)‖L∞(PJ ,V̂ ) ≤ CN
−min(k−1,q)

2
dof ,

with C independent of J ∈ N and of y ∈ PJ . The bound for the second term in (6.9) follows
directly from Lemma 6.9 and Theorem 5.3.

For the quadrature case, we have that

‖I(û(y))−QΛûh(y)‖V̂ ≤ ‖I(û(y)− ûh(y))‖V̂ + ‖I(ûh(y))−QΛûh(y)‖V̂ ;
once we observe that ‖I‖ = 1, the result follows as in the interpolation case using Theorem 5.4
to bound the second term.

6.2.2 Convergence estimate for parameter-adaptive discretization

The idea is to distinguish the finite element error contribution for each difference operator ∆I
ν

as defined in (5.2) and (5.5) for the interpolation case, or ∆Q
ν as defined in (5.2) and (5.6) for

the quadrature case. The approach is the same as the one followed in [39] for the Legendre
coefficients.

In the following theorem, we are going to denote by H l(y) the multivariate hierarchical
polynomial associated to the node yl in the case of nested sequences of interpolation points
(see [10] for details). Also,

{

yl ∈ ∆I
ν

}

(resp.
{

yl ∈ ∆Q
ν

}

) indicates the set of new interpolation
(resp. quadrature) points introduced by the difference operator ∆I

ν (resp. ∆Q
ν ), wl denotes

the quadrature weight associated to yl and LRν
is the Lebesgue constant of the interpolation

operator IRν
on Rν := {µ ∈ F : µ < ν}.

Theorem 6.11. Let IΛûh,Λ and QΛûh,Λ denote the solutions obtained respectively from sparse
interpolation and quadrature of the discrete solution ûh,Λ to (4.2). Let Assumptions 4.4, 5.1
and 5.9 be fulfilled. Let us denote by ql and Ndof,l the polynomial order and number of degrees
of freedom used to compute the solution ûh,Λ(yl) at the interpolation / quadrature point yl.
Furthermore, let us suppose that, for each realization yl, a ql-th order boundary approximation
is used for the interface Γ̂.

Then there exists a downward closed set Λ of cardinality at most N such that

‖û− IΛûh,Λ‖L∞(PJ ,V̂ ) ≤
∑

ν∈Λ
‖∆I

ν(û− ûh,Λ)‖L∞(PJ ,V̂ ) + C1N
−s, s =

1

p
− 2,

‖I(û)−QΛûh,Λ‖V̂ ≤
∑

ν∈Λ
‖∆Q

ν (û− ûh,Λ)‖V̂ + C2N
−s, s =

1

p
− 2,

(6.10)

(6.11)

with s, C1, C2 > 0 independent of N , Ndof , of J ∈ N and of y ∈ PJ .
If the sequences (ζi)i≥0 of interpolation / quadrature points are nested, then the addends in

the first sum satisfy, for the interpolation and quadrature case respectively:

‖∆I
ν(û− ûh,Λ)‖L∞(PJ ,V̂ ) ≤ (1 + LRν

)C(k)

·
∑

yl∈∆I
ν

‖H l(·)‖L∞(PJ )N
−min(k−1,ql)

2
dof,l ‖û(yl)‖Hk((KR∩D̂1))∪Hk(D̂2)

‖∆Q
ν (û− ûh,Λ)‖V̂ ≤ C(k)

∑

yl∈∆Q
ν

|wl|N−min(k−1,ql)

2
dof,l ‖û(yl)‖Hk((KR∩D̂1))∪Hk(D̂2)

,

(6.12)

(6.13)

with C independent of N , Ndof , of J ∈ N and of y ∈ PJ . The Lebesgue constant is bounded by
LRν

≤ (♯Rν)
θ+1.
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We have ‖H l(·)‖L∞(PJ ) ≥ 1 for every sequence of interpolation points and
‖H l(·)‖L∞(PJ ) = 1 for every l in the case of Leja points on the real interval [−1, 1] (see e.g. [11]
for their definition).

Proof. We first consider the interpolation case. Simply applying the triangle inequality we
obtain:

‖û− IΛûh,Λ‖L∞(PJ ,V̂ ) ≤ ‖û− IΛû‖L∞(PJ ,V̂ ) + ‖IΛû− IΛûh,Λ‖L∞(PJ ,V̂ )

≤ ‖û− IΛû‖L∞(PJ ,V̂ ) +
∑

ν∈Λ
‖∆I

ν û−∆I
ν ûh,Λ‖L∞(PJ ,V̂ );

thanks to Lemma 5.16, Theorem 5.3 holds and thus we get (6.10).
If the sequence of interpolation points is nested, then, according to [10, Formula (2.25)], one

can write, for a generic element g ∈ L∞(PJ , V̂ ),

∆I
νg(y) =

∑

yl∈∆I
ν

(g(yl)− IRν
g(yl))H l(y),

(with IRν
the interpolation operator on Rν). Thus, we can write, for each ν ∈ Λ:

‖∆I
ν û−∆I

ν ûh,Λ‖L∞(PJ ,V̂ )

≤
∑

yl∈∆I
ν

‖û(yl)− ûh,Λ(yl)− IRν
(û(yl)− ûh,Λ(yl))‖V̂ ‖H l(·)‖L∞(PJ )

≤
∑

yl∈∆I
ν

(1 + LRν
)‖û(yl)− ûh,Λ(yl)‖V̂ ‖H l(·)‖L∞(PJ )

≤ (1 + LRν
)C(k)

∑

yl∈∆I
ν

N
−min(k−1,ql)

2
dof,l ‖û(yl)‖Hk((KR∩D̂1))∪Hk(D̂2)

‖H l(·)‖L∞(PJ ).

Under the hypothesis on the Lebesgue constant for the univariate operator, we have that LRν
≤

(♯Rν)
θ+1 and thus it grows with ♯Rν . Hence, we have obtained (6.12), with ‖H l(·)‖L∞(PJ ) ≥ 1

in general and ‖H l(·)‖L∞(PJ ) = 1 for every l in the case of Leja points [10].
The result for the quadrature operator follows the same lines. The difference is, of course,

in the definition of the difference operators for nested sequences; indeed, in this case, we have
that, for a continuous g ∈ L1(PJ , V̂ ), ∆Q

ν g =
∑

yl∈∆Q
ν
wlg(yl), and thus

‖∆Q
ν û−∆Q

ν ûh,Λ‖V̂ ≤ C(k)
∑

yl∈∆Q
ν

|wl|N−min(k−1,ql)

2
dof,l ‖û(yl)‖Hk((KR∩D̂1))∪Hk(D̂2)

.

The above theorem can be considered as a starting point for an adaptive strategy, where one
tries to minimize the total number of degrees of freedom in such a way that the finite element
error does not exceed the Smolyak algorithm error (∼ N−s). The study of an adaptive strategy
is postponed to a future work.

We remark that the smoothness s = 1
p
−2 in the parameter space and the spatial smoothness

k of the exact solution are not independent, owing to Theorem 6.6. This is formalized in
the following important corollary, obtained by combining Theorem 6.6 with Theorem 6.10 or
Theorem 6.11:
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Corollary 6.12. Let IΛûh, QΛûh IΛûh,Λ, QΛûh,Λ as in Theorem 6.10 and 6.11 respectively.
Let Assumptions 2.3 and 4.4 be fulfilled, and Φ given by (3.2) with the mollifier fulfilling
Assumption 3.2.

Then if the coefficient sequences C = (cj)j≥1, S = (sj)j≥1 satisfy Assumption 2.4.A and

the nominal radius r0 belongs to C
k
per([0, 2π)), with k as below, then the estimates (6.7)-(6.8)

and (6.12)-(6.13) hold with

k =

{

⌊

1
p
− 1
⌋

if 1
p
− 1 is not an integer

1
p
− 2 otherwise.

(6.14)

6.3 Convergence of linear output functionals

We extend here the results of the previous subsection to the case that we want to interpolate
or compute moments of a linear output functional F = F (u). Let F̂ = F̂ (y, û) denote the
functional F after change of coordinates to the nominal space.

Throughout this subsection, k ∈ N denotes the spatial regularity of the exact solution as
from Theorem 6.6.

If the functional depended only on the solution û, then, thanks to linearity, the analyticity
of F̂ would follow immediately from the analyticity of the solution and of the map Φ, with the
same polyradii for the polydiscs. However, in general this is not the case, and, to make sure
that the (b, p, ǫ)∗-holomorphy assumption is satisfied, we state the following assumption:

Assumption 6.13. The linear output functional F̂ = F̂ (y, û) admits an analytic extension to
the complex plane, with the same domain of analyticity as the solution û.

In particular, this assumption is satisfied when

F̂ (y, û) =

∫

Â

L1(û(y)) dx̂, (6.15)

where Â ⊆ KR is a nonzero measure set and L1 is a first order linear differential operator of
the form L1(v) = â1(y, x̂) · ∇̂v̂+ b̂1(y, x̂)v̂, with coefficients which are measurable with respect
to x̂ and holomorphic in y ∈ PJ in the same domain of analyticity as û.

We also require that the linear output functional is stable in the following sense:

Assumption 6.14. The linear output functional F̂ belongs to (Hm(KR))
′ for an integer m ≤ 1,

i.e. there exist C > 0 such that
∣

∣

∣
F̂ (y, v̂)

∣

∣

∣
≤ C‖v̂‖Hm(KR)

for all v̂ ∈ Hm(KR), with C independent of the truncation dimension J ∈ N and of y ∈ PJ

(but possibly on the radius R of KR).

This assumption is fulfilled for m = 0 by functionals of the form (6.15).
We denote by F̂h := F̂ (y, ûh) and F̂h,Λ := F̂ (y, ûh,Λ) the value of F̂ when evaluated on the

discrete solutions ûh and ûh,Λ respectively (nonadaptive and adaptive case).

For the case of uniform finite element order, if F̂ = F̂ (û) satisfies Assumption 6.13, also its
discrete version F̂h does thanks to Lemma 6.9, and we have:
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Theorem 6.15. Let F̂ be a linear output functional defined on the nominal configuration and
satisfying Assumption 6.13. We denote by IΛF̂h and QΛF̂h the solutions obtained respectively
from sparse interpolation and sparse quadrature of F̂h = F̂ (y, ûh(y)) . Let the assumptions of
Theorem 6.10 be satisfied.

Then there exists a downward closed set Λ of cardinality at most N such that the following
estimates hold:

‖F̂ − IΛF̂h‖L∞(PJ ,V̂ ) ≤ CN−t
dof + C1N

−s, s =
1

p
− 2,

‖I(F̂ )−QΛF̂h‖V̂ ≤ CN−t
dof + C2N

−s, s =
1

p
− 2,

(6.16)

(6.17)

with s, C, C1, C2 > 0 independent of N , Ndof , of J ∈ N and of y ∈ PJ .

If F̂ fulfills Assumption 6.14, then t = min(k−1,q)+1
2

for m ≤ 0, t = min(k−1,q)
2

for m = 1,
k ≥ 1.

For the parameter-adaptive case:

Theorem 6.16. Let F̂ be a linear output functional defined on the nominal configuration and
satisfying Assumption 6.13. We denote by IΛF̂h,Λ and QΛF̂h,Λ the solutions obtained respectively

from sparse interpolation and sparse quadrature of F̂h,Λ = F̂ (y, ûh,Λ(y)) . Let the assumptions
of Theorem 6.11 be satisfied.

Then there exists a downward closed set Λ of cardinality at most N such that

‖F̂ − IΛF̂h,Λ‖L∞(PJ ,V̂ ) ≤
∑

ν∈Λ
‖∆I

ν(F̂ − F̂h,Λ)‖L∞(PJ ,V̂ ) + C1N
−s, s =

1

p
− 2,

‖I(F̂ )−QΛF̂h,Λ‖V̂ ≤
∑

ν∈Λ
‖∆Q

ν (F̂ − F̂h,Λ)‖V̂ + C2N
−s, s =

1

p
− 2,

(6.18)

(6.19)

with s, C1, C2 > 0 independent of N , Ndof , of J ∈ N and of y ∈ PJ .
If the sequences (ζi)i≥0 of interpolation / quadrature points are nested, then the addends in

the first sum satisfy, for the interpolation and quadrature case respectively:

‖∆I
ν(F − F̂h,Λ)‖L∞(PJ ,V̂ ) ≤ (1 + LRν

)C(k)

·
∑

yl∈∆I
ν

‖H l(·)‖L∞(PJ )N
−t
dof,l‖û(yl)‖Hk((KR∩D̂1))∪Hk(D̂2)

‖∆Q
ν (F − F̂h,Λ)‖V̂ ≤ C(k)

∑

yl∈∆Q
ν

|wl|N−t
dof,l‖û(yl)‖Hk((KR∩D̂1))∪Hk(D̂2)

,

(6.20)

(6.21)

with C > 0 independent of N , Ndof , of J ∈ N and of y ∈ PJ , and the Lebesgue constant
bounded as in Theorem 6.11.

If F̂ fulfills Assumption 6.14, then t = min(k−1,q)+1
2

for m ≤ 0, t = min(k−1,q)
2

for m = 1,
k ≥ 1.

The proofs for the two theorems are analogous to the proofs of Theorem 6.10 and 6.11,
respectively. The gain of one order of convergence in (6.16) and (6.20) is a standard result of
finite element analysis using a duality argument (see e.g. [6]).

7 Numerical experiments

The geometry is as shown in Figure 1.1 with a nominal, angle-independent radius of size
r0 = 10nm. We consider the transverse electric mode (TE), i.e. the solution u represents the
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component of the electric field which is perpendicular to the plane in which the equations are
solved (plane of incidence); in this case we have µ = 1 in (1.2). The incident wave ui is coming
from the left with an incidence angle 0 with respect to the horizontal axis, and frequency
f = 104THz. The wave number modulus in free space is k0 = 2πf

c0
, with c0 = 3 · 108m/s the

light speed. The scatterer is a dielectric with relative permittivity ε2 = 2 and the surrounding
medium is air (ε1 = 1), so that the wavevectors are k1 = (k0, 0) and k2 = (k0

√
ε2, 0) respectively.

To compute interpolants and means of the quantities of interest, we use the sparse grid
algorithm described in subsection 5.2 (Algorithm 1) with ϑ = 1.

In the numerical experiments, our focus is on the convergence of the Smolyak algorithm
rather than on the finite element convergence. For this reason, instead of the domain mapping
described in subsection 3.2, we use a mapping that is less regular with respect to x̂ ∈ KR, but
easier to implement, namely:

x(y) = Φ(y, x̂) =























0 for x̂ = 0
x̂

r0(ϕ)
r(y, ϕ) for 0 < ‖x̂‖ < r0(ϕ)

R−r(y,ϕ)
R−r0(ϕ)

(

1 + R(r(y,ϕ)−r0(ϕ))
R−r(y,ϕ)

1
‖x̂‖

)

x̂ for r0(ϕ) ≤ ‖x̂‖ < R

x̂ for ‖x̂‖ = R

(7.1)

It can be easily checked that with this map the (b,ρ, ε)∗-assumption is still fulfilled.
For each experiment, we compare two choices for the univariate sequence (ζk)k≥0 of inter-

polation/quadrature points:

• Clenshaw-Curtis (CC):

ζk0 = 0 if nk = 1

ζki = − cos

(

πi

nk − 1

)

, i = 0, . . . , nk − 1, if nk > 1,

with n0 = 1 and nk = 2k + 1, for k ≥ 1;

• R-Leja sequence (RL): projection on [−1, 1] of a Leja sequence for the complex unit disk
initiated at 1:

ζk0 = 0, ζk1 = 1, ζk2 = −1, if i = 0, 1, 2,

ζki = R(ẑ), with ẑ = argmax|ζ|=1

i−1
∏

l=1

|ζ − ζkl |, i = 3, . . . , nk, if i odd,

ζki = −ζki−1, i = 3, . . . , nk, if i even,

with nk = 2k + 1, for k ≥ 0, see [7].

The Clenshaw-Curtis points satisfy Assumption 5.1 with part (a) for the second part, while the
R-Leja points satisfy Assumption 5.1 with part (b) in (ii).

The finite element solutions are computed using the C++ NGSolve library2, providing high
order elements for any shape; NGSolve has been linked to the MKL version of the PARDISO
library to compute the solution of the resulting symmetric positive definite algebraic system.

To truncate the domain and approximate the DtN map, we consider a circular Perfectly
Matched Layer (PML, see [4, 15]) around the boundary ∂KR; for every y ∈ PJ , the mapping
Φ(y) is prolongated as the identity in the PML. In [28] it is shown that, if the fictitious
absorption coefficient in the PML is properly chosen, then the PML can be used in the finite

2http://sourceforge.net/apps/mediawiki/ngsolve
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element framework to truncate the domain for Helmholtz equation in a almost reflectionless
manner for all frequencies. We use a PML that starts at radius R = 100nm and ends at radius
R′ = 150nm, with absorption coefficient (or dumping parameter) α = 0.5 [15].

As quantities of interest, we consider the interpolation and quadrature of the real part of
the solution to (4.2) and of the modulus of the far field pattern (defined below).

7.1 Test cases

7.1.1 Interpolation of the real part of the solution on the nominal configuration

We consider the expansion of the stochastic radius (2.1) for three variations of the sparsity
parameter: sj = cj = 0.01r0

j
1
p
, j ≥ 1, for 1

p
= 2, 3, 4. For each value of p, we compare the cases

2J = 16, 2J = 32 and 2J = 64, with 2J = d the dimension of the parameter space. The
maximal shape variations with respect to r0 are of the order of 2.3% for 1

p
= 2, 1.7% for 1

p
= 3

and 1.5% for 1
p
= 4 (for all the three truncations of the radius expansion).

To compute the finite element solution given a parameter realization, we have used glob-
ally continuous, piecewise 4-th order polynomial ansatz functions on an unstructured, regular
triangulation, leading to a total of 60705 degrees of freedom (including the PML); a 4-th or-
der polynomial boundary approximation is considered, so that the error introduced by the
discretization of the boundaries is of the same order as the error due to the finite element
discretization. The Smolyak interpolation has been applied to the part of the solution that is
not inside the PML, corresponding to an array carrying 37563 degrees of freedom.

As measure of the error we have considered supy∈PJ
‖Re ûh(y)−IΛ(Re ûh)(y)‖H1(KR), where

each realization Re ûh(y) and the interpolated quantity IΛ(Re ûh)(y), y ∈ PJ , have been com-
puted using the same finite element space as described above. To estimate the supremum norm,
we have considered the maximum H1-norm error among 216 realizations of y ∈ PJ correspond-
ing to the quadrature points generated by the high order Quasi Monte-Carlo method described
in [18] using C = 0.1 for the Walsh coefficient bound.

Figure 7.1 shows the forementioned interpolation error versus the cardinality of the index
set Λ and versus the number of PDE solves. In Figure 7.2, instead, we compare, for each
variation of the sparsity parameter, the performance of the algorithm for the three different
dimensions of the parameter space considered. In both cases, we have computed the error every
10 iterations of the Smolyak algorithm, starting from the last one and going backward until the
last iteration with number bigger or equal to 10.

7.1.2 Interpolation of the modulus of the far field pattern

Given a radiating solution us = u − ui to the Helmholtz equation, the far field pattern is a
function defined on the unit sphere S1 describing the asymptotic behavior of us(x) for |x| → ∞.

The far field mapping F : H1
loc(R

2) → C∞(S1) associates to a scattered wave us its far field
pattern; it is given by [32, Formulae (3) and (5)]

F (us)(ξ̂) = CF

∫

Σ

{

us(x)
∂G(ξ̂,x)

∂n(x)
− ∂us
∂n

(x)G(ξ̂,x)

}

dS(x), ξ̂ ∈ S1, (7.2)

where Σ is a simple closed path around the scatterer and n its outward unit normal vector
field. G = G(ξ̂,x) describes the behavior of the Green’s function when the first argument
tends to infinity (we refer to [16, Section 2.2] for details); for a particle in free space, we have

G(ξ̂,x) = 1
4π
e−ik1ξ̂·x (with k1 the wavenumber in free space). CF is a normalizing constant,

that we consider to be CF =
√

2π
k1
ei

π
4 .
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û
h
(y

)
−

I Λ
(R

e
û
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û
h
(y

)
−

I Λ
(R

e
û
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Figure 7.1: Comparison of the errors for the interpolated solution with respect to the cardinality of
the index set Λ (top) and to the number of PDE solves (bottom), using Clenshaw-Curtis and R-Leja
points for 16 (left), 32 (middle) and 64 (right) dimensions. Maximal shape variations with respect to
r0 of about 2.3% for 1

p
= 2, 1.7% for 1

p
= 3 and 1.5% for 1

p
= 4.
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Figure 7.2: Comparison of the errors for the interpolated solution with respect to the cardinality of
the index set Λ (top) and to the number of PDE solves (bottom), using Clenshaw-Curtis and R-Leja
points for variations of the sparsity parameter 1

p
= 2 (left), 3 (middle) and 4 (right). Maximal shape

variations with respect to r0 of about 2.3% for 1
p
= 2, 1.7% for 1

p
= 3 and 1.5% for 1

p
= 4.
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A simple application of Green’s formula shows that the far field pattern is independent of
the path Σ chosen to enclose the scatterer. Thus, we can consider two circles Σ1 and Σ2 around
the particle, with Σ1 contained in Σ2, and the annulus A enclosed between them, and choose a
cut-off function ψ ∈ C2(A) such that

ψ|Σ2 = 1, ψ|Σ1 = 0, ∇ψ|Σ1 = ∇ψ|Σ2 = 0. (7.3)

Applying Green’s formula, it’s easy to see [26] that (7.2) is equivalent to the modified far field
mapping

F ∗(us)(ξ̂) = CF

∫

A

∇ψ(x) ·
(

us(x)∇G(ξ̂,x)−∇us(x)G(ξ̂,x)
)

dx, ξ̂ ∈ S1. (7.4)

The advantage of formula (7.4) with respect to (7.2) is that, for fixed ξ̂ ∈ S1, us 7→ F ∗(us)(ξ̂)
is a linear functional that is continuous on the energy space H1(A).

If we now apply the far field computation to the case when the scatterer has a stochastic
boundary, we can fix an annular integration region Â and a cut-off function ψ̂ on the nominal
domain D̂2, and (7.4) reads:

F̂ ∗(ûs(y))(ξ̂) = CF

∫

Â

DΦ(y)−⊤∇̂ψ̂(x̂) · ûs(x̂)DΦ(y)−⊤∇̂Ĝ(ξ̂, x̂) detDΦ(y) dx̂

−
∫

Â

DΦ−⊤(y)∇̂ψ̂ ·DΦ(y)−⊤∇̂ûs(x̂)Ĝ(ξ̂, x̂) detDΦ(y) dx̂, ξ̂ ∈ S1, (7.5)

where Φ(y) is the mapping from the nominal configuration, as considered in the previous
sections, ûs(y, x̂) = û(y, x̂) − ui(Φ(y, x̂)) and Ĝ(ξ̂, x̂) = G(ξ̂,Φ(y, x̂)). For each ξ̂ ∈ S1, the
functional F̂ ∗(ξ̂) satisfies Assumption 6.13 because Φ and ûs are analytic, and thus Theorems
6.15 and 6.16 hold. Moreover, if ψ̂ ∈ C2(Â) and if Φ fulfills Assumption 3.1 with k ≥ 2,
integration by parts shows that, for fixed ξ̂ ∈ S1, the functional F̂ ∗(ξ̂) fulfills Assumption 6.14
with m = 0; therefore, for each realization y, we can expect the gain in one order for the finite
element convergence as explained in the second part of Theorems 6.15 and 6.16.

In the simulations, for the interpolation of |F̂ ∗(ûs(y))(ξ̂)|, ξ̂ ∈ S1, we consider the first 11
coefficients in its real Fourier expansion with respect to the angle ϕ ∈ [0, 2π).

Again, we compare three variations of the sparsity parameter: sj = cj = 0.1r0

j
1
p
, j ≥ 1, for

1
p
= 2, 3, 4; they correpond to maximal shape variations of 22%, 17% and 15% with respect to

r0, respectively. The annulus Â has been chosen with inner radius 0.02nm and outer radius
0.1nm. For each realization, we have considered a 3-rd order finite element space (with 3-rd
order boundary approximation), carrying in total 403481 degrees of freedom, of which 37414
are located inside the annulus Â.

The results for the 16-dimensional case are shown in Figure 7.3. The error considered
is supy∈PJ

‖f̂h(ûh)(y) − IΛ(f̂h(ûh))(y)‖2, where f̂h denotes the vector of the approximated 11

Fourier coefficients and both f̂h(ûh))(y) and f̂h(ûh))(y) have been computed on the finite element
space described above. The supremum norm has been approximated by the maximum of
the Euclidean-norm error among 216 realizations coinciding with the quadrature points of the
algorithm presented in [18], with again C = 0.1 as Walsh coefficient bound. The error has been
computed every 10 iterations, with the same rule as in the interpolation of the solution.

The computational cost required for the far field interpolation is very high, because, for
each interpolation point, additionally to the full solution, one has also to evaluate formula (7.5)
for many values of the variable ξ̂ (the same number as the Fourier coefficients when using the
real Fast Fourier Transform); hence, this application highlights the importance of developing a
parameter-adaptive strategy to use different finite element resolutions for different interpolation
points.
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CC, 1
p

= 2

RL, 1
p

= 2

CC, 1
p

= 3

RL, 1
p

= 3

CC, 1
p

= 4

RL, 1
p

= 4

102 103
10−7

10−6

10−5

10−4

10−3

−1

−2

−3

♯ PDE solves

su
p
y
∈
P

J
‖f̂

h
(û
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Figure 7.3: Comparison of the errors for the interpolated far field Fourier coefficients with respect to
the cardinality of the index set Λ (left) and the number of PDE solves (right), using Clenshaw-Curtis
and R-Leja points for 16 dimensions. Maximal shape variations with respect to r0 of 22% for 1

p
= 2,

17% for 1
p
= 3 and 15% for 1

p
= 4.

7.1.3 Quadrature of the real part of the solution on the nominal configuration

For these experiments we have considered the quadrature on the nominal space. The setting is
the same as in the interpolation case, that is same scaling of the coefficients (sj = cj =

0.01r0

j
1
p

,

j ≥ 1, for 1
p
= 2, 3, 4) and same finite element space.

The error considered is ‖I(Re ûh)−QΛ(Re ûh)‖H1(KR), and it has been computed for every
iteration. The reference solution used to estimate I(Re ûh) has been computed with the high
order Quasi-Monte Carlo algorithm described in [18] using 218 quadrature points and C = 0.1
as bound on the Walsh coefficient; each realization in the computation of the reference solution
belongs to the same finite element space as the one used for the realizations of the Smolyak
algorithm.

Figure 7.4 shows the quadrature error for different dimensions of the parameter space,
versus the cardinality of the index set Λ and versus the number of PDE solves. Figure 7.5
shows instead, for each variation of the sparsity parameter, the comparison of the performance
of the algorithm for dimension 16, 32 and 64 of the parameter space.

As an example, the estimated mean of the real part of the total field for 1
p
= 3, dimension

16 of the parameter space and Clenshaw-Curtis points is represented in the left plot of Figure
7.7; in this picture, the grey annulus represents the PML.

7.1.4 Quadrature of the modulus of the far field pattern

The setting (coefficient scaling, finite element space) is the same as in the interpolation case.
The results are depicted in Figure 7.6, where the error reported is ‖I(f̂h(ûh)) − QΛ(f̂h(ûh))‖2
(with again f the vector of real Fourier coefficients) and it has been computed for every iteration.
The reference solution has been computed using the algorithm described in [18], using 216
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û
h
)
−
Q

Λ
(R

e
û
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CC, 1
p

= 2

RL, 1
p

= 2

CC, 1
p

= 3

RL, 1
p

= 3

CC, 1
p

= 4

RL, 1
p

= 4

Figure 7.4: Comparison of the errors for the quadrature of the real part of the solution with respect to
the cardinality of the index set Λ (top) and to the number of PDE solves (bottom), using Clenshaw-
Curtis andR-Leja points for 16 (left), 32 (middle) and 64 (right) dimensions. Maximal shape variations
with respect to r0 of about 2.3% for 1

p
= 2, 1.7% for 1

p
= 3 and 1.5% for 1

p
= 4.
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Figure 7.5: Comparison of the errors for the quadrature of the real part of the solution with respect to
the cardinality of the index set Λ (top) and to the number of PDE solves (bottom), using Clenshaw-
Curtis and R-Leja points for variations of the sparsity parameter 1

p
= 2 (left), 3 (middle) and 4 (right).

Maximal shape variations with respect to r0 of about 2.3% for 1
p
= 2, 1.7% for 1

p
= 3 and 1.5% for

1
p
= 4.
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Figure 7.6: Comparison of the errors for the quadrature of the far field Fourier coefficients with respect
to the cardinality of the index set Λ (left) and the number of PDE solves (right), using Clenshaw-
Curtis and R-Leja points for 16 dimensions. Maximal shape variations with respect to r0 of 22% for
1
p
= 2, 17% for 1

p
= 3 and 15% for 1
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= 4.

quadrature points and C = 0.1 for the Walsh coefficient bound.
The left plot in Figure 7.7 represents the modulus of the far field pattern computed from

the estimated mean of the Fourier coefficients, for 1
p
= 2, 3, 4, using Clenshaw-Curtis points; in

the plot, we have denoted by ‘nominal’ the far field pattern that is obtained when the scatterer
has the nominal radius r0. We can see that the mean values for different values of 1

p
and for the

nominal case are nearly coinciding, as one may expect from the fact that the far field functional
is not sensitive to small variations in the shape of the scatterer.

7.2 Comments on the results of the numerical experiments

The results reported in the previous subsection show, in all the cases considered, that the
empirical convergence rate is one order higher than the theoretical one, namely s = 1

p
−1 in place

of s = 1
p
−2. This result is not new for anisotropic sparse interpolation and quadrature, as similar

observations can be found in [37], which addresses Bayesian inversion for elliptic boundary
value problems with unknown diffusion coefficient. Thus, it seems that the nonoptimality of
the theory has not to be found in our application to elliptic interface problems with random
interface, but rather in the general theory for anisotropic sparse interpolation and quadrature.

Our numerical experiments confirm the dimension robustness of our algorithm, since, in
each case, we observe the same rate for all dimensions of the parameter space. Of course, the
error is larger when more dimensions are activated, which is visible, in Figures 7.2 and 7.5, in
the right shift of the error plots when increasing the dimension of the parameter space. This is
expected, since, although the rates are dimension-independent, the constants on the right-hand
sides of (5.11) and (5.12) are dimension-independent upper bounds for the constants. When
using a dimension truncation in the parameter space, then, the actual constants are lower than
their upper bounds, and increase as the number of dimensions activated increases.
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Figure 7.7: Particle in free space, 16 dimensions, Clenshaw-Curtis points: estimated mean of the real
part of the solution when 1

p
= 3 (left) and of the far field modulus for 1

p
= 2, 3, 4 (right).

The plots also show that there is no significant difference in the performance of Clenshaw-
Curtis and R-Leja points, also when considering the convergence with respect to the number
of PDE solves. This is due to the fact that, although in the univariate case the number of
Clenshaw-Curtis points increases exponentially with the order of the quadrature rule while the
number of R-Leja points increases polynomially, when the index set contains indices associated
with low order interpolation/quadrature operators, the number of PDE solves required by the
two families of quadrature points do not differ significantly.

8 Non-analyticity of the mapped solution for interface

problems

Thus far, we have considered, as Q.o.I., the solution û on the nominal configuration. However,
in applications, one is mostly interested in the solution u on physical space.

For interpolation, since the interpolated discrete solution IΛûh = IΛûh(y, x̂) (or IΛûh,Λ =
IΛûh,Λ(y, x̂) for the parameter-adaptive case) still depends on y ∈ PJ , once we consider a
particular realization y ∈ PJ we also know the domain mapping Φ(y) and thus the solution
on physical space. We remark that, since the sparse interpolation operator and the map Φ, in
general, do not commute, the mapped interpolant Φ−∗(IΛûh) (where Φ−∗ denotes the pullback
with respect to Φ−1) is still an approximation to the solution on the mapped domain but is not
its interpolant IΛuh.

For quadrature, instead, the resultQΛûh does not depend on y anymore and thus the domain
mapping is no more available. The first idea that would come to mind would be to consider a
mesh in physical space, fixed for all realizations y ∈ PJ , and, for each realization y requested
by the Smolyak algorithm, map the solution from the nominal coordinates to this grid using
the mapping Φ(y). Then, one could apply the Smolyak quadrature on the mapped solution.
However, from Theorem (6.6), we can see that, for each y ∈ PJ , the solution û(y) is smooth
in each subdomain but not across the interface Γ̂. This destroys the analytic dependence of
u(y,x) = û(y,Φ(y)x̂) on y, and we cannot expect convergence of the Smolyak algorithm.
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Figure 8.1: Solution to (8.1) for αl = 3 and αr = 1.

To better understand this loss of analyticity, we consider the one-dimensional problem:



















− (α(y, x)u′(y, x))
′
= 0 x ∈ (0, 1)

u(0) = 1 u(1) = 0

for every y ∈
[

1

4
,
3

4

]

,

(8.1)

where ′ denotes the derivative with respect to x, and, introducing αl, αr ∈ R+ \ {0}, αl 6= αr:

α(y, x) =

{

αl if x ∈ (0, y)

αr if x ∈ (y, 1)

The location y ∈
[

1
4
, 3
4

]

of the interface is the image of a uniformly distributed random variable
Y ∼ U

(

[1
4
, 3
4
]
)

. The solution is given by

u(y, x) =

{

− αr

αl(1−y)+αry
x+ 1 if x ∈ (0, y)

αl

αl(1−y)+αry
(1− x) if x ∈ (y, 1),

and presents a kink at the interface y. Consequently, the evaluation of the solution at a fixed
point x in the physical space cannot be analytic as function of y if this point is crossed by
the interface. This is evident from Figure 8.1, which shows, for three different points in the
domain, the value of the solution to (8.1) as a function y. In the left and center plots, since the
points x = 0.5 and x = 0.3, respectively, are crossed by the interface, we can see that u(y, x)
is not analytic as a function of y and has a kink when y = x. The right plot correponds to the
value of the solution at the point x = 0.2, never crossed by the interface (y ∈

[

1
4
, 3
4

]

), and thus
u(y, x) is analytic in y.

Still, if we consider a mapping from a nominal configuration where the preimage of the
interface y corresponds to the point 1

2
:

x(y) = Φ(y, x̂) =

{

2yx̂ if 0 ≤ x̂ < 1
2

2(1− y)x̂+ (2y − 1) if x̂ ≥ 1
2
,

then, since in the nominal configuration the location of the interface is fixed, we can directly
see (as we expect from the discussion of subsection 5.3) that the pulledback solution û(y, x̂) :=
u(y,Φ(y)(x̂)) is holomorphic in a complex discs of center 1

2
and radius 1

4
+ ε, ε > 0:

û(y, x̂) =

{

− 2αry

αl(1−y)+αry
x̂+ 1 if x ∈

(

0, 1
2

)

2αl(1−y)
αl(1−y)+αry

(1− x̂) if x ∈
(

1
2
, 1
)

.
(8.2)
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Figure 8.2: Convergence plots for the estimated quadrature error for the value of the real part of the
solution when evaluated in a point in the physical space, d = 16. Left: point evaluations at different
points along the horizontal axis in physical space; right: convergence results considering respectively
only one, 5, 10 or 20 point evaluations at points that in physical space are on the circumference of
radius r0. Maximal shape variation of 34% with respect to r0.

We can conclude that the (b, p, ε)-holomorphy assumption (subsection 5.1) is in general
not fulfilled by the solution on physical space in the case of stochastic interface problems with
discontinuous coefficients. Thus, the convergence of the sparse quadrature (and interpolation)
operator is not ensured by Theorem 5.4 (resp. Theorem 5.3). This statement has also been
confirmed by the numerical results that we present here.

Consider, in the radius expansion, sj = cj = 0.2r0

j
1
3
, j = 1, . . . , 8, correponding to a 16-

dimensional parameter space, and to a shape variation of 34% with respect to r0; all the other
physical and discretization parameters are the same as in subsection 7.1.3. We have run the
sparse quadrature algorithm with Clenshaw-Curtis abscissas for the evaluation of the real part
of the solution in one point in the physical space, which thus corresponds to a different point
in the nominal space for each realization.

The left plot in Figure 8.2 shows the convergence plots considering the point evaluation at
different points along the horizontal axis. We report the value of the numerical error estimator
∑

ν∈N (Λ) |∆I
ν(u(x)h)|, computed by the algorithm at each iteration. The first point is the center

of the scatterer x = (0, 0), which is mapped back to itself by the domain mapping 3.2. Since
this point is never crossed by the interface, this point evaluation is analytic and we observe
convergence of the algorithm. For the same reason, the algorithm converges for the points
x = (0.004, 0) and x = (0.04, 0), which are inside the scatterer and in the far field region,
respectively. The points x = (0.008, 0) and x = (0.012, 0) might be crossed by the interface,
but we still observe convergence. This can be explained by the fact that these two points
are crossed by the interface only for some realizations, but for most of the quadrature points
selected by the algorithm they remain either inside the scatterer (for x = (0.008, 0)), either
outside it (for x = (0.012, 0)); thus, the algorithm still manages to converge in these cases. If
we consider instead the point x = (0.01, 0), which is on the circumference of radius r0 and thus

38



it is always crossed by the interface, we can see that the convergence curve saturates. However,
the curve saturates after an error of 10−5, which may still be acceptable. When we want to
consider the entire solution on physical space, though, we may need more point evaluations
simultaneously. For this reason, we have run a second experiment.

The right plot in Figure 8.2 shows the convergence curves for the quadrature when consid-
ering as quantity of interest only one, 5, 10 or 20 point evaluations for equispaced points in the
physical space that are on the circumference of radius r0. Again, we plot the value of the nu-
merical error estimator

∑

ν∈N (Λ)

∥

∥∆I
ν(u(x)h)

∥

∥

∞ calculated by the algorithm at each iteration.

Here, the quantity u represents an array with one, 5, 10 or 20 entries respectively, and ‖‖∞ the
maximum norm. As we may observe, the higher is the number of point evaluations that we
consider simultaneously, the sooner the error curve saturates; this is expected, because, when
considering more points at the same time, there are more regions in the parameter space where
the smoothness is lost, and it gets harder for the algorithm to build a set of indices giving a
good approximation to the mean for all the point evaluations.

Conclusions

We have presented a methodology for shape uncertainty quantification for the Helmholtz trans-
mission problem, generalizable to any elliptic partial differential equation on a stochastic do-
main. The theory developed and the numerical experiments show that, under some regularity
assumptions on the stochastic interface, it is possible to obtain high order, dimension indepen-
dent convergence rates for the sparse interpolation and quadrature. We have also developed
a regularity theory with respect to the spatial coordinates on the nominal domain, with norm
bounds that are independent of the dimension truncation in the parameter space. An im-
portant observation that needs further investigation is the loss of smoothness with respect to
the high-dimensional parameter when considering evaluations of the solution in the physical
configuration, if the points considered can be crossed by the interface.

A Appendix

A.1 Assumption 2.4.A implies a polynomial decay of the coefficient
sequences

We can reformulate the statement in the following way:

Lemma A.1. Let q = (qj)j≥1 be a real, monotonically decreasing sequence belonging to ℓ1(N).
Then there exists a real constant Cq > 0 (depending on the sequence q) and an integer J ≥ 1

such that

|qj| ≤ Cq

1

j
for every j > J. (A.1)

Proof. We prove this result by contradiction. If the statement were not true, then, for all C > 0
and all Jn ∈ N, n ∈ N, we could find an index jn > Jn such that jn|qjn | > C. Let us choose
C = 1.

We construct our sequence inductively. For n = 1, let J1 := 1; then there exists j1 > J1
such that j1|qj1 | > 1. For n = 2, we can select J2 := 2j1, and by assumption we can find j2 > J2
such that j2|qj2 | > 1. In general, for any n ∈ N, given jn−1 such that jn−1|qjn−1 | > 1, we define
Jn := 2jn−1, and we can find jn > Jn for which jn|qjn | > 1. In this way, we have constructed a
subsequence (qjn)n≥1 of (qj)j≥1.
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Being the sequence (qj)j≥1 monotonically decreasing, it holds that

∞
∑

j=1

|qj| ≥
∞
∑

n=1

(jn − jn−1)
1

jn
,

with the convention that j0 = 0. Since we have jn > Jn = 2jn−1 for every n ∈ N, then

∞
∑

j=1

|qj| ≥
∞
∑

n=1

(

1− jn−1

jn

)

>
∞
∑

n=1

(

1− 1

2

)

=
∞
∑

n=1

1

2
= +∞,

which contradicts the hypothesis that the sequence belongs to ℓ1(N).

From this result, it follows trivially:

Corollary A.2. Let q = (qj)j≥1 be a real, monotonically decreasing sequence belonging to
ℓp(N), 0 < p <∞.

Then there exists a real constant Cq > 0 (depending on the sequence q) and an integer J ≥ 1
such that

|qj| ≤ Cq

1

j
1
p

for every j > J. (A.2)

Lemma A.3. Let q = (qj)j≥1 be a sequence belonging to ℓp(N), 0 < p < 1
2
, and let the sequence

(j|qj|p)j≥1 be monotonically decreasing.
Then the sequence (jqj)j≥1 belongs to ℓr(N) with r = p

1−p
, 0 < r < 1.

Proof. We prove the result by contradiction: we show that if the sequence (jqj)j≥1 does not
belong to ℓr(N) with r = p

1−p
, then the sequence q does not belong to ℓp(N).

If (jqj)j≥1 /∈ ℓr(N), then there exists J ∈ N such that

|jqj|
p

1−p ≥ C

jdj
for all j ≥ J, (A.3)

where C > 0 is a constant independent of j, and (dj)j≥1 is a sequence such that dj > 0 for
every j ≥ 1 and

∑

j≥1
1
jdj

= +∞.

For every j ≥ J , we have

|jqj|
p

1−p ≥ C

jdj
⇔ |qj|

p

1−p ≥ C

j
1

1−pdj
⇔ |qj|p ≥

C ′

jd1−p
j

, (A.4)

with C ′ := C1−p. Thanks to the assumption that the sequence (j|qj|p)j≥1 is monotonically
decreasing, we can choose the sequence (dj)j≥1 to be monotonically increasing.

We now distinguish two cases.
If dj < 1 for every j ∈ N, then C′

jd
1−p
j

> C′

j
for every j ≥ J , and the sequence (|qj|p)j≥1

diverges.
Otherwise, if there exists J ′ ∈ N such that dJ ′ ≥ 1, then, for every j ≥ J ′, dj ≥ 1 and

thus d1−p
j ≤ dj. The latter estimate combined with (A.4) implies that |qj|p ≥ C′

jdj
for every

j ≥ max {J, J ′}, meaning that the sequence (|qj|p)j≥1 diverges.
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A.2 Proof of Proposition 2.5 (Assumption 2.4.B implies Assumption
2.4.A)

If f = f(ϕ) ∈ Ck
per([0, 2π)), then Corollary 3.2.10 in [22] implies that

|f̂2j−1|, |f̂2j| ≤ λ(k)

max

(

‖f‖L1
per([0,2π))

,
∥

∥

∥

dkf

dϕk

∥

∥

∥

C0
per([0,2π))

)

(1 + j)k
, j ≥ 1,

with λ = λ(k) a constant depending only on k but not on j and f . The Fourier coefficients of
the radius are given by |cjY2j−1(ω)| ≤ |cj| (resp. |sjY2j(ω)| ≤ |sj|), j ≥ 1, with the equality
when Y2j−1(ω) = ±1 (resp. Y2j(ω) = ±1). Then, for every j ≥ 1,

|cj| ≤ λ(k)

max

(

‖r‖L1
per([0,2π))

,
∥

∥

∥

dkr

dϕk

∥

∥

∥

C0
per([0,2π))

)

(1 + j)k
,

and similarly for |sj|, j ≥ 1.

This proves (2.2) with C(k) := λ(k)max

(

‖r‖L1
per([0,2π))

,
∥

∥

∥

dkr

dϕk

∥

∥

∥

C0
per([0,2π))

)

, which is not

infinite thanks to the uniform bound required by Assumption 2.4.B.
Since the constant C(k) is independent of j, j ≥ 1, the coefficients sequences C = (cj)j≥1

and S = (sj)j≥1 are in ℓp(N) for every p such that kp > 1, i.e. p > 1
k
.

A.3 Case of not identically distributed random variables

In Remark 2.7, we have mentioned that the hypothesis that all random variables are identically
distributed can be relaxed with not too much effort. Indeed, if {Yj}2Jj=1, J ∈ N, are still
independent but not identically distributed as uniform random variables, the joint probabily
distribution µ can still be factorized as µ :=

⊗2J
j=1 µj; then, denoting by g = g(y), y ∈ PJ , the

quantity of interest, if each univariate probability distribution has still compact image, one can
apply the forthcoming analysis and algorithms to g(y)µ(y) in place of g(y), y ∈ PJ .

A.4 Proof of Theorem 4.3 (existence and uniqueness of the solution
to the model problem)

Let y ∈ PJ , J ∈ N be fixed.
We denote

apy(u, v) :=

∫

KR

α(y,x)∇u(y) · ∇v dx−
∫

∂KR

DtN(u(y))v dS.

If we show that the bilinear form apy(u, v) is coercive, then the associated operator Ap
y

defined as (Ap
yu, v) := apy(u, v) is Fredholm [31, Lemma 2.32].

The operator By : H1(KR) → H−1(KR) associated to
∫

KR
k2(y,x)u(y)v dx is given by

By = k2(y,x)I, with I : H1(KR) → H−1(KR) the identity operator. Since KR is bounded,
I : H1(KR) → H−1(KR) and thus By are compact thanks to Rellich’s embedding theorem [31,
Theorem 3.27].

Therefore, if apy(u, v) is coercive, then the operator Ap
y +By is Fredholm [31, Theorem 2.33]

and we can apply the Fredholm Alternative [31, Theorem 2.27] to get existence of the solution
and uniqueness if the associated homogeneous problem
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ay(u(y), v) = 0 for all v ∈ V (A.5)

admits only the trivial solution.

For the coercivity of apy(·, ·) it holds that, for every w ∈ H1(KR):

Re apy(w,w) ≥ min {1, µ} |w|2H1(KR) − Re〈DtNw,w〉L2(∂KR)

≥ min {1, µ} |w|2H1(KR) + ‖w‖2L2(∂KR)

≥ min {1, µ} C(R)

C(R) + 1
‖w‖2H1(KR) .

The first inequality is obtained exploiting the sign conditions of the DtN map [34, Theorem
2.6.4], the second one is a Poincaré-Friedrichs-type inequality

|w|2H1(KR) + ‖w‖2L2(∂KR) ≥ C(R) ‖w‖2L2(KR) for every w ∈ H1(KR), (A.6)

where the constant C > 0 depends on the radius R of KR. This latter inequality can be proven
in the same way as the classical Poincaré-Friedrichs inequality. Thus, the Fredholm Alternative
holds and we have existence of the solution.

For uniqueness, let us consider the homogeneous problem (A.5). It is sufficient to show that

ay(u, u) = 0 ⇐⇒ u ≡ 0.

If ay(u, u) = 0, it means in particular that

Im ay(u, u) = Im

∫

∂KR

DtN(u(y))u dS = 0.

For the sign properties of the DtN map [34, Theorems 2.6.1 and 2.6.4]

Im〈DtNu, u〉L2(∂KR) = 0 ⇐⇒ u ≡ 0 on ∂KR,

while the linearity of the DtN map implies that also
∂u

∂nR

= 0 on ∂KR and thus u ≡ 0 for

|x| ≥ R.
Consider now a ball Br with center on ∂KR and radius r < dist(∂KR, D2). In Br the

solution u satisfies the homogeneous equation −∆u − k2(y,x)u = 0 and thus u|Br
∈ H2(Br);

also, from the previous considerations we know that there exists a ball Br′ ⊂ Br \ KR, with
r′ < r, such that u|Br′

≡ 0. Then, the unique continuation principle [16, Theorem 8.6] implies
that u = 0 in the whole Br. Iterating this argument and using the compactness of KR, we
obtain that u ≡ 0 in KR.

Then, the solution to (4.2) exists and is unique thanks to the bijectivity of the maps Φ(y),
y ∈ PJ (and Definition 4.2).

A.5 Proof of Lemma 4.5 (y-uniform stability bound)

Coercivity of the bilinear form with coercivity constant independent of J ∈ N and y ∈ PJ :
Thanks to Assumption 3.1, we have that there exist σmin, σmax > 0 such that, for every

J ∈ N and every y ∈ PJ :

σ2
min‖ξ‖2C2 ≤ ‖DΦ−⊤(y, x̂)ξ‖2C2

1

σ2
max

≤ det DΦ(y, x̂) ≤ 1

σ2
min

(A.7)

(A.8)
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for every ξ ∈ C2, x̂ ∈ KR. Then, for every J ∈ N, y ∈ PJ and every ŵ ∈ H1(KR), we have:

Re ây(ŵ, ŵ) ≥ min {1, µ} |DΦ−⊤(y)∇̂ŵ(det DΦ(y))
1
2 |2H1(KR)

−max
{

k21, µk
2
2

}

∥

∥

∥
ŵ(det DΦ(y))

1
2

∥

∥

∥

2

L2(KR)
− Re〈DtN(ŵ), ŵ〉L2(∂KR)

≥ min {1, µ} σ
2
min

σ2
max

|ŵ|2H1(KR) −max
{

k21, µk
2
2

} 1

σ2
min

‖ŵ‖2L2(KR) + ‖ŵ‖2L2(∂KR)

≥
(

min {1, µ} σ
2
min

σ2
max

−max {1, µ} τ

σ2
min

)

|ŵ|2H1(KR) +

(

1−max {1, µ} τ

σ2
min

)

‖ŵ‖2L2(∂KR) .

In the second inequality we have used equations (A.7)-(A.8) and the sign conditions of the DtN
map [34, Theorem 2.6.4].

Now, if we choose τ in Assumption 4.4 such that τ < T :=
σ4
min min{1,µ}

σ2
max max{1,µ} , we have that

C1 := min {1, µ} σ
2
min

σ2
max

−max {1, µ} τ

σ2
min

> 0, C2 := 1−max {1, µ} τ

σ2
min

> 0.

Using a Poincaré-Friedrichs-type inequality on KR as in (A.6), we finally obtain

Re ây(ŵ, ŵ) ≥ min {C1, C2}
C(R)

C(R) + 1
‖ŵ‖2H1(KR) ,

for every J ∈ N, every y ∈ PJ and every ŵ ∈ H1(KR); this means that the bilinear form

ây(·, ·) is coercive with coercivity constant γ = min {C1, C2} C(R)
C(R)+1

independent of J ∈ N and
of y ∈ PJ .

J- and y-uniform stability bound:
The right-hand side in (4.2) is continous with respect to the H1-norm:

∣

∣

∣

∣

∫

∂KR

(

−DtN(ui) +
∂ui
∂nR

)

v dS

∣

∣

∣

∣

≤
(

‖DtN(ui)‖
H−

1
2 (∂KR)

+

∥

∥

∥

∥

∂ui
∂nR

∥

∥

∥

∥

H−
1
2 (∂KR)

)

‖v‖L2(∂KR)

≤
(

‖DtN(ui)‖
H−

1
2 (∂KR)

+

∥

∥

∥

∥

∂ui
∂nR

∥

∥

∥

∥

H−
1
2 (∂KR)

)

‖v‖H1(KR)

≤
(

C̃(R) ‖ui‖
H

1
2 (∂KR)

+

∥

∥

∥

∥

∂ui
∂nR

∥

∥

∥

∥

H−
1
2 (∂KR)

)

‖v‖H1(KR) ,

where we used the continuity of the DtN operator [34, Theorem 2.6.4]. We highlight that the
constant C̃ depends only on the radius R.

Together with the coercivity of the bilinear form, this allows to apply Lax-Milgram’s lemma
and obtain (4.6) with B1 :=

C̃
γ
and B2 :=

1
γ
.

A.6 Proof of Lemma 5.10 (Φ in (3.2) fulfills Assumption 5.9 (ii) )

From (2.5), we have that:

r(z, ϕ) = r(y, ϕ) +
J
∑

j=1

cj(z2j−1 − y2j−1) cos(jϕ) + sj(z2j − y2j) sin(jϕ).

Since z ∈ Oρ, for every J ∈ N there exists y ∈ PJ such that |zl−yl| < ρl−1 for every 1 ≤ l ≤ J ;
moreover, being ρ (b, ε)∗-admissible, it is in particular (b, ε)-admissible, which, together with
(5.17), implies that

|r(z, ϕ)| ≤ r+ + ε for every ϕ ∈ [0, 2π);
43



analogously, taking into account that 0 < ε < r−

2
, we get

|r(z, ϕ)| ≥ Re r(z, ϕ) ≥ r− − ε ≥ r−

2
for every ϕ ∈ [0, 2π). (A.9)

Finally, using (5.18) and (5.14), for every J ∈ N and y ∈ PJ such that |zl − yl| < ρl − 1 for
every 1 ≤ l ≤ J :

∣

∣

∣

∂r

∂ϕ
(z, ϕ)

∣

∣

∣
=
∣

∣

∣

∂r

∂ϕ
(y, ϕ) +

J
∑

j=1

cjj(z2j−1 − y2j−1) cos(jϕ) + sjj(z2j − y2j) sin(jϕ)
∣

∣

∣

≤
∥

∥

∥

∂r

∂ϕ
(y)
∥

∥

∥

C0
per([0,2π))

+ ε

≤
∥

∥

∥

∂r0
∂ϕ

∥

∥

∥

C0
per([0,2π))

+ Cr + ε for every ϕ ∈ [0, 2π).

We remark that all the bounds are independent of the truncation dimension J ∈ N.
Proceeding as in the proof to show that Φ = Φ(y) given by (3.2), y ∈ PJ , fulfills Assumption

3.1 (see subsection A.8 in this appendix), it is easy to see that the bounds proved in this lemma
guarantee that this map fulfills Assumption 5.9 for z ∈ Oρ.

A.7 Proof of Lemma 6.1 (regularity of the radius)

From (2.5), computing the k-th derivative and considering that maxϕ∈[0,2π) | sin(jπϕ)| =
= maxϕ∈[0,2π) | cos(jπϕ)| = 1, j ≥ 1, we obtain an upper bound for the Ck

per([0, 2π))-seminorm
of the radius:

|r(y)|Ck
per([0,2π))

= max
ϕ∈[0,2π)

∣

∣

∣

dkr(y, ϕ)

dϕk

∣

∣

∣
≤ |r0|Ck

per([0,2π))
+

J
∑

j=1

jk (|y2jcj|+ |y2j+1sj|) ≤

≤ |r0|Ck
per([0,2π))

+
∞
∑

j=1

jk (|cj|+ |sj|) , (A.10)

for every y ∈ PJ . If (cj)j≥1 ∈ ℓp(N) and it has a monotone majorant, then, thanks to Corollary
A.2, there exists an integer J ≥ 1 such that

|cj| .
1

j
1
p

and thus jk|cl| .
1

j
1
p
−k

for all j > J

(where . denotes inequality up to a constant that may depend on the sequence); the same
holds for the coefficients (sj)j≥1. Then, the sum in (A.10) converges for every k such that

1

p
− k > 1,

that is if we choose k as in (6.2). We remark that the bound that we obtain for (A.10) is
independent of the truncation dimension J ∈ N and of y ∈ PJ .

A.8 Proof of Lemma 6.2 (regularity of the domain mapping for the
particle in free space)

Fulfillment of Assumption 3.1(i)
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We have to prove that Φ(y) is a Ck-orientation preserving diffeomorphism in each subdomain,
with k the smoothness of the stochastic radius r and a J- and y-independent norm bound.

In the regions where χ = 0, then the mapping Φ given by (3.2) corresponds to the identity,
and thus it is bijective. Where not zero, χ is monotone in each subdomain, and thus Φ is
bijective everywhere in KR.

We present here the computations for the smoothness of Φ in D̂2, the argument for the
smoothness in KR ∩ D̂1 being analogous. More precisely, we consider the mapping in the

region D̂2,χ :=
{

x̂ ∈ D̂2 :
r−0
4
≤ ‖x‖ ≤ r0(ϕ)

}

. Indeed, Assumption 3.1(i) is trivially satisfied

for ‖x̂‖ ≤ r−0
4
, and the smoothness assumption on χ guarantees that the mapping is smooth

across the circle of radius
r−0
4
. For the continuity of the inverse and its derivatives across the

circle of radius
r−0
4
, let us consider an annulus together with its boundary, enclosing the circle of

radius
r−0
4

in its interior. Since the map Φ and, as we will show, its derivatives, are continous in
the annulus with boundary, which is a compact subset of R2, then also Φ−1 and its derivatives
are.

For the continuity of Φ and its inverse, using Assumption 2.3, we have the J- and y-
independent bounds:

‖Φ(y)‖C0(D̂2,χ)
≤ max

x̂∈D̂2,χ

‖x̂‖+ max
x̂∈D̂2,χ

‖χ(x̂)‖ max
x̂∈D̂2,χ

|r(y, ϕ̂)− r0(ϕ̂)| = r+0 +
r−0
2
,

‖Φ−1(y)‖C0(D2,χ(y)) = max
x∈D2,χ(y)

‖Φ−1(y,x)‖ = max
x̂∈D̂2,χ

‖Φ−1 (y,Φ(y, x̂))‖ = max
x̂∈D̂2,χ

‖x̂‖ = r+0 ,

where we have denoted D2,χ(y) := Φ(y)(D̂2,χ) and r
+
0 := supϕ∈[0,2π) r0(ϕ).

For ease of computations of the derivatives, since the mapping from cartesian to polar
coordinates is a C∞-diffeomorphism away from the origin, we work with the mapping Φ in
polar coordinates. Namely, we consider:

Φ̃(y)(ρ̂, ϕ̂) =

(

ρ
ϕ

)

=

(

ρ̂+ χ̃(ρ̂, ϕ̂)(r(y, ϕ̂)− r0(ϕ̂))
ϕ̂

)

for
r−0
4

≤ ρ̂ ≤ r0(ϕ̂) and ϕ̂ ∈ [0, 2π),

(A.11)

where, denoting by Φp the mapping from cartesian to polar coordinates, (ρ̂, ϕ̂) = Φp(x̂), (ρ, ϕ) =
Φp(x) and χ̃ := χ ◦ Φ−1

p .

The Jacobian matrices of Φ̃ and Φ̃−1 are given by:

DΦ̃(y) =





1 +
∂χ̃

∂ρ̂
(r(y, ϕ̂)− r0(ϕ̂))

∂χ̃

∂ϕ̂
(r(y, ϕ̂)− r0(ϕ̂)) + χ̃

∂

∂ϕ̂
(r(y, ϕ̂)− r0(ϕ̂))

0 1





DΦ̃−1(y) = (DΦ̃)−1 ◦ Φ̃−1(y) =
1

detDΦ̃(y)







1 −∂χ̃
∂ϕ̂

(r(y, ϕ̂)− r0(ϕ̂))− χ̃
∂

∂ϕ̂
(r(y, ϕ̂)− r0(ϕ̂))

0 1 +
∂χ̃

∂ρ̂
(r(y, ϕ̂)− r0(ϕ̂)).







Using Assumption 3.2 on χ and Assumption 2.3 on the coefficients on the radius expansion, we
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can bound each entry of DΦ̃(y):
∣

∣

∣

∣

1 +
∂χ̃

∂ρ̂
(r(y, ϕ̂)− r0(ϕ̂))

∣

∣

∣

∣

≤ 1 +

∣

∣

∣

∣

∂χ̃

∂ρ̂

∣

∣

∣

∣

r−0
2

≤ 1 +
√
2‖χ‖C1(D̂2,χ)

r−0
2

≤ 2

∣

∣

∣

∣

∂χ̃

∂ϕ̂
(r(y, ϕ̂)− r0(ϕ̂)) + χ̃

∂

∂ϕ̂
(r(y, ϕ̂)− r0(ϕ̂))

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂χ̃

∂ϕ̂

∣

∣

∣

∣

|r(y, ϕ̂)− r0(ϕ̂)|+ |χ|
∞
∑

j=1

j (|cj|+ |sj|)

≤ ‖χ‖C1(D̂2,χ)

(√
2r+0

r−0
2

+ Cr

)

,

with Cr =
∑∞

j=1 j (|cj|+ |sj|) <∞.

The above estimates show that we have a J- and y-independent bound on the C1-norm of
Φ.

It is clear from the expression of DΦ̃−1 that, if we provide also a J- and y-independent
(positive) lower bound on detDΦ̃(y), then we also have a J- and y-independent upper bound
on the C1-norm of Φ−1. It holds:

detDΦ̃(y) ≥ 1− |r(y, ϕ̂)− r0(ϕ̂)|
∣

∣

∣

∣

∂χ̃

∂ρ̂

∣

∣

∣

∣

≥ 1− r−0
2

√
2‖χ‖C1(D̂2,χ)

≥ 1− r−0
2

√
2Cχ > 0,

where we have used the bound on ‖χ‖C1(D̂2,χ)
provided by Assumption 3.2.

For the higher order derivatives of Φ, it is clear from (3.2) that this map is as many times
differentiable as χ(·), r(y, ·) and r0(·) are. The mollifier χ and the nominal radius r0 are
assumed to be smooth and they do not depend on y ∈ PJ . Thus, the J- and y-uniform
bound on the C0(D̂2,χ)-norm of the derivatives is ensured by the J- and y-uniform bound on
‖r(y, ·)‖Ck

per([0,2π))
, with k the highest differentiability order of the radius.

Concerning the higher order derivatives of Φ−1, they are obtained from chain rule on the
entries of DΦ−1 = (DΦ)−1 ◦ Φ−1. More precisely, a m-th order derivative is given by the sum
and product of powers of entries of (DΦ(y))−1 times the product of derivatives of Φ(y) up to the
m-th order. Since we have already stated the J- and y- uniform upper bound on the derivatives
of Φ(y) and on the entries of (DΦ(y))−1, then we can conclude that Φ is a Ck-diffeomorphism,
with k the smoothness of the radius r(y, ϕ̂) and J- and y-independent norm bounds.

Fulfillment of Assumption 3.1(ii)

It is clear from (3.2) that this assumption is satisfied.

Fulfillment of Assumption 3.1(iii)

Also in this case, we restrict our computations to the domain D̂2,χ, being the case trivial for

‖x̂‖ ≤ r−0
4

and analogous for ‖x̂‖ ≥ r0(ϕ̂).
Again, it is convenient to work in polar coordinates. We use the notation σ̃1 and σ̃2 for

minimum and maximum singular values of DΦ̃, respectively.
It holds that σ̃2(y) = ‖DΦ̃(y)‖2 ≤ ‖DΦ̃(y)‖F , where ‖·‖F denotes the Frobenius norm.

Since from the previous computations we have a J- and y-uniform upper bound on the C0(D̂2,χ)-

norm of each entry of DΦ̃, then there exists a J- and y-uniform upper bound on the C0(D̂2,χ)-
norm of σ̃1 and σ̃2, too.

Furthermore,

σ̃1(y) =
det(DΦ̃⊤(y)DΦ̃(y))

σ̃2(y)
=

(

detDΦ̃(y)
)2

σ̃2(y)
.

Coupling the J- and y-uniform upper bound on σ̃2 with the J- and y-uniform lower positive
bound on detDΦ̃(y) from the previous paragraph, we obtain a J- and y-uniform lower bound
on the C0(D̂2,χ)-norm of σ̃1.
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Finally, since the mapping from cartesian to polar coordinates is a C∞-diffeomorphism
away from the origin, we can state that there exist J- and y-uniform, upper and lower, positive
bounds on the C0(D̂2,χ)-norm of the singular values of DΦ and DΦ−1.
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