
Quantized tensor-structured finite elements

for second-order elliptic PDEs in two

dimensions

V. Kazeev and Ch. Schwab

Research Report No. 2015-24
August 2015

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________

Funding ERC: AdG247277



Quantized tensor-structured finite

elements for second-order elliptic PDEs

in two dimensions∗

Vladimir Kazeev† Christoph Schwab†

August 21, 2015

Abstract

We analyze the approximation of the solutions of second-order elliptic prob-
lems, which have point singularities but belong to a countably normed space of 
analytic functions, with a first-order, h-version finite element (FE) method based 
on uniform tensor-product meshes. The FE solutions are well known to converge 
with algebraic rate at most 1/2 in terms of the number of degrees of freedom, 
and even slower in the presence of singularities. We analyze the compression 
of the FE coefficient vectors represented in the so-called quantized tensor train 
format. We prove, in a reference square, that the resulting FE approximations 
converge exponentially in terms of the effective number N of degrees of freedom 
involved in the representation: N = O(log5 ε−1), where ε ∈ (0, 1) is the accuracy 
measured in the energy norm.

Numerically we show for solutions from the same class that the entire pro-
cess of solving the tensor-structured Galerkin first-order FE discretization can
achieve accuracy ε in the energy norm with N = O(logκ ε−1) parameters, where
κ < 3.

Keywords: singular solution, analytic regularity, finite-element method, tensor
decomposition, low rank, tensor rank, multilinear algebra, tensor train .

AMS Subject Classification (2000): 15A69, 35C99, 35J25, 65N12, 65N30,
65N35.

∗During the preparation of this work, CS was supported in part by the European Research Council
through the FP7 Advanced Grant AdG247277.

†Seminar für Angewandte Mathematik, ETH Zürich. Rämistrasse 101, 8092 Zurich, Switzerland.
{vladimir.kazeev,christoph.schwab}@sam.math.ethz.ch.

1



1 Introduction

Linear second-order elliptic boundary-value problems with analytic data admit solu-
tions analytic up to the singular support of the data and to the geometric singularities
on the boundary or interfaces. Classical Lagrangian finite-element (FE for short) dis-
cretizations, based on uniformly refined meshes, can exploit only finite regularity of
the solution. They thus realize asymptotic convergence rates that are at best alge-
braic, when measured in terms of a discretization parameter, such as the mesh width.
In two dimensions, continuous piecewise-bilinear FE approximations converge, with
respect to the number of degrees of freedom representing the approximations, with
the rate 1/2 at best. Adaptivity does not essentially improve the situation: adaptive
mesh refinement can compensate for a local loss of regularity (e.g. due to corner
singularities) but the maximal convergence rate achieved by adaptivity is still limited
by the approximation order of the underlying FE method.

For singular solutions, the exponential convergence afforded by analytic regularity
is realized by the so-called hp-FE method, as was proved in the 1980s in a series
of papers, see [6] and references therein. The key ingredients in the analysis were a
geometric mesh refinement towards the singularities of the solution (such as vertices
of a polygonal domain Ω) and the use of high approximation order on large elements
away from the singularities.

The idea of combining a tensor-structured representation with a low-order tensor-
product discretization has been exploited computationally in a number of papers. A
comprehensive overview is given in [28]; we provide further references in section 2. The
reference most relevant to the present paper is [52, section 6.2.1], where the solution of
a linear system corresponding to a boundary-value problem for the Poisson equation
in (−1, 1)3r [0, 1)3 (partitioned into 7 cubic patches) is considered as a numerical
example. In [52], the authors show that a tensor-structured solver of the discrete
problem outperforms an algebraic multigrid method in solving the linear system. The
algebraic treatment of that example in [52], however, bypasses the singular nature of
the solution and the question of how well the FE space used to obtain the linear
system approximates the solution.

In the present paper, we consider countably normed classes C2
β(Q) ⊂ H1(Q) with

β ∈ [0, 1). They consist of functions defined on the reference square Q = (0, 1)2 that
are analytic in its closure clQ except the origin, where the functions may exhibit
algebraic singularities. Those countably-normed analyticity classes were introduced
in [7, 5] following the regularity analysis of the solutions of linear elliptic boundary-
value problems in weighted Sobolev spaces; see, e.g. [42, 43, 49, 9, 4, 44]. By the reg-
ularity and analyticity results of the aforementioned papers, the solutions of a broad,
practically relevant class of boundary-value problems, namely for linear second-order
elliptic operators with analytic coefficients in straight and curvilinear polygons, be-
long to C2

Θ,β(Ω) respectively, where Ω is, generally, a curvilinear polygon partitioned
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into quadrilaterals mapped analytically to Q and Θ and β denote tuples of corners
and singularity orders.

The purpose of the present paper is to establish, for the functions from C2
β(Q),

the exponential convergence of tensor-structured approximations, which combine a
naive quasi-uniform discretization with tensor decompositions. Namely, we consider
QTT-FE approximations, by which we mean continuous Lagrangian FE approxima-
tions whose coefficient vectors are compressed in the quantized-tensor-train (QTT)
format [56, 55, 54].

Instead of the function values at the nodes, which are associated to “hat func-
tions”, the degrees of freedom of QTT-FE approximations are the parameters of the
corresponding QTT representations. We prove that, with respect to the number of
such degrees of freedom, QTT-FE approximations of singular functions from the an-
alyticity classes C2

β(Q), β ∈ [0, 1), do converge exponentially. This mathematical
result paves the way for exponentially-convergent low-order FE approximations in el-
liptic boundary-value problems with analytic or, more generally, piecewise-analytic
coefficients.

In the QTT-FEM, the method of solving such problems using QTT-FE approx-
imations, the uniform mesh underlying the construction of the low-order FE space,
whose refinement to high accuracies is computationally prohibitive, becomes virtual.
Indeed, the entire mesh may never be explicitly accessed by a QTT-FEM solver.

We start with discussing, briefly, tensor decompositions and, in more detail, the
tensor-train and quantized-tensor-train decompositions in section 2. We revisit the
basic properties of these tensor formats, which make them suitable for the tensor-
structured solution of PDEs.

In section 3, we give definitions of a curvilinear polygon Ω and of weighted Sobolev
spaces and countably normed analyticity classes B2

β(Ω) and C2
β(Ω). By the analyticity

shift result of [6, Theorem 3.1], the solutions of boundary-value problems in Ω for
linear second-order elliptic operators with analytic, consistent data belong to B2

β(Ω)
with appropriate orders β ∈ [0, 1). In section 3.4, we consider a model boundary-value
problem of that type.

In section 4, we define, in d dimensions, uniform tensor-product partitions and the
corresponding FE spaces for functions with n components defined on Q = [0, 1]d. The
components shall represent restrictions of functions defined in a domain of complex
geometry to patches that are mapped to Q, similarly as it is done in composite-
wavelet [22, 62, 35, 61, 20, 21] and composite-spectral [17, 18, 19, 63] methods. In
section 4.3, we define the QTT-FE format for such multi-component functions.

In section 5, we return to the case of d = 2 dimensions and analyze an h-FE
approximation based on hp approximation as auxiliary. We introduce hp spaces,
prove the approximation and stability properties of corresponding projections and,
finally, show the low-rank QTT-FE structure of the resulting approximations.
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In section 6, we demonstrate the QTT-FE approximation in Q numerically and
apply the QTT-FE method to solve a model problem in an L-shaped domain and in
a domain with a cut.

Section 7 presents concluding remarks and the Appendix contains auxiliary results
used in the paper.

2 Tensor Decompositions. TT and QTT Formats

2.1 Tensor-train (TT) representation

By tensors we mean multidimensional arrays, vectors and matrices being notable
examples. A cornerstone of the present paper is the tensor-train (TT for short)
decomposition, a non-linear low-parametric representation of multidimensional arrays
based on the separation of variables, developed by Oseledets and Tyrtyshnikov [56, 55].

Let us consider a d-dimensional n1×. . .×nd-vector u. If two- and three-dimensional
arrays U1, U2, . . . , Ud satisfy the equation

ui1,...,id =

r1∑

α1=1

. . .

rd−1∑

αd−1=1

U1(i1, α1)

· U2(α1, i2, α2) · · ·Ud−1(αd−2, id−1, αd−1) · Ud(αd−1, id) (2.1)

for ik = 0, . . . , nk − 1 with k = 1, . . . , d, then u is said to be represented in the
TT decomposition in terms of the core tensors U1, U2, . . . , Ud. The summation in-
dices α1, . . . , αd−1 and limits r1, . . . , rd−1 on the right-hand side of (2.1) are called,
respectively, rank indices and ranks of the representation.

A tensor-train decomposition with d cores, exact or approximate, can be con-
structed via the low-rank representation of each of d− 1 matrices; for example, using
the SVD. In particular, for every k = 1, . . . , d − 1 the representation (2.1) implies a
rank-rk factorization of an unfolding matrix Uk with the entries

Uk
i1,...,ik, ik+1,...,id

= ui1,...,ik,ik+1,...,id . (2.2)

Here, the overscore denotes the unfolding of a multi-index into a long scalar index:

i1, . . . , ik =

k∑

κ=1

iκ

k∏

k′=κ+1

nk′ (2.3)

for the row index, and similarly for the column index, so that Uk is a usual matrix
with two “long” indices.
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Remark 2.1. Conversely, if a vector u is such that the unfolding matrices U1,
U2, . . . ,Ud−1 given by (2.2) are of ranks r1, . . . , rd−1 respectively, then the cores
U1, . . . , Ud satisfying (2.1) do exist; see [55, theorem 2.1].

Further, the TT format admits an efficient approximation algorithm, which is
quasi-optimal with respect to the ℓ2 norm. Specifically, if the unfolding matrices can
be approximated with ranks r1, . . . , rd−1 and accuracies ε1, . . . , εd−1 in the Frobe-
nius norm, then the vector itself can be approximated in the TT format with ranks
r1, . . . , rd−1 and accuracy ε in the ℓ2, where ε2 ≤ ε21+ · · ·+ ε2d−1. This opens the pos-
sibility of efficient, ℓ2-stable low-rank TT-structured approximation of vectors given
in the full format or in the TT format with larger ranks. For details, we refer the
reader to theorem 2.2 with corollaries and algorithms 1 and 2 in [55].

So far, there has been mostly experimental evidence that many applications admit
approximations in the TT or related formats with moderate ranks, e.g. O(d) or
O(logθ n) with a small θ ≥ 1 and n = max{n1, . . . , nd}. This property is crucial for
the applicability of tensor-structured methods; we refer the reader to the papers [37,
58, 13, 46, 23, 41, 52, 24, 38, 39, 45], to the literature survey [28] and more recent
works [10, 12, 1].

2.2 Quantized-tensor-train (QTT) representation

2.2.1 Quantization of a dimension.

The quantization of a dimension of a given tensor consists in folding it into a few
modes representing different levels, or scales, of the former.

For the present paper, we assume that nk = 2lk with lk ∈ N. Then the index ik
running from 0 to nk − 1 can be equivalently represented in the binary form, i.e. by
l indices ik1, . . . , ikl taking values in {0, 1}:

(ik1, . . . , ikl) ↔ ik = ik1, . . . , ikl =

l∑

q=1

2l−q ikq. (2.4)

Here, ik1 and ikl are the major and minor indices representing the coarsest and finest
scales along the kth dimension. The value of ik1 selects between the “left” and “right”
halves of {0, 1, . . . , 2l − 1}, and the value of ikl, between odd and even elements of
the same index set. Here, the overscore denotes such vectorizations of multi-indices,
in which the scale of the indices refines from left to right.

We refer to original dimensions and indices representing them as “physical”, in
contrast to the “virtual” dimensions produced by quantization. Transformations of
this type are quite common: matrices are unfolded from representations with linear
indexing, arrays are reshaped in MATLAB, and the positional notation for numerals
relies on a bijection similar to (2.4). By quantizing every dimension, one recasts a
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d-dimensional 2l × · · · × 2l-vector indexed by i1 = i11, . . . , i1l, . . . , id = id1, . . . , idl as
a dl-dimensional 2× · · · · · · × 2-vector indexed by i11, . . . , i1l, . . . . . ., id1, . . . , idl.

2.2.2 Ordering the indices. QTT representation

The idea of applying low-rank tensor decompositions to separate the “virtual” dimen-
sions produced by what we call now quantization appeared in [64] in the context of the
canonical polyadic decomposition of tensors. It has since been widely used with the
tensor-train (TT) decomposition, which separates indices in a given ordering. Since
the “virtual” indices can be grouped and ordered in many ways, quantization offers
additional freedom in selecting the type of low-rank structure under consideration by
arranging the indices in a particular way.

By applying the TT format to quantized vectors with the natural ordering of the
“virtual” indices,

i11, . . . , i1l
︸ ︷︷ ︸

1st dimension

, . . . . . . , id1, . . . , idl
︸ ︷︷ ︸

dth dimension

, (2.5)

one arrives at what is usually meant by the quantized tensor-train (QTT) format [50,
40, 54]. Then a QTT decomposition of a vector involves dl QTT cores and dl − 1
QTT ranks.

In the present paper, we use the transposed indexing : we merge the indices within
each level to obtain

i11, . . . , id1
︸ ︷︷ ︸

1st level

, i12, . . . , id2
︸ ︷︷ ︸

2nd level

, . . . . . . , i1l, . . . , idl
︸ ︷︷ ︸

lth level

. (2.6)

When d = 2, this indexing coincides with the indexing used by the standard QTT
format for matrices, whose row and column dimensions correspond to the two spatial
dimensions in our case, see [54, (1.3) and section 4.2].

For vectors, the transposition used in (2.6) was first suggested by Oseledets1,
who applied the TT format to separate all the dl virtual indices without merging
them. In (2.6), the “virtual” indices corresponding to the same level of quantization
of different physical dimensions are merged and shall reside in the same core. The
resulting indices, each ranging from 0 to 2d−1, shall then represent the l scales resolved
by the quantization according to (2.4) in d-dimensional vectors of size 2l × · · · × 2l.
The transposed indexing (2.6) was applied for the solution of the chemical master
equation in [38]. We also refer to [14] for an adaptive algorithm selecting the ordering
of virtual dimensions most suitable for given data.

We note that the hierarchical tensor representation [34, 26], a comprehensive ex-
position of which is given in [33], itself and in combination with tensorization [27] are

1I. V. Oseledets. QTT decomposition of the characteristic function of a simplex. September 2010,
private communication.
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closely related counterparts of the TT and QTT formats respectively. The TT and
HT representations have been known in other fields for decades: as matrix product
states (MPS), see [59] and references therein, and as the hierarchical or multi-layer
MCTDH method, see [65, 48].

3 Singularities. Model Problem

In this section, following [6, 7, 5], we consider a curvilinear polygon Ω and specify

weighted Sobolev spaces denoted with H
m,ℓ
Θ,β(Ω) (with m, ℓ ∈ N0 such that m ≥ ℓ)

and classes Bℓ
Θ,β(Ω) (with ℓ ∈ N0) and C2

Θ,β(Ω) of functions analytic in Ω. Then we
consider a model boundary-value problem for a linear second-order elliptic differential
operator of the divergence form in Ω.

3.1 Curvilinear polygons

We say that Ω ⊂ R
2 is a curvilinear polygon if it is a bounded open domain with a

boundary

∂ Ω =

n⋃

i=1

γi

consisting of n ∈ N disjoint curves γi, 1 ≤ i ≤ n, which are piecewise-smooth, simple
and closed (each curve can be parametrized on a closed interval by a piecewise-smooth
function injective inside the interval and taking equal values at the endpoints).

Assume that, for each i, the ith curve is composed of mi ∈ N distinct vertices ςij ,
1 ≤ j ≤ mi, and of mi smooth edges γij , 1 ≤ j ≤ mi, not including the vertices:

γi =

mi⋃

j=1

cl γij .

We assume that every open edge γij = ϕij(J) is parametrized on J = (0, 1) by ϕij

whose both components are smooth on cl J. We assume that the numbering of the
nodes and edges and the parametrizations of the edges satisfy

γij = ϕij(J), ϕij(0) = ςi,j−1, ϕij(1) = ςij

for 1 ≤ i ≤ n and 1 ≤ j ≤ mi, where, for notational convenience, we use an mi-
periodic indexing with ςi0 = ςimi and γi0 = γimi .

We introduce Σ =
{
ςij : 1 ≤ i ≤ n, 1 ≤ j ≤ mi

}
, the set of all vertices of Ω.

For each vertex ςij , by ωij we denote the angle between γi,j−1 and γij at ςij that is
internal for Ω and assume 0 < ωij ≤ 2π.
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3.2 Weighted Sobolev spaces

In this section, following [6], we recapitulate weighted Sobolev spaces of functions that
may admit singularities at s ∈ N distinct vertices Θ1, . . . , Θs ∈ Σ of Ω. We collect
those vertices in a tuple Θ = (Θj)

s
j=1, with which we associate a tuple of singularity

orders β = (βj)
s
j=1 with βj ∈ [0, 1) for every j.

Now we consider weighted spaces Hm,ℓ
Θ,β(Ω), with singularity orders β and smooth-

ness indices m, ℓ ∈ N0 such that m ≥ ℓ. For every k ∈ N0, we define a weight function
ΦΘ,β+k : Ω → R as follows:

ΦΘ,β+k(x) =

s∏

j=1

‖x−Θj‖βj+k
2 for all x ∈ Ω, (3.1)

where ‖·‖2 denotes the Euclidean norm on R
2. These weight functions induce weighted

Sobolev spaces H
m,ℓ
Θ,β(Ω) with ℓ,m ∈ N0 such that m ≥ ℓ:

H
m,0
Θ,β(Ω) =

{
u : Ω → R : ΦΘ,β+|α| ∂

αu ∈ L2(Ω) for 0 ≤ |α| ≤ m
}

for all ℓ ≥ 0 and

H
m,ℓ
Θ,β(Ω) =

{
u ∈ Hℓ−1(Ω) : ΦΘ,β+|α|−ℓ ∂

αu ∈ L2(Ω) for 0 ≤ |α| ≤ m
}

for all m ≥ ℓ ≥ 1, where the differentiation is understood in the weak sense. By
setting

|u|2
H

m,ℓ
Θ,β(Ω)

=
∑

|α|=m

‖ΦΘ,β+m−ℓ ∂
αu‖2

L2(Ω) for all u ∈ H
m,ℓ
Θ,β(Ω), (3.2)

we introduce |·|
H

m,ℓ
Θ,β(Ω), a seminorm on H

m,ℓ
Θ,β(Ω). Also, by setting

‖u‖2
H

m,0
Θ,β(Ω)

=
m∑

k=0

|u|2
H

k,0
Θ,β(Ω)

, u ∈ H
m,0
Θ,β(Ω), ℓ ≥ 0,

‖u‖2
H

m,ℓ
Θ,β(Ω)

=‖u‖2
Hℓ−1(Ω) +

m∑

k=ℓ

|u|2
H

k,ℓ
Θ,β(Ω)

, u ∈ H
m,ℓ
Θ,β(Ω), m ≥ ℓ ≥ 1,

we define ‖·‖2
H

m,ℓ
Θ,β(Ω)

, a norm on H
m,ℓ
Θ,β(Ω) with ℓ,m ∈ N0 such that m ≥ ℓ.

Let us note the following result.

Proposition 3.1. There holds a continuous embedding H
2,2
Θ,β(Ω) ⊂ C(clΩ).
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Proof. The proof given for straight polygons in [9, section 2] is valid also for curvilinear
polygons.

In the particular case of only one (s = 1) singularity at the origin Θ = Θ = 0 of

order β = β, we write Φβ+k and H
m,ℓ
β (Ω) instead of ΦΘ,β+k and H

m,ℓ
Θ,β(Ω).

3.3 Analytic regularity

We recapitulate from [6, 7] analyticity classes C2
Θ,β(Ω) and Bℓ

Θ,β(Ω) with ℓ ∈ N0,
based on the weighted Sobolev spaces introduced in section 3.2.

Definition 3.2. We say that u ∈ Bℓ
Θ,β(Ω) with ℓ ∈ N0 if u ∈ H

m,ℓ
β (Ω) for all integral

m ≥ ℓ and if there exist positive constants Cu and δu such that

|u|
H

m,ℓ
β (Ω) ≤ Cuδ

m−ℓ
u (m− ℓ)! for all m ≥ ℓ.

The functions that belong to Bℓ
β(Ω) are analytic in an open domain containing

clΩr{0} with possibly an algebraic singularity at the origin. The embedding Bℓ
β(Ω) ⊂

Hℓ−1(Ω) follows from the definition for all β ∈ [0, 1) and ℓ ∈ N. Furthermore, the
space Bℓ

β(Ω) can be related to another space of analytic functions, with pointwise
bounds on the derivatives. First, we define it following [7, 5].

Definition 3.3. We say that u ∈ C2
Θ,β(Ω) if u ∈ H

2,2
Θ,β(Ω) if there exist positive

constants Cu and δu such that

ΦΘ,β+|α|−1(x) |∂αu(x)| ≤ Cu δ
|α|
u |α|! for all x ∈ Ω and α ∈ N

2
0
r {0}.

We shall use an equivalent definition, with α! = α1!α2! instead of |α|! = (α1+α2)!
in the bound.

Definition 3.4. We say that u ∈ C2
Θ,β(Ω) if u ∈ H

2,2
Θ,β(Ω) and if there exist positive

constants Cu and δu such that

ΦΘ,β+|α|−1(x) |∂αu(x)| ≤ Cu δ
|α|
u α! for all x ∈ Ω and α ∈ N

2
0
r {0}.

Definitions 3.3 and 3.4 are equivalent. Obviously, u ∈ C2
Θ,β(Ω) in the sense

of definition 3.4 with constants Cu and δu implies u ∈ C2
Θ,β(Ω) in the sense of

definition 3.3 with the same constants. Conversely, definition 3.3 with constants Cu

and δu implies definition 3.4 with the constants Cu and 2δu. We shall use definition 3.4
throughout the present paper.

The analyticity classes B2
Θ,β(Ω) and C2

Θ,β(Ω) are related as follows.

Proposition 3.5 (theorems 2.2 and 2.3 in [5]). For any ε > 0, there hold the inclu-
sions B2

Θ,β(Ω) ⊂ C2
Θ,β(Ω) ⊂ B2

Θ,β+ε(Ω).

In the case of only one (s = 1) singularity at the origin Θ = Θ = 0 of order β = β,
we write B2

β(Ω) and C2
β(Ω) instead of B2

Θ,β(Ω) and C2
Θ,β(Ω).
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3.4 Model problem

To motivate the ensuing analysis, we consider a model second-order elliptic boundary-
value problem in Ω, a curvilinear polygon.

Consider a second-order differential operator

A = −∇⊤A∇+ b⊤∇+ c, (3.3)

where the coefficients x 7→ A(x) ∈ R
2×2, x 7→ b(x) ∈ R

2×2 and x 7→ c(x) ∈ R are
analytic on clΩ. For the diffusion term, we assume symmetricity, A⊤ = A, and strong
ellipticity with a constant A0 > 0: y⊤Ay ≥ A0 y

⊤y in clΩ for all y ∈ R
2.

Let us suppose that D ⊂ {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ mi} is nonempty and denote

γD =
⋃

(i,j)∈D

cl γij and γN = ∂ Ωr γD. (3.4)

The sets γD and γN are respectively closed and open within ∂ Ω.
Let us assume that functions f ∈ C(clΩrΣ) and g0 ∈ C(γD), g1 ∈ C

1(γN) are
such that there exist u0 ∈ C

1(clΩr Σ), u1 ∈ C
1(clΩr Σ) satisfying u0|γD

= g0,

u1|γD

= 0, u1|γN

= g1. Then we consider the following boundary-value problem.

Find u ∈ C
2(Ω) ∩C(clΩrΣ) such that

Au = f in Ω, u|γD

= g0, (n⊤A∇u)|γN

= g1.
(3.5)

Here, n is the unitary normal to γN exterior with respect to Ω, which is defined except
at the vertices.

The finite-element method is a Galerkin projection method based on the following
weak formulation of (3.5). First, we define a bilinear form a : H1(Ω)×H1(Ω) → R

and a linear form f : H1(Ω) → R:

a(v, w) =

∫

Ω

{

(∇v)⊤A∇w + (b⊤∇v)w + cvw
}

for all v, w ∈ H1(Ω),

f(w) = 〈f, w〉V ∗ ×V + 〈g1, w〉W∗ ×W − a(u0, w) for all w ∈ H1(Ω),

(3.6)

where W = H
1/2
00 (γN) denotes the Lions–Magenes space [47, Chapter 1, section 11.5]

of the elements of H1/2(γN) whose zero extensions belong to H1/2(∂ Ω). Then we
consider the elliptic model problem (3.5) in the following weak formulation on the
variational space V = {u ∈ H1(Ω) : u|γD

= 0}.

Find u = u0 + v with v ∈ V such that

a(v, w) = f(w) for all w ∈ V.
(3.7)
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The bilinear form a is continuous due to the boundedness of the coefficients: there
exists a constant a1 > 0 such that |a(v, w)| ≤ a1‖v‖H1(Ω)‖w‖H1(Ω) for all v, w ∈
H1(Ω).

Let us assume, for the weak formulation (3.7), that f ∈ H−1(Ω), that g0 ∈
H1/2(γD), i.e. it admits an extension to u0 ∈ H1(Ω), and that g1 ∈ W ∗. Then
the linear form f is continuous on H1(Ω):

|f(w)| ≤ ‖f‖H−1(Ω)‖w‖H1(Ω) + ‖g1‖W∗‖w‖W + a1‖u0‖H1(Ω)‖w‖H1(Ω),

then, by the continuous embedding W = H
1/2
00 (γN) ⊂ H1/2(∂ Ω) [47, Chapter 1,

section 11.5] and by the trace theorem, the assumptions on the data result in the
existence of a positive constant f1 such that |f(w)| ≤ f1 ‖w‖H1(Ω) for all w ∈ H1(Ω).

In addition, let us assume the inf-sup conditions with a constant a0 > 0:

inf
v∈V
v 6=0

sup
w∈V
w 6=0

|a(v, w)|
‖v‖V ‖w‖V

≥ a0, sup
v∈V
v 6=0

|a(v, w)|
‖v‖V ‖w‖V

> 0

for every w ∈ V : w 6= 0. (3.8)

By the Babuška–Lax–Milgram theorem, the problem (3.7) has a unique solution, see,
e.g. [3, Theorem 2.1].

Let us assume that there exists a family of conforming partitions Th of Ω into
unions of quadrilaterals of diameter bounded from above by h > 0. Let Uh =
S1(Ω,Th) ⊂ H1(Ω) denote the corresponding spaces of continuous, piecewise-bilinear
functions. Consider its subspace V h = Uh∩V . Then corresponding FE discretizations
of (3.7) read as follows.

Find uh = u0 + vh with vh ∈ V h such that

a(vh, wh) = f(wh) for all wh ∈ V h.
(3.9)

Assume that the bilinear form a satisfies the discrete inf-sup condition with a constant
ã0 > 0 uniformly in h > 0:

inf
vh∈V h

vh 6=0

sup
wh∈V
wh 6=0

|a(vh, wh)|
‖vh‖V ‖wh‖V

≥ ã0, sup
vh∈V h

vh 6=0

|a(vh, wh)|
‖vh‖V ‖wh‖V

> 0

for every wh ∈ V h : wh 6= 0. (3.10)

Then, by [3, Theorem 2.2], for the discrete solutions there holds a bound

‖u− uh‖H1(Ω) = ‖v − vh‖H1(Ω) ≤ C1 inf
wh∈V h

‖v − wh‖H1(Ω) (3.11)
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with C1 = 1 + a1/ã0 independent of h.
For u0, u ∈ H2(Ω), by classical approximation results, there exists a constant

C2 > 0 independent of the boundary data and of h such that

‖u− ûh‖H1(Ω) ≤ C2 h ‖u‖H2(Ω), ‖u0 − ûh0‖H1(Ω) ≤ C2 h ‖u0‖H2(Ω), (3.12)

where ûh ∈ Uh and ûh0 ∈ Uh interpolate u and u0 at the nodes of Th, see, e.g. [16,
theorem 4.6.14] for tensor-product interpolation and [16, section 4.7] for isoparametric
interpolation in domains of complex geometry. Considering wh = ûh − ûh0 ∈ V h, we
obtain from (3.11)–(3.12) that

‖u− uh‖H1(Ω) ≤ C1 C2 h
{

‖u‖H2(Ω) + ‖u0‖H2(Ω)

}

. (3.13)

In the present paper, we are interested in solutions u ∈ H1(Ω) of (3.7) which
are, however, not in Hm(Ω) for any m ≥ 2, but do belong to the countably normed
class B2

Θ,β(Ω) or C2
Θ,β(Ω) of analytic functions with some tuples Θ and β of ver-

tices and singularity orders, introduced in definitions 3.2 to 3.4. Then we have, in
particular, u ∈ H

2,2
Θ,β(Ω). Let us assume also that the boundary-lifting term satisfies

u0 ∈ H
2,2
Θ,β(Ω). Then we have u, u0 ∈ C(clΩ) by proposition 3.1, and the nodal

interpolation is still well defined. Instead of (3.12), similar bounds

‖u− ûh‖H1(Ω) ≤ C̃2 h
1−β∗ ‖u‖

H
2,2
Θ,β(Ω), ‖u0 − ûh0‖H1(Ω) ≤ C̃2 h

1−β∗ ‖u0‖H2,2
Θ,β(Ω),

(3.14)
where β∗ = max{β1, . . . , βs} and C̃2 > 0 is independent of the boundary data and
of h, combine with (3.11) to yield the quasi-optimality of the first-order Lagrangian
FEM (3.9) for the problem (3.7).

Remark 3.6. Let us consider the case when Ω is a polygonal domain, i.e. when
the edges γij, 1 ≤ i ≤ n and 1 ≤ j ≤ mi, are linear segments. Then, in the
weighted Sobolev spaces defined in section 3.2, the weak formulation (3.7) of the model
problem (3.5) satisfies the following regularity shift: for every m ∈ N, there exists a
constant Cm > 0 such that for every f ∈ H

m−2,0
Θ,β (Ω) and for all u1 ∈ H

m−1,1
Θ,β (Ω),

u0 ∈ H
m,2
Θ,β(Ω) the weak solution u ∈ H1(Ω) satisfies the following a-priori estimate:

‖u‖H1(Ω) ≤ C1

{

‖f‖
H

0,0
Θ,β(Ω) + ‖u1‖H1,1

Θ,β(Ω) + ‖u0‖H2,2
Θ,β(Ω)

}

,

‖u‖
H

m,2
Θ,β(Ω) ≤ Cm

{

‖f‖
H

m−2,0
Θ,β (Ω) + ‖u1‖Hm−1,1

Θ,β (Ω) + ‖u0‖Hm,2
Θ,β(Ω)

}

, m ≥ 2,
(3.15)

see [6, lemma 3.1, remark 3 of section 2]. Here, the singular support and singularity
orders indicated by Θ and β are determined by the geometry of Ω, by the diffusion
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tensor A and by the type of the boundary conditions imposed on every pair of adjacent
edges.

Moreover, if f ∈ B0
Θ,β(Ω) and u0 ∈ B2

Θ,β(Ω), u1 ∈ B1
Θ,β(Ω), then u ∈ B2

Θ,β(Ω) [6,
theorem 3.1]. Such regularity-shift results are available also for more evolved problems,
see, e.g. [32, theorem 5.2] for linear elasticity models.

Remark 3.7. For a general curvilinear polygon Ω described in section 3.1, there is
a similar result: if f ∈ B0

Θ,β(Ω) and u0 ∈ B2
Θ,β(Ω), u1 ∈ B1

Θ,β(Ω), then we have

u ∈ C2
Θ,β(Ω) [5, theorems 3.4–3.5].

Again, the singular support and singularity orders indicated by Θ and β are deter-
mined by the geometry of Ω, by the diffusion tensor A and by the type of the boundary
conditions imposed on every pair of adjacent edges.

The regularity-shift results cited in remarks 3.6 and 3.7 prompts a question of
how the infinite weighted regularity of the corresponding analyticity classes can be
exploited for the efficient approximation of the functions from those classes. Building
upon well-known results which address the question with hp approximations, the
present paper provides an answer for the QTT-FE approximation.

Finally, when Ω has a cut, i.e. some edges γij and γi
′j′ share at least one (interior)

point, the formulation of the problems (3.5), (3.7) becomes more technical. We refer
to [29, section 1.7], where the Sobolev spaces Hm(Ω), m ∈ N0, are defined over Ω via
those for subdomains of Ω without cuts.

4 QTT-FEM in a Reference Domain in d Dimensions

In the present paper we are interested in the space dimension d = 2, but this section
we develop, for future reference, in the case of a general space dimension d ≥ 2. By
the reference domain we mean Q = Jd, where J = (0, 1). We consider the h-FE and
QTT-FE approximation of functions from C(clQ), i.e. continuous in the closure of
the reference domain Q.

We denote the 2d sides of dimension d − 1 (faces when d = 3 and edges when
d = 2) of Q as follows:

Γk = Jk−1 ×{− 1}× Jd−k (4.1)

for every k = 1, . . . , d and  = 1, 2. In particular, Γ11, Γ12, Γ21 and Γ22 denote
respectively the left, right, bottom and top edges of Q when d = 2.

We label each of the 2d sides of Q as active and inactive: we set µk = 1 or
µk = 0 if the side Γk is respectively active or inactive. Below, we shall use the

binary matrix µ ∈ {0, 1}d×2 resulting from this convention to encode the assignment
of degrees of freedom and to construct suitable finite-element spaces.

13



4.1 h- and QTT-FE approximation of coupled functions in the
reference domain

4.1.1 Uniform partitions of J = (0, 1) and Q = (0, 1)d

Next, we explicitly construct uniform tensor-product partitions of the reference do-
main and the corresponding finite-element space of functions that are continuous
piecewise-d-linear on every element. We present the construction explicitly in order
to ensure, for all µ ∈ {0, 1}d×2, consistency with the corresponding auxiliary hp finite-
element spaces introduced in section 5 below. Also, the proof of lemma 5.17 on the
QTT structure of hp functions given below references the nodes explicitly.

Let us assume that k ∈ {1, 2} and l ∈ N. First, we set

nl
k = 2l − µk1 − µk2 and hl

k = (nl
k + 1)−1. (4.2)

Then we introduce a uniform partition T l
k of J with the nodes

tlk,ik = (ik + 1− µk1)h
l
k, ik ∈ Ilk = {µk1 − 1, . . . , 2l − µk2}, (4.3a)

and the elements

Ilk,ik =
(
tlk,ik , t

l
k,ik+1

)
, ik ∈ El

k = {µk1 − 1, . . . , 2l − µk2 − 1}. (4.3b)

The number of interior nodes is nl
k and the grid size is hl

k.
For every l ∈ N, consider T l = T l

1 × · · · ×T l
d, a uniform tensor-product partition

of Q, which consists of the Cartesian-product elements

Ql
i = Il1,i1 × · · · × Ild,id with i = (i1, . . . , id) ∈ El = El

1 × · · · ×El
d, (4.4)

where each interval Ilk,ik is given by (4.3b). The nodes of T l are

tli = (tl1,i1 , . . . , t
l
d,id

) with i = (i1, . . . , id) ∈ Il = Il1 × · · · × Ild.

4.1.2 h-FE space S1(Q,T l). Active and inactive nodes

For all k = 1, . . . , d and ik ∈ Ilk, we define φl
k,ik

∈ C(cl J) by requiring linearity on each

interval Ilk,i′k
with i′k ∈ El and by the interpolation condition φl

k,ik
(tlk,i′k

) = δik i′k for all

i′k ∈ Ilk. For all i = (i1, . . . , id) ∈ Il, we introduce φl
i = φl

1,i1
⊗ · · · ⊗φl

d,id
∈ C(clQ).

Then
S1(Q,T l) = span{φl

i : i ∈ Il} ⊂ C(clQ) (4.5)

is the Lagrangian finite-element space of continuous, piecewise-d-linear functions in-
duced by the Cartesian-product partition T l.

14



Let İlk = {0, . . . , 2l − 1} for k = 1, . . . , d and

İl = İl1 × · · · × İld. (4.6)

The set Ilr İl indexes the nodes of T l belonging to the closures of the inactive sides
and İl indexes all the other nodes of T l. We refer to those nodes as inactive and
active respectively. The purpose of the index shifts used in (4.2)–(4.3) was to ensure
that, in each dimension, there are exactly 2l active nodes and those are numbered
starting from zero.

We define the corresponding analysis operator ˙A l : C(clQ) → R
2l×···×2l , which

evaluates the components of a function at the active nodes:

( ˙A
lu)i = u(tli) for all i ∈ İl. (4.7)

4.1.3 Boundary conditions

The approximations to be considered shall satisfy, in the sense specified below, Dirich-
let boundary conditions on the closures of sides of Q. We assume that those sides are
indexed by a set B ⊂ {1, . . . , d}×{1, 2}.
Assumption 4.1 (sides with Dirichlet boundary conditions are inactive). The matrix
µ ∈ {0, 1}d×2 and set B ⊂ {1, . . . , d}×{1, 2} satisfy the following: for all k = 1, . . . , d,
and  = 1, 2 such that (k, ) ∈ B, we have µk = 0.

Then we consider
Γ0 =

⋃

(k,)∈B

clΓk ⊂ ∂Q, (4.8)

which may be empty. By assumption 4.1, the sides contained in Γ0 are inactive. For
all l ∈ N, let us set

Il0 = {i ∈ Il : tli ∈ Γ0} (4.9)

and

S10(Q,T
l) =

{

ul ∈ S1(Q,T l) : ul|Γ
0

= 0
}

= span
{
φl
i : i ∈ Ilr Il0

}
, (4.10)

We define a boundary-data interpolation operator Il
0 : C(clQ) → S1(Q,T l) by

setting

Il
0u =

∑

i∈Il
0

u(tli)φ
l
i ∈ S1(Q,T l) (4.11)

for all u ∈ C(clQ). By assumption 4.1, (4.9) and (4.6), we have Il0 ∩ İl = ∅. For the
analysis operator ˙A l given by (4.7), we thus infer

˙A
l Il

0 u = 0 for all u ∈ C(clQ). (4.12)
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4.1.4 Admissible approximations

For every u ∈ C(clQ), we consider admissible approximations, i.e. those preserving
the values at the nodes of T l lying on Γ0, which constitute the set

F
l
u = S10(Q,T

l) + Il
0u. (4.13a)

Here, the two terms are given by (4.10) and (4.11) respectively. For every admissible
approximation ul ∈ F l

u, we shall consider the corresponding coefficient vector

ul = ˙A
lul ∈ R

2l×···×2l , (4.13b)

which parametrizes—possibly partly—the approximation ul and consists of

ℵl =
∣
∣İl

∣
∣ = 22l (4.13c)

components.

4.2 Nodal approximation

One possible choice of an admissible approximation ul ∈ F l
u is the nodal interpolant

Ilu of u ∈ C(clQ), given by

Ilu =
∑

i∈Il

u(tli)φ
l
i . (4.14a)

For that approximation, we have

ul(tli) = ul
i = u(tli) for all i ∈ İl. (4.14b)

Generally, the coefficient vector ul = ˙A lul may not admit an exact low-rank
tensor representation, and low-rank approximations need to be considered.

To prove the existence of such approximations, we consider an auxiliary approxi-
mation operator Π

l : D → C(clQ) with D ⊂ C(clQ). Then, instead of ul = Ilu, we
consider ul = Alu with Al : D → S10(Q,T

l) given by

Al = Il
Π

l + Il
0 (id −Π

l). (4.15a)

In the right-hand side, the first term corresponds to the reinterpolation of a pro-
jection obtained by Π

l, and the second, to an appropriate boundary lifting. The
corresponding approximation error reads

u − ul = (id −Π
l)u + (id − Il)Πlu − Il

0 (id −Π
l)u. (4.15b)
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The corresponding coefficient vector ul = ˙A l
Π

lu is determined entirely by the
values of the auxiliary approximation Π

lu at the active nodes of T l. Thus, if Πlu
produces approximations which are both convergent and of exact low-rank tensor
structure, the convergence of low-rank tensor-structured approximations follows im-
mediately.

We emphasize that, along these lines, that is the auxiliary approximation what
realizes low-rank tensor approximation, even though its formulation may seem com-
pletely unrelated to tensor decompositions. Notable examples are trigonometric and
polynomial approximations, global or piecewise. In section 5 below, we present and
apply the piecewise-polynomial interpolation, known as hp approximation.

Note that the auxiliary approximation operator Π
l is not required for tensor-

structured approximation. In the present paper, we use such an operator to prove the
existence of low-rank approximations and, in the numerical experiments presented in
section 6, to obtain reference low-rank solutions of certified accuracy.

4.3 QTT-FE representation of admissible approximations

In section 4.1.3, we defined an approximation space S10(Q,T
l) of functions that are

piecewise d-linear on the elements of a tensor-product partition of Q = (0, 1)d and
vanish on the sides with Dirichlet boundary conditions. For every function u ∈
C(clQ), we consider approximations ul from the set F l

u given by (4.13a). By classical
approximation results, those may achieve only algebraic convergence (of rate at most
1/d in the H1-norm) with respect to the number ℵl (4.13c) of parameters.

In order to reduce the number of parameters of the discretization, we recast it
in the QTT format presented in section 2.2. We require that the coefficient vector
ul = ˙A lul be represented in the QTT decomposition. Throughout the present paper,
we refer to that combination as QTT-FEM, although QTT-structured finite-element
methods can be envisaged more general.

The representation of the quantized coefficient vectors ul in the TT format with
the ordering and grouping of the “virtual” indices given by (2.6) corresponds to QTT
decompositions given by

ul
i11,...,i1l,......,id1,...,idl

=

r1∑

α1=1

. . .

rl−1∑

αl−1=1

U1(i11, . . . , id1, α1) · U2(α1, i12, . . . , id2, α2)

· · ·Ul−1(αl−2, i1,l−1, . . . , id,l−1, αl−1) · Ul(αl−1, i1l, . . . , idl) (4.16)

for all values of the indices: for ikq = 0, 1 with k = 1, . . . , d and q = 1, . . . , l. The
ranks of the decomposition (4.16) are denoted by r1, . . . , rl−1. The complexity of such
a representation can be characterized by the maximum rank Rl and the number of
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parameters Nl,

Rl = max
1≤q<l

rl and Nl = 2dr1 +
l−1∑

q=2

2drq−1rq + 2drl−1 = O(lR2
l ). (4.17)

Analogously to the TT and standard QTT representations, the ranks of (4.16) are
related to unfolding matrices. For 1 ≤ q < l, let us consider the unfolding matrix U q

whose entries are given by

U
q

i,i11,...,i1q,......,id1,...,idq, i1,q+1,...,i1l,......,id,q+1,...,idl
= ui,i11,...,i1l,...,id1,...,idl

(4.18)

for all values of the indices, cf. (2.2). Then (4.16) implies rankU q ≤ rq for q =
1, . . . , l − 1. A converse statement, similar to remark 2.1, holds as well.

5 Auxiliary hp Approximation of Singular Functions

in the Reference Square

In this section, we consider the case of d = 2 dimensions. We construct and analyze
auxiliary approximations in hp spaces consistent with the first-order h-FE spaces
introduced in section 4.

We start with discussing piecewise-bilinear nodal approximation of an element of
H

2,2
β (Q), in S1(Q,T l), of a function proper and of its auxiliary approximation. Then

we present, as auxiliary, hp-FE spaces S̃p(Q,Gl) and Sp(Q,Gl) analogous to those
developed and analyzed in [2, 30, 31, 8, 60]. We recapitulate how approximations in
such spaces can be obtained by polynomial quasi-interpolation. For the elements of
C2
β(Q), we prove error and stability bounds of such approximations (theorems 5.13

and 5.14) and, then, analyze the error of first-order reinterpolation with boundary
lifting (theorem 5.16).

We emphasize that the auxiliary hp spaces and approximations are introduced in
this chapter exclusively for theoretical considerations. They will serve as a particular
means of low-rank tensor approximation, and the corresponding QTT-FE structure
of that approximation is revealed in section 5.6 below. The algorithmic realization of
hp approximations, quite involved in practice, will not be required for computations
with QTT-FE approximations.

The construction of this section is determined by a few parameters, of which we
assume the following.

Assumption 5.1. µ ∈ {0, 1}2×2 and B ⊂ {1, 2}×{1, 2} satisfy assumption 4.1.
Additionally, δ > 0 and β ∈ [0, 1).
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For each l ∈ N, the auxiliary partitions Gl and corresponding hp spaces S̃p(Q,Gl)

and Sp(Q,Gl) introduced below depend on µ. The operators Π̃l,µ
δ,3/2,β and Πl,µ

δ,3/2,β

of hp interpolation depend also on δ, α and β. Additionally, the boundary lifting of
hp approximations depends on B. All bounds of this section are explicit in terms of
δ > 0 and β and uniform with respect to µ and B.

5.1 Nodal approximation of singular functions

As in section 4.2, let us consider the nodal interpolation of u ∈ C(clQ) and of

Πl,µ
δ,α,β u ∈ C(clQ), where Πl,µ

δ,α,β is an auxiliary hp quasi-interpolation operator de-
fined and analyzed below (in definition 5.9 and section 5.4). In the setting of this
section, (4.14a) and (4.15a) reduce to

ul = Ilu =
∑

i∈IlrIl
0

u(tli)φ
l
i +

∑

i∈Il
0

u(tli)φ
l
i ∈ S1(Q,T l), (5.1)

ul = Alu =
∑

i∈IlrIl
0

Πl,µ
δ,α,β u(t

l
i)φ

l
i +

∑

i∈Il
0

u(tli)φ
l
i ∈ S1(Q,T l). (5.2)

For the exact continuous bilinear nodal interpolant Ilu, which is well defined by
proposition 3.1, we note the following approximation result.

Lemma 5.2. Let β ∈ [0, 1). Then there exist a positive constant C such that the
following error bound holds for all u ∈ H

2,2
β (Q) and l ∈ N such that l ≥ 2:

‖u− Ilu‖H1(Q) ≤ C 2−(1−β)l |u|
H

2,2
β (Q).

Proof. Let u ∈ H2
β(Q) and l ≥ 2. Applying corollary A-8.7 in every Ql

i except

Ql
i∗

= (0, hl
1)×(0, hl

2) with i∗ = (µ11 − 1, µ21 − 1) and proposition A-8.11 with a

rescaling argument in Ql
i∗

, we obtain

‖u− Ilu‖2
H1(Ql

i∗
) ≤

{

D2
0

Λ4
l

λ2l
2−2l +D2

1

Λ4
l

λ4l

}

2−2(1−β)l |u|2
H

2,2
β (Ql

i∗
)
,

‖u− Ilu‖2
H1(QrQl

i∗
)
≤

{
3

64
Λ4
l 2

−2l +
1

2

Λ4
l

λ2l

}

2−2l
∑

i∈Elr{i∗}

|u|2
H2(Ql

i)

≤
{

3

64
Λ4
l 2

−2l +
1

2

Λ4
l

λ2l

}
1

λ2l
2−2(1−β)l |u|2

H
2,2
β (QrQl

i∗
)
,

where D0 and D1 are positive constants depending only on β. The claim follows
immediately.
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Lemma 5.2 shows that, as l increases, Ilu converges to u ∈ H
2,2
β (Q) algebraically

at the rate of (1 − β)/2 with respect to the number ℵl of active nodes (4.13c). In
this section, we consider hp quasi-interpolation operators Π l

p with p ∼ l such that, for

every u from B2
β(Q) or C2

β(Q), the approximations ul, l ∈ N, given by (5.2) achieve

the same convergence rate as Ilu, l ∈ N.

5.2 Geometrically graded partitions of Q. hp spaces S̃p(Q,Gl)
and Sp(Q,Gl)

In this section, we introduce hp-FE spaces for the approximation of functions from
B2

β(Q) and C2
β(Q) with β ∈ [0, 1). Both the spaces consist of functions that may

have singularities at the origin, towards which the auxiliary hp spaces will refine with
respect to l.

For all l ∈ N and k ∈ {1, 2}, the construction of T l
k ensures that the number nl

k

of interior nodes satisfies the inequality 2l − 1 ≤ nl
k + 1 ≤ 2l + 1. We introduce the

nodes xl,0
k = 0, xl,l+1

k = 1 and

xl,j
k = 2j−1 hl

k with 1 ≤ j ≤ l. (5.3)

Then, for 1 ≤ j ≤ l, we define the intervals

Jl,jk,0 = (0, xl,j
k ), Jl,jk,1 = (xl,j

k , xl,j+1
k ). (5.4)

Further, we consider the partition of (0, 1) induced by the nodes xl,j
k , 0 ≤ j ≤ l+1,

and consisting of the elements Jl,1k,0 and Jl,jk,1 with 1 ≤ j ≤ l. That partition is graded

geometrically towards 0: for 1 ≤ j ≤ l, we have xl,j
k = tlk,i with i = 2j−1 − 1 + µk1.

For every k ∈ {1, 2}, the nodes satisfy 2l/(2l + 1) ≤ xl,j
k /2j−1−l ≤ 2l/(2l − 1)

for 1 ≤ j ≤ l; for the lengths of the intervals, we have xl,j+1
k − xl,j

k = xl,j
k when

1 ≤ j ≤ l− 1 and xl,l+1
k − xl,l

k = 1− xl,l
k for the last element. Then, for 1 ≤ j ≤ l and

k ∈ {1, 2}, the four inequalities

2j−1−lλl ≤ xl,j
k , xl,j+1

k − xl,j
k ≤ 2j−1−lΛl (5.5a)

hold with λl = min{2l/(2l+1), 1−(2l−1)−1} and Λl = max{2l/(2l−1), 1+(2l+1)−1},
i.e. with

λl = 1− (2l − 1)−1 and Λl = 1 + (2l + 1)−1. (5.5b)

Let us now define an auxiliary partition of Q. First, we introduce

N =
{
(1, 1), (1, 0), (0, 1)

}
=

{
ν ∈ N

2
0 : ‖ν‖∞ = 1

}
. (5.6)
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Then, for every l ∈ N, we consider Gl, a partition of Q graded geometrically towards
the origin, consisting of the elements Gl,0 = Jl,11,0 × Jl,12,0 and

Gl,j
ν = Jl,j1,ν1

× Jl,j2,ν2
with 1 ≤ j ≤ l, ν = (ν1, ν2) ∈ N. (5.7)

For every p ∈ N0, we introduce auxiliary hp finite-element spaces:

S̃p(Q,Gl) =

{
u ∈ L2(Q) : u|Gl,0

∈ Q1,1,

u|Gl,j
ν

∈ Qp,p for all j = 1, . . . , l, ν ∈ N

}

,

Sp(Q,Gl) = S̃p(Q,Gl) ∩C(clQ). (5.8)

Below we see that the elements of B2
β(Q) and C2

β(Q) can be approximated by

functions from S̃p(Q,Gl), generally discontinuous, at exponential rates with respect
to p ∈ N (theorem 5.13). Furthermore, these approximations can be altered so as to
belong to the corresponding spaces Sp(Q,Gl) of continuous functions without com-
promising the convergence (theorem 5.14). The alteration consists in trace lifting,
a standard procedure in hp approximation [60, section 4.6], which we present in
lemma 5.8 below.

We shall use the following additional notation:

Γl,j
ν = ∂Gl,j

ν ∩ ∂Q for all j = 1, . . . , l, ν ∈ N, (5.9a)

γ l
i = ∂Ql

i ∩ ∂Q for all i ∈ El. (5.9b)

Also, for every l ∈ N, we set
Gl = QrGl,0 (5.10a)

and
Γl = ∂Qr ∂Gl,0. (5.10b)

Finally, we shall refer to

G̃l,0
1 =

(
1

2
xl,1
1 , xl,1

1

)

×(0, xl,1
2 ), G̃l,0

2 = (0, xl,1
1 )×

(
1

2
xl,1
2 , xl,1

2

)

, (5.11)

which are the right and upper halves of Gl,0.

5.3 Polynomial quasi-interpolation

In this section, we recapitulate univariate and bivariate polynomial quasi-interpolation
in Ĵ = (−1, 1) and Q̂ = Ĵ× Ĵ. Sections A-8.2 and A-8.3 consist of related approxi-
mation results, which we use in our analysis in sections 5.4 and 5.5.
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5.3.1 Univariate quasi-interpolation

For i ∈ N0, by Li we denote the ith Legendre polynomial with the standard normal-
ization: Li(1) = 1 and 〈Li, Li〉L2(Ĵ) = (i+ 1

2 )
−1.

Definition 5.3. For every p ∈ N, we define a quasi-interpolation operator π̂p :

H1(Ĵ) → Pp by setting

û(−1) = π̂pû(−1) and (π̂pû)
′ =

p−1
∑

i=0

ciLi

for every û ∈ H1(Ĵ), where ci = (i+ 1
2 ) 〈û′, Li〉L2(Ĵ) for i = 0, 1, . . . , p− 1.

For every p ∈ N, the quasi-interpolation operator π̂p is continuous. Also, by [60,
theorem 3.14] or [15, lemma 5], we have the following property

Proposition 5.4. For every p ∈ N, the operator π̂p is nodally exact:

û(±1) = π̂pû(±1)

holds for every û ∈ H1(Ĵ).

5.3.2 Tensor-product bivariate quasi-interpolation

In the remainder of this section, we shall use tensor-product Sobolev spaces, which
are isomorphic to Bochner spaces: for all m1m2 ∈ N0, we consider

Hm1m2

mix
(Q̂) = Hm1(Ĵ)⊗Hm2(Ĵ) ≃ Hm2(Ĵ,Hm1(Ĵ))

with the cross norm given by

‖u‖2
H

m1m2
mix

(Q̂)
=

m1∑

α1=0

m2∑

α2=0

‖∂α1

1 ∂α2

2 u‖2
L2(Q̂)

for all u ∈ Hm1m2

mix
(Q̂). For all m1,m2 ∈ N0, we have the following inclusion of a

standard Sobolev space: Hm1+m2(Q̂) ⊂ Hm1m2

mix
(Q̂) ⊂ Hmin{m1m2}(Q̂). The subscript

“mix” reflects that these spaces are often called spaces with dominating mixed smooth-
ness. For all m1,m2 ∈ N0, the functions from Hm1m2

mix
(Q̂) admit continuous extensions

to cl Q̂.
For every p ∈ N, we consider tensor-product operators π̂p ⊗ id2 : H

1,1
mix

(Q̂) →
Pp ⊗H1(Ĵ) and id1 ⊗ π̂p : H

1,1
mix

(Q̂) → H1(Ĵ)⊗Pp, where id1 and id2 denote the
corresponding identity operators. For everym ∈ N, these tensor-product operators are
continuous mappings from H

1,m
mix

(Q̂) to Pp ⊗Hm(Ĵ) and from H
m,1
mix

(Q̂) to Hm(Ĵ)⊗Pp

respectively, since the operator πp is continuous from H1(Ĵ) to Pp.
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Definition 5.5. For every p = (p1, p2) ∈ N
2, we introduce a tensor-product projection

operator:
Π̂p1p2

= π̂p1
⊗ π̂p2

: H1,1
mix

(Q̂) → Qp1p2
.

For every p = (p1, p2) ∈ N
2, we consider the corresponding one-dimensional pro-

jections
π̂1,p1

= π̂p1
⊗ id2 and π̂2,p2

= id1 ⊗ π̂p2
,

where id1 and id2 denote the identity transformation of H1(Ĵ).
The operator Π̂p1p2

is continuous and can be recast as a superposition of one-
dimensional projections:

Π̂p1p2
= π̂2,p2

◦ π̂1,p1
= π̂1,p1

◦ π̂2,p2
,

see [60, Lemma 4.67 (i)] or [15, section 4] for details. From proposition 5.4, we obtain
the following proposition, Γ̂11, Γ̂12, Γ̂21 and Γ̂22 denoting the left, right, bottom and
top edges of Q̂.

Proposition 5.6. Assume p1, p2 ∈ N. Then we have

(Π̂p1p2
û)|Γ̂k

= π̂pk′
û|Γ̂k

for all k, k′,  = 1, 2 such that k′ 6= k and for every û ∈ H
1,1
mix

(Q̂).

5.4 hp quasi-interpolation

In this section, we recapitulate standard techniques of hp approximation based on the
operators of polynomial quasi-interpolation described in section 5.3. Further details
can be found, e.g. in [60, section 4.6].

The analysis of reinterpolation, which we give in section 5.5, requires the H2-
stability of auxiliary approximations. In this section, to keep the presentation self-
contained, we prove the convergence of hp approximations together with H2-stability
bounds.

5.4.1 Definitions

Definition 5.7 (discontinuous hp quasi-interpolation). Let µ ∈ {0, 1}2×2, l ∈ N and
Gl be as described in section 5.2. Then, for all p ∈ N, we define Π̃ l

p : H
1,1
mix

(Q) →
S̃p(Q,Gl) by setting

(Π̃ l
p u) ◦ϕl,0 = Π̂1,1 (u ◦ϕl,0) in Q̂,

(Π̃ l
p u) ◦ϕl,j

ν = Π̂p,p (u ◦ϕl,j
ν ) in Q̂ for all j = 1, . . . , l and ν ∈ N,

where ϕl,0 is an affine function mapping Q̂ onto Gl,0 and every ϕl,j
ν is an affine

function mapping Q̂ onto Gl,j
ν .
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The hp approximation Π̃ l
pu to u may be discontinuous across edges of the elements

of Gl. These discontinuities can, however, be lifted, as the following lemma shows.

Lemma 5.8 (trace lifting). Let µ ∈ {0, 1}2×2, l ∈ N and Gl be as described in
section 5.2. Then, for all p ∈ N, there exists a linear operator Π l

p : H
1,1
mix

(Q) →
Sp(Q,Gl) such that, for every u ∈ H

1,1
mix

(Q), the function (Π l
p − Π̃ l

p)u ∈ S̃p(Q,Gl)

vanishes in Gl,0 and on ∂Q.

Proof. We refer the reader to the Appendix.

Definition 5.9 (the selection of p and s). Under assumption 5.1 and for every α ≥ 1,
we use definition 5.7 and lemma 5.8 for all l ∈ N to introduce the quasi-interpolation
operators

Π̃l,µ
δ,α,β = Π̃ l

p and Πl,µ
δ,α,β = Π l

p, (5.12)

with
p =

⌈
̺δχl

⌉
, (5.13a)

where

̺δ = 1 +
δ

2
and χl = 1 + l(1 + α− β) log 2. (5.13b)

Together with the p chosen above, we shall also use

s =
⌊
p/̺δ

⌋
, (5.13c)

which depends on δ, α, β and l.

Then we have ̺δ > 1, χl > 1, ̺δ χl ≤ p < ̺δ χl + 1 and χl − 1 < s < χl + ̺−1
δ <

χl + 1, so that p ≥ 2 and s ≥ 1.

5.4.2 Preliminary bounds

In this section, using the auxiliary results presented in sections A-8.2 and A-8.3 below,
we prove preliminary approximation and stability results of hp approximation, which
shall later be specified for the analyticity classes B2

β(Q) and C2
β(Q).

For all r ∈ N, σ ∈ R, we introduce [ · ]r+1,σ, a broken Sobolev seminorm on
Hr+1(Gl):

[u]2r+1,σ =

l∑

j=1

∑

ν∈N

(2j−2−lΛl)
2(r+1−σ) |u|2

Hr+1(Gl,j
ν )

for all u ∈ Hr+1(Gl). (5.14)

We note that [·]r+1,σ depends on µ and l, which define Gl. For the sake of brevity,
we do not indicate that dependence explicitly in the notation.
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Lemma 5.10 (estimates for hp quasi-interpolation in terms of the broken Sobolev
seminorms). Let β ∈ [0, 1). Then there exist positive constants D0 and D1 such that,
for every µ ∈ {0, 1}2×2, for all l, p, s ∈ N such that l ≥ 2 and s ≤ p and for every
u ∈ H

2,2
β (Q) ∩ H

s+2,2
β (Gl), the hp approximation vl = Π̃ l

pu ∈ S̃p(Q,Gl) satisfies the
following error and stability bounds:

‖u− vl‖2
L2(Q) ≤ 3

Υps

p(p+ 1)
[u]2s+1,0 +D2

0

Λ4
l

λ2l
2−2(2−β)l |u|2

H
2,2
β (Gl,0)

, (5.15a)

|u− vl|2
H1(Q) ≤ 4

Λ2
l

λ2l
Υps [u]

2
s+1,1 +D2

1

Λ4
l

λ4l
2−2(1−β)l |u|2

H
2,2
β (Gl,0)

, (5.15b)

∑

jν

|vl|2
H2(Gl,j

ν )
≤ Λ4

l

λ4l
(p2 − 1) [u]22,2 . (5.15c)

Furthermore, on the boundary we have the inequalities

‖u− vl‖2
L2(Γl) ≤

3

2

Λl

λl

Υps

p(p+ 1)

{

[u]2s+1, 1
2

+ [u]2s+2, 1
2

}

, (5.16a)

|u− vl|2
H1(Γl) ≤

3

2

Λl

λl
Υps

{

[u]2s+1, 3
2

+ [u]2s+2, 3
2

}

, (5.16b)

∑

jν

|vl|2
H2(Γl,j

ν )
≤ 3

4

Λl

λl
(p2 − 1)

{

[u]22, 5
2

+ [u]23, 5
2

}

, (5.16c)

where Γl,j
ν with j = 1, . . . , l and ν ∈ N are given by (5.9a).

Proof. We refer the reader to the Appendix.

Lemma 5.11 (estimates for trace lifting in terms of the broken Sobolev seminorms).
Let β ∈ [0, 1). Then, for every µ ∈ {0, 1}2×2, for all l, p, s ∈ N such that l ≥ 2 and
s ≤ p and for every u ∈ H3,2(Q)∩Hs+2,2

β (Gl), the trace-lifting term wl = Π l
pu−Π̃ l

pu ∈
S̃p(Q,Gl) of lemma 5.8 satisfies the bounds

‖wl‖2
L2(Q) ≤

1

4

Λ5
l

λl
2−4l Z2

0 + 3
Λl

λl

Υps

p(p+ 1)

{

[u]2s+1,0 + [u]2s+2,0

}

, (5.17a)

∑

jν

|wl|2
H1(Gl,j

ν )
≤ 11

4

Λ4
l

λ2l
2−2l Z2

0 +
15

2

Λ2
l

λ2l
Υps

{

[u]2s+1,1 + [u]2s+2,1

}

, (5.17b)

∑

jν

|wl|2
H2(Gl,j

ν )
≤ 6

Λ2
l

λ2l
Z2
0 + 3p2

{

[u]22,2 + [u]23,2

}

, (5.17c)

where
Z2
0 =

∑

k=1,2

{

|u|2
H2(G̃l,0

k )
+ (2−l−2Λl)

2 |u|2
H3(G̃l,0

k )

}

. (5.18)

25



Proof. We refer the reader to the Appendix.

5.4.3 hp quasi-interpolation of functions from C2
β(Q)

Let G ⊂ Q be rectangle. Assume that u ∈ C2
β(Q) in the sense of definition 3.4 with

positive constants Cu and δu. Then, using lemma A-8.1, we obtain for every r ∈ N

that

|u|2
Hr+1(G) =

∑

|α|=r+1

‖∂αu‖2
L2(G)

≤
{
Cu δ

r+1
u (r + 1)!

}2 ‖Φ−1
β+r‖2L2(G)

∑

|α|=r+1

{
α!

(r + 1)!

}2

≤
{
Cu δ

r+1
u (r + 1)!

}2 ‖Φ−1
β+r‖2L2(G)

{
∑

|α|=r+1

α!

(r + 1)!

}2

≤ 64

9

{
Cu δ

r+1
u (r + 1)!

}2 ‖Φ−1
β+r‖2L2(G). (5.19a)

Let l ∈ N, j = 1, . . . , l and ν ∈ N. Using (5.5), we obtain the bound Φr+β(x) ≥
(2j−1−lλl)

r+β ≥ 2(r+β)(j−1−l)λr+1
l for all x ∈ Gl,j

ν and r ∈ N. The corresponding
Sobolev seminorm is thus bounded as follows:

|u|2
Hr+1(Gl,j

ν )
≤ 64

9

{
Cu δ

r+1
u (r + 1)!

}2
λ
−2(r+1)
l 2−2(r+β)(j−1−l) Λ2

l 2
2(j−1−l)

=
64

9

Λ2
l

λ
2(r+1)
l

{
Cu δ

r+1
u (r + 1)!

}2
2−2(r+β−1)(j−1−l) (5.19b)

for all r ∈ N, l ∈ N, j = 1, . . . , l and ν ∈ N.
For G̃l,0

k with k = 1, 2 given by (5.11), we obtain a similar bound: Φr+β(x) ≥
(2−1−lλl)

r+β ≥ 2−(r+β)(l+1)λr+1
l for all x ∈ Gl,j

ν and r ∈ N, and, therefore,

|u|2
Hr+1(G̃l,0

k )
≤ 64

9

{
Cu δ

r+1
u (r + 1)!

}2
λ
−2(r+1)
l 22(r+β)(l+1) 1

2
Λ2
l 2

−2l

=
128

9

Λ2
l

λ
2(r+1)
l

{
Cu δ

r+1
u (r + 1)!

}2
22(r+β−1)(l+1) (5.19c)

holds for all r ∈ N, l ∈ N, and k = 1, 2.

Lemma 5.12 (estimates for the broken Sobolev seminorms). Assume β ∈ [0, 1),
α ≥ 1, µ ∈ {0, 1}2×2 and u ∈ C2

β(Q) in the sense of definition 3.4 with positive
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constants Cu and δu. Then, with p and s given by (5.13), the following bound is
satisfied for all l, r ∈ N and σ ∈ R:

Υps [u]
2
r+1,σ ≤ 64

3

e3√
2π

Λ
2(r+2−σ)
l

λ
2(r+1)
l

Σ2
lσ C

2
u δ

2(r+1−s)
u

22(r+1−σ−s)
s

{
(r + 1)!

s!

}2

2−2(α−β)l,

where
M2

lσ = max
1≤j≤l

22(2−β−σ)(j−1−l).

Proof. Applying (5.19b) for all j = 1, . . . , l and ν ∈ N, we deduce the following bound
for [u]2r+1,σ of (5.14) with arbitrary r ∈ N and σ ∈ R:

[u]2r+1,σ ≤ 64

9

{
Cu δ

r+1
u (r + 1)!

}2 ∑

jν

Λ
2(r+2−σ)
l 22(r+1−σ)(j−2−l)

λ
2(r+1)
l 22(r+β−1)(j−1−l)

=
64

9
2−2(r+1−σ) Λ

2(r+2−σ)
l

λ
2(r+1)
l

{
Cu δ

r+1
u (r + 1)!

}2
3

l∑

j=1

22(2−β−σ)(j−1−l)

=
64

3

Λ
2(r+2−σ)
l

λ
2(r+1)
l

2−2(r+1−σ) lM2
lσ

{
Cu δ

r+1
u (r + 1)!

}2
.

For p and s given by (5.13), using lemma A-8.2, we arrive at

Υps [u]
2
r+1,σ ≤ (̺− 1)2s Υps (s!)

2 64

3

Λ
2(r+2−σ)
l

λ
2(r+1)
l

lM2
lσ C

2
u δ

2(r+1−s)
u

22(r+1−σ−s)

{
(r + 1)!

s!

}2

≤ 64

3

e5√
2π

s exp

(

−2p

̺

)
Λ
2(r+2−σ)
l

λ
2(r+1)
l

lM2
lσ C

2
u δ

2(r+1−s)
u

22(r+1−σ−s)

{
(r + 1)!

s!

}2

≤ 64

3

e3√
2π

Λ
2(r+2−σ)
l

λ
2(r+1)
l

lM2
lσ C

2
u δ

2(r+1−s)
u

22(r+1−σ−s)
s

{
(r + 1)!

s!

}2

2−2(α−β)l.

Theorem 5.13 (hp quasi-interpolation). Let assumption 5.1 hold. Assume that α ≥
1 and u ∈ C2

β(Q) in the sense of definition 3.4 with positive constants Cu and δ. Then
there exist constants C1, C2, c0, c1, c2 > 0 such that, for all l ∈ N such that l ≥ 2, the
approximation vl = Π̃l,µ

δ,α,βu satisfies the following error and stability bounds:

‖u− vl‖2
H1(Q) ≤ C2

1 l
3 2−2(1−β)l,

∑

jν

|vl|2
H2(Gl,j

ν )
≤ C2

2 l
2 22βl (5.20)
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and

‖u− vl‖2
L2(Γl) ≤ c20 l

4 2−2(α−β)l, |u− vl|2
H1(Γl) ≤ c21 l

6 2−2(α+β∗−2β)l,
∑

jν

|vl|2
H2(Γl,j

ν )
≤ c22 l

2 2(2β+1)l, (5.21)

where β∗ = min
{

1
2 , β

}
.

Proof. We refer the reader to the Appendix.

Theorem 5.14 (trace lifting). Let assumption 5.1 hold. Assume that α ≥ 1 and
u ∈ C2

β(Q) in the sense of definition 3.4 with positive constants Cu and δ. Then

there exist constants C̃1, C̃2 > 0 such that, for all l ≥ 2, the trace-lifting term wl =
Πl,µ

δ,α,βu− Π̃l,µ
δ,α,βu satisfies the bounds

∑

jν

‖wl‖2
H1(Gl,j

ν )
≤ C̃2

1 l
6 2−2(1−β)l,

∑

jν

|wl|2
H2(Gl,j

ν )
≤ C̃2

2 l
2 22βl. (5.22)

Proof. We refer the reader to the Appendix.

5.5 h-FE reinterpolation

5.5.1 Preliminary bound

In this section, we prove the convergence of the approximations ul given by (5.2) to
u when u ∈ B2

β(Q) or u ∈ C2
β(Q).

We note that the boundary lifting we use in this section is the same as in (4.15a).
It is different from that discussed in the introductory section 3.4, which is independent
of the discretization. In lemma 5.15, we introduce ∆l ∈ S1(Q,T l) to satisfy, in the
sense of interpolation, the boundary conditions imposed on Γ0 without affecting the
values at active nodes and hence the tensor structure of the approximation. The term
∆l corresponds to Il

0(u−Π
lu) with n = 1, see (4.15a).

We set i∗ = (µ11 − 1, µ21 − 1), so that Gl,0 = Ql
i∗

= (0, hl
1)×(0, hl

2). We also
introduce

El
0 =

{

i ∈ Elr {i∗} : ∂Ql
i ∩ Γ0 6= ∅

}

, (5.23)

where El is as in (4.4).

Lemma 5.15. Consider l ∈ N such that l ≥ 2, p ∈ N and µ ∈ {0, 1}2×2. Assume
that u ∈ C(clQ) ∩ H2(Gl). Then the approximation ul given by (5.2) satisfies the
following error bound:
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‖ul − u‖2
H1(Q) ≤ 4 ‖vl − u‖2

H1(Q) + 4 ‖wl‖2
H1(Q)

+ 8
Λ4
l

λ2l
2−2l

{
∑

jν

∣
∣vl

∣
∣
2

H2(Gl,j
ν )

+
∑

jν

∣
∣wl

∣
∣
2

H2(Gl,j
ν )

}

+ 6 · 2−3l |u|2
H2(Γl) + 6 · 2−3l

∑

jν

|vl|2
H2(Γl,j

ν )

+
16

3
Λl 2

−l |u− vl|2
H1(Γl) + 32 · 2l ‖u− vl‖2

L2(Γl), (5.24)

where vl = Π̃ l
pu and wl = Π l

pu− vl.

Proof. Let us decompose ul into two terms: ul = Ξ l +∆l, where

Ξ l =
∑

i∈Il

ξl(tli)φ
l
i ∈ S1(Q,T l) and ∆l =

∑

i∈Il
0

(u− ξl)(tli)φ
l
i ∈ S1(Q,T l) (5.25)

with ξl = vl + wl ∈ C(clQ). To prove the error bound, we split the approximation
error as follows:

ul − u = (vl − u) + wl + (Ξl − ξl) +∆l, (5.26)

so that

‖ul − u‖2
H1(Q) ≤ 4 ‖vl − u‖2

H1(Q) + 4 ‖wl‖2
H1(Q)

+ 4 ‖Ξl − ξl‖2
H1(Q) + 4 ‖∆l‖2

H1(Q). (5.27)

In the corner element Gl,0 = Ql
i∗

= (0, hl
1)×(0, hl

2) with i∗ = (µ11 − 1, µ21 − 1),

the function ξl is bilinear; the interpolant Ξ l thus coincides with ξl in that element.
Then the third term of (5.27) may be estimated using corollary A-8.7 in every Ql

i

except Gl,0 = Ql
i∗

:

‖Ξl − ξl‖2
H1(Q) ≤

{
3

64
Λ4
l 2

−2l +
1

2

Λ4
l

λ2l

}

2−2l
∑

jν

∣
∣ξl

∣
∣
2

H2(Gl,j
ν )

≤ 2
Λ4
l

λ2l
2−2l

{
∑

jν

∣
∣vl

∣
∣
2

H2(Gl,j
ν )

+
∑

jν

∣
∣wl

∣
∣
2

H2(Gl,j
ν )

}

(5.28)

Estimating the boundary term ∆l is more technical. Due to the interpolation
properties of Π̃ l

1 and Π̃ l
p and because wl vanishes in Gl,0, the values of ξl and u at

the vertices of Gl,0 coincide, and ∆l vanishes in Gl,0. The boundary-lifting term ∆l

is thus nonzero only in those elements of T l that are indexed by El
0 given by (5.23).
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Applying proposition A-8.10 and corollary A-8.5 to every Ql
i with i ∈ El

0 and using
the fact that wl vanishes on ∂Q, we obtain the following inequalities:

‖∆l‖2
L2(Q) =

∑

i∈El
0

‖∆l‖2
L2(Ql

i)
≤ 2

∑

i∈El
0

1

3
2−lΛl ‖∆l‖2

L2(γl
i)

≤ 4
∑

i∈El
0

1

3
2−lΛl

{

‖u− vl −∆l‖2
L2(γl

i)
+ ‖u− vl‖2

L2(γl
i)

}

≤ Λ5
l

48
2−5l

∑

i∈El
0

|u− vl|2
H2(γl

i)
+

4

3
2−lΛl ‖u− vl‖2

L2(Γl)

=
Λ5
l

48
2−5l

∑

jν

|u− vl|2
H2(Γl,j

ν )
+

4

3
2−lΛl ‖u− vl‖2

L2(Γl), (5.29a)

|∆l|2
H1(Q) =

∑

i∈El
0

|∆l|2
H1(Ql

i)
≤ 2

∑

i∈El
0

{
1

3
2−lΛl |∆l|2

H1(γl
i)
+

2l

λl
‖∆l‖2

L2(γl
i)

}

≤ 4

3
2−lΛl

∑

i∈El
0

{

|u− vl −∆l|2
H1(γl

i)
+ |u− vl|2

H1(γl
i)

}

+ 4
2l

λl
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i∈El
0

{
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L2(γl
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}
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H2(γl
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H1(γl
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}
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0
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Λ4
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64
2−4l |u− vl|2

H2(γl
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L2(γl
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}

≤
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i∈El
0

{
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48

Λ4
l

λl
2−3l |u− vl|2

H2(γl
i)

+
4

3
2−lΛl |u− vl|2

H1(γl
i)
+ 4

2l

λl
‖u− vl‖2

L2(γl
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}

≤ 11

48

Λ4
l

λl
2−3l
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jν

|u− vl|2
H2(Γl,j

ν )
+

4

3
2−lΛl |u− vl|2

H1(Γl) + 4
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λl
‖u− vl‖2

L2(Γl).

(5.29b)

Combining (5.29), we proceed to
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‖∆l‖2
H1(Q) ≤

{
1

48
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48

Λ4
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3
Λl 2
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H1(Γl) + 4

{
1

3
2−2lΛl +
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≤ 3
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jν
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H2(Γl,j
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Λl 2
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H1(Γl) + 8 · 2l ‖u− vl‖2

L2(Γl)

≤ 3

2
2−3l |u|2

H2(Γl) +
3
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2−3l
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H2(Γl,j

ν )

+
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3
Λl 2

−l |u− vl|2
H1(Γl) + 8 · 2l ‖u− vl‖2

L2(Γl). (5.30)

The estimates (5.26), (5.28) and (5.30) yield the error bound claimed.

5.5.2 Reinterpolation of functions from C2
β(Q)

Theorem 5.16 (reinterpolation). Let assumption 5.1 hold. Assume that u ∈ C2
β(Q)

in the sense of definition 3.4 with positive constants Cu and δ. Then there exists a
positive constant Ĉ > 0 such that, for all B ⊂ {1, 2}2×2 such that µ and B satisfy
assumption 4.1 and for all l ≥ 2, the function ul defined in (5.2) with α = 3/2 satisfies
the bound

‖u− ul‖H1(Q) ≤ Ĉ l3 2−(1−β)l.

Proof. The proof consists in combining the bounds of theorems 5.13 and 5.14 and lemma 5.15.
First, consider Ql

i with i ∈ El
0, where El

0 is the index set given by (5.23). By the
trace theorem (consider (A-8.11) with κ = 1/2 and rescaled to Ql

i with i ∈ El
0), we

have

|u|2
H2(Γl) =

∑
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0

|u|2
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+ 9 δ2u (Λl 2

−l−1)2‖Φ−1
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}

≤ 211
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u δ
4
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(λl 2

−l−1)−(2β+1)
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+ 9 δ2u (Λl 2

−l−1)2
(λl 2
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}

≤ 214
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λ8l

C2
u δ

4
u

2β + 3
2(2β+1)l

{

1 + 3 δ2u
Λ2
l

λ2l

}

, (5.31)

where we bounded the standard Sobolev seminorms using (5.19a) similarly to as
for (5.19). Summing with respect to i ∈ El

0 and applying definition 3.4, we obtain By
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theorems 5.13 and 5.14, there exist positive constants C1, C2, c0, c1, c2 and C̃1, C̃2 > 0
such that, for every l ≥ 2 and for p given by (5.13), the discontinuous hp approxima-

tion vl = Π̃l,µ
δ,3/2,βu and the lifting term wl = Π̃l,µ

δ,3/2,βu−Π̃l,µ
δ,3/2,βu sum to a continuous

function ξl = vl + wl ∈ Sp(Q,Gl), where p is given by (5.13), and satisfy the error
bounds (5.20), (5.21) and (5.22). Combining those bounds and (5.31) with (5.24) of
lemma 5.15, we arrive at

‖u− ul‖H1(Q) ≤ 4C2
1 l

3 2−2(1−β)l + 4 C̃2
1 l
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2
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4 2−2(1−β)l ≤ Ĉ2 l6 2−(1−β)l

holds with any positive Ĉ such that

Ĉ2 ≥ 4C2
1 l

−3 + 4 C̃2
1 + 8

Λ4
l

λ2l
(C2

2 + C̃2
2 ) l

−4
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[
214
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Λ5
l

λ8l
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u δ
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2β + 3

{

1 + 3 δ2u
Λ2
l

λ2l

}

l−6 + c22 l
−4

]

+
16

3
Λl c

2
1 2

−l + 32 c20 l
−2,

where the expression on the right-hand side is monotonically decreasing with respect
to l.

5.6 Rank structure of the unfolding matrices of the coefficient
vector

Above in this section, we have studied the approximation of functions with a singu-
larity at the origin. The approximation results generalize immediately to functions
with singularities at θ ∈ {0, 1}2, which is an arbitrary vertex of Q. Indeed, we can
map θ into the origin by the reflection of coordinates, apply the approximation results
of this section and transform the hp approximation back. In this section, we consider
the evaluation of an hp function under such a reflection of coordinates and analyze
the QTT structure of the corresponding vector of values.

Let us consider polynomials ψ̂0, ψ̂1 ∈ P1: ψ̂0(t) = t and ψ̂1(t) = 1 − t for all
t ∈ [0, 1]. We introduce a reflection function:

ψ = ψ1 ⊗ ψ2 with ψk = ψ̂θk , k = 1, 2, (5.32)

so that ψ ◦ ψ = ψ̂0 ◦ ψ̂0 and ψ(θ) = 0, ψ(0) = θ.
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Lemma 5.17. Consider p, l ∈ N and let Pα1α2
, α1, α2 = 0, . . . , p form a basis of

Qp,p. Assume that ûl ∈ Sp(Q,Gl), θ ∈ {0, 1}2 and ul ∈ R
2l×2l is given by

ul
i1 i2 = ûl ◦ψ(tli1 i2)

for all i1, i2 = 0, . . . , 2l − 1. Then, for every q = 1, . . . , l − 1 and for all ξ1, ξ2 =
0, . . . , 2q − 1 except when ξ1 = θ1(2

q − 1) and ξ2 = θ2(2
q − 1), there exist coefficients

Cξ1ξ2α1α2
, α1, α2 = 0, . . . , p, such that

ul
2l−qξ1+η1, 2l−qξ2+η2

=

p
∑

α1,α2=0

Cξ1ξ2α1α2
Pα1α2

(η1, η2) (5.33)

for all η1, η2 = 0, . . . , 2l−q − 1.

Proof. First, we consider the case of θ = 0. Let q ∈ {1, . . . , l − 1} be arbitrary. For
either k = 1, 2 and ξk = 1, . . . , 2q − 1, let us set jk = ⌊log2 ξk⌋ + 1 + l − q. Then
we have 1 ≤ jk ≤ l and 2jk−1 ≤ 2l−qξk and 2l−q(ξk + 1) ≤ 2jk+q−l. That results

in xl,jk
k ≤ hl

k(2
l−qξk + ηk + 1 − µk1) ≤ xl,jk

k , i.e. tlk,2l−qξk+ηk
∈ Jl,jkk,1 , for all ηk =

0, . . . , 2l−q − 1. Therefore, if (ξ1, ξ2) 6= 0, there exist j ∈ 1, . . . , l and ν ∈ N such that
tl2l−qξ1+η1,2l−qξ2+η2

∈ clGl,j
ν for all ηk = 0, . . . , 2l−q − 1, i.e. the nodes corresponding

to fixed ξ1 and ξ2 belong to the same element of Gl. Since ûl ∈ Sp(Q,Gl), we have
ûl|

clGl,j
ν

∈ Qp,p, and the coefficients Cξ1ξ2α1α2
, α1, α2 = 0, . . . , p, satisfying (5.33) do

exist.
Let us now consider the case of an arbitrary θ ∈ {0, 1}2. Reflecting the kth coordi-

nate of the function u = ûl ◦ψ corresponds to flipping the kth index ik of the vector.
We represent ik by two indices: ξk and ηk. In (5.33), flipping the index ξk means
reordering the coefficients Cξ1ξ2α1α2

, whereas flipping ηk results in composing the
basis polynomials with an affine transformation. The transformed basis polynomials,
however, can also be represented in the same polynomial basis. The structure given
by (5.33) is therefore invariant under the reflection of coordinates, and the case of an
arbitrary θ ∈ {0, 1}2 reduces to that of θ = 0.

Lemma 5.17 describes the structure of the row space of each of the unfolding
matrices U q, q = 1, . . . , l − 1, corresponding to the QTT format (4.16) with the
transposed ordering (2.6). In the setting of this section, we have n = 1, and the index
i ≡ 0 is void. A particular result of lemma 5.17 is that the ranks of the unfolding
matrices are bounded by 1+ (p+1)2 for every θ ∈ {0, 1}2 and for all l ∈ N. Applying
remark 2.1, we obtain the following statement.

Corollary 5.18. Consider p, l ∈ N. Assume that ûl ∈ Sp(Q,Gl), θ ∈ {0, 1}2. Then

the vector ul ∈ R
2l×2l given by

ul
i1 i2 = ûl ◦ψ(tli1 i2)
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for all i1, i2 = 0, . . . , 2l−1 admits a QTT representation of the form (4.16) with ranks
bounded from above by 1 + (p+ 1)2.

Lemma 5.17 is closely related to the following notable result: a vector of values of
a univariate polynomial of degree p at 2l uniformly distributed points admits a QTT
representation with ranks bounded by p+1 independently of l [27, corollary 13]. The
same result can also be obtained in a constructive way, see [51, theorem 6]. In [39,
lemma 3.7], the result was generalized in the spirit of [27, theorem 18] to cover the case
of piecewise-polynomial functions (still univariate). Lemma 5.17 and corollary 5.18
given above is a further extension of the result, to the case of bivariate functions. For
hp-functions supported on similar partitions of (0, 1)d graded geometrically towards
a vertex, an analogous result, with the exponent d in the rank bound, follows in the
same way.

5.7 Exponential convergence of QTT-FE approximations

Applying theorem 5.16 and corollary 5.18 to the approximations given by equa-
tion (5.2), we obtain the main result of the present work: for u ∈ C2

β(Q), the set

F l
u given by (4.13a) contains an infinite sequence of approximations ul, l ∈ N, which

converge exponentially with respect to the number of QTT parameters needed to

exactly represent their coefficients ul ∈ R
2l×2l , l ∈ N.

Theorem 5.19 (exponential convergence of QTT-FE approximations). Let β ∈ [0, 1)
and assume that µ and B satisfy assumption 4.1 and u ∈ C2

β(Q). Then there exist

positive constants C and c and ul ∈ S1(Q,T l), l ∈ N, such that, for every l ∈ N, the
error bound

‖u − ul‖H1(Q) ≤ C l3 2−(1−β)l

holds and the coefficient vector ul = ˙A lul admits a QTT representation of the
form (4.16) with ranks r1, . . . , rl−1 ≤ cl2, i.e.

‖u − ul‖H1(Q) = O

(

l3 exp
(
−bN1/5

l

))

, l → ∞,

holds with N
1/5
l given by (4.17) and a positive constant b independent of l.

Proof. The accuracy and rank bounds for ul, l ∈ N, given by (4.14b) follow immedi-
ately from theorem 5.16 and corollary 5.18. Then, by (4.17), the number Nl of QTT
parameters needed to represent ul satisfies Nl ≤ 4lc2 l4 for every l ∈ N. That yields

the exponential convergence with respect to N
1/5
l .
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6 Numerical Experiment

In the numerical experiments presented below, we study solutions u ∈ B2
β(Ω) ⊂ C2

β(Ω)
of the form

u(x) = rα(x) sin(αϕ(x)) for all x ∈ Ω, (6.1)

where (r, ϕ) is the transformation to the standard polar coordinates, α > 0 and Ω
is a polygon such that 0 ∈ ∂ Ω. For every non-integral positive α, the function u
given by (6.1) exhibits a singularity at the origin. For all α > 0, we have u ∈ B2

β(Q)
with β ∈ (0, 1) if and only if β ∈ (1− α̃, 1), where α̃ = min{α, 1}. In that sense, the
analyticity class Bℓ

β(Q) with ℓ = 2 is suitable for quantifying the singularity strength
for all α ∈ (0, 1).

6.1 QTT-FE approximation

In this section, we illustrate the approximability of functions u ∈ B2
β(Ω) given by (6.1)

for Ω = Q = (0, 1)2 with QTT-FE functions, which are described in section 4. We
consider α = 1

4 ,
1
3 ,

2
3 ,

3
4 ,

7
8 ,

3
2 . We set µ0

k = 1 for all k,  = 1, 2 and consider the

corresponding uniform partition T l of Q. We impose no boundary conditions: B0 = ∅.
For each α, we construct ulappr ∈ S1(Q,T l), a QTT-FE approximation of u,

whose coefficient vector ul
appr =

˙A lulappr has a low-rank QTT decomposition of the
form (4.16). As a measure of approximation error, we use the relative H1-seminorm:

εl = |ulappr − u|H1(Q) / |u|H1(Q).

The results are presented in figure 1.
In each case, as figure 1a shows, the approximations ulappr achieve the convergence

εl ∼ ℵ−α̃/2
l = 2−α̃ l, with the optimal rate α̃ = min{α, 1}. That rate is the same as

suggested by lemma 5.2 and theorem 5.19. The convergence is algebraic with respect
to ℵl = 4l (4.13c) and exponential with respect to l.

As figure 1c indicates, the QTT ranks of ul
appr grow sublinearly with respect to l.

This is considerably better than the quadratic bound of corollary 5.18. A more refined
observation, based on figure 1d and going in the same direction, is that for the number
of QTT parameters Nl (4.17) we have Nl ∼ lκ with κ ≈ 2.33 instead of κ = 5 as in
theorem 5.19. Those two dependencies amount to the exponential convergence of the

QTT-FE approximations with respect toNl, shown in figure 1b: log2 ε
−1
l ∼ N

1/κ
l with

κ < 3. This exponent, observed numerically, is superior to κ = 5 of the theoretical
error bound. It is even slightly better than κ = 3 of hp approximations in two
dimensions [60]. We note that hp approximations in two dimensions may, in principle,
achieve convergence with a better exponent than κ = 3, e.g. κ = 2 was proved [36] for
approximation in hp spaces based on harmonic polynomials with respect to accuracy
measured in a broken norm.
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6.2 QTT-FEM

In this section, we demonstrate our approach as a method of solving the model prob-
lem (3.7) with A = −∆ and f = 0. We consider solutions u ∈ B2

β(Ω) given by (6.1)

in the following three cases: α = 2
3 in an L-shaped domain and α = 1

2 ± 1
4 in a domain

with a cut.

• Ω = (−1, 1)2r [0, 1)×(−1, 0] with γD = ∂ Ω and γN = ∅, which we split Ω into
n = 3 square patches;

• Ω = (−1, 1)2r [0, 1)×{0} with γD = ∂(−1, 1)2 ∪ [0, 1]×{+0} (including the top
side of the cut) and γN = (0, 1)×{−0} (the bottom side of the cut), which we
split Ω into n = 4 square patches.

6.2.1 Description of the experiment

In either domain, we consider the corresponding sets of admissible approximations
F l

u with l ∈ N, see equation (4.13a).
First, similarly to section 6.1, we study the approximability of the solution u with

QTT-FE functions, similarly to as described in section 4.1. The difference consists
in the introduction of an additional index i running from 0 to n − 1 and indicating
the patches. In each example, we have u ∈ B2

β(Ω) ⊂ C2
β(Ω) for all β ∈ (1 − α, 1).

We construct ulappr ∈ F l
u, a QTT-FE approximation of u, whose coefficient vector

ul
appr ∈ R

n×2l×2l has low QTT ranks in the sense of (4.16).
Second, we approximately solve the model problem in the weak formulation (3.7)

with the variational space is and the FEM space

V = H1
0(Ω) =

{
u ∈ H1

0(Ω) : u|γD

= 0
}
.

For each l, we choose the offset term Il
0 in place of u0 of (3.6) and denote the FEM

space with V l. We solve the discretization (3.9) as a linear system of the form

Alul
sol = f l (6.2)

using the solver amen_solve2 from the TT Toolbox2 [53]. The solver implements the
AMEn method for the TT-structured solution of linear systems, developed in [25].
Among the parameters of the solver are the maximum rank of the solution sought,
the maximum number of iterations (“sweeps”) and the target relative ℓ2 norm of the
corresponding residual, which we indiscriminately set equal to 50, 500 and 10−10 for all

2We use the master branch of the GitHub version 2.2+ of July 24, 2014 (git tag
http://github.com/oseledets/TT-Toolbox/tree/v2.3-4-ge1a3f2c) .
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α and l. Finally, we truncate every QTT-FE solution ulsol to obtain its approximation
ultr ∈ F l

u with smaller QTT ranks and such that

‖ultr − ulsol‖L2(Ω) ≤ 0.05 · 2−(1+α)l ‖w − u‖L2(Ω), (6.3)

where w, in every patch, is a bilinear function interpolating u at the vertices of the
patch. This allows to adapt the low-rank structure of the FE solution with respect to
the L2-error (and, due to the Markov brothers’ inequality, to the error measured in
the H1-norm), whereas the AMEn solver minimizes the ℓ2 norm of the residual.

6.2.2 Discussion of the results

The results are presented in figure 2. For all ulappr, u
l
sol and ultr, we measure the

error with respect to the exact solution u by the relative H1-seminorm, εl = |· −
u|H1(Q) / |u|H1(Q).

First, we note that the observations made regarding ulappr in section 6.1 remain
true in this case, where Ω consists of multiple patches. Second, the QTT-FE solutions
ulsol exhibit approximately the same convergence with respect to l (figure 2a) and Nl

(figure 2b). For small l, as figures 2c and 2d show, the AMEn solver significantly
overestimates the ranks of the QTT-FE solution ulsol. This is due to that the target
residual norm is inadequately small for those runs. For larger l, the behavior observed
for ulappr reappears. The rank truncation subject to (6.3) optimizes the QTT structure
of the FE solution, so that the maximum rank Rl, the number of QTT parameters
Nl and the convergence with respect to Nl for ultr are much closer to those of ulappr.

As in section 6.1 for ulappr, we observe the exponential convergence of ulappr, u
l
sol and

ultr to u with respect to N
1/κ
l with κ < 3, see figure 2b: logκ2 ε

−1
l ∼ Nl. Again, the

exponent is slightly better than for general hp approximations in two dimensions,
with κ = 3 [60].
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Figure 1: QTT-FE approximation with ulappr in Q = (0, 1)2 for α = 1
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4 ,
7
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2 . Top. Convergence to u with respect to the number l of levels and to the
number Nl (4.17) of QTT parameters. The error is εl = |ulappr − u|H1(Q) / |u|H1(Q).

Bottom. The QTT structure of ulappr vs. l.
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7 Conclusion

We summarize the main findings of the present paper. For a function u ∈ C2
β(Q),

where Q = (0, 1)2, there exists QTT-FE approximations ul, l ∈ N, that satisfy two
properties. First, as elements of the corresponding FE spaces, they are quasi-optimal
in the sense that, in the energy norm, they realize the optimal algebraic convergence
rate 1− β with respect to the mesh size. Second, the coefficient vectors can be repre-
sented in the QTT format with the number of parameters Nl that is polylogarithmic
with respect to the mesh size. This means that the analytic regularity exhibited by the
functions from C2

β(Q), although irrelevant for the convergence of low-order Courant
FE approximations with respect to the number of degrees of freedom, is implicitly
encoded in the low-rank tensor structure of the coefficient vectors. Furthermore, that
regularity may be recovered by the QTT representation and results in exponential
convergence with respect to N1/κ, where κ > 1.

These results are established theoretically with κ = 5 in theorem 5.19 and are
observed experimentally with κ < 3 in section 6. An analogous exponent for hp-FE
approximations is κ = 3, and the QTT-FE approach turns out to be comparable.

Storing the coefficients implicitly, in a low-parametric form of the QTT decompo-
sition, allows for both accurate approximation and efficient computation. The mesh
underlying the FE space becomes virtual in the sense that the solution is never rep-
resented or processed locally, i.e. with respect to single finite elements. The number
of levels of the virtual mesh, however, remains an important, “real” parameter. First,
it limits the approximation properties of the QTT-FE approximations. Second, it is
equal to the number of cores in the QTT representations of the approximations.

For very fine discretizations (large l), the nodal approximation considered in the
present paper suffers in practice from the ill-conditioning of the nodal bases, which
prohibited the solution of the Galerkin system with larger l in the experiments pre-
sented in section 6.2. The approximation results obtained in the present paper, how-
ever, carry over to H1-stable tensor-product wavelet bases, which promise to be more
efficient for the solution of boundary-value problems using the QTT-FEM, see, e.g.
the recent works [10, 11].

A-8 Appendix

A-8.1 Auxiliary lemmas

Lemma A-8.1. Let n ∈ N. Then for the sum of the inverses of the corresponding
n+ 1 binomial coefficients

n∑

k=0

(
n

k

)−1

≤ 8

3
. (A-8.1)
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Proof. For n ∈ N, let us denote the left-hand side of (A-8.1) by In. For every n ∈ N,
we have the recurrence relation In+1 = (n + 2)/(2n + 2) In + 1, see [57, theorem 1].
By induction, starting from n = 3, it follows that In ≥ 2(1 + n−1) for all n ≥ 3.
Then In+1 ≤ In + (2n + 2)−1In − 1 for all n ≥ 3. Again by induction, we obtain
In ≤ I3 = 8/3 for all n > 3. Since I1, I2 ≤ I3, that proves the claim.

As above, for all p ∈ N and s = 0, 1, . . . , p, we use the notation

Υps =
(p− s)!

(p+ s)!
.

Lemma A-8.2. For all ̺ > 1 and p ∈ N such that p ≥ ̺, let us set s =
⌊
p/̺

⌋
, so

that 1 ≤ s ≤ p. Then the bound

(̺− 1)2s(s!)2 Υps ≤ c2 s exp

(

−2p

̺

)

holds with c2 = e5/
√
2π.

Proof. Using Stirling’s bound for the Euler’s Gamma function, we obtain the bounds

Υps ≤
e (p− s)p−s+ 1

2 e−(p−s)

√
2π (p+ s)p+s+ 1

2 e−(p+s)
=

e√
2π

(
p− s

p+ s

)p−s+ 1
2 e2s

(p+ s)2s
,

(s!)2 ≤ e2 s2s+1 e−2s,

which yield together

(̺− 1)2s(s!)2 Υps ≤
e3√
2π

s

(
p− s

p+ s

)p−s+ 1
2
[

(̺− 1)
s

p+ s

]2s

≤ .

For s = ⌊p/̺⌋, we have p/̺ − 1 < s ≤ p/̺, so that (̺ − 1)s ≤ p − s. We denote
t = 2s/(p+ s) and, using that (1− t)1/t < e−1

√
1− t holds for 0 < t ≤ 1, obtain

(̺− 1)2s(s!)2 Υps ≤
e3√
2π

s

(
p− s

p+ s

)p+s+ 1
2

≤ e3√
2π

√
p− s

p+ s
s (1− t)2s/t

≤ e3√
2π

√
p− s

p+ s
s exp(−2s) ≤ e5√

2π
s exp

(

−2p

̺

)

.
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A-8.2 Bounds for univariate quasi-interpolation

We shall use the following bound, for which one may refer to either of [60, Corol-
lary 3.15] or [15, Corollary 2]

Proposition A-8.3. Assume that p ∈ N and s ∈ N0 are such that s ≤ p. Then, for
any function û ∈ Hs+1(Ĵ), the interpolant π̂pû satisfies the error bounds

|û− π̂pû|2
H1(Ĵ)

≤ Υps |û|2
Hs+1(Ĵ)

,

‖û− π̂pû‖2
L2(Ĵ)

≤ 1

p (p+ 1)
Υps |û|2

Hs+1(Ĵ)
.

(A-8.2)

We shall also use the following stability bound on the second derivative of the
interpolant.

Lemma A-8.4. For every p ∈ N and for every u ∈ H2(Ĵ), the following bounds hold:

|π̂pû|2
H2(Ĵ)

≤ 1

4
p2(p2 − 1)|û|2

H1(Ĵ)
, |π̂pû|2

H2(Ĵ)
≤ 1

2
(p2 − 1)|û|2

H2(Ĵ)
. (A-8.3)

Proof. Consider L2
w(Ĵ), a weighted space of square-integrable functions defined on Ĵ,

with the weight w given by w(x) = 1 − x2 for all x ∈ Ĵ. For this weight, we have
û′′ ∈ L2

w(Ĵ) with ‖û′′‖
L2

w(Ĵ) ≤ ‖û′′‖
L2(Ĵ). Note that L′

i, i ∈ N, are orthogonal in

L2
w(Ĵ), namely

〈L′
i, L

′
i′〉L2

w(Ĵ) =
δii′

i+ 1
2

(i+ 1)!

(i− 1)!
for all i, i′ ∈ N.

Below, we shall also use that ‖L′
i‖2L2(Ĵ)

= i(i + 1) for every i ∈ N0. That follows

readily from integration by parts and the orthogonality of the Legendre polynomials,
as in [60, theorem 3.91]:

∫ 1

−1

L′
iL

′
i = LiL

′
i|1−1 −

∫ 1

−1

LiL
′′
i = LiL

′
i|1−1 = 2Li(1)L

′
i(1) = i(i+ 1).

Since û′ ∈ L2(Ĵ), we have a Legendre representation û′ =
∑∞

i=0 ciLi in L2(Ĵ) with

coefficients ci, i ∈ N0. Then û′′ =
∑∞

i=1 ciL
′
i holds in L2(Ĵ) and, thus, also in L2

w(Ĵ).
This results in the bound

∞∑

i=1

1

i+ 1
2

(i+ 1)!

(i− 1)!
|ci|2 = ‖û′′‖2

L2
w(Ĵ)

≤ ‖û′′‖2
L2(Ĵ)

. (A-8.4)
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By Definition 5.3, we have (π̂pû)
′ =

∑p−1
i=0 ciLi, and by the triangle inequality we

obtain

‖(π̂pû)′′‖L2(Ĵ) =
∥
∥
∥

p−1
∑

i=1

ciL
′
i

∥
∥
∥
L2(Ĵ)

≤
p−1
∑

i=1

√

i
(

i+
1

2

)

(i+ 1) ·
[

c2i
i+ 1

2

] 1
2

(A-8.5)

=

p−1
∑

i=1

√

i+
1

2
·
[

c2i
i+ 1

2

(i+ 1)!

(i− 1)!

] 1
2

. (A-8.6)

Finally, we apply the Cauchy–Bunyakovsky–Schwarz inequality to (A-8.5) and (A-8.6)
to arrive at the bounds

‖(π̂pû)′′‖2
L2(Ĵ)

≤ ‖û′‖2
L2(Ĵ)

p−1
∑

i=1

i
(

i+
1

2

)

(i+ 1) =
1

4
p2(p2 − 1)‖û′‖2

L2(Ĵ)
,

‖(π̂pû)′′‖2
L2(Ĵ)

≤ ‖û′′‖2
L2(Ĵ)

p−1
∑

i=1

(

i+
1

2

)

=
1

2
(p2 − 1)‖û′′‖2

L2(Ĵ)
.

By rescaling from an interval I to Ĵ = (−1, 1), from proposition A-8.3 and lemma A-
8.4 we obtain the following statement.

Corollary A-8.5. Consider an interval I = (2a, 2a + 2h) with 0 < h < ∞. Let ϕ
be an affine map from Ĵ onto I. Then, for all p, s ∈ N such that s ≤ p, for every
u ∈ Hs+1(G) and for v ∈ Qp,p given by v ◦ϕ = π̂k,p (u ◦ϕ), the following inequalities
hold:

‖u− v‖2
L2(I) ≤

1

p (p+ 1)
h2(s+1) Υps |u|2Hs+1(I),

|u− v|2
H1(I) ≤ h2s Υps |u|2Hs+1(I),

|v|2
H2(I) ≤

1

4

p2(p2 − 1)

2h
|u|2

H1(I), |v|2
H2(I) ≤

1

2
(p2 − 1) |u|2

H2(I).

A-8.3 Bounds for tensor-product bivariate quasi-interpolation

We shall use the following error bound for the projection Π̂p1,p2
. For similar bounds

for tensor-product interpolation operators, we also refer to [60, lemma 4.67] and [15,
theorem 5].
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Lemma A-8.6. Let p = (p1, p2) ∈ N
2 and q1, q2, r1, r2, s1, s2 ∈ N0 be such that

q1, r1, s1 ≤ p1 and q2, r2, s2 ≤ p2. Then the following bounds hold true for every
û ∈ H

q1+1,2
mix

(Q̂) ∩H
2,q2+1
mix

(Q̂) ∩H
r1+1,r2+1
mix

(Q̂) ∩H
s1+1,1
mix

(Q̂) ∩H
1,s2+1
mix

(Q̂):

‖û− Π̂p1p2
û‖2

L2(Q̂)
≤ 3

2∑

k=1

1

pk(pk + 1)
Υpksk ‖∂sk+1

k û‖2
L2(Q̂)

+ 3

[ 2∏

k=1

1

pk(pk + 1)
Υpkrk

]

‖∂r1+1
1 ∂r2+1

2 û‖2
L2(Q̂)

,

|û− Π̂p1p2
û|2

H1(Q̂)
≤ 2

2∑

k=1

Υpksk ‖∂sk+1
k û‖2

L2(Q̂)

+
2

p1(p1 + 1)
Υp1q1 ‖∂q1+1

1 ∂2û‖2L2(Q̂)

+
2

p2(p2 + 1)
Υp2q2 ‖∂1∂q2+1

2 û‖2
L2(Q̂)

,

|Π̂p1p2
û|2

H2(Q̂)
≤ (p21 − 1)‖∂21 û‖2L2(Q̂)

+ (p22 − 1)‖∂22 û‖2L2(Q̂)

+

{

1 +
1

2

p21
p2

p21 − 1

p2 + 1
+

1

2

p22
p1

p22 − 1

p1 + 1

}

‖∂1∂2û‖2L2(Q̂)
.

Proof. Note that the inequality

‖∂kπ̂k,pk
v̂‖2

L2(Q̂)
≤ ‖∂kv̂‖2L2(Q̂)

for every v̂ ∈ H
1,1
mix

(Q̂) (A-8.7)

follows from Definition 5.3.
Let û ∈ H

s1+1,1
mix

(Q̂) ∩ H
1,s2+1
mix

(Q̂). Since Π̂p1p2
= π̂1,p1

◦ π̂2,p2
, we have the de-

composition

û− Π̂p1p2
û = (id − π̂1,p1

)û+ π̂1,p1
(id − π̂2,p2

)û

= (id − π̂1,p1
)û+ (id − π̂2,p2

)û− (id − π̂1,p1
)(id − π̂2,p2

)û. (A-8.8)

L2 error bound. By the triangle inequality, from (A-8.8) we obtain

‖û− Π̂p1p2
û‖2

L2(Q̂)
≤ 3‖û− π̂1,p1

û‖2
L2(Q̂)

+ 3‖û− π̂2,p2
û‖2

L2(Q̂)

+ 3‖(id − π̂1,p1
)(û− π̂2,p2

û)‖2
L2(Q̂)

.

Using proposition A-8.3, we bound the first two terms as follows: for every k ∈ {1, 2},
we have

‖û− π̂k,pk
û‖2

L2(Q̂)
≤ 1

pk(pk + 1)
Υpksk ‖∂sk+1

k û‖2
L2(Q̂)

(A-8.9)
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for every sk ∈ N0 such that sk ≤ pk. Similarly, for the third term we obtain

‖(id − π̂1,p1
)(û− π̂2,p2

û)‖2
L2(Q̂)

≤
1

p1(p1 + 1)
Υp1r1 ‖∂r1+1

1 (û− π̂2,p2
û)‖2

L2(Q̂)

≤
[ 2∏

k=1

1

pk(pk + 1)
Υpkrk

]

‖∂r1+1
1 ∂r2+1

2 û‖2
L2(Q̂)

for all r1, r2 ∈ N0 such that r1 ≤ p1 and r2 ≤ p2. By combining the bounds for the
three terms, we obtain the L2-norm estimate claimed.

H1 error bound. We use (A-8.8), the triangle inequality, (A-8.7) and proposi-
tion A-8.3 to arrive at

‖∂1(û− Π̂p1p2
û)‖2

L2(Q̂)

≤ 2 ‖∂1(id − π̂1,p1
)û‖2

L2(Q̂)
+ 2 ‖∂1π̂1,p1

(id − π̂2,p2
)û‖2

L2(Q̂)

≤ 2 ‖∂1(id − π̂1,p1
)û‖2

L2(Q̂)
+ 2 ‖(id − π̂2,p2

)∂1û‖2L2(Q̂)

≤ 2Υp1s1 ‖∂s1+1
1 û‖2

L2(Q̂)
+

2

p2(p2 + 1)
Υp2q2 ‖∂q2+1

2 ∂1û‖2L2(Q̂)
.

An analogous bound holds for ‖∂2(û−Π̂p1p2
û)‖2

L2(Q̂)
. Together, the two bounds prove

the H1-norm error estimate claimed.
H2-stability estimate. Let us decompose the interpolant as follows:

Π̂p1p2
û = π̂1,p1

û− (id − π̂2,p2
)π̂1,p1

û. (A-8.10)

Using the triangle inequality and the properties of the interpolation operators, we
obtain

‖∂21Π̂p1p2
û‖

L2(Ĵ) ≤ ‖∂21(id − π̂2,p2
)π̂1,p1

û‖
L2(Ĵ) + ‖∂21 π̂1,p1

û‖
L2(Ĵ)

= ‖(id − π̂2,p2
)∂21 π̂1,p1

û‖
L2(Ĵ) + ‖∂21 π̂1,p1

û‖
L2(Ĵ)

For these two terms, let us use the corresponding bounds of lemma A-8.4. For the
second, we obtain ‖∂21 π̂1,p1

û‖2
L2(Ĵ)

≤ 1
2 (p

2
1 − 1)‖∂21 û‖2L2(Ĵ)

. For the first term, we

use the error bound of proposition A-8.3: ‖(id − π̂2,p2
)∂21 π̂1,p1

û‖2
L2(Ĵ)

≤ p−1
2 (p2 +

1)−1‖∂2∂21 π̂1,p1
û‖2

L2(Ĵ)
= p−1

2 (p2 + 1)−1‖∂21 π̂1,p1
∂2û‖2L2(Ĵ)

. Then, by the first bound

of lemma A-8.4, the inequality ‖(id− π̂2,p2
)∂21 π̂1,p1

û‖2
L2(Ĵ)

≤ p−1
2 (p2 +1)−1p21/4 (p

2
1 −
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1)‖∂1∂2û‖2L2(Ĵ)
holds true. By combining the bounds for the two terms, we arrive at

‖∂21Π̂p1p2
û‖2

L2(Ĵ)
≤ (p21 − 1)‖∂21 û‖2L2(Ĵ)

+
1

2

p21
p2

p21 − 1

p2 + 1
‖∂1∂2û‖2L2(Ĵ)

.

An analogous estimate follows for ‖∂22Π̂p1p2
û‖2

L2(Ĵ)
. For the mixed derivative, (A-8.7)

allows to obtain

‖∂1∂2Π̂p1p2
û‖2

L2(Ĵ)
= ‖∂1π̂1,p1

∂2π̂2,p2
û‖2

L2(Ĵ)
≤ ‖∂1∂2π̂2,p2

û‖2
L2(Ĵ)

= ‖∂2π̂2,p2
∂1û‖2L2(Ĵ)

≤ ‖∂2∂1û‖2L2(Ĵ)
.

Together, the bounds on the second-order derivatives yield the stability estimate.

Corollary A-8.7. Consider a rectangle G = (2a1, 2a1 + 2h1)×(2a2, 2a2 + 2h2) with
λh ≤ h1, h2 ≤ Λh, where h > 0, 0 < λ ≤ 1 and Λ ≥ 1. Let ϕ be an affine map from
Q̂ onto G. Then, for all p, s ∈ N such that s ≤ p, for every u ∈ Hs+2(G) and for
v ∈ Qp,p given by v ◦ϕ = Π̂p,p (u ◦ϕ), the following inequalities hold:

‖u− v‖2
L2(G) ≤ 3 (Λh)2(s+1) Υps

p (p+ 1)
|u|2

Hs+1(G),

|u− v|2
H1(G) ≤ 4

Λ2

λ2
(Λh)2s Υps |u|2Hs+1(G),

|v|2
H2(G) ≤

Λ4

λ4
(p2 − 1) |u|2

H2(G).

Proof. The statement follows by a rescaling argument from lemma A-8.6 with s1 =
s2 = s and r1 = s− 1, r2 = 0.

Lemma A-8.8. Consider p1, p2 ∈ N and s2 ∈ N0 such that s2 ≤ p2. Then the
following bounds on Γ̂, the left edge of Q̂, hold for every û ∈ H

1,s2+1
mix

(Q̂):

‖û− Π̂p1p2
û‖2

L2(Γ̂)
≤ 3

2

Υp2s2

p2(p2 + 1)

{

‖∂s2+1
2 û‖2

L2(Q̂)
+ ‖∂1∂s2+1

2 û‖2
L2(Q̂)

}

,

|û− Π̂p1p2
û|2

H1(Γ̂)
≤ 3

2
Υp2s2

{

‖∂s2+1
2 û‖2

L2(Q̂)
+ ‖∂1∂s2+1

2 û‖2
L2(Q̂)

}

,

|Π̂p1p2
û|2

H2(Γ̂)
≤ 3

4
(p22 − 1)

{

‖∂22 û‖2L2(Q̂)
+ ‖∂1∂22 û‖2L2(Q̂)

}

.

Proof. First, we note that

‖v̂‖2
L2(Γ̂)

≤ 1

2
(1+κ

−1)‖v̂‖2
L2(Q̂)

+(1+κ)‖∂1v̂‖2L2(Q̂)
for all v̂ ∈ H

1,1
mix

(Q̂) (A-8.11)
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holds with every κ > 0. This explicit form of the trace theorem follows immediately
from the formula v̂(−1, y) = v̂(x, y) −

∫ x

−1
∂1v̂(t, y) dt, valid for all (x, y) ∈ Q̂, and

from the Cauchy–Bunyakovsky–Schwarz inequality for R
2 and L2(Ĵ).

The interpolation property of π̂1,p1
and π̂2,p2

implies the relations

∂α2

2 Π̂p1p2
û(−1, y) = π̂1,p1

∂α2

2 π̂2,p2
û(−1, y)

= ∂α2

2 π̂2,p2
û(−1, y) = (π̂p2

[û(−1, ·)])(α2)(y)

for all y ∈ Ĵ and α2 ∈ {0, 1, 2}. Therefore, by proposition A-8.3 and lemma A-8.4,
the following inequalities hold:

‖û− Π̂p1p2
û‖2

L2(Γ̂)
= ‖û(−1, ·)− π̂p2

û(−1, ·)‖2
L2(Ĵ)

≤ Υp2s2

p2(p2 + 1)
‖∂s2+1

2 û‖2
L2(Γ̂)

,

|û− Π̂p1p2
û|2

H1(Γ̂)
= |û(−1, ·)− π̂p2

û(−1, ·)|2
H1(Ĵ)

≤ Υp2s2 ‖∂s2+1
2 û‖2

L2(Γ̂)
,

|Π̂p1p2
û|2

H2(Γ̂)
= |π̂p2

û(−1, ·)|2
H2(Ĵ)

≤ 1

2
(p22 − 1)‖∂22 û‖2L2(Γ̂)

.

Then, applying inequality (A-8.11) with κ = 1
2 , we obtain the claim.

Corollary A-8.9. Consider a rectangle G = (2a1, 2a1 +2h1)×(2a2, 2a2 +2h2) ⊂ Q.
Let γ denote the left edge of G and ϕ be an affine map from Q̂ onto G.

Then, for all p ∈ N and s ∈ N0 such that s ≤ p, for every u ∈ Hs+3(G) and for
v ∈ Qp,p given by v ◦ϕ = Π̂p,p (u ◦ϕ), the following inequalities hold:

‖u− v‖2
L2(γ) ≤

3

2

h
2(s+1)
2

h1

Υps

p(p+ 1)

{

‖∂s+1
2 u‖2

L2(G) + h21 ‖∂1∂s+1
2 u‖2

L2(G)

}

,

|u− v|2
H1(γ) ≤

3

2

h2s2
h1

Υps

{

‖∂s+1
2 u‖2

L2(G) + h21 ‖∂1∂s+1
2 u‖2

L2(G)

}

,

|v|2
H2(γ) ≤

3

4

p2 − 1

h1

{

‖∂22u‖2L2(G) + h21 ‖∂1∂22u‖2L2(G)

}

.

Proof. Follows from lemma A-8.8 by a rescaling argument.

Proposition A-8.10. Consider a rectangle G = (2a1, 2a1+2h1)×(2a2, 2a2+2h2) ⊂
Q. Let w ∈ P1 be the polynomial satisfying w(2a1) = 1 and w(2a1 + 2h1) = 0.

Then, for every v ∈ Pp with p ∈ N, the polynomial ξ = w⊗ v ∈ Q1,p satisfies

‖ξ‖2
L2(G) =

2h1
3

‖v‖2
L2(γ) and |ξ|2

Hm+1(G) =
2h1
3

|v|2
Hm+1(γ) +

1

2h1
|v|2

Hm(γ),

with m = 0, 1.
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For a square with 0 as a vertex, we shall use the following approximation result.

Proposition A-8.11. Consider a rectangle Q = (0, 1)2 and β ∈ [0, 1). Then there
exist positive constants D0 and D1 such that, for every u ∈ H

2,2
β (Q), the polynomial

v ∈ Q1,1 interpolating u at the vertices of Q is well-defined and satisfies the error
bounds

‖u− v‖2
L2(Q) ≤ D2

0 |u|2H2,2
β (Q)

and |u− v|2
H1(Q) ≤ D2

1 |u|2H2,2
β (Q)

.

Proof. By proposition 3.1, the function u admits a continuous extension to clQ.
That ensures that the interpolant is well defined. The error estimates follow from [30,
lemma 3.6], see also [60, lemma 4.25].

A-8.4 Proofs of theorems for hp quasi-interpolation

A-8.4.1 Lemma 5.8

Proof. For an arbitrary function u ∈ H
1,1
mix

(Q), we shall define a lifting term wl ∈
S̃p(Q,Gl) so that Π̃ l

pu+ wl ∈ C(clQ) and the mapping u 7→ wl is linear.

For 1 ≤ j ≤ l, let γ j
1 and γ̃ j

1 denote the right edges of Gl,j
11 and Gl,j

10 respectively,

γ j
2 and γ̃ j

2 , the top edges of Gl,j
11 and Gl,j

01 respectively, Γ̃j
1 and Γ̃j

2, the left edge of

Gl,j
10 and the bottom edge of Gl,j

0,1 respectively.
Let us set consider the polynomial interpolants

vjν = (Π̃ l
p u)|Gl,j

κ

∈ Qp,p with j = 1, . . . , l and ν ∈ N,

v0 = (Π̃ l
p u)|Gl,0

∈ Q1,1

given in definition 5.7. For 1 ≤ j < l and k ∈ {1, 2}, we define linear univariate
polynomials ψj

k ∈ P1 by requiring

ψj
k(x

l,j
k ) = 0 and ψj

k(x
l,j+1
k ) = 1.

Using these as factors, we introduce bivariate lifting polynomials ηj1 , η̃
j
1 ∈ P1,p and

ηj2 , η̃
j
2 ∈ Pp,1 with 1 ≤ j < l by setting

ηj1 = ψj
1 ⊗ (vj+1

1,0 − vj1,1)|γj
1

, η̃j1 = ψj
1 ⊗ (vj+1

1,0 − vj1,0)|γ̃j
1

ηj2 = (vj+1
0,1 − vj1,1)|γj

2

⊗ ψj
2 , η̃j2 = (vj+1

0,1 − vj0,1)|γ̃j
2

⊗ ψj
2 .

(A-8.12a)

Additionally, we introduce lifting polynomials ζ1 ∈ P1,p and ζ2 ∈ Pp,1:

ζ1 = (1− ψ1
1 )⊗ (v0 − v11,0)|Γ̃1

1

, ζ2 = (v0 − v10,1)|Γ̃1
2

⊗ (1− ψ1
2 ). (A-8.12b)
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From the lifting polynomials defined in (A-8.12), we construct the lifting term wl ∈
S̃p(Q,Gl):

wl = 1Gl,1
10

ζ1 + 1Gl,1
01

ζ2

+
l−1∑

j=1

{

1Gl,j
11

ηj1 + 1Gl,j
11

ηj2 + 1Gl,j
10

η̃j1 + 1Gl,j
01

η̃j2

}

. (A-8.13)

By Definition 5.5, the interpolants of u in any two elements sharing an entire edge
coincide on that edge. Then, due to the nodal exactness of interpolation in each
element, the construction of (A-8.12) ensures that, first, wl vanishes in Gl,0 and on
∂Q and, second, the lifted interpolant extends to a function continuous across the
edges of the elements of Gl: wl + Π̃ l

pu ∈ C(clQ).

Since the operator Π̃ l
p is linear, so is the mapping u 7→ wl. This allows to define

a linear operator Π l
p : H

1,1
mix

(Q) → Sp(Q,Gl) on u by setting Π l
pu = Π̃ l

pu+ wl.

A-8.4.2 Lemma 5.10

Proof. By proposition A-8.11 and a rescaling argument, the interpolant vl satisfies
the error bounds

‖u− vl‖2
L2(Gl,0) ≤ D2

0

Λ4
l

λ2l
2−2(2−β)l |u|2

H
2,2
β (Gl,0)

, (A-8.14a)

|u− vl|2
H1(Gl,0) ≤ D2

1

Λ4
l

λ4l
2−2(1−β)l |u|2

H
2,2
β (Gl,0)

(A-8.14b)

with positive constants D0 and D1 depending only on β.

For all j = 1, . . . , l, ν ∈ N and s ∈ N such that s ≤ p, corollary A-8.7 yields the
following:

‖u− vl‖2
L2(Gl,j

ν )
≤ 3 (2j−2−lΛl)

2s+2 Υps

p (p+ 1)
|u|2

Hs+1(Gl,j
ν )
,

|u− vl|2
H1(Gl,j

ν )
≤ 4

Λ2
l

λ2l
(2j−2−lΛl)

2s Υps |u|2
Hs+1(Gl,j

ν )
,

|vl|2
H2(Gl,j

ν )
≤ Λ4

l

λ4l
(p2 − 1) |u|2

H2(Gl,j
ν )
.

(A-8.15)

By combining the inequalities of (A-8.14) and (A-8.15), we obtain the bounds of (5.15).

Finally, for all j = 1, . . . , l and ν ∈ N such that Γl,j
ν of (5.9a) is nonempty, we

49



apply corollary A-8.9 to Gl,j
ν and Γl,j

ν :

‖u− vl‖2
L2(Γl,j

ν )
≤ 3

2

Λl

λl
(2j−2−lΛl)

2s+1 Υps

p(p+ 1)

{

|u|2
Hs+1(Gl,j

ν )

+ (2j−2−lΛl)
2 |u|2

Hs+2(Gl,j
ν )

}

,

|u− vl|2
H1(Γl,j

ν )
≤ 3

2

Λl

λl
(2j−2−lΛl)

2s−1 Υps

{

|u|2
Hs+1(Gl,j

ν )

+ (2j−2−lΛl)
2 |u|2

Hs+2(Gl,j
ν )

}

,

|vl|2
H2(Γl,j

ν )
≤ 3

4

p2 − 1

2j−2−lλl

{

|u|2
H2(Gl,j

ν )
+ (2j−2−lΛl)

2 |u|2
H3(Gl,j

ν )

}

.

By summing over all j = 1, . . . , l and ν ∈ N, we obtain (5.16).

A-8.4.3 Lemma 5.11

Proof. Using the Cauchy–Bunyakovsky–Schwarz inequality in each Gl,j
ν , we may

bound the lifting term wl of lemma 5.8 as follows:

l−1∑

j=1

∑

ν∈N

|wl|2
Hm(Gl,j

ν )
≤ 2

{

|ζ1|2
Hm(Gl,1

10
)
+ |ζ2|2

Hm(Gl,1
01

)

}

+ 2

l−1∑

j=1

∑

ν∈N

{

|η̃j1 |2Hm(Gl,j
10

)
+ |η̃j2 |2Hm(Gl,j

01
)
+ |ηj1 |2Hm(Gl,j

11
)
+ |ηj2 |2Hm(Gl,j

11
)

}

(A-8.16)

for m = 0, 1, 2.
Applying proposition A-8.10 and the Cauchy–Bunyakovsky–Schwarz inequality on

edges of the elements, we obtain from (A-8.13) and (A-8.16) that

‖wl‖2
L2(Q) ≤

4

3
2−lΛl

{

‖u− v0‖2
L2(Γ̃1

1
)
+ ‖u− v11,0‖2L2(Γ̃1

1
)

+ ‖u− v0‖2
L2(Γ̃1

2
)
+ ‖u− v10,1‖2L2(Γ̃1

2
)

}

+

l−1∑

j=1

4

3
2j−1−lΛl

{

‖u− vj1,0‖2L2(γ̃j
1
)
+ ‖u− vj1,1‖2L2(γj

1
)
+ ‖u− vj+1

1,0 ‖2
L2(Γ̃j+1

1
)

+ ‖u− vj0,1‖2L2(γ̃j
2
)
+ ‖u− vj1,1‖2L2(γj

2
)
+ ‖u− vj+1

0,1 ‖2
L2(Γ̃j+1

2
)

}

.

Rearranging the terms and using corollary A-8.9, we arrive at
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‖wl‖2
L2(Q) ≤

4

3
2−lΛl ‖u− v0‖2

L2(Γ̃1
1
∪ Γ̃1

2
)

+
4

3

l∑

j=1

2j−1−lΛl

{
1

2
‖u− vj1,0‖2L2(Γ̃j

1
)
+ ‖u− vj1,0‖2L2(γ̃j

1
)

+
1

2
‖u− vj0,1‖2L2(Γ̃j

2
)
+ ‖u− vj0,1‖2L2(γ̃j

2
)
+ ‖u− vj1,1‖2L2(γj

1
∪ γj

2
)

}

≤ 1

4

Λl

λl
(2−lΛl)

4
2∑

k=1

{

|u|2
H2(G̃l,0

k )
+ (2−l−2Λl)

2 |u|2
H3(G̃l,0

k )

}

+ 3
Λl

λl

Υps

p(p+ 1)

{

[u]2s+1,0 + [u]2s+2,0

}

. (A-8.17a)

Analogously to (A-8.17a), we obtain the bounds

l−1∑

j=1

∑

ν∈N

|wl|2
H1(Gl,j

ν )
≤ 4

3
2−lΛl |u− v0|2

H1(Γ̃1
1
∪ Γ̃1

2
)
+

4

2−lλl
‖u− v0‖

L2(Γ̃1
1
∪ Γ̃1

2
)

+
4

3

l∑

j=1

2j−1−lΛl

{
1

2
|u− vj1,0|2H1(Γ̃j

1
)
+ |u− vj1,0|2H1(γ̃j

1
)

+
1

2
|u− vj0,1|2H1(Γ̃j

2
)
+ |u− vj0,1|2H1(γ̃j

2
)
+ |u− vj1,1|2H1(γj

1
∪ γj

2
)

}

+ 4
l∑

j=1

1

2j−1−lλl

{

2 ‖u− vj1,0‖2L2(Γ̃j
1
)
+ ‖u− vj1,0‖2L2(γ̃j

1
)

+ 2 ‖u− vj0,1‖2L2(Γ̃j
2
)
+ ‖u− vj0,1‖2L2(γ̃j

2
)
+ ‖u− vj1,1‖2L2(γj

1
∪ γj

2
)

}

≤ Λl

λl

[

2 +
3

4

Λl

λl

]

(2−lΛl)
2

2∑

k=1

{

|u|2
H2(G̃l,0

k )
+ (2−l−2Λl)

2 |u|2
H3(G̃l,0

k )

}

+ 6
Λl

λl

[

1 +
3

2

Λl

λl

1

p(p+ 1)

]

Υps

{

[u]2s+1,1 + [u]2s+2,1

}

(A-8.17b)

and

l−1∑

j=1

∑

ν∈N

|wl|2
H2(Gl,j

ν )
≤ 4

2−lλl
|u− v0|2

H1(Γ̃1
1
∪ Γ̃1

2
)

+
4

3

l∑

j=1

2j−1−lΛl

{
1

2
|vj1,0|2H2(Γ̃j

1
)
+ |vj1,0|2H2(γ̃j

1
)
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+
1

2
|vj0,1|2H2(Γ̃j

2
)
+ |vj0,1|2H2(γ̃j

2
)
+ |vj1,1|2H2(γj

1
∪ γj

2
)

}

+ 4

l∑

j=1

1

2j−1−lλl

{

2 |u− vj1,0|2H1(Γ̃j
1
)
+ |u− vj1,0|2H1(γ̃j

1
)

+ 2 |u− vj0,1|2H1(Γ̃j
2
)
+ |u− vj0,1|2H1(γ̃j

2
)
+ |u− vj1,1|2H1(γj

1
∪ γj

2
)

}

≤ 6
Λ2
l

λ2l

2∑

k=1

{

|u|2
H2(G̃l,0

k )
+ (2−l−2Λl)

2 |u|2
H3(G̃l,0

k )

}

+ 3
Λl

λl

[

p2 − 1 + 3
Λl

λl

1

p(p+ 1)

]{

[u]22,2 + [u]23,2

}

. (A-8.17c)

The final inequalities of (A-8.17) prove the bounds of (5.17).

A-8.4.4 Theorem 5.13

Proof. For p and s given by (5.13), lemma 5.12 yields the following bounds:

Υps [u]
2
s+1,1 ≤ 64

3

e3√
2π

l C2
u δ

2
u

[
Λl

λl

]2(s+1)

s (s+ 1)2 2−2(α−β)l

≤ 64

3

e3√
2π

C2
u δ

2
u

[
Λl

λl

]2(χl+2)
χl + 1

χl − 1
(χl + 2)2 l 2−2(α−β)l, (A-8.18a)

Υps

{

[u]2s+1, 1
2

+ [u]2s+2, 1
2

}

≤ 64

3

{
1

s2
+
δ2u
4

Λ2
l

λ2l

}
e3√
2π

Λ2s+3
l

λ2s+2
l

C2
u

2
δ4u l

· s (s+ 1)2 (s+ 2)2 2−2(α−β)l

≤ 32

3

e3√
2π

C2
u δ

4
u

{
1

(χl − 1)2
+
δ2u
4

Λ2
l

λ2l

}

Λl

[
Λl

λl

]2(χl+3)

· (χl + 1)(χl + 2)2(χl + 3)2 l 2−2(α−β)l, (A-8.18b)

Υps

{

[u]2s+1, 3
2

+ [u]2s+2, 3
2

}

≤ 64

3

{
1

s2
+
δ2u
4

Λ2
l

λ2l

}
e3√
2π

Λ2s+1
l

λ2sl
2−2(β∗−β)l 2C2

u δ
4
u l

· s (s+ 1)2 (s+ 2)2 2−2(α−β)l

≤ 128

3

e3√
2π

C2
u δ

4
u

{
1

(χl − 1)2
+
δ2u
4

Λ2
l

λ2l

}

Λl

[
Λl

λl

]2χl+2

52



· (χl + 1)(χl + 2)2(χl + 3)2 l 2−2(α+β∗−2β)l. (A-8.18c)

Also, using (5.14) and (5.19b), we obtain the estimates

[u]22,2 ≤ 256

9
C2

u δ
4
u

Λ2
l

λ4l
22β(l+1), (A-8.19a)

[u]22, 5
2

+ [u]23, 5
2

≤ 256

9
C2

u δ
4
u

Λ4
l

λ4l
Λ−1
l λ−2

l

{

1 +
δ2u
4

Λ2
l

λ2l

}

2(2β+1)(l+1). (A-8.19b)

Combining the bounds of lemma 5.10 with (A-8.18)–(A-8.19) and applying defi-
nition 3.3 again, we obtain

‖u− vl‖2
H1(Q) ≤

{

2−2l λ2l D
2
0 +D2

1

} Λ4
l

λ4l
2−2(1−β)l |u|2

H
2,2
β (Gl,0)

+

{

3
2−4Λ2

l

p(p+ 1)
+ 4

Λ2
l

λ2l

}

Υps [u]
2
s+1,1 ≤ C2

1 l
3 2−2(1−β)l,

∑

jν

|vl|2
H2(Gl,j

ν )
≤ Λ4

l

λ4l
(p2 − 1) [u]22,2 ≤ C2

2 l
2 22βl,

‖u− vl‖2
L2(Γl) ≤

3

2

Λl

λl

Υps

p(p+ 1)

{

[u]2s+1, 1
2

+ [u]2s+2, 1
2

}

≤ c20 l
4 2−2(α−β)l,

|u− vl|2
H1(Γl) ≤

3

2

Λl

λl
Υps

{

[u]2s+1, 3
2

+ [u]2s+2, 3
2

}

≤ c21 l
6 2−2(α+β∗−2β)l,

∑

jν

|vl|2
H2(Γl,j

ν )
≤ 3

4

Λl

λl
(p2 − 1)

{

[u]22, 5
2

+ [u]23, 5
2

}

≤ c22 l
2 2(2β+1)l

with any positive C1, C2, c0, c1, c2 such that

C2
1 ≥ 64

3

e3√
2π

C2
u δ

2
u

{
1

32

1

̺2δχ
2
l

+ 4

}[
Λl

λl

]2χl+6
χl + 1

χl − 1

(χl + 2)2

l2
2−2(α−1)l

+
1

l3

{

2−2l λ2l D
2
0 +D2

1

} Λ4
l

λ4l
|u|2

H
2,2
β (Q)

,

C2
2 ≥ 256

9
22β C2

u δ
4
u

Λ6
l

λ8l

(̺δχl + 1)2

l2
,

c20 ≥ 16
e3√
2π

C2
u δ

4
u

̺2δ

(χl + 1)(χl + 2)2(χl + 3)2

χ2
l l

3

·
{

1

(χl − 1)2
+
δ2u
4

Λ2
l

λ2l

}

Λl

[
Λl

λl

]2χl+5

,
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c21 ≥ 64
e3√
2π

C2
u δ

4
u

(χl + 1)(χl + 2)2(χl + 3)2

l5

·
{

1

(χl − 1)2
+
δ2u
4

Λ2
l

λ2l

}

Λl

[
Λl

λl

]2χl+3

,

c22 ≥ 128

3
22β C2

u δ
4
u

Λ4
l

λ7l

(̺δχl + 1)2

l2

{

1 +
δ2u
4

Λ2
l

λ2l

}

,

where the expressions on the right-hand side are monotonically decreasing with respect
to l.

A-8.4.5 Theorem 5.14

Proof. Let l ∈ N be greater than one. Consider p and s given by (5.13). According to
lemma 5.11, there exists wl ∈ S̃p(Q,Gl) vanishing in Gl,0 and on ∂Q and such that
wl + Π̃ l

pu ∈ C(clQ) and the bounds of (5.17) are satisfied. From those bounds we
obtain

∑

jν

‖wl‖2
H1(Gl,j

ν )
≤ 3

Λ4
l

λ2l
2−2l Z2

0 + 9
Λ2
l

λ2l
Υps

{

[u]2s+1,1 + [u]2s+2,1

}

, (A-8.20a)

∑

jν

|wl|2
H2(Gl,j

ν )
≤ 6

Λ2
l

λ2l
Z2
0 + 3p2

{

[u]22,2 + [u]23,2

}

, (A-8.20b)

where Z2
0 is given by (5.18) and can be estimated using (5.19c) as follows:

Z2
0 ≤ 512

9

Λ2
l

λ4l
C2

u δ
4
u

{

1 +
δ2u
4

Λ2
l

λ2l

}

22β(l+1). (A-8.21)

By lemma 5.12, there holds a bound

Υps

{

[u]2s+1,1 + [u]2s+2,1

}

≤ 64

3

e3√
2π

Λ2s+2
l

λ2s+2
l

C2
u δ

4
u

{
1

s2(s+ 1)2
+
δ2u
4

Λ2
l

λ2l

}

l

· s (s+ 1)2 (s+ 2)2 2−2(α−β)l

≤ 64

3

e3√
2π

[
Λl

λl

]2χl+4

C2
u δ

4
u

{

1 +
δ2u
4

Λ2
l

λ2l

}

(χl + 1)(χl + 2)2(χl + 3)2 l 2−2(α−β)l.

(A-8.22a)

From (5.14), (5.19c) and definition 3.2, we obtain also that

[u]22,2 + [u]23,2 ≤ 256

9

Λ2
l

λ4l
C2

u δ
4
u

{

1 +
δ2u
4

Λ2
l

λ2l

}

22βl. (A-8.22b)
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Combining the bounds of (A-8.21)–(A-8.22) with (A-8.20), we obtain the inequali-
ties (5.22) with any positive C̃1, C̃2 such that

C2
1 ≥ 64

9
C2

u δ
4
u

{

1 +
δ2u
4

Λ2
l

λ2l

}{

48 · 22β 1

l6
Λ6
l

λ6l

+ 27
e3√
2π

[
Λl

λl

]2χl+6
(χl + 1)(χl + 2)2(χl + 3)2

l5
2−2(α−1)l

}

,

C2
2 ≥ 64

9
C2

u δ
4
u

Λ2
l

λ4l

{

1 +
δ2u
4

Λ2
l

λ2l

}{

96 · 22β 1

l2
Λ2
l

λ2l
+ 9

(̺δχl + 2)2

l2

}

,

where the expressions on the right-hand side are monotonically decreasing with respect
to l.
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[49] V. A. Maz’ya and B. A. Plamenevskĭi. Lp-estimates of solutions of elliptic bound-
ary value problems in domains with edges. Transactions of the Moscow Math-
ematical Society, 37:49–93, 1978. URL: http://mi.mathnet.ru/eng/mmo357.
2

[50] I. Oseledets. Approximation of matrices with logarithmic number of parameters.
Doklady Mathematics, 80:653–654, 2009. URL: http://dx.doi.org/10.1134/
S1064562409050056, doi:10.1134/S1064562409050056. 6

[51] I. Oseledets. Constructive representation of functions in low-rank tensor formats.
Constructive Approximation, 37(1):1–18, 2013. URL: http://dx.doi.org/10.
1007/s00365-012-9175-x, doi:10.1007/s00365-012-9175-x. 34

[52] I. Oseledets and S. Dolgov. Solution of linear systems and matrix inversion in
the TT-format. SIAM Journal on Scientific Computing, 34(5):A2718–A2739,
2012. URL: http://epubs.siam.org/doi/abs/10.1137/110833142, doi:10.

1137/110833142. 2, 5

[53] I. V. Oseledets, editor. TT Toolbox. 2.2 edition. 36

60

http://stacks.iop.org/0036-0279/38/i=2/a=A01
http://sma.epfl.ch/~anchpcommon/publications/EVAMEN.pdf
http://sma.epfl.ch/~anchpcommon/publications/EVAMEN.pdf
http://cmam.info/index.php?do=issues/art&vol=11&num=3&art=323
http://cmam.info/index.php?do=issues/art&vol=11&num=3&art=323
http://link.springer.com/book/10.1007/978-3-642-65161-8
http://link.springer.com/book/10.1007/978-3-642-65161-8
http://dx.doi.org/10.1007/978-3-642-65161-8
http://www.ems-ph.org/books/book.php?proj_nr=87
http://www.ems-ph.org/books/book.php?proj_nr=87
http://dx.doi.org/10.4171/067
http://mi.mathnet.ru/eng/mmo357
http://dx.doi.org/10.1134/S1064562409050056
http://dx.doi.org/10.1134/S1064562409050056
http://dx.doi.org/10.1134/S1064562409050056
http://dx.doi.org/10.1007/s00365-012-9175-x
http://dx.doi.org/10.1007/s00365-012-9175-x
http://dx.doi.org/10.1007/s00365-012-9175-x
http://epubs.siam.org/doi/abs/10.1137/110833142
http://dx.doi.org/10.1137/110833142
http://dx.doi.org/10.1137/110833142


[54] I. V. Oseledets. Approximation of 2d × 2d matrices using tensor decomposi-
tion. SIAM Journal on Matrix Analysis and Applications, 31(4):2130–2145, 2010.
URL: http://link.aip.org/link/?SML/31/2130/1, doi:10.1137/090757861.
3, 6

[55] I. V. Oseledets. Tensor Train decomposition. SIAM Journal on Scientific Com-
puting, 33(5):2295–2317, 2011. URL: http://dx.doi.org/10.1137/090752286,
doi:10.1137/090752286. 3, 4, 5

[56] I. V. Oseledets and E. E. Tyrtyshnikov. Breaking the curse of dimensionality,
or how to use SVD in many dimensions. SIAM Journal on Scientific Com-
puting, 31(5):3744–3759, October 2009. URL: http://epubs.siam.org/sisc/
resource/1/sjoce3/v31/i5/p3744_s1, doi:10.1137/090748330. 3, 4

[57] A. M. Rockett. Sum of the inverses of binomial coefficients. Fibonacci Quarterly,
19(5):433–437, 1981. URL: http://www.fq.math.ca/Scanned/19-5/rockett.
pdf. 41

[58] T. Rohwedder and A. Uschmajew. Local convergence of alternating schemes
for optimization of convex problems in the TT format. Preprint 112, DFG-
Schwerpunktprogramm 1324, August 2012. URL: http://www.dfg-spp1324.
de/download/preprints/preprint112.pdf. 5

[59] U. Schollwöck. The density-matrix renormalization group in the age of ma-
trix product states. Annals of Physics, 326(1):96–192, 2011. January 2011
Special Issue. URL: http://www.sciencedirect.com/science/article/pii/
S0003491610001752, doi:http://dx.doi.org/10.1016/j.aop.2010.09.012.
7

[60] C. Schwab. p- and hp-FEM: Theory and Application to Solid and Fluid Me-
chanics. Oxford University Press, Oxford, 1998. 18, 21, 22, 23, 35, 37, 42, 43,
48

[61] R. Stevenson. Stable three-point wavelet bases on general meshes. Nu-
merische Mathematik, 80(1):131–158, 1998. URL: http://dx.doi.org/10.

1007/s002110050363, doi:10.1007/s002110050363. 3

[62] R. Stevenson. Composite wavelet bases with extended stability and cancella-
tion properties. SIAM Journal on Numerical Analysis, 45(1):133–162, 2007.
URL: http://epubs.siam.org/doi/abs/10.1137/060651021, doi:10.1137/

060651021. 3

[63] L. N. Trefethen. Spectral Methods in MATLAB. Society for Industrial and Ap-
plied Mathematics, 2000. URL: http://epubs.siam.org/doi/book/10.1137/
1.9780898719598, doi:10.1137/1.9780898719598. 3

61

http://link.aip.org/link/?SML/31/2130/1
http://dx.doi.org/10.1137/090757861
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1137/090752286
http://epubs.siam.org/sisc/resource/1/sjoce3/v31/i5/p3744_s1
http://epubs.siam.org/sisc/resource/1/sjoce3/v31/i5/p3744_s1
http://dx.doi.org/10.1137/090748330
http://www.fq.math.ca/Scanned/19-5/rockett.pdf
http://www.fq.math.ca/Scanned/19-5/rockett.pdf
http://www.dfg-spp1324.de/download/preprints/preprint112.pdf
http://www.dfg-spp1324.de/download/preprints/preprint112.pdf
http://www.sciencedirect.com/science/article/pii/S0003491610001752
http://www.sciencedirect.com/science/article/pii/S0003491610001752
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1007/s002110050363
http://dx.doi.org/10.1007/s002110050363
http://dx.doi.org/10.1007/s002110050363
http://epubs.siam.org/doi/abs/10.1137/060651021
http://dx.doi.org/10.1137/060651021
http://dx.doi.org/10.1137/060651021
http://epubs.siam.org/doi/book/10.1137/1.9780898719598
http://epubs.siam.org/doi/book/10.1137/1.9780898719598
http://dx.doi.org/10.1137/1.9780898719598


[64] E. E. Tyrtyshnikov. Tensor approximations of matrices generated by
asymptotically smooth functions. Sbornik: Mathematics, 194(5):941–954,
2003. URL: http://iopscience.iop.org/1064-5616/194/6/A09, doi:10.

1070/SM2003v194n06ABEH000747. 6

[65] H. Wang and M. Thoss. Multilayer formulation of the multiconfiguration time-
dependent hartree theory. The Journal of Chemical Physics, 119(3):1289–1299,
2003. URL: http://scitation.aip.org/content/aip/journal/jcp/119/3/

10.1063/1.1580111, doi:http://dx.doi.org/10.1063/1.1580111. 7

62

http://iopscience.iop.org/1064-5616/194/6/A09
http://dx.doi.org/10.1070/SM2003v194n06ABEH000747
http://dx.doi.org/10.1070/SM2003v194n06ABEH000747
http://scitation.aip.org/content/aip/journal/jcp/119/3/10.1063/1.1580111
http://scitation.aip.org/content/aip/journal/jcp/119/3/10.1063/1.1580111
http://dx.doi.org/http://dx.doi.org/10.1063/1.1580111


Recent Research Reports

Nr. Authors/Title

2015-14 B. Ayuso de Dios and R. Hiptmair and C. Pagliantini
Auxiliary Space Preconditioners for SIP-DG Discretizations of H(curl)-elliptic
Problems with Discontinuous Coefficients

2015-15 A. Paganini and S. Sargheini and R. Hiptmair and C. Hafner
Shape Optimization of microlenses

2015-16 V. Kazeev and Ch. Schwab
Approximation of Singularities by Quantized-Tensor FEM

2015-17 P. Grohs and Z. Kereta
Continuous Parabolic Molecules

2015-18 R. Hiptmair
Maxwell’s Equations: Continuous and Discrete

2015-19 X. Claeys and R. Hiptmair and E. Spindler
Second-Kind Boundary Integral Equations for Scattering at Composite Partly
Impenetrable Objects

2015-20 R. Hiptmair and A. Moiola and I. Perugia
A Survey of Trefftz Methods for the Helmholtz Equation

2015-21 P. Chen and Ch. Schwab
Sparse-Grid, Reduced-Basis Bayesian Inversion: Nonaffine-Parametric Nonlinear
Equations

2015-22 F. Kuo and R. Scheichl and Ch. Schwab and I. Sloan and E. Ullmann
Multilevel Quasi-Monte Carlo Methods for Lognormal Diffusion Problems

2015-23 C. Jerez-Hanckes and Ch. Schwab
Electromagnetic Wave Scattering by Random Surfaces:


	Introduction
	Tensor Decompositions. TT and QTT Formats
	Tensor-train (TT) representation
	Quantized-tensor-train (QTT) representation
	Quantization of a dimension.
	Ordering the indices. QTT representation


	Singularities. Model Problem
	Curvilinear polygons
	Weighted Sobolev spaces
	Analytic regularity
	Model problem

	QTT-FEM in a Reference Domain in d Dimensions
	h- and QTT-FE approximation of coupled functions in the reference domain
	Uniform partitions of J=01 and Q=01d
	h-FE space 1Q,. Active and inactive nodes
	Boundary conditions
	Admissible approximations

	Nodal approximation
	QTT-FE representation of admissible approximations

	Auxiliary hp Approximation of Singular Functions in the Reference Square
	Nodal approximation of singular functions
	Geometrically graded partitions of Q. hp spaces pQ, and pQ,
	Polynomial quasi-interpolation
	Univariate quasi-interpolation
	Tensor-product bivariate quasi-interpolation

	hp quasi-interpolation
	Definitions
	Preliminary bounds
	hp quasi-interpolation of functions from [2][]Q

	h-FE reinterpolation
	Preliminary bound
	Reinterpolation of functions from [2][]Q

	Rank structure of the unfolding matrices of the coefficient vector
	Exponential convergence of QTT-FE approximations

	Numerical Experiment
	QTT-FE approximation
	QTT-FEM
	Description of the experiment
	Discussion of the results


	Conclusion
	Appendix
	Auxiliary lemmas
	Bounds for univariate quasi-interpolation
	Bounds for tensor-product bivariate quasi-interpolation
	Proofs of theorems for hp quasi-interpolation
	Lm:TrLft
	Lm:hpExpConvAux
	Lm:hpTrLiftAux
	Th:ReffConvC2beta
	Th:ReffTrLiftC2beta



