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Auxiliary Space Preconditioners for SIP-DG Discretizations of

H(curl)-elliptic Problems with Discontinuous Coefficients

Blanca Ayuso de Dios∗, Ralf Hiptmair†, Cecilia Pagliantini‡

Abstract

We propose a family of preconditioners for linear systems of equations arising from a piecewise
polynomial symmetric Interior Penalty Discontinuous Galerkin (IP-DG) discretization of H(curl,Ω)-
elliptic boundary value problems on conforming meshes. The design and analysis of the proposed
preconditioners relies on the auxiliary space method (ASM) employing an auxiliary space of H(curl,Ω)-
conforming finite element functions together with a relaxation technique (local smoothing). On simplicial
meshes, the proposed preconditioner enjoys asymptotic optimality with respect to mesh refinement. It
is also robust with respect to jumps in the coefficients ν and β in the second and zeroth order parts
of the operator, respectively, except when both coefficients are discontinuous and the problem is curl-
dominated in some regions and reaction dominated in others. On quadrilateral/hexahedral meshes our
ASM may fail, since the related H(curl,Ω)-conforming finite element space does not provide a spectrally
accurate discretization.

1 Introduction

This work was inspired by the development of discontinuous Galerkin (DG) methods for the magnetic
advection-diffusion equations of resistive magneto-hydrodynamics (MHD), see [56]. In each timestep of a
partly implicit time-stepping scheme we have to solve a H(curl,Ω)-elliptic boundary value problem, which,
in abstract form, reads {

∇× (ν∇× u) + βu = f in Ω,

u× n = 0 on ∂Ω.
(1.1)

Here Ω ⊂ R3 is a bounded domain with Lipschitz boundary ∂Ω, f ∈ L2(Ω)3, and ν(x) and β(x) are
possibly discontinuous coefficients, which are assumed to be positive and bounded functions in Ω. They
represent properties of the medium or material: ν is typically the inverse of the magnetic permeability and
β is proportional to the ratio of electrical conductivity and the time step. For the sake of simplicity, we
confine ourselves to domains Ω with trivial topology.

The boundary value problem (1.1) allows an H(curl,Ω)-elliptic variational formulation, which reads:
find u ∈ H0(curl,Ω) such that

a(u,v) := (ν∇× u,∇× v)0,Ω + (βu,v)0,Ω = (f ,v)0,Ω ∀v ∈ H0(curl,Ω). (1.2)

We have used the standard notations for the Hilbert spaces

H(curl,Ω) := {v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3}
H0(curl,Ω) := {v ∈ H(curl,Ω) : n× v = 0 on ∂Ω}
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endowed with the graph norm
‖v‖2curl,Ω := ‖v‖20,Ω + ‖∇× v‖20,Ω .

The assumptions ν > 0, β > 0 in Ω ensure existence and uniqueness of solutions of (1.2).
In MHD simulations the rationale for using DG is to cope with (locally) dominating transport. We are

not interested in the capability of DG to accommodate rather general meshes; the methods are considered
on standard conforming finite element meshes and this will be the setting of the present paper. We
acknowledge an extension of our approach to more general meshes is an open problem.

Our contribution. Based on the auxiliary space method (ASM), explained in Section 3, we derive a
family of preconditioners for a symmetric Interior Penalty Discontinuous Galerkin (IP-DG) discretization
of (1.1) by means of piecewise polynomials on conforming meshes, see Section 2. Specifically, we address
the influence of possible discontinuities in the “diffusivity” ν and/or in the “reaction coefficient” β on the
asymptotic performance of the preconditioners. Throughout,

we take for granted the availability of a (direct) solver for any standard H(curl,Ω)-conforming
Galerkin discretization of (1.2).

Under this assumption we aim to determine the precise dependence of the performance of the ASM pre-
conditioners on both the mesh width and the coefficients in Section 4. The main result is Theorem 4.1,
which asserts that, in a broad range of situations, the ASM approach provides a preconditioner that does
not degrade on fine meshes and in the presence of large jumps of the coefficients. The latter statement
has to be qualified, since a particular combination of discontinuities of ν and β is not captured by our
estimates (yet?).

Related work for DG. Over the last fifteen years a considerable effort has been devoted to the devel-
opment of efficient and robust preconditioning techniques for discontinuous Galerkin (DG) discretizations.
Most analysis and especially convergence results have dealt with DG approximations of simple (mostly
second order) elliptic problems.

The first efforts were focused on the development and analysis of classical domain decomposition meth-
ods: overlapping Schwarz methods were studied in [50, 51, 27] for Interior Penalty (IP) DG approximations
of second and fourth order problems, whilst simple Schwarz methods with no overlap were introduced and
proved to be convergent (unlike to the conforming case) in [50, 2, 3] for all the DG methods considered
in [10]. The analysis in the works mentioned above uses an augmented version of classical Schwarz theory
in order to deal with the non-conformity of the finite element spaces. Simultaneously, first attempts to
design and analyze efficient multigrid solvers in [53, 28] followed the classical multigrid theories of [21] and
[20, 22], respectively. Nowadays, there is still active research in these directions trying to harness classical
theories. In particular, Schwarz preconditioners [6, 18, 26, 5, 37] and multigrid methods [24, 23, 73, 40, 7]
have been investigated for newly introduced DG discretizations and for hp-DG approximations of elliptic
problems.

Furthermore, more sophisticated non-overlapping domain decomposition preconditioners of substruc-
turing type have been recently studied for DG for elliptic second order problems in two dimensions. In
[45, 46, 47, 4] non-overlapping BDDC, N-N, FETI-DP and substructuring methods have been introduced
and analyzed for a Nitsche-type approximation. BDDC preconditioners are also studied in [25] for a weakly
penalized IP method; for the p-version of a hybrid DG method in [81]; and in [36] for hp-IP-DG spectral
methods. While different approaches have been considered in the analysis, all the above works provide
quasi-optimality results (with respect to the mesh size and in [36, 4] also with respect to the polynomial
degree) and robustness of the preconditioners with respect to possible high variations or jumps in the
diffusion coefficient.

The evolution of domain decomposition and multigrid preconditioners has been paralleled by the design
and analysis of other subspace correction methods (for two and three dimensional problems), erected on
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the construction of suitable splittings of DG finite element spaces. At least two main approaches, based on
different principles, have been pursued: the use of a suitable subspace and the construction of orthogonal
splittings. Optimal multilevel preconditioners based on an orthogonal space decomposition of the DG
space, were introduced in [16] for symmetric and non-symmetric piecewise linear IP approximations of
elliptic problems. This technique has been adapted and extended to deal with a larger family of problems
including elliptic problems with jumping coefficients [14], linear elasticity [13] and convection dominated
problems corresponding to drift-diffusion models for the transport of species [15].

A different direction was followed in [41] and [32, 33], where the authors introduced two-level and multi-
level preconditioners, respectively, for the Interior Penalty (IP) DG methods. There is a close relationship
with our work, because the conceptual foundation behind both works (although in the first is not explicitly
mentioned) is the Fictitious Space Lemma and the ASM, with an auxiliary finite element space (piece-
wise constants and conforming linear finite elements, respectively) in which preconditioning techniques are
available. The ASM has been further exploited recently in [12] to construct optimal preconditioners for
a family of H(div,Ω)-DG discretizations of the Stokes problem, and in [31] to develop optimal multilevel
preconditioners for spectral DG discretizations (see also [36] where these results are used for designing a
BDDC preconditioner). In particular, the analysis in [12] requires a suitable extension of the Fictitious
Space Lemma.

There is also a relatively big body of work on DG discretizations for boundary values problems like
(1.1). Different varieties of DG for different extended and regularized versions of (1.1) have been presented
in, among others, [34, 35, 64, 78]. By and large it seems that numerical analysis has entirely focused
on a priori and a posteriori error estimate and no attention has been paid to the design and analysis of
preconditioners. Apparently, the present paper is the first study to address this.

Work on preconditioners for conforming finite element methods. Subspace correction pre-
conditioners in the context of conforming Galerkin finite element discretizations of H(curl,Ω)-elliptic
variational problems are well established both in the form of multigrid [57, 59, 11, 63] and domain de-
composition methods [60, 84]. The authors prove uniform performance with respect to mesh refinement,
but their analyses do not take into account discontinuities in the coefficients. However, in [57] numerical
evidence hints that multigrid methods in H(curl,Ω) are affected by jumping coefficients in a similar way
as their scalar counterparts.

For conforming and non-conforming discretizations of scalar second order elliptic problems, the de-
sign preconditioning strategies, that can be proven to be robust with respect to the jumps in the diffu-
sion coefficient has received a lot of attention. However, in presence of two different coefficients (i.e. a
reaction-diffusion problem or one resulting upon time discretization of a parabolic model), the asymptotic
convergence of multilevel solvers for conforming discretizations has only been recently addressed in [72].
The authors show that robustness can only be achieved when one of the two coefficients is constant, or if
both coefficients have the same pattern distribution.

Much less progress has been made in the context of H(curl,Ω)-elliptic problems with two variable
coefficients. In spite of the relevance of the problem, the bulk of contributions is largely restricted to
conforming finite element approximations of the two dimensional problem. Non-overlapping domain de-
composition methods of substructuring type are studied in [88, 42], Neumann-Neumann methods in [83],
and FETI and FETI-DP in [79] and [86], respectively. Besides the work in [42], where the authors used
non standard coarse spaces based on energy minimization, all other mentioned works reflect a dependence
on the coefficients in the asymptotic convergence that predicts deterioration of the preconditioner in the
mass-dominated regime.

For the three dimensional H(curl,Ω)-elliptic problem with two variable coefficients, there are even less
works. This is certainly related to the significant challenges that emerge in the three dimensional continuous
problem but it is also due to the much intricate construction of the finite element discretizations. FETI-
DP algorithms for conforming approximations were introduced in [85] and the analysis reveals explicit
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dependence on the ratio between the reaction and the curl coefficients, as appeared in all first works for
the two dimensional case. Other significant contributions are contained in [67, 68], where the authors
further extended the research from [70, 69]. In [67] a novel mortar method for H(curl,Ω)-conforming finite
element discretizations is introduced and analyzed. A weighted (with respect to the reaction coefficient)
Helmholtz decomposition is derived in [68] and applied to the analysis of the substructuring preconditioner
introduced in [70] applied to the problem with variable coefficients. The assumptions on the distribution of
the coefficients seems however quite restrictive, ruling out many cases of interest. More recently in [43], the
authors have devised a non-overlapping BDDC algorithm able to improve the dependence on the quotient
H/h between the coarse and fine meshes by saving two logarithmic factors. Nevertheless, their analysis
still reflects the same dependence on the coefficients as in [85].

Remark. The asymptotic analysis and estimates derived in the remainder of this work, require to
introduce constants. With a small abuse of notation, by C we will denote a generic positive constant
whose value may vary among different occurrences, but, unless otherwise specified, will be independent of
the mesh width and the coefficients of the problem and may only depend on the polynomial degree, the
shape regularity and the connectivity of the mesh partition.

2 Interior Penalty discontinuous Galerkin discretization: abstract set-

ting

This section is devoted to the derivation of a symmetric Interior Penalty discontinuous Galerkin discretiza-
tion of the model problem (1.1). First, we fix the basic notation and introduce assumptions on the mesh
partition of the domain together with the finite element spaces of interest for the method. Then the
discretization approach is presented and its basic properties discussed.

2.1 Mesh Partition and Jump operators

Let Th be a shape regular partition of the computational domain Ω into disjoint tetrahedra (d- simplices
with d = 3) or axis-parallel hexahedral elements such that Ω = ∪T∈ThT . Moreover, the partition Th is
assumed to be conforming, locally quasi-uniform, and affine. Let hT denote the diameter of T ∈ Th; we
set h := maxT∈Th hT to represent the mesh width of Th. The local mesh sizes are of bounded variation,
that is, there exists a constant ρ > 0 depending only on the shape regularity of the mesh, such that every
neighboring elements T and T ′ satisfy ρhT ≤ hT ′ ≤ ρ−1hT .

An interior face f = ∂T1 ∩∂T2 is the intersection of the boundary of two neighboring elements T1, T2 ∈
Th, while a boundary face f = ∂T ∩ ∂Ω is given by the intersection of the boundary with a boundary
element T ∈ Th. Each interior face is equipped with an intrinsic orientation and the boundary faces are
by convention assumed to be oriented such that the normal vector points inward. We denote by Fh the
set of all faces of the partition (d−1-dimensional cells of the partition), and by Fo

h and F∂
h the collection

of all interior and boundary faces, respectively. Trivially, Fh = Fo
h ∪F∂

h . Similarly, Eh will refer to the set
of all edges of the skeleton of Th (d−2-dimensional cells of the partition), and by Eo

h and E∂
h we denote the

collection of all interior and boundary edges, respectively.
In order to define the trace operators (see e.g. [78, Section 3]), let f ∈ Fo

h be an interior face shared by
two elements T+ and T− and let n+ and n− denote the unit normal vectors on f pointing outwards from
T+ and T−, respectively. For a piecewise smooth vector-valued function v, we denote by v± the traces of
v taken from within T±. We define the average and tangential jump across f ∈ Fo

h by

{{v}} :=
v+ + v−

2
, [[v ]]τ := n+ × v+ + n− × v− ,

and on a boundary face f ∈ F∂
h , we set {{v}} := v and [[v ]]τ := n× v.
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Throughout the paper we will use the following sets of mesh cells:

T (e) := {T ∈ Th : e ⊂ ∂T} ; E(T ) := {e ∈ Eh : e ∈ ∂T} ;
F(T ) := {f ∈ Fh : f ∈ ∂T} ; F(e) := {f ∈ Fh : e ∈ ∂f} .

2.2 Finite Element Spaces and local representation

We introduce the (family of) finite element spaces

Vh = {v ∈ L2(Ω)3 : v ∈ M(T ), T ∈ Th} , (2.1)

where M(T ) is a local space of vector-valued polynomials which, for a fixed degree k, satisfy M(T ) ⊆
Pk(T )

3 if T is a simplex or M(T ) ⊆ Qk(T )
3 if T is an hexahedron. The corresponding H0(curl,Ω)-

conforming finite element spaces are

V c

h
:= Vh ∩H0(curl,Ω) = {v ∈ H0(curl,Ω) : v ∈ M(T ), T ∈ Th}.

Throughout, the local space M(T ) will be defined as one of the following:
1. Nédélec elements of the second family on simplicial meshes: Full polynomial space

M(T ) = N II(T ) := Pk(T )
3, k ≥ 1. (2.2)

2. Nédélec elements of the first family on simplicial meshes: For an integer k ≥ 0, we define

M(T ) = N I(T ) := Pk(T )
3 ⊕

(
x×Hk(T )

3
)
, k ≥ 0, (2.3)

where Hk(T ) denotes the space of homogeneous polynomials of degree k.
3. Nédélec elements of the first family on cubical meshes [75]: The polynomial space:

M(T ) = N I
q (T ) := Qk,k+1,k+1(T )×Qk+1,k,k+1(T )×Qk+1,k+1,k(T ), k ≥ 0, (2.4)

where Qℓ,m,n(T ) is the local space of polynomials of degree at most ℓ,m, n in each vector component. For
hexahedral and cubical meshes our analysis is restricted to local spaces of Nédélec elements of the first
family. However, a thoughtful discussion on the possible use of other local elements and the failure of the
corresponding theory is provided in Remark 4.18 and in the numerical experiments in Section 6.

For each of the above spaces, the local degrees of freedom (dofs) are the normalized moments on edges,
faces and elements (see [74, Definition 5.30] and [19, Sections 2.3.2 and 2.4.4] for details). An important
property of the spaces M(T ) is that they (and their dofs) are invariant under the action of a covariant
transform in case of affine mappings. In fact, the construction, implementation and analysis of the proposed
preconditioners heavily relies on the use of the local spaces M(T ) together with the corresponding choice

of degrees of freedom. In particular, denoting by ve,T = {vie,T }Ne

i=1, vf,T = {vif,T }
Nf

i=1 and vT = {viT }Nb

i=1

the moments of v ∈ M(T ) (corresponding to the particular choice of M(T )), the following representation
holds,

v(x) =
∑

e∈E(T )

Ne∑

i=1

vie,T ϕi
e,T (x) +

∑

f∈F(T )

Nf∑

i=1

vif,T ϕi
f,T (x) +

Nb∑

i=1

viT ϕi
T (x) , ∀x ∈ T (2.5)

where {ϕi
e,T}Ne

i=1, {ϕi
f,T }

Nf

i=1 and {ϕi
T }Nb

i=1 refer to the basis functions of M(T ) (dual to the degrees of
freedom relative to M(T )). Note that even if the degrees of freedom are on the edges and faces of the
mesh, they are confined to a single element therefore no continuity across the mesh cells has to be imposed.

Finally we remark that for the design and analysis of the solvers it is sometimes essential to characterize
the kernel of the curl operator in V c

h
for each choice of M(T ), see Section 4.6. Since the domain Ω

is assumed to be homotopy equivalent to a ball, the kernels are given by gradients of standard scalar
Lagrangian finite element functions.
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2.3 Symmetric Interior Penalty method

We propose a discretization of the problem (1.1) along the lines of [64] based on the symmetric Interior
Penalty discontinuous Galerkin (SIP-DG) method introduced in [8, 89, 17] (see also [10, Section 3.4]) for
second order problems. To deal with the discontinuous coefficients of the problem and provide a robust
approximation method, we modify the classical SIP-DG method, similarly to [44, Section 4], where a
particular choice of weighted averages of the discontinuous coefficients at the mesh interfaces is introduced.
More precisely, we consider the discrete variational formulation: find uh ∈ Vh such that

aDG(uh,v) = (f ,v)Th ∀ v ∈ Vh , (2.6)

where
(f ,v)Th :=

∑

T∈Th

(f ,v)0,T ,

and the bilinear form aDG(·, ·) is defined as

aDG(u,v) :=
∑

T∈Th

(νT∇×u,∇×v)0,T +
∑

T∈Th

(βTu,v)0,T −
∑

f∈Fh

({{ν∇×u}}γ , [[v ]]τ )0,f

−
∑

f∈Fh

([[u ]]τ , {{ν∇×v}}γ)0,f +
∑

T∈Th

αT (ν)
∑

e∈E(T )

∑

f∈F(e)

(sf [[u ]]τ , [[v ]]τ )0,f .
(2.7)

Here νT ∈ P0(T ) and βT ∈ P0(T ) are the restriction of the coefficients ν and β to the element T ∈ Th. We
assume that the partition Th resolves the coefficients: ν, β ∈ P0(Th).

In (2.7), the function sf penalizes the tangential jumps over the (d−1)-cells of the skeleton of the
partition. Every face jump is weighted with the sum of certain coefficients αT (ν) belonging to the elements
T sharing an edge of the given face. In particular, sf is defined as [8, 55, 78]

sf := c0h
−1
f ∀ f ∈ Fh (2.8)

where c0 > 0 is a strictly positive constant independent of the mesh size and the coefficients of the problem
and depending only on the shape regularity constant of Th. The function hf is defined as

hf :=





min {hT+ , hT−} f ∈ Fo
h , f = ∂T+ ∩ ∂T− ,

hT f ∈ F∂
h , f = ∂T ∩ ∂Ω .

The coefficient function (αT (ν))T∈Th ∈ P0(Th) is a piecewise constant function defined elementwise by

αT (ν) := max
f∈F(T )

{{ν}}∗,f with {{ν}}∗,f :=





max
T∈T (e)
e∈∂f

νT f ∈ Fo
h ,

νT f ∈ F∂
h .

(2.9)

Observe that in view of the above definition, the coefficient αT (ν) is taking the maximum conductivity
coefficient over a patch of elements surrounding T . Moreover, in (2.7), the weighted average {{·}}γ is defined
as the plain trace for a boundary face, whereas for f ∈ Fo

h,

{{u}}γ := γ+f u
+ + γ−f u

− with γ−f = 1− γ+f ,

for weights γ±f that depend on the coefficient ν and might vary over all interior faces. More precisely, for

any f ∈ Fo
h with f = ∂T+ ∩ ∂T−, we take γ±f as follows:

γ±f =
ν∓

ν+ + ν−
where ν± := ν|

T±
.
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The use of the weighted average {{·}}γ together with {{·}}∗,f and the definition of the coefficient αT (ν) is
aimed at ensuring the robustness of the approximation (2.6) as well as of the preconditioners introduced
in the present paper, with respect to variations of the coefficients.

In our analysis we will use the harmonic average of the coefficient ν across a face f defined as

{{ν}}H,f :=





2ν+ν−

ν+ + ν−
f ∈ Fo

h , f = ∂T+ ∩ ∂T− ,

νT f ∈ F∂
h , f = ∂T ∩ ∂Ω .

(2.10)

Notice that {{ν}}H,f is equivalent to min{ν+, ν−} and hence, in particular, {{ν}}H,f ≤ 2ν±. Moreover, it
satisfies the following relation with respect to the coefficient in (2.9)

{{ν}}H,f ≤ {{ν}}∗,f ∀ f ∈ Fh . (2.11)

We finally observe that

{{ν∇× v}}γ = {{ν}}H,f {{∇× v}} ∀v ∈ Vh , ∀f ∈ Fh . (2.12)

Note that when the variational formulation (2.6) is restricted to V c

h
, the corresponding H0(curl,Ω)-

conforming discretization of (1.1) is obtained.
On Vh we introduce the seminorms

‖∇× v‖20,ν,Th :=
∑

T∈Th

νT‖∇× v‖20,T ∀ v ∈ Vh , (2.13)

|v|2∗,ν :=
∑

T∈Th

αT (ν)
∑

e∈E(T )

∑

f∈F(e)

h−1
f ‖[[v ]]τ ‖20,f ∀ v ∈ Vh ,

and norms
‖v‖20,β,Th :=

∑

T∈Th

βT ‖v‖20,T ∀ v ∈ Vh , (2.14)

‖v‖2DG := ‖∇× v‖20,ν,Th + ‖v‖20,β,Th + |v|2∗,ν ∀ v ∈ Vh . (2.15)

2.4 Convergence of the approximation

We now briefly show that the bilinear form aDG(·, ·) defined in (2.7) is continuous and coercive in Vh

with respect to the ‖·‖DG norm (2.15) with constants independent of the mesh size h and the coefficients
of the problem. Note that, as it will be clear from the proof, the stability constant depends also on the
stabilization parameter c0 in (2.8) which therefore has to be chosen large enough in order to ensure stability
of the bilinear form aDG(·, ·) in the ‖·‖DG norm.

Proposition 2.1. Let the bilinear form aDG(·, ·) be defined as in (2.7). Then, there exist constants
Ccont, Cstab > 0 depending only on the shape regularity of the mesh and on the polynomial degree such
that

|aDG(u,v)| ≤ Ccont‖u‖DG‖v‖DG , ∀u,v ∈ Vh , (2.16)

aDG(v,v) ≥ Cstab‖v‖2DG , ∀ v ∈ Vh . (2.17)
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Proof. We first show the coercivity (2.17). Taking u = v ∈ Vh in (2.7), results in

aDG(v,v) ≥ ‖∇× v‖20,ν,Th + ‖v‖20,β,Th + c0|v|2∗,ν − 2

∣∣∣∣
∑

f∈Fh

∫

f
{{ν∇× v}}γ · [[v ]]τ ds

∣∣∣∣. (2.18)

Cauchy-Schwarz inequality and the arithmetic-geometric inequality together with the relation (2.12) and
the bound (2.11) on the harmonic average, give

∣∣∣∣
∫

f
{{ν∇× v}}γ · [[v ]]τds

∣∣∣∣ ≤ C

(
hf

{{ν}}∗,f
‖ {{ν∇× v}}γ ‖20,f

)1/2(
{{ν}}∗,f h−1

f ‖[[v ]]τ‖20,f
)1/2

(2.12)

≤ C
ǫ

{{ν}}∗,f
({{ν}}H,f )

2hf ‖{{∇× v}}‖20,f +
C

4ǫ
{{ν}}∗,f h−1

f ‖[[v ]]τ ‖20,f
(2.11)

≤ Cǫ {{ν}}H,f hf ‖{{∇× v}}‖20,f +
C

4ǫ
{{ν}}∗,f h−1

f ‖[[v ]]τ ‖20,f (2.19)

Now, let f = ∂T+ ∩ ∂T−. The trace inequality [1, Theorem 3.10] and the inverse inequality [39, Theorem
3.2.6] together with the fact that {{ν}}H,f ≤ 2νT± yield

{{ν}}H,f hf ‖{{∇× v}}‖20,f ≤ C(νT+ ‖∇× v‖20,T+ + νT− ‖∇× v‖20,T−) ,

where C depends on the shape regularity and the local polynomial space. Moreover, by the definition (2.9)
it holds
∑

f∈Fh

{{ν}}∗,f ‖·‖0,f ≤ C
∑

T∈Th

αT (ν)
∑

f∈F(T )

‖·‖0,f ≤ C
∑

T∈Th

αT (ν)
∑

f∈F(T )

‖·‖0,f +
∑

T∈Th

αT (ν)
∑

e∈E(T )

∑

f∈F(e)\F(T )

‖·‖0,f .

Hence, summing (2.19) over all the faces yields
∣∣∣∣
∑

f∈Fh

∫

f
{{ν∇× v}}γ · [[v ]]τds

∣∣∣∣ ≤ Cǫ ‖∇× v‖20,ν,Ω +
C

4ǫ

∑

T∈Th

αT (ν)
∑

e∈E(T )

∑

f∈F(e)

h−1
f ‖[[v ]]τ ‖20,f .

Plugging the above estimate into (2.18), results in

aDG(v,v) ≥ (1− 2ǫC) ‖∇× v‖20,ν,Th + ‖v‖20,β,Th +

(
c0 −

C

2ǫ

)
|v|2∗,ν .

By taking the constant penalty parameter c0 sufficiently large, coercivity (2.17) is achieved with a constant
Cstab depending only on the shape regularity of Th and the polynomial degree of Vh.

Concerning the continuity (2.16), Cauchy-Schwarz inequality gives
∣∣∣∣
∑

T∈Th

∫

T
νT∇× u ·∇× v + βTu · v

∣∣∣∣ ≤ ‖∇× u‖0,ν,Ω‖∇× v‖0,ν,Ω + ‖u‖0,β,Ω ‖v‖0,β,Ω ,

∣∣∣∣
∑

T∈Th

αT (ν)
∑

e∈E(T )

∑

f∈F(e)

∫

f
c0h

−1
f [[u ]]τ · [[v ]]τ

∣∣∣∣ ≤ C|u|∗,ν |v|∗,ν ≤ C ‖u‖DG ‖v‖DG .

A similar reasoning as in (2.19) (but without using arithmetic-geometric inequality) gives
∣∣∣∣
∑

f∈Fh

{{ν∇× u}} · [[v ]]τ

∣∣∣∣ ≤ C‖∇× u‖0,ν,Th |v|∗,ν ,

and continuity (2.16) follows from the definition (2.15) of the ‖·‖DG norm.
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For solutions of problem (1.1) sufficiently regular, quasi-optimal error estimates in the DG-norm (2.15)
for the discretization introduced in (2.6) can be derived. Since the a-priori error analysis of the DG
approximation (2.6) is out of the scope of the present work, we refer the interested reader to [64, 54, 55]
and references therein.

3 Auxiliary space preconditioning

In this section we present the key ideas of the abstract framework for preconditioning approaches based
on fictitious or auxiliary spaces. In particular, since in the applications we have in mind, the fictitious
space method is applied to finite element spaces, we will focus on finite dimensional real Hilbert spaces.
The design and analysis of the proposed preconditioning technique relies on the theory of the fictitious
space method. For this reason, following the guidelines given in [62], we provide the main steps required to
apply this theory to our particular problem. Then we introduce a family of preconditioners for the IP-DG
discretization of problem (1.1) presented in Section 2.3.

3.1 Fictitious space and auxiliary space method

The auxiliary space method was introduced as a technique to develop and analyze optimal multilevel
preconditioners for elliptic discretizations on general unstructured meshes in [91] and for non-conforming
methods in [77]. It can be interpreted as a further generalization of the fictitious space approach, based on
the so-called fictitious space Lemma originally introduced by Nepomnyaschikh in [76]. Two main ingredients
are required in the construction of a fictitious space preconditioner for the operator A : Vh → V ′

h
associated

to the inner product a(·, ·) and the induced norm ‖·‖A on Vh:

(1) Another real (and discrete or finite dimensional) Hilbert space V, the fictitious space, endowed with

the inner product a(·, ·), induced operator A : V → V
′
and norm ‖·‖A.

(2) A continuous, linear and surjective transfer operator Π : V → Vh (the so-called prolongation operator
in domain decomposition and multigrid methods).

Then, the fictitious space preconditioner B : V ′
h
→ Vh is defined as

B := Π ◦ A−1 ◦Π∗. (3.1)

Obviously, the convergence properties of B depend on the auxiliary space V and on A. Note that the fact
that Π is surjective, ensures that B is an isomorphism, and in particular a valid preconditioner (see [62,
Lemma 2.1]). The analysis of the fictitious space preconditioner is grounded on the fictitious space Lemma,
which we recall next without proof.

Theorem 3.1. [76, Lemma 2.2]. Assume that

(i) Π is surjective and bounded, i.e. ∃ C1 > 0 : ‖Πv‖2A ≤ C1 ‖v‖2A ∀v ∈ V;

(ii) ∀v ∈ Vh ∃ v ∈ V : v = Πv and ∃ C0 > 0 : ‖v‖2A ≤ C0 ‖v‖2A.

Then
C−1
0 ‖v‖2A ≤ a(BAv,v) ≤ C1 ‖v‖2A ∀v ∈ Vh.

In the present work, the space Vh is as in (2.1) and it is endowed with the inner product aDG(·, ·)
given in (2.7), with induced operator A : Vh → V ′

h
. The coercivity and symmetry of the bilinear form

aDG(·, ·) shown in Proposition 2.1, ensure that the operator A is self-adjoint and positive definite. Its
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matrix representation, in the basis associated to the degrees of freedom (see the representation (2.5) in
Section 2) will be denoted by A and provides a symmetric positive definite matrix. The fictitious space
Theorem 3.1 provides an estimate on the spectral condition number of the preconditioned system matrix,
namely

κ(BA) ≤ C0C1,

where B denotes the matrix representation of the preconditioner (3.1).
In the auxiliary space method, the fictitious space is chosen as a product space having Vh as one of

its components. As observed in [91], such choice eases the construction of a surjective map Π, and as a
consequence facilitates the analysis. In the simplest case, the fictitious space is given by V = Vh × W ,
where W represents the true auxiliary space, endowed with a symmetric positive definite bilinear form
a
W
(·, ·) and induced operator A

W
: W → W ′. As component of the fictitious space, the space Vh is

equipped with another inner product s(·, ·) which induces an operator S : Vh → V ′
h
. The operator S is

typically referred to as smoother. This approach can be thought of as the fictitious space technique with
the inner product

a(v,v) = s(v0,v0) + a
W
(w,w) ∀ v = (v0,w), v0 ∈ Vh, w ∈ W ,

and the auxiliary space preconditioner operator is given by

B = S−1 +Π
W

◦ A−1
W

◦ Π∗
W

(3.2)

where the linear transfer operator Π
W

: W → Vh yields the surjective map

Π :=


 Id

Π
W


 : V → Vh.

Here, the adjoint operator Π∗
W

: Vh → W is defined by

a
W
(Π∗

W
v,w) = a(v,Π

W
w) v ∈ Vh, w ∈ W .

If S ∈ RN×N with N := dimVh and AW ∈ RNW×NW , NW := dimW , then the preconditioner (3.2) in
algebraic form reads

B = S−1 + PA−1
W PT (3.3)

where P ∈ RN×NW is the matrix representation of the transfer operator Π
W
.

As pointed out before, the analysis of the auxiliary space preconditioner hinges on the fictitious space
Theorem 3.1. Its assumptions boil down to fulfilling the conditions of the following theorem (see [62,
Section 2] and [61, Lemma 2.1]).

Theorem 3.2. With the notation and definitions introduced above, assume that the following conditions
are satisfied.
Property (F0): The transfer operator Π

W
is uniformly bounded, i.e. ∃ c

W
> 0 independent of h and the

parameters of the problem, and depending on the mesh only through its shape regularity constant such that

aDG(ΠW
w,Π

W
w) ≤ c

W
a
W
(w,w) , ∀w ∈ W . (3.4)

Property (F1): The operator S−1 is continuous, namely there exists cs > 0, independent of h and the
parameters of the problem, and depending only on the shape regularity of the mesh such that

aDG(v,v) ≤ cs s(v,v) , ∀ v ∈ Vh.
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Property (F2): (Stable decomposition) For every v ∈ Vh there exist w ∈ W and v0 ∈ Vh such that
v = v0 +Π

W
w and there exists C2

0 > 0 independent of v, such that

inf
v0∈Vh,w∈W
v=v0+Π

W
w

{s(v0,v0) + a
W
(w,w)} ≤ C2

0 aDG(v,v) , ∀ v = v0 +Π
W
w .

Then, a direct application of the fictitious space Theorem 3.1 yields κ(BA) ≤ C2
0 (cs + c

W
).

3.2 Auxiliary space preconditioners for the IP-DG discretization in H0(curl,Ω)

In the present work, we consider the DG space Vh defined in (2.1) with local spaces M(T ) as described in
Section 2. Concerning the auxiliary space, the following choices are adopted:

(a) Let W be the finite element space W = Vh ∩H0(curl,Ω), i.e.

W := V c

h
= {w ∈ H0(curl,Ω) : w|T ∈ M(T ), T ∈ Th} , (3.5)

for any choice of the local space M(T ) as in (2.2), (2.3) or (2.4), and endowed with the bilinear
form a

W
(·, ·) deriving from the H0(curl,Ω)-conforming finite element approximation of the model

problem (1.1). That is,

a
W
(χ,w) :=

∑

T∈Th

(νT∇× χ,∇×w)0,T +
∑

T∈Th

(βTχ,w)0,T , ∀χ,w ∈ V c

h
.

Note that, as observed in Section 2, a
W
(·, ·) is nothing but the restriction of the bilinear form aDG(·, ·)

in (2.7) to the H0(curl,Ω)-conforming finite element space V c

h
, namely

a
W
(u,v) = aDG(u,v) , ∀u,v ∈ V c

h
.

The associated operator A
W

: V c

h
→ (V c

h
)′ is self-adjoint and positive definite. The transfer operator

Π
W

: V c

h
→ Vh is trivially the standard inclusion.

(b) On a simplicial mesh, if Vh is the DG space (2.1) with local space M(T ) = N II(T ) as in (2.2), we
consider a second choice for the auxiliary space. Let W be the H0(curl,Ω)-conforming finite element
space based on local polynomial spaces of type N I(T ) as in (2.3), i.e.

W := W c

h
= {w ∈ H0(curl,Ω) : w|T ∈ N I(T ), T ∈ Th} . (3.6)

Note that W c

h
⊂ V c

h
⊂ Vh. The space W c

h
is endowed with the inner product a

W
(·, ·) corre-

sponding to the H0(curl,Ω)-conforming approximation based on W c

h
. Hence, the corresponding

induced operator AW : W c

h
→ (W c

h
)′ is self-adjoint and positive definite, and the transfer operator

Π
W

: W c

h
→ Vh is defined as the standard inclusion.

Observe that condition (F0) in Theorem 3.2 is trivially satisfied for both the above choices since the
transfer operator Π

W
is the standard inclusion. Furthermore, in both cases W = V c

h
or W = W c

h
, the

constant in (3.4) is c
W

= 1 in view of the fact that a
W
(·, ·) is the restriction of aDG(·, ·) to the corresponding

H(curl,Ω)-conforming spaces. Therefore, inequality (3.4) becomes an identity.
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3.3 Smoothers for the auxiliary space preconditioner

To assess the performance of the proposed family of preconditioners, the choices of the auxiliary space
described in Section 3.2 are combined with different possible smoothing operators S : Vh → V ′

h
. We

now briefly introduce our choice of relaxation techniques (non-overlapping and overlapping) as subspace
correction (SC) methods [90], and postpone to Section 4.2 their theoretical analysis. We focus on two main
types: pointwise relaxation and patch smoothers.

Pointwise relaxation or non-overlapping SC: Since the Galerkin matrix A associated to the DG discretiza-
tion of the model problem (2.6) is symmetric positive definite, we focus on Jacobi-type smoothers. Indeed,
by virtue of [92, Lemma 3.3], the pointwise symmetric Gauss-Seidel smoother is spectrally equivalent to
the corresponding Jacobi smoother, with constants independent of the problem coefficients and mesh size.

Our smoother are defined as non-overlapping additive Schwarz smoothers based on the following split-
tings of Vh:

(i) Pointwise Jacobi smoother:

Vh =
⊕

T∈Th

( ∑

e∈E(T )

Ne∑

i=1

span{ϕi
e,T}+

∑

f∈F(T )

Nf∑

i=1

span{ϕi
f,T }+

Nb∑

i=1

span{ϕi
T }

)
; (3.7)

(ii) Block Jacobi smoother:

Vh =
⊕

T∈Th

span{ϕ1
e,T , . . . ,ϕ

Ne

e,T ,ϕ
1
f,T , . . . ,ϕ

Nf

f,T ,ϕ
1
T , . . . ,ϕ

Nb

T }. (3.8)

In Lemma 4.4 we will show that the (non-overlapping) block Jacobi smoother associated with (3.8) is
spectrally equivalent to the pointwise Jacobi relaxation relative to the splitting (3.7).

Patch smoothers or overlapping SC methods: When the auxiliary space W is “coarser” than V c

h
, i.e., is

of type (b) as in Section 3.2, a local relaxation will not be effective (see Remark 3.3 and the numerical
experiments in Section 5) and one needs to resort to patch smoothers. For their description and analysis
one can rely on overlapping additive Schwarz methods [48] or on the subspace correction method [90]. We
consider the decomposition of Vh as a sum of spaces supported in small patches of elements. In particular,
let Nh denote the set of all vertices of the mesh Th and let y be either a vertex in Nh, an edge in Eh or an
element of the mesh Th. We denote generically by Ωy the patch related to y, i.e.

Ωy = {T ∈ Th : “y ⊂ T”} , y ∈ Nh ∪ Eh ∪ Th ,

where the precise definition of the relation “y ⊂ T” is specified below in (3.9), (3.10) and (3.11) for each
case. The corresponding subspace associated to each patch is defined as

V
Ωy

h
= {v ∈ Vh : supp(v) ⊆ Ωy} , y ∈ Nh ∪ Eh ∪ Th .

We therefore have the following (overlapping) space decompositions:

Vh =
∑

x∈Nh

Vh
Ωx , Ωx = {T ∈ Th : x ∈ ∂T}, (3.9)

Vh =
∑

e∈Eh

Vh
Ωe , Ωe = {T ∈ Th : e ⊂ ∂T} =: T (e), (3.10)

Vh =
∑

T∈Th

Vh
ΩT , ΩT = {T ′ ∈ Th : ∂T ′ ∩ ∂T ∈ Eh}. (3.11)
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Observe that
Ω ⊆

⋃

x∈Nh

Ωx, Ω ⊆
⋃

e∈Eh

Ωe, Ω ⊆
⋃

T∈Th

ΩT . (3.12)

Moreover, since Vh is a space of piecewise discontinuous polynomials, there are no continuity constraints
imposed in the above space splittings.

In order to define the additive overlapping Schwarz (or additive subspace correction method) associated
to a given domain decomposition Ωy as in (3.9), (3.10) or (3.11), we first consider the restriction of the
IP-DG method (2.6) to the subspace Vh

Ωy , namely the bilinear form in (2.7) becomes:

a
Ωy

DG(v,v) =
∑

T∈Ωy

(
νT ‖∇×v‖20,T + βT ‖v‖20,T

)
− 2

∑

f∈Fo
h
∩Ωy\∂Ωy

({{ν∇×v}}γ , [[v ]]τ )0,f

+
∑

T∈Ωy

αT (ν)
∑

e∈E(T )

∑

f∈F(e)\∂Ωy

(sf [[v ]]τ , [[v ]]τ )0,f −
∑

f∈Fo
h
∩∂Ωy

{{ν}}H,f (n× v,∇×v)0,f

+
∑

T∈Ωy

∂T∩∂Ωy 6=∅

αT (ν)
∑

e∈E(T )

∑

f∈F(e)∩∂Ωy

(sf n× v ,n× v)0,f ∀ v ∈ Vh
Ωy .

(3.13)

The above bilinear form defines the local solvers for Ωy∩∂Ω = ∅. For those patches touching the boundary
of Ω, the fourth term in the above sum is modified having νT instead of {{ν}}H,f . Denoting now by Jy the
cardinality of the patches required to cover the domain, the additive Schwarz smoother is defined as

sO(v,v) :=

Jy∑

j=1

a
Ωy

DG(vj ,vj) with v =

Jy∑

j=1

vj , vj ∈ Vh
Ωy . (3.14)

Remark 3.3. It is worth pointing out that, as we will show in Lemma 4.19 and observe numerically, the
use of a block oriented smoother in the preconditioner B is only essential when the auxiliary space W is
coarser than V c

h
; i.e., is of the type (b). The requirement of using overlapping block-type smoothers in

two-level and multi-level preconditioners for the finite element approximation of (1.1) has been observed
(and illustrated numerically) in the literature by many authors and for different approaches [60, 59, 11].
The basic rigorous mathematical justification that a pointwise smoother in a two level preconditioner will
not provide a convergent method, is given in [92] where a lower bound of order 1− ch2 on the convergence
rate of such two level preconditioner is derived. More precisely, in [92, Section 4] the author provides an
explicit construction of a function that cannot be seen by the coarse solver and cannot be damped by a
pointwise relaxation. Here, as we will show in Lemma 4.19, the use of a pointwise smoother would break
the edge bubbles (not seen by the auxiliary space) leading to a component with arbitrary high energy, that
cannot be damped.

4 Asymptotic optimality of preconditioner

This section is devoted to the analysis of the preconditioners introduced in Section 3.2 and Section 3.3. We
first state and discuss the main results. Then some basic auxiliary estimates required in the convergence
analysis are introduced. Finally, we prove conditions (F1) and (F2) of Theorem 3.2.

Theorem 4.1. Let B be the auxiliary space preconditioner as defined in (3.3) and associated to one of the
following:

(i) Auxiliary space W = V c

h
as in (3.5) and Jacobi smoother relative to the splitting of Vh (3.7) or

(3.8);
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(ii) Auxiliary space W = W c

h
as in (3.6) and overlapping patch smoother as in (3.14) and (3.13).

Then,
κ(BA) ≤ c20 (1 + cs) = ca (1 + cs)max{1, δ(ν, β)} ,

where

δ(ν, β) := min

{
max
T∈Th

h2TβT
νT

, max
T,T ′∈Th

∂T∩∂T ′ 6=∅

βT
βT ′

, max
T∈∆h,T

′∈∆′
h

∂T∩∂T ′ 6=∅

αT (ν)

αT ′(ν)

}
, (4.1)

where ∆h denotes the set of elements in the curl-dominated regime and ∆′
h denote the elements in a

reaction dominated region (see (4.37)). The constants cs, ca depend only on the polynomial degree and on
the shape regularity of the mesh.

The proof of the above Theorem relies on the application of the fictitious space Theorem 3.1 and
therefore boils down to the verification of conditions (F0), (F1) and (F2) in Theorem 3.2. As pointed out
in the description of the preconditioners in Section 3.2, condition (F0) is trivially satisfied in all cases, as
it can be plainly seen from the definition of a

W
(·, ·) and due to the fact that Π

W
is the standard inclusion.

Therefore, we are left with showing Properties (F1) and (F2).

4.1 Auxiliary results: Local estimates

In the analysis of the preconditioners some basic local estimates will be instrumental. These results are
therefore collected in the next Lemma whose proof relies on standard arguments and the equivalence of
all norms in finite dimensional spaces and it is therefore relegated to Appendix A. We refer the interested
reader to [58, Lemma 3.12], [74, Lemma 5.43] and references therein.

Lemma 4.2. Let T ∈ Th be an arbitrary element and let T̂ be the corresponding reference element (unit
tetrahedron, or unit cube) under an invertible affine map FT (x̂) = BT x̂+ cT . Let v ∈ M(T ) be represented
as in (2.5) and let v̂ denote the function defined through a contravariant transformation, v̂ = BT

T v ◦ FT .
Then, there exists C > 0 depending only on the polynomial degree and the shape regularity of the mesh,
such that the following inequalities hold:

‖v‖20,T ≤ ChT ‖v̂‖20,T̂ , ‖v̂‖2
0,T̂

≤ Ch−1
T ‖v‖20,T , (4.2)

‖∇ × v‖20,T ≤ Ch−1
T ‖∇̂ × v̂‖2

0,T̂
, ‖∇̂ × v̂‖2

0,T̂
≤ ChT ‖∇ × v‖20,T , (4.3)

and for f ∈ ∂T image of the reference face f̂ ∈ ∂T̂ under FT ,
∫

f
|n× v|2 ds ≤ C

∫

f̂
|n̂× v̂|2 dŝ ,

∫

f̂
|n̂× v̂|2 dŝ ≤ C

∫

f
|n× v|2 ds . (4.4)

Moreover, there exist C1, C2, C3 > 0 such that

C1‖∇̂ × v̂‖2
0,T̂

≤ C2‖v̂‖20,T̂ ≤
∑

e∈E(T )

‖ve,T‖2ℓ2 +
∑

f∈F(T )

‖vf,T ‖2ℓ2 + ‖vT ‖2ℓ2 ≤ C3‖v̂‖20,T̂ , (4.5)

where ‖·‖ℓ2 denotes the standard Euclidean norm. Finally, there exist C4, C5 > 0 such that

C4

∫

f̂
|n̂× v̂|2 dŝ ≤

∑

e∈E(f)

‖ve,T‖2ℓ2 + ‖vf,T ‖2ℓ2 ≤ C5

∫

f̂
|n̂× v̂|2 dŝ , (4.6)

where E(f) denotes the set of edges of f .
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Note that, as shown in [58, Equation (3.37)], the affine equivalence techniques deployed in the previous
Lemma 4.2 allow to establish the L2-stability of the local basis functions of Vh. As immediate consequence
of Lemma 4.2, we can derive the following:

Lemma 4.3. Let f = ∂T− ∩ ∂T+ be an interior face. There exist C1, C2 > 0 depending only on the
polynomial degree and the shape regularity of the mesh such that for all v ∈ Vh

C1

∫

f
|[[v ]]τ |2 ds ≤

∥∥vf,T+ − vf,T−

∥∥2
ℓ2
+

∑

e∈E(f)

∥∥ve,T+ − ve,T−

∥∥2
ℓ2

≤ C2

∫

f
|[[v ]]τ |2 ds . (4.7)

Proof. Let v± ∈ M(T±) denote the restrictions of v ∈ Vh to T±. By definition of tangential jump and
normal unit vector, one has [[v ]]τ = n+×v++n−×v− = n+×(v+−v−). Then, the functionw = (v+−v−)

has degrees of freedom given by {vif,T+ − vif,T−}Nf

i=1 and {vie,T+ − vie,T−}Ne

i=1 for every e ∈ E(f). Using a

contravariant transformation, as in Lemma 4.2, we can apply (4.6) to get the desired equivalence on the
reference element

C4

∫

f̂
|n̂+ × ŵ|2 dŝ ≤

∥∥vf,T+ − vf,T−

∥∥2
ℓ2
+

∑

e∈E(f)

∥∥ve,T+ − ve,T−

∥∥2
ℓ2

≤ C5

∫

f̂
|n̂+ × ŵ|2 dŝ .

Applying estimate (4.4) from Lemma 4.2 and substituting n+ ×w = [[v ]]τ , results in (4.7).

4.2 Smoothers

In this section we deal with the analysis of the smoothers introduced in Section 3.3. In particular, for
each smoother, this involves not only proving that property (F1) is fulfilled (and therefore the smoothing
operator has continuous and uniformly bounded inverse), but also determining how the operator S scales in
relation with the identity operator. The corresponding result for the pointwise relaxation methods defined
in (4.9) and (4.10) is given in the next Lemma.

Lemma 4.4. Let s(·, ·) denote any of the bilinear forms associated to the pointwise Jacobi or block-Jacobi
smoothers as defined in the splittings of Vh in (3.7) and (3.8), respectively. Then, there exists cs > 0
independent of the mesh size and the coefficients of the problems but depending on the local polynomial
space and on the shape regularity of the mesh such that

c−1
s aDG(v,v) ≤ s(v,v) ∀ v ∈ Vh .

Moreover, s(·, ·) satisfies

s(v,v) ≤ C
∑

T∈Th

νTh
−2
T ‖v‖20,T +

∑

T∈Th

βT ‖v‖20,T +
∑

T∈Th

αT (ν)h
−2
T ‖v‖20,T , ∀ v ∈ Vh , (4.8)

with C > 0 depending on the local polynomial space and on the shape regularity of the mesh.

Proof. To define the bilinear form s(·, ·) relative to Jacobi smoother associated to the space splitting (3.7)

we make use of the representation (2.5) of functions in Vh where each basis function {ϕi
e,T }Ne

i=1, {ϕi
f,T }

Nf

i=1,

{ϕi
T }Nb

i=1 is now considered as a global basis function on Ω extended by zero outside of its support. The
pointwise Jacobi relaxation reads:

sJ(v,v) :=
∑

T∈Th

∑

e∈E(T )

Ne∑

i=1

aDG(ϕ
i
e,T ,ϕ

i
e,T )(v

i
e,T )

2

+
∑

T∈Th

∑

f∈F(T )

Nf∑

i=1

aDG(ϕ
i
f,T ,ϕ

i
f,T )(v

i
f,T )

2 +
∑

T∈Th

Nb∑

i=1

aDG(ϕ
i
T ,ϕ

i
T )(v

i
T )

2 ,

(4.9)
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whilst the block Jacobi operator, using as blocks the elements T ∈ Th of the mesh, has bilinear form

sJb(v,v) :=
∑

T∈Th

∑

e∈E(T )

∑

e′∈E(T )

Ne∑

i=1

aDG(ϕ
i
e,T ,ϕ

i
e′,T )v

i
e,T v

i
e′,T

+
∑

T∈Th

∑

f∈F(T )

∑

f ′∈F(T )

Nf∑

i=1

aDG(ϕ
i
f,T ,ϕ

i
f ′,T )v

i
f,T v

i
f ′,T +

∑

T∈Th

Nb∑

i=1

aDG(ϕ
i
T ,ϕ

i
T )(v

i
T )

2.

(4.10)

As it will be clear from the proof, it is enough to focus on the lowest order case, namely for local degrees
of freedom given by {vie,T}Ne

i=1 for T ∈ Th, e ∈ E(T ) with Ne ≤ 2. The general case (as given in (4.9)
and (4.10)) can be shown by arguing exactly in the same way for the terms involving faces and elements
degrees of freedom.

First we prove continuity of the pointwise smoother. Using the representation (2.5), Cauchy-Schwarz
inequality and the arithmetic-geometric inequality yield

aDG(v,v) =
∑

T∈Th

∑

e∈E(T )

∑

T ′∈Th,
∂T ′∩∂T 6=∅

∑

e′∈E(T ′)

Ne∑

i=1

aDG(ϕ
i
e,T ,ϕ

i
e′,T ′)vie,T v

i
e′,T ′

≤
∑

T∈Th

∑

e∈E(T )

∑

T ′∈Th,
∂T ′∩∂T 6=∅

∑

e′∈E(T ′)

Ne∑

i=1

√
aDG(ϕ

i
e,T ,ϕ

i
e,T )

√
aDG(ϕ

i
e′,T ′ ,ϕi

e′,T ′)v
i
e,Tv

i
e′,T ′

≤ 1

2

∑

T∈Th

∑

e∈E(T )

∑

T ′∈Th,
∂T ′∩∂T 6=∅

∑

e′∈E(T ′)

Ne∑

i=1

(
aDG(ϕ

i
e,T ,ϕ

i
e,T )(v

i
e,T )

2 + aDG(ϕ
i
e′,T ′ ,ϕi

e′,T ′)(vie′,T ′)2
)

≤ C
∑

T∈Th

∑

e∈E(T )

Ne∑

i=1

aDG(ϕ
i
e,T ,ϕ

i
e,T )(v

i
e,T )

2 = CsJ(v,v) ,

where the constant C depends on the shape regularity of Th. In order to prove (4.8), note that the
continuity and stability of the bilinear form aDG(·, ·) hold for each of the basis functions (considered as
global functions). In particular, for all i = 1, . . . , Ne, we have

Cstab‖ϕi
e,T ‖2DG ≤ aDG(ϕ

i
e,T ,ϕ

i
e,T ) ≤ Ccont‖ϕi

e,T ‖2DG ,

and therefore aDG(ϕ
i
e,T ,ϕ

i
e,T ) ≃ C ‖ϕi

e,T ‖2DG where the constant C depends on the stability and continuity
constants of aDG(·, ·). Moreover, exploiting (4.2) and the inequalities (4.3) and (4.4), together with (4.5)
and (4.6) from Lemma 4.2, results in the following standard inverse inequalities

‖∇×ϕi
e,T ‖20,T ≤ Ch−2

T ‖ϕi
e,T‖20,T , ‖n×ϕi

e,T ‖20,f ≤ Ch−1
T ‖ϕi

e,T ‖20,T ,

where shape regularity has been used. Hence, recalling the definition of the ‖·‖DG norm (2.15), it holds

sJ(v,v) ≃
∑

T∈Th

∑

e∈E(T )

Ne∑

i=1

(vie,T )
2
(
νT ‖∇×ϕi

e,T ‖20,T + βT ‖ϕi
e,T‖20,T

)

+
∑

T∈Th

αT (ν)
∑

e∈E(T )

∑

f∈F(e)∩F(T )

Ne∑

i=1

h−1
f (vie,T )

2‖n×ϕi
e,T‖20,f
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≤C
∑

T∈Th

∑

e∈E(T )

Ne∑

i=1

(vie,T )
2
(
νTh

−2
T ‖ϕi

e,T ‖20,T + βT ‖ϕi
e,T‖20,T

)

+
∑

T∈Th

αT (ν)
∑

e∈E(T )

Ne∑

i=1

(vie,T )
2

∑

f∈F(e)∩F(T )

h−1
f h−1

T ‖ϕi
e,T ‖20,T

≤C
∑

T∈Th

νTh
−2
T ‖v‖20,T +

∑

T∈Th

βT ‖v‖20,T +
∑

T∈Th

αT (ν)h
−2
T ‖v‖20,T ,

with C > 0 depending on the mesh Th through its shape-regularity. For the block Jacobi smoother sJb in
(4.10), using the short-hand notation vi := v|Ti

, Cauchy-Schwarz inequality gives

aDG(v,v) = aDG

( ∑

Ti∈Th

vi,
∑

Tj∈Th,
∂Ti∩∂Tj 6=∅

vj

)
≤

∑

Ti∈Th

∑

Tj∈Th,
∂Ti∩∂Tj 6=∅

√
aDG(vi,vi)

√
aDG(vj ,vj)

≤ 1

2

∑

Ti∈Th

∑

Tj∈Th,
∂Ti∩∂Tj 6=∅

(aDG(vi,vi) + aDG(vj,vj)) ≤ C
∑

Ti∈Th

aDG(vi,vi) = CsJb(v,v) .

Moreover, the non-overlapping block Jacobi smoother enjoys the same spectral scaling of the pointwise
Jacobi relaxation. Indeed,

sJb(v,v) =
∑

T∈Th

∑

e∈E(T )

∑

e′∈E(T )

Ne∑

i=1

aDG(ϕ
i
e,T ,ϕ

i
e′,T )v

i
e,Tv

i
e′,T

≤
∑

T∈Th

∑

e∈E(T )

∑

e′∈E(T )

Ne∑

i=1

√
aDG(ϕ

i
e,T ,ϕ

i
e,T )

√
aDG(ϕ

i
e′,T ,ϕ

i
e′,T )v

i
e,Tv

i
e′,T

≤ 1

2

∑

T∈Th

∑

e∈E(T )

∑

e′∈E(T )

Ne∑

i=1

(
aDG(ϕ

i
e,T ,ϕ

i
e,T )(v

i
e,T )

2 + aDG(ϕ
i
e′,T ,ϕ

i
e′,T )(v

i
e′,T )

2
)

≤ C
∑

T∈Th

∑

e∈E(T )

Ne∑

i=1

aDG(ϕ
i
e,T ,ϕ

i
e,T )(v

i
e,T )

2 = CsJ(v,v) ,

and therefore, (4.8) follows also for sJb(·, ·).

We now study the continuity and spectral properties of the patch smoothers defined through (3.14) and
(3.13). In order to deal with all of them at once, we use a more compact notation and denote generically
by: Ωj = Ωy the patch related to y with y ∈ Nh ∪Eh ∪Th; by V

j
h
the corresponding subspace associated to

the patch Ωj (see (3.9), (3.10) and (3.11)); and by a
j
DG(·, ·) := a

Ωy

DG(·, ·) the local solver defined in (3.13).
Let J be the number of patches required to cover Ω (which will be different for the different splittings),
then we write Vh =

∑J
j=1 V

j
h
. Note that J is always a bounded and moderate constant that depends on the

connectivity of the partition. From the shape regularity assumption and by construction, for each of the
domain decompositions, the patches (or subdomains) Ωj are of comparable size. Moreover, all the domain
decompositions (3.12) have the finite covering property: that is for every x ∈ Ω, there is a finite number of
patches containing x, say N(x). We define Nc = maxx∈Ω N(x) which is a finite (and moderate) number
depending on the connectivity of the mesh. Denoting by Aj : V j

h
→ (V j

h
)′ the local operator associated

to a
j
DG(·, ·) and by Ij : V j

h
→֒ Vh the natural embedding, the additive Schwarz smoothing operator reads

S =
∑J

j=1 Ij ◦ A−1
j ◦ I∗

j .
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The next Lemma establishes the property (F1) in Theorem 3.2 and provides the scaling of the smoother
sO(·, ·) in (3.14).

Lemma 4.5. Let Vh =
∑J

j=1 V
j
h
be a space splitting with subspaces V

j
h
as in (3.9), (3.10) or (3.11), and

let sO(·, ·) be the corresponding (overlapping) additive Schwarz method given in (3.14). Then, for every
v ∈ Vh there exists cs > 0 depending on the local polynomial space, the shape regularity, the connectivity of
the mesh and the amount of overlapping Nc in the subdomain partition, such that for any choice of {vj}Jj=1

for which v =
∑J

j=1 vj, it holds
aDG(v,v) ≤ cssO(v,v) . (4.11)

Moreover, sO(·, ·) satisfies

sO(v,v) ≃
J∑

j=1

( ∑

T∈Ωj

νT ‖∇× vj‖20,T + βT ‖vj‖20,T +
∑

T∈Ωj

αT (ν)
∑

e∈E(T )

∑

f∈F(e)\∂Ωj

h−1
f ‖[[vj ]]τ ‖20,f

+
∑

T∈Ωj

∂T∩∂Ωj 6=∅

αT (ν)
∑

e∈E(T )

∑

f∈F(e)∩∂Ωj

h−1
f ‖n× vj‖20,f

)
.

(4.12)

Proof. Note that (4.11) states that in the decomposition v =
∑J

j=1 vj, the energy of the parts bounds the
energy of the function in Vh. To measure the overlap of the domain splitting we introduce the constants

cjk =





1 if Ωj ∩ Ωk 6= ∅
0 if Ωj ∩ Ωk = ∅

j, k = 1, . . . , J.

Cauchy-Schwarz inequality, the arithmetic-geometric inequality and the fact that cjk = ckj for all j, k =
1, . . . , J , gives

aDG(v,v) = aDG

( J∑

j=1

vj,

J∑

k=1

vk

)
=

J∑

j,k=1

cjkaDG(vj ,vk) ≤
J∑

j,k=1

√
cjkaDG(vj ,vj)

√
ckjaDG(vk,vk)

≤ 1

2

J∑

j,k=1

(cjkaDG(vj,vj) + ckjaDG(vk,vk)) ≤
J∑

j,k=1

cjkaDG(vj,vj)

=
J∑

j=1

aDG(vj ,vj)

( J∑

k=1

cjk

)
≤ Nc

J∑

j=1

a
j
DG(vj ,vj) = cssO(v,v) ,

where cs = max1≤j≤J{♯k : Ωj ∩ Ωk 6= ∅}. The proof of (4.12) reduces to use the continuity and coercivity

of ajDG(·, ·) on the subspace V
j
h
for every j = 1, . . . , J .

4.3 Averaging operator

Typically, in the auxiliary space framework, the proof of the stable decomposition property (F2) relies
on the construction of an operator Ph : Vh → Vh ∩ H(curl,Ω) satisfying appropriate approximation and
stability properties. We construct such averaging operator, following the ideas given in [64, 71]. In fact,
our construction and approximation results could be regarded as a generalization of the result contained in
[64, Appendix]. The main novelty here, is that the operator we introduce takes into account the presence of
coefficients in the model problem (1.1) and is shown to provide robust approximation with respect to large
variation of the coefficients. Therefore, we believe that the construction and approximation results are of
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independent interest, and for this reason, we present the construction of the operator and its approximation
results without restricting to low order methods. It is worth stressing that the result in [64, Appendix] has
been already used in the different contexts related to the DG approximation of the time harmonic Maxwell
problem; in the analysis of spectral approximation [35] (see also [34] for the numerical verification of the
results) and in different works related to a posteriori error estimates [65, 66].

To ease the notation, we set χ := Ph(v) and, since χ ∈ Vh ∩H(curl,Ω), we can write χ|T in the basis
of M(T ) for all T ∈ Th. More precisely we have the following representation:

χ(x) =
∑

e∈E(T )

Ne∑

i=1

χi
eϕ

i
e,T (x) +

∑

f∈F(T )

Nf∑

i=1

χi
f ϕ

i
f,T (x) +

Nb∑

i=1

χi
T ϕi

T (x) ∀x ∈ T . (4.13)

Hence, in order to define χ, it is enough to specify its associated degrees of freedom χe = {χi
e}Ne

1=1,

χf = {χi
f}

Nf

1=1 and χT = {χi
T }Nb

1=1 in terms of those of v and ensure at the same time the H(curl,Ω)-
conformity of the global function. In order to do that, we define two sets of weights associated with faces
and edges of the mesh. More precisely, let f ∈ Fo

h be an interior face such that f = ∂T+∩∂T−. We define:

ωf,T+ :=

√
νT+

√
νT+ +

√
νT−

and ωf,T− := 1− ωf,T+ =

√
νT−

√
νT+ +

√
νT−

. (4.14)

Note that, since trivially (a+ b)2 > a2 + b2 for a, b > 0, we have

2νT±ω2
f,T∓ ≤ {{ν}}H,f ≤ {{ν}}∗,f ≤ αT+(ν) , αT−(ν) ,

with {{·}}∗,f and αT (ν) defined as in (2.9) and {{·}}H,f as in (2.10). In order to define the weights on the
edges of the mesh, let e ∈ Eo

h be an interior edge and let T (e) be the set of elements sharing the edge e (as
defined in Section 2.1). Note that the cardinality of the set T (e) is bounded by a finite constant depending
on the shape regularity and the connectivity of the mesh Th, uniformly with respect to h. Let νj := ν|Tj

,
we define

ωe,Tℓ
:=

√
νℓ∑

Tj∈T (e)

√
νj

∀Tℓ ∈ T (e) . (4.15)

We now have all ingredients to construct the averaging projection operator Ph.

Definition 4.6. Let Ph : Vh → V c

h
be such that χ = Ph(v), for any v ∈ Vh, is given by (4.13) with

degrees of freedom χe = {χi
e}Ne

1=1, χf = {χi
f}

Nf

1=1 and χT = {χi
T }Nb

1=1 defined as:

(i) For every T ∈ Th the volume degrees of freedom χT are set equal to those of vT :

χi
T := viT ∀i = 1, . . . , Nb . (4.16)

(ii) The face moments χf are defined, for all i = 1, . . . , Nf as

χi
f =





ωf,T+vif,T+ + ωf,T−vif,T− f ∈ Fo
h, f = ∂T+ ∩ ∂T−,

0 f ∈ F∂
h ,

(4.17)

where the weights ωf,T+ , ωf,T− are as in (4.14).
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(iii) The edge moments χe are defined, for all i = 1, . . . , Ne, as the convex combination

χi
e =





∑
Tℓ∈T (e)

ωe,Tℓ
vie,Tℓ

e ∈ Eo
h, e ⊂ ∂Tℓ ,

0 e ∈ E∂
h ,

(4.18)

with weights {ωe,Tℓ
}ℓ defined in (4.15).

Observe that the definition of Ph is completely general with respect to the distribution of the coefficient
ν which is only required to be piecewise constant on Th for every h. Note also that if ν ≡ 1 in Ω, then the
averaging operator above coincides with the projection operator proposed in [64, Appendix]. The following
result provides the approximation properties of Ph in the local ν-weighted L2-norm.

Lemma 4.7. Let v ∈ Vh and let Ph : Vh → V c

h
be the averaging operator introduced in Definition 4.6.

Then, there exists a constant C > 0 depending only on the polynomial degree and the shape regularity of
the mesh such that

νT ‖v − Ph(v)‖20,T ≤ CαT (ν)
∑

f∈F(T )

hf‖[[v ]]τ ‖20,f + CαT (ν)
∑

e∈E(T )

∑

f∈F(e)\F(T )

hf‖[[v ]]τ ‖20,f ; (4.19)

αT (ν)‖v − Ph(v)‖20,T ≤ CαT (ν)
∑

f∈F(T )

hf‖[[v ]]τ ‖20,f + CαT (ν)
∑

e∈E(T )

∑

f∈F(e)\F(T )

hf‖[[v ]]τ ‖20,f ; (4.20)

Prior to give the proof of the above estimates, we present a stability result of the averaging operator
Ph in the β-weighted L2-norm defined in (2.14).

Corollary 4.8. Let v ∈ Vh and let Ph : Vh → V c

h
be the averaging operator as in Definition 4.6. Then,

there exists C > 0 depending only on the polynomial degree and the shape regularity of the mesh such that

‖v − Ph(v)‖20,β,Th ≤ Cmax{1, θ(ν, β)}‖v‖2DG . (4.21)

where θ(ν, β) is defined as

θ(ν, β) := min

{
max
T∈Th

h2TβT
νT

, max
T,T ′∈Th

∂T∩∂T ′ 6=∅

βT
βT ′

}
. (4.22)

Proof. The proof boils down to showing the following estimates:

‖v − Ph(v)‖20,β,Th ≤ C
∑

T∈Th

h2T
βT
νT

∑

e∈E(T )

∑

f∈F(e)

αT (ν)h
−1
f ‖[[v ]]τ ‖20,f ; (4.23)

‖v − Ph(v)‖20,β,Th ≤ C
∑

T∈Th

βT ‖v‖0,T +
∑

T,T ′∈Th
∂T∩∂T ′ 6=∅

βT
βT ′

βT ′‖v‖20,T ′ . (4.24)

To prove (4.23), we exploit the ν-weighted L2-estimate (4.19) by multiplying and dividing by νT the
elementwise β-weighted norms, namely

∑

T∈Th

βT ‖v − Ph(v)‖20,T =
∑

T∈Th

βT
νT

νT ‖v − Ph(v)‖20,T

(4.19)

≤ C
∑

T∈Th

βT
νT

∑

e∈E(T )

∑

f∈F(e)

αT (ν)hf‖[[v ]]τ ‖20,f

≤ C
∑

T∈Th

h2T
βT
νT

∑

e∈E(T )

∑

f∈F(e)

αT (ν)h
−1
f ‖[[v ]]τ ‖20,f .
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In order to show (4.24), we use the estimate (4.20) with αT (ν) = 1 for all T ∈ Th, and trace [1] and inverse
inequalities [38, p. 146] to get

∑

T∈Th

βT ‖v − Ph(v)‖20,T ≤ C
∑

T∈Th

βT

( ∑

f∈F(T )

hf ‖[[v ]]τ ‖20,f +
∑

e∈E(T )

∑

f∈F(e)\F(T )

hf‖[[v ]]τ ‖20,f
)

≤ C
∑

T∈Th

βT ‖v‖20,T + C
∑

T∈Th

∑

T ′∈Th\{T}
∂T∩∂T ′ 6=∅

βT
βT ′

βT ′ ‖v‖20,T ′ .

Taking into account the definition of the DG-norm (2.15), one can combine estimates (4.23) and (4.24) to
obtain (4.21).

Proof of Lemma 4.7. In view of the definition of the norms (2.13) and (2.14), we consider the L2 approx-
imation error at the element level. First, let T ∈ Th be an arbitrary element that does not intersect the
boundary ∂Ω. To estimate the difference v−Ph(v) we use the representations (2.5) and (4.13). The bound
(4.2) together with the norm equivalence (4.5) gives

νT ‖v − Ph(v)‖20,T ≤ ChT

( ∑

f∈F(T )

νT
∥∥vf,T − χf

∥∥2
ℓ2
+

∑

e∈E(T )

νT ‖ve,T − χe‖2ℓ2
)
. (4.25)

We estimate each of the contributions on the right hand side above separately. Let f ∈ F(T ) be an interior
face such that f = ∂T ′ ∩ ∂T with T, T ′ ∈ Th. From the definition of the averaging operator and the
corresponding face degrees of freedom (4.17), together with the norm equivalence (4.7) from Lemma 4.3,
we have

νT
∥∥vf,T − χf

∥∥2
ℓ2

(4.17)
= νT

∥∥(1− ωf,T )vf,T − ωf,T ′vf,T ′

∥∥2
ℓ2

(4.14)
= νT (ωf,T ′)2

∥∥vf,T − vf,T ′

∥∥2
ℓ2

≤ νT
∥∥vf,T − vf,T ′

∥∥2
ℓ2

(4.7)

≤ CαT (ν)

∫

f
|[[v ]]τ |2 ds , (4.26)

since the face weights satisfy ωf,T ′ < 1 and νT ≤ αT (ν) for all T ∈ Th. Concerning the degrees of freedom
on the edges, using the definition in (4.18) results in

∑

e∈E(T )

νT ‖ve,T − χe‖2ℓ2 ≤ C
∑

e∈E(T )

∑

Tℓ∈T (e)
Tℓ 6=T

νT (ωe,Tℓ
)2 ‖ve,T − ve,Tℓ

‖2ℓ2 . (4.27)

To estimate the above term, we introduce a numbering (ordering) of the elements in the set T (e) for a
fixed e ∈ E(T ), such that T (e) =

⋃Me

j=0 Tj with Me := |T (e)| − 1. The ordering is such that T0 := T and

∂T0 ∩ ∂T1 ∈ F(T0) , and ∂T0 ∩ ∂TMe ∈ F(T0) ;

∂T0 ∩ ∂Tj ∈ E(T0) , but ∂T0 ∩ ∂Tj 6∈ F(T0) ∀j = 2, . . . ,Me − 1 ;

∂Tj ∩ ∂Tj+1 ∈ F(Tj) ∩ F(Tj+1) ∀j = 2, . . . ,Me − 1 .

(4.28)

Using such numbering, by summing and subtracting suitable degrees of freedom and applying triangle
inequality (see [71, Lemma 2.2] for a similar trick), results in

∑

Tℓ∈T (e)
Tℓ 6=T0

νT0
(ωe,Tℓ

)2 ‖ve,T0
− ve,Tℓ

‖2ℓ2 ≤ νT0
(ωe,T1

)2 ‖ve,T0
− ve,T1

‖2ℓ2

+

Me−1∑

ℓ=2

νT0
(ωe,Tℓ

)2 ℓ

ℓ−1∑

j=0

∥∥ve,Tj
− ve,Tj+1

∥∥2
ℓ2

+ νT0
(ωe,TMe

)2
∥∥ve,T0

− ve,TMe

∥∥2
ℓ2

.
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Notice that trivially νT0
(ωe,T1

)2 , νT0
(ωe,TMe

)2 ≤ {{ν}}H,f ≤ {{ν}}∗,f with f ∈ F(T0) while for the interme-
diate sum above (taking into account the definition in (2.9)), one has

νT0
(ωe,Tℓ

)2 ≤ {{ν}}∗,f with f = ∂Tj ∩ ∂Tj+1 j = 0, . . . , ℓ− 1, ℓ = 2, . . . Me − 1 .

Hence, the above estimates together with the norm equivalence (4.7) from Lemma 4.3 and the fact that ℓ
is uniformly bounded (ℓ ≤ Me) yield

∑

Tℓ∈T (e)
Tℓ 6=T0

νT0
(ωe,Tℓ

)2 ‖ve,T0
− ve,Tℓ

‖2ℓ2 ≤ C
∑

Tℓ∈T (e)
Tℓ 6=T0

∑

f∈F(e)∩F(Tℓ)

{{ν}}∗,f‖[[v ]]τ ‖20,f

≤ C {{ν}}∗,f
∑

f∈F(e)

‖[[v ]]τ ‖20,f .
(4.29)

Hence, substituting (4.29) into (4.27) for all elements that do not intersect the domain boundary ∂Ω and
taking into account the definition (2.9) yields

∑

e∈E(T )

νT ‖ve,T − χe‖2ℓ2 ≤ CαT (ν)
∑

e∈E(T )

∑

f∈F(e)

‖[[v ]]τ ‖20,f , (4.30)

where C only depends on the shape regularity and connectivity of the mesh. For elements T ∈ Th touching
the boundary ∂T ∩ ∂Ω 6= ∅ the same type of estimates can be obtained by exploiting the fact that, in view
of the boundary conditions, the degrees of freedom χf,T and χe,T are set to zero on the boundary faces
and on the boundary edges, respectively (see (4.17) and (4.18)). In particular, analogously to (4.25), it
holds

νT ‖v −P(v)‖20,T ≤ ChT

( ∑

f⊆∂T∩∂Ω

νT ‖vf,T ‖2ℓ2 +
∑

e⊆∂T∩∂Ω

νT ‖ve,T ‖2ℓ2

+
∑

f∈F(T )
f*∂Ω

νT
∥∥vf,T − χf

∥∥2
ℓ2
+

∑

e∈E(T )
e*∂Ω

νT ‖ve,T − χe‖2ℓ2
)
.

(4.31)

The last two contributions are estimated as in (4.26) and (4.30) respectively. The first two terms can be
bounded by arguing similarly, but using equivalence (4.6) together with (4.4), namely

νT

( ∑

f⊆∂T∩∂Ω

‖vf,T ‖2ℓ2 +
∑

e⊆∂T∩∂Ω

‖ve,T‖2ℓ2
)

≤ 2νT
∑

f⊆∂T∩∂Ω

(
‖vf,T‖2ℓ2 +

∑

e∈E(f)

‖ve,T‖2ℓ2
)

≤ C
∑

f⊆∂T∩∂Ω

αT (ν)

∫

f
|n× v|2ds , (4.32)

and one can conclude by using the fact that the “jump” on the boundary ∂Ω reduces to the plain tangential
trace. Therefore, substituting into (4.25) and (4.31) the local contributions from the interior faces (4.26),
from the interior edges (4.30) and from the boundary (4.32), yields (4.19).

In order to obtain (4.20), we proceed analogously as above using αT (ν) in lieu of νT . The contribution
from the edges can be estimated (using now the fact that ωe,T < 1 for all e ∈ E(T )) as

∑

Tℓ∈T (e)
Tℓ 6=T0

αT0
(ν)(ωe,Tℓ

)2 ‖ve,T0
− ve,Tℓ

‖2ℓ2 ≤ CαT0
(ν)

∑

f∈F(e)

‖[[v ]]τ ‖20,f , (4.33)
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and substituting (4.33) into (4.27) results in

∑

e∈E(T )

αT (ν) ‖ve,T −χe‖2ℓ2 ≤ C
∑

e∈E(T )

∑

f∈F(e)

αT (ν)‖[[v ]]τ ‖20,f , (4.34)

where C only depends on the shape regularity and connectivity of the mesh. The degrees of freedom on
the faces can be evaluated as in (4.26) with αT (ν) instead of νT . Hence, the result follows by substituting
into (4.25) and (4.31), the bounds (4.26), (4.34) and the boundary term (4.32).

4.4 Stable decomposition

By means of the approximation properties of the averaging operator derived in Section 4.3, we establish a
first stability result for the splitting associated to the case (a) in Section 3.2, paying particular attention
to the distribution of the coefficients ν and β.

Proposition 4.9. Let Th be shape regular and local quasi-uniform. Let Vh be defined as in (2.1) and let
V c

h
= Vh ∩H0(curl,Ω) be the corresponding H(curl,Ω)-conforming finite element space. Let s(·, ·) be any

of the pointwise smoothers defined in (4.9) and (4.10). Then, for any v ∈ Vh there exist v0 ∈ Vh and
χ ∈ V c

h
such that v = v0 + χ and

s(v0,v0) + a
W
(χ,χ) ≤ c20 max{1, θ(ν, β)} aDG(v,v) , (4.35)

where θ(ν, β) is defined as in (4.22) and the constant c20 > 0 depends only the polynomial degree and on
the shape regularity of the mesh.

Proof. Let v ∈ Vh and Ph be the averaging operator introduced in Definition 4.6. Since by construction,
Ph(v) ∈ V c

h
, for all v ∈ Vh we take v0 = v − Ph(v) ∈ Vh. Then, the scaling of the smoother (4.8) given

in Lemma 4.4, together with the approximation estimates (4.20) and (4.21) and the fact that νT ≤ αT (ν)
for any T ∈ Th gives

s(v0,v0) ≤ C
∑

T∈Th

h−2
T νT‖v − Ph(v)‖20,T + ‖v − Ph(v)‖20,β,Th +

∑

T∈Th

h−2
T αT (ν)‖v − Ph(v)‖20,T

≤ C
∑

T∈Th

αT (ν)
∑

e∈E(T )

∑

f∈F(e)

h−1
f ‖[[v ]]τ ‖20,f + Cθ(ν, β)‖v‖2DG .

To conclude we need to consider a
W
(Ph(v),Ph(v)). Since

a
W
(Ph(v),Ph(v)) ≤ a

W
(v,v) + a

W
(v − Ph(v),v − Ph(v)),

the stability proof reduces to bound the weighted H(curl,Ω)-norm of the difference v − Ph(v) (using the
continuity of a

W
(·, ·) in that norm). Hence, a standard application of inverse inequality together with

(4.20) and (4.21), yields

a
W
(v −Ph(v),v −Ph(v)) ≤ ‖∇× (v − Ph(v))‖20,ν,Th + ‖v − Ph(v)‖20,β,Th

≤ C
∑

T∈Th

αT (ν)
∑

e∈E(T )

∑

f∈F(e)

h−1
f ‖[[v ]]τ ‖20,f + Cθ(ν, β)‖v‖2DG .

Collecting the above two estimates results in (4.35). Since the choice of v was arbitrary this concludes the
proof.
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Remark 4.10. The results derived in Proposition 4.9 entail that:

• If the problem is curl-dominated in the whole domain (i.e. νT ≥ βTh
2
T for all T ∈ Th), (4.35)

guarantees that the auxiliary space preconditioner is uniformly convergent and robust with respect to
jumps in the coefficients β and ν. In this case one could replace the solution operator in the auxiliary
space A

W
by the domain decomposition preconditioner proposed in [43], getting an optimal solver.

• If the reaction coefficient β is assumed to be of bounded variation, (4.35) ensures the uniform con-
vergence of the auxiliary space preconditioner and the robustness with respect to possible jumps
in the coefficient ν. This could be seen as in agreement with the results available in the literature
for auxiliary space type preconditioners for discretizations of second order problems with only one
jumping coefficient [36, 31].

• If the problem is reaction dominated in the whole domain and β is allowed to have high variations in
different regions, an application of Proposition 4.9 would predict a convergence affected significantly
by the size of the largest ratio h2TβT /νT and the largest jump on the reaction coefficient β. How-
ever, such prediction might be pessimistic and would not endorse the results obtained in the actual
computations, as we shall see in the numerical experiments (see Section 5). Also, if the problem
is reaction dominated in the whole domain, one might expect that the auxiliary space solver is not
required in the preconditioner (3.3). In fact, as we will show in the subsequent Proposition 4.14 and
in the numerical experiments, by suitably turning off the auxiliary space solver in the preconditioner
its convergence will not be jeopardized by the largest ratio h2TβT /νT or by the largest jump on the
reaction coefficient.

4.5 Localized results

To efficiently address the most general case in which the local quotient h2TβT /νT can be larger than one in
some parts of the domain but smaller than one in some others; that is when the problem is curl-dominated
in some regions and reaction dominated in others, we introduce another averaging operator Ph : Vh → V c

h

which allows to turn off the auxiliary space correction in the reaction dominated regime, and to further
localize the error estimates. Its definition is given in terms of the operator Ph (introduced in Definition 4.6)
by setting it to zero in selected regions.

Definition 4.11. Let Ph : Vh → Vh ∩ H0(curl,Ω) and let χ := Ph(v) be defined through the local
representation (analogue of (4.13)),

χ(x) =
∑

e∈E(T )

Ne∑

i=1

χi
eϕ

i
e,T (x) +

∑

f∈F(T )

Nf∑

i=1

χi
f ϕ

i
f,T (x) +

Nb∑

i=1

χi
T ϕi

T (x) ∀x ∈ T .

The degrees of freedom of χ are equal to the degrees of freedom of χ := Ph(v) (defined in (4.16), (4.17),
(4.18)) or are set to zero according to the following criteria:

(i) if T ∈ Th the volume degrees of freedom, for all i = 1, . . . , Nb are:

χi
T =





0 if h2TβT ≥ αT (ν) ,

χi
T otherwise.
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(ii) if f ∈ Fo
h such that f = ∂T+ ∩ ∂T− the face moments, for all i = 1, . . . , Nf are:

χi
f =





0 if h2T+βT+ ≥ αT+(ν) or h2T−βT− ≥ αT−(ν) ,

χi
f otherwise.

On boundary faces f ∈ F∂
h we set χf = χf .

(iii) if e ∈ Eo
h, the edge moments, for all i = 1, . . . , Ne are:

χi
e =





0 if ∃T ′ ∈ T (e) : h2T ′βT ′ ≥ αT ′(ν) ,

χi
e otherwise.

On boundary edges e ∈ E∂
h we set χe = χe.

First, we introduce some notations and establish some preliminary results on the approximation error
given by Ph which will be instrumental for the subsequent analysis on the stability of the decomposition.
In particular, let T ∈ Th be fixed and such that h2TβT < αT (ν). We define the following sets (see Figure 4.1
for an example in a 2D schematic representation where an element is depicted as a triangle, a face is
identified with an edge and an edge with a vertex):

F ′(T ) := {f ∈ F(T ) : f = ∂T ∩ ∂T ′ for T ′ ∈ Th such that h2T ′βT ′ ≥ αT ′(ν)} ;
E ′(T ) := {e ∈ E(T ) : ∃T ′ ∈ T (e) such that h2T ′βT ′ ≥ αT ′(ν)} ;
T ′(T ) := {T ′ ∈ T (e) for e ∈ E ′(T ) : ∂T ∩ ∂T ′ = e and h2T ′βT ′ ≥ αT ′(ν)} .

(4.36)

We will establish local bounds of the L2-norm of the averaging projection error given by Ph depending on
the ratio of αT (ν) belonging to elements T ∈ Th at the interface between a curl-dominated region and a
subdomain in a reaction dominated regime. For this reason we need to introduce the sets of elements:

∆h := {T ∈ Th : h2TβT < αT (ν)} , ∆′
h := {T ∈ Th : h2TβT ≥ αT (ν)} . (4.37)

T

T
1

T
2

e
3

e
2

e
1

f’

Figure 4.1: 2D sketch of the sets defined in (4.36).
The elements T ′ ∈ {T1, T2} in gray satisfy h2

T ′βT ′ ≥
αT ′(ν), while the elements in the white region satisfy
h2

T
βT < αT (ν). For the element T (in the white re-

gion): F ′(T )={f ′}, E ′(T )={e1, e2, e3}, T ′(T )={T1}.

With this notation in mind, localized approximation estimates for the operator Ph can be derived. The
proofs of the following Lemmas are relegated to Appendix B and Appendix C. We refer to Figure 4.2 and
Figure 4.3 for a 2D sketch of the mesh configurations covered in Lemma 4.12 and Lemma 4.13, respectively.



26

Lemma 4.12. Let v ∈ Vh and let Ph : Vh → V c

h
be the projection operator in Definition 4.11. Let

T ∈ ∆h be fixed (i.e., T ∈ Th is such that h2TβT < αT (ν)). Assume that the set F ′(T ) 6= ∅ is non-empty.
In particular, if F(T ) \ F ′(T ) 6= ∅, then

h−2
T αT (ν)

∥∥v − Ph(v)
∥∥2
0,T

≤ CαT (ν)
∑

e∈E(T )

∑

f∈F(e)

h−1
f ‖[[v ]]τ ‖20,f + C

∑

T ′∈Th
∂T∩∂T ′∈F ′(T )

αT (ν)

αT ′(ν)
βT ′ ‖v‖20,T ′ . (4.38)

If F ′(T ) ≡ F(T ), then

h−2
T αT (ν)

∥∥v − Ph(v)
∥∥2
0,T

≤ CαT (ν)
∑

f∈F(T )

h−1
f ‖[[v ]]τ ‖20,f +C

∑

T ′∈Th
∂T∩∂T ′∈F(T )

αT (ν)

αT ′(ν)
βT ′ ‖v‖20,T ′ ; (4.39)

where the constants C > 0 depend only on the polynomial degree and the shape regularity of the mesh.

T

T’

(a) Admissible configuration

T

(b) Admissible configuration

T

T’

(c) Non-admissible configuration

Figure 4.2: 2D sketch of the required assumptions in Lemma 4.12. Let the cells T in white be such that h2

T
βT < αT (ν),

and the cells T ′ in gray satisfy h2

T ′βT ′ ≥ αT ′(ν). The element T in case (a) satisfy the assumptions of the Lemma for
(4.38), whereas T in (b) fulfills the hypoteses of the Lemma case (4.39) but the configuration in case (c) does not.

Lemma 4.13. Let v ∈ Vh and let Ph : Vh → V c

h
be the projection operator introduced in Definition 4.11.

Let T ∈ ∆h be fixed. Assume that E ′(T ) 6= ∅ but F ′(T ) = ∅. Then,

h−2
T αT (ν)

∥∥v − Ph(v)
∥∥2
0,T

≤ C αT (ν)
∑

e∈E(T )

∑

f∈F(e)

h−1
f ‖[[v ]]τ ‖20,f + C

∑

T ′∈T ′(T )

αT (ν)

αT ′(ν)
βT ′ ‖v‖20,T ′ ; (4.40)

where the constants C > 0 depend only on the polynomial degree and the shape regularity of the mesh.

We have now all the tools needed to establish the following:

Proposition 4.14. Let Th be shape regular and local quasi-uniform. Let Vh be defined as in (2.1) and let
V c

h
= Vh ∩H0(curl; Ω) be the corresponding H(curl; Ω)-conforming finite element space. Let s(·, ·) be any

of the pointwise smoothers as defined in (4.9) and (4.10). Then, for any v ∈ Vh there exist v0 ∈ Vh and
χ ∈ V c

h
such that v = v0 + χ and

s(v0,v0) + a
W
(χ,χ) ≤ c20 max

T∈∆h,T
′∈∆′

h

∂T∩∂T ′ 6=∅

{
1,

αT (ν)

αT ′(ν)

}
aDG(v,v) , (4.41)

where the sets ∆h and ∆′
h are defined in (4.37) and the constant c20 depends only on the polynomial degree

and on the shape regularity of the mesh.
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T

(a) Admissible configuration

T

(b) Non-admissible configuration

Figure 4.3: 2D sketch of the required assumptions in Lemma 4.13. Let the cells T in white be such that h2

T
βT < αT (ν),

and the cells T ′ in gray satisfy h2

T ′βT ′ ≥ αT ′(ν). The element T in case (a) satisfy the assumptions of the Lemma,
whereas configuration (b) does not.

Proof. Let v ∈ Vh and let Ph be the averaging operator as from Definition 4.11. By construction, Ph(v) ∈
V c

h
. Throughout the proof we set v0 = v − Ph(v). We distinguish several cases depending on the regions

of the domain, and proceed by local estimates. In particular, for a fixed element T ∈ Th, we distinguish
four possible cases:

(i) T ∈ ∆′
h i.e. h2TβT ≥ αT (ν) ≥ νT i.e. the element is in the reaction dominated regime;

(ii) T ∈ ∆h i.e. h2TβT < αT (ν) and E ′(T ) = ∅ (hence F ′(T ) = ∅);
(iii) T ∈ ∆h i.e. h2TβT < αT (ν) and F ′(T ) 6= ∅;
(iv) T ∈ ∆h i.e. h2TβT < αT (ν) and F ′(T ) = ∅ but E ′(T ) 6= ∅.
The last two cases refer to those elements that have a face or an edge at the interface between the reaction
dominated and curl-dominated regime. We will typically use

a
W
(Ph(v),Ph(v))|T ≤ a

W
(v,v)|T + a

W
(v − Ph(v),v − Ph(v))|T , (4.42)

and therefore to bound a
W
(Ph(v),Ph(v))|T it will be enough to bound the last term in (4.42). Let us

consider one by one the previous cases.
Case (i). In this case, T is an element in the reaction dominated region and therefore the auxiliary space
solver is turned off. By definition of the operator Ph (Definition 4.11), it holds Ph(v)|T = 0, hence
v0|T = v|T . This case leaves out (locally) the correction in the auxiliary space. Hence to prove (4.41) we
only need to consider the smoother. For the pointwise or block Jacobi smoother, using the scaling in (4.8)
together with the fact that h−2

T νT ≤ h−2
T αT (ν) ≤ βT , results in

s(v0,v0)|T ≤ C
(
h−2
T νT ‖v‖20,T + βT ‖v‖20,T + h−2

T αT (ν)‖v‖20,T
)
≤ CβT ‖v‖20,T .

Case (ii). Owing to the construction of the operator Ph in Definition 4.11, it holds Ph(v)|T = Ph(v)|T and
hence v0|T = v|T − Ph(v)|T . Therefore we can directly argue as in the proof of Proposition 4.9. Taking
into account (4.42) and using inverse inequalities, the local approximation properties of Ph in (4.20) and
the assumption h2TβT < αT (ν) yields

a
W
(v − Ph(v),v − Ph(v))|T ≤ νT ‖∇× (v − Ph(v))‖20,T + βT ‖v − Ph(v)‖20,T

≤ h−2
T νT ‖v − Ph(v)‖20,T + h−2

T αT (ν)‖v − Ph(v)‖20,T
≤ CαT (ν)

∑

e∈E(T )

∑

f∈F(e)

h−1
f ‖[[v ]]τ ‖20,f .
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An analogous reasoning applies to the smoothing operator S. For the pointwise or block Jacobi smoother,
the scaling in (4.8) together with (4.20), gives

s(v0,v0)|T ≤ C
(
h−2
T νT ‖v − Ph(v)‖20,T + βT ‖v − Ph(v)‖20,T + h−2

T αT (ν)‖v − Ph(v)‖20,T
)

≤ CαT (ν)
∑

e∈E(T )

∑

f∈F(e)

h−1
f ‖[[v ]]τ ‖20,f .

The last two cases cover the configuration where the current element T , in the curl-dominated regime,
is at the interface with a reaction dominated region.
Case (iii). This situation corresponds to an element T with h2TβT < αT (ν) sharing at least one face with an
element T ′ having h2T ′β′

T ≥ αT ′(ν). Under these assumptions, we can exploit the results from Lemma 4.12.
Let us first assume that F(T ) \ F ′(T ) 6= ∅. Inverse inequality together with estimate (4.38) from Lemma
4.12 gives

a
W
(v − Ph(v),v − Ph(v))|T ≤ νT ‖∇× (v − Ph(v))‖20,T + βT ‖v − Ph(v)‖20,T

≤ h−2
T νT ‖v − Ph(v)‖20,T + h−2

T αT (ν)‖v − Ph(v)‖20,T
≤ CαT (ν)

∑

e∈E(T )

∑

f∈F(e)

h−1
f ‖[[v ]]τ ‖20,f + C

∑

T ′∈Th
∂T∩∂T ′∈F ′(T )

αT (ν)

αT ′(ν)
βT ′ ‖v‖20,T ′ ,

Moreover, the same bound can be derived for the pointwise Jacobi operator introduced in (4.9) (or (4.10))
by using the scaling (4.8) and applying estimate (4.38),

s(v0,v0)|T ≤ C
(
h−2
T νT ‖v − Ph(v)‖20,T + βT ‖v − Ph(v)‖20,T + h−2

T αT (ν)‖v − Ph(v)‖20,T
)

≤ Ch−2
T αT (ν)‖v − Ph(v)‖20,T , (4.43)

since by assumption the current element T satisfies h2TβT < αT (ν).
If F ′(T ) ≡ F(T ), we exploit the results of Lemma 4.12 in (4.39). For the H(curl,Ω)-conforming part

of the decomposition (4.42), applying estimate (4.39) from that Lemma yields

a
W
(v − Ph(v),v − Ph(v))|T ≤ νT‖∇× (v − Ph(v))‖20,T + βT ‖v − Ph(v)‖20,T

≤ h−2
T νT ‖v − Ph(v)‖20,T + h−2

T αT (ν)‖v − Ph(v)‖20,T
≤ CαT (ν)

∑

f∈F(T )

h−1
f ‖[[v ]]τ ‖20,f + C

∑

T ′∈Th
∂T∩∂T ′∈F(T )

αT (ν)

αT ′(ν)
βT ′ ‖v‖20,T ′ .

Concerning the pointwise smoother, one can proceed as in (4.43) by applying this time estimate (4.39)
from Lemma 4.12.
Case (iv). The last case fulfills the assumptions of Lemma 4.13. Since by assumption, h2TβT < αT (ν),
inverse inequality on the last term of (4.42) and estimate (4.40) give

a
W
(v − Ph(v),v − Ph(v))|T ≤ νT ‖∇× (v − Ph(v))‖20,T + βT ‖v − Ph(v)‖20,T

≤ h−2
T νT ‖v − Ph(v)‖20,T + h−2

T αT (ν)‖v − Ph(v)‖20,T
≤ CαT (ν)

∑

e∈E(T )

∑

f∈F(e)

h−1
f ‖[[v ]]τ ‖20,f + C

∑

T ′∈T ′(T )

αT (ν)

αT ′(ν)
βT ′ ‖v‖20,T ′ .
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Moreover, proceeding as in case (iii) above, the pointwise Jacobi smoother scales as

s(v0,v0)|T ≤ C
(
h−2
T νT ‖v − Ph(v)‖20,T + βT ‖v − Ph(v)‖20,T + h−2

T αT (ν)‖v − Ph(v)‖20,T
)

≤ Ch−2
T αT (ν)‖v − Ph(v)‖20,T ,

and the conclusion follows by applying (4.40).
Collecting the local contributions from all the cases above discussed results in

s(v0,v0) + a
W
(χ,χ) ≤ ‖∇× v‖20,ν,Th + C|v|2∗,ν

+ Cmax

{
1, max

T,T ′∈Th
T ′∈T ′(T )

αT (ν)

αT ′(ν)
, max

T,T ′∈Th
∂T∩∂T ′∈F ′(T )

αT (ν)

αT ′(ν)

}
‖v‖20,β,Th

≤ Cmax

{
1, max

T∈∆h,T
′∈∆′

h

∂T∩∂T ′ 6=∅

αT (ν)

αT ′(ν)

}
‖v‖2DG v = v0 + χ, v0 ∈ Vh, χ ∈ V c

h
.

Coercivity of aDG(·, ·) yields the conclusion.

Remark 4.15. The theory presented in this paper and summarized in Theorem 4.1 encompasses the
following coefficients distributions:

(i) There exists βmax and νmin such that

νT ≥ νmin > 0 , and 0 < βT ≤ βmax , ∀T ∈ Th .

(ii) ν > 0 is arbitrary and there exists B > 1 such that

B−1 ≤ βT
βT ′

≤ B ∀T, T ′ ∈ Th , with ∂T ∩ ∂T ′ 6= ∅ .

(iii) β > 0 is arbitrary and there exists Λ > 1 such that

Λ−1 ≤ αT (ν)

αT ′(ν)
≤ Λ ∀T ∈ ∆h, T

′ ∈ ∆′
h with ∂T ∩ ∂T ′ 6= ∅ .

The only left out case is when there exist T ∈ Th and T ′ ∈ Th such that simultaneously it holds

∂T ∩ ∂T ′ 6∈ Fh , ∂T ∩ ∂T ′ ∈ Eh;
νT ր ∞ and βT ց 0;

νT ′ ց 0 and βT ′ ր ∞.

In this case, since all elements sharing an edge contribute to the construction of a conforming approximation
of a given function in the DG space Vh, it is not possible, with the techniques presented here, to bound
simultaneously the L2-norm of the approximation error weighted by the coefficients ν and β.

Remark 4.16. The analysis presented in Section 4.5 could be carried out analogously by considering the
local ratio h2TβT /νT instead of h2TβT /αT (ν). The decomposition of v ∈ Vh, corresponding to (4.41) would
yield a bound of the form

s(v0,v0) + a
W
(χ,χ) ≤ c20 max

{
1, max

T∈∆h,T
′∈∆′

h

∂T∩∂T ′ 6=∅

αT (ν)

νT ′
, max
T∈∆′

h

αT (ν)

νT

}
aDG(v,v) ,

with v = v0 + χ, v0 ∈ Vh, and χ ∈ V c

h
. Here the uniform bound required on the ratio αT (ν)/νT ′ implies

that the coefficients νTi
for elements Ti in a curl-dominated region and belonging to the neighborhood of T

cannot be arbitrarily small within the patch. The choice of dealing with the less natural ratio h2TβT /αT (ν)
as in (4.41) is aimed at avoiding this shortcoming.
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4.6 “Coarser solver” in the auxiliary space

On a simplicial mesh Th, one can combine a DG discretization based on the local space M(T ) = N II(T )
as in (2.2) and the H0(curl,Ω)-conforming finite element space based on the local space N I(T ) as in (2.3)
(reproducing case (b) in Section 3.2). Using an overlapping additive smoother of the type (3.14), the stable
decomposition property (F2) in Theorem 3.2 is fulfilled even in this case, as shown in the following:

Proposition 4.17. Let Th be a mesh of simplices, shape regular and quasi-uniform. Let Vh be the space
defined in (2.1) with M(T ) = N II(T ). Let W c

h
be the H(curl,Ω)-conforming finite element space defined

in (3.6). Let sO(·, ·) be an overlapping smoother as in (3.14). Then, for any v ∈ Vh there exist v0 ∈ Vh

and w ∈ W c

h
such that v = v0 +w and

sO(v0,v0) + a
W
(w,w) ≤ c̃amax{1, δ(ν, β)}aDG(v,v) , (4.44)

where δ(ν, β) is defined as in (4.1), namely

δ(ν, β) := min

{
max
T∈Th

h2TβT
νT

, max
T,T ′∈Th

∂T∩∂T ′ 6=∅

βT
βT ′

, max
T∈∆h,T

′∈∆′
h

∂T∩∂T ′ 6=∅

αT (ν)

αT ′(ν)

}
,

and the constant c̃a > 0 depends only on the polynomial degree and the shape regularity of the mesh.

Proof. Let v ∈ Vh, we define χ := Ph(v) ∈ V c

h
, where Ph is the averaging operator in Definition 4.6. Let

w := ΠN,I(χ) where ΠN,I : V c

h
→ W c

h
is the H(curl,Ω)-conforming Nédélec interpolation operator of the

second kind. Let us set

v0 = v −w = v − χ+ χ−w = (v − Ph(v)) + (χ−ΠN,Iχ) .

Observe that, since the mesh is made of simplices, curl(N I(T )) = curl(N II(T )) and therefore the differ-
ence χ−w is curl-free. Hence, we can rely on the following discrete Helmholtz decomposition [30],

χ = ΠN,Iχ+∇q q ∈ Pk+1(Th) ∩H1(Ω) . (4.45)

Using local approximation estimates for the Nédélec interpolant (cf. e.g. [11]), and the definition of
χ = Ph(v) results in

a
W
(w,w) =

∑

T∈Th

νT‖∇×ΠN,I(χ)‖20,T +
∑

T∈Th

βT ‖ΠN,I(χ)‖20,T

≤ C
∑

T∈Th

νT ‖∇× Ph(v)‖20,T +
∑

T∈Th

βT ‖Phv‖20,T .

The estimates from Lemma 4.7 yield a bound of the form (4.44) for the H(curl,Ω)-conforming part of the
decomposition.

Concerning the patch smoother, in view of the Helmholtz decomposition (4.45), there holds

sO(v0,v0) ≤ sO(v − Ph(v),v − Ph(v)) + sO(∇q,∇q) . (4.46)

Using the scaling (4.12) derived in Lemma 4.5, the first term above can be cast as

sO(v − Ph(v),v − Ph(v)) ≃
J∑

j=1

( ∑

T∈Ωj

νT ‖∇× (vj − Ph(vj))‖20,T + βT ‖vj − Ph(vj)‖20,T

+
∑

T∈Ωj

αT (ν)
∑

e∈E(T )

∑

f∈F(e)\∂Ωj

h−1
f ‖[[vj −Ph(vj) ]]τ ‖20,f

+
∑

T∈Ωj

∂T∩∂Ωj 6=∅

αT (ν)
∑

e∈E(T )

∑

f∈F(e)∩∂Ωj

h−1
f ‖n× (vj −Ph(vj))‖20,f

)
.
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Let c(ν, β) := max{1, δ(ν, β)}, the estimates derived in Lemma 4.7 and Corollary 4.8 for the approximation
error given by Ph, yield

sO(v − Ph(v),v − Ph(v)) ≤ Cc(ν, β)

J∑

j=1

( ∑

T∈Ωj

‖vj‖20,T +
∑

T∈Ωj

αT (ν)
∑

e∈E(T )

∑

f∈F(e)

h−1
f ‖[[vj ]]τ ‖20,f

)
.

The second term in (4.46) can be bounded as follows. Let ∇qj := χj − ΠN,Iχj = Ph(vj)− ΠN,I(Ph(vj))
for j = 1, . . . , J . Since ∇q ∈ Kern(curl), the scaling (4.12) reads

sO(∇q,∇q) ≃
J∑

j=1

( ∑

T∈Ωj

βT ‖∇qj‖20,T +
∑

T∈Ωj

∂T∩∂Ωj 6=∅

αT (ν)
∑

e∈E(T )

∑

f∈F(e)∩∂Ωj

h−1
f ‖n×∇qj‖20,f

)

≤ C

J∑

j=1

( ∑

T∈Ωj

βT
∥∥χj −ΠN,I(χj)

∥∥2
0,T

+
∑

T∈Ωj

∂T∩∂Ωj 6=∅

αT (ν)h
−2
T

∥∥χj −ΠN,I(χj)
∥∥2
0,T

)
,

where the inverse trace inequality has been used. The local error estimates for χj − ΠN,I(χj) as in [60],
[87, Lemma 10.4 and Lemma 10.8] together with the error bounds from Lemma 4.7 and Corollary 4.8,
result in

sO(∇q,∇q) ≤ C

J∑

j=1

( ∑

T∈Ωj

βT ‖Ph(vj)‖20,T +
∑

T∈Ωj

∂T∩∂Ωj 6=∅

αT (ν)h
−2
T ‖Ph(vj)‖20,T

)

≤ Cc(ν, β)

J∑

j=1

( ∑

T∈Ωj

‖vj‖20,T +
∑

T∈Ωj

αT (ν)
∑

e∈E(T )

∑

f∈F(e)

h−1
f ‖[[vj ]]τ ‖20,f

)
.

If {θj}Jj=1 is a partition of unity relative to the decomposition Ωy = {Ωj}Jj=1 as in e.g. [49] or [82], the
conclusion (4.44) follows by

‖vj‖20,T = ‖θjv‖20,T ≤ ‖θj‖2L∞(Ω) ‖v‖
2
0,T ≤ C ‖v‖20,T ∀T ∈ Ωj ;

‖[[vj ]]τ ‖20,f = ‖[[ θjv ]]τ ‖20,f ≤ ‖θj‖2L∞(Ω) ‖[[v ]]τ ‖20,f ≤ C ‖[[v ]]τ ‖20,f ∀ f ∈ Fh ∩ Ωj .

Remark 4.18. On a hexahedral mesh the stability results of Proposition 4.17 do not hold true. Indeed, as
pointed out in [35, Remark 4.17] and observed numerically in [34, Section 5] (see also [55, Section 6.2] where
optimal L2-convergence is studied for the corresponding time dependent problem) the full polynomials
space Qk(T )

3 yields a discretization which triggers spurious modes. This is confirmed by the numerical
experiments in Section 6 (see in particular Figure 6.1 and Figure 6.2). Therefore, using a spectrally correct
auxiliary space in the preconditioner for the DG discretization based on Qk(T )

3 does not seem to result
in a convergent solver, independently of the type of the smoother. However, if the auxiliary space consists
of full polynomials, Theorem 4.1 applies and the resulting preconditioner is uniform. Similarly, other than
the choice of full polynomial space approximations and Nédélec second family auxiliary space, if the finite
element DG space Vh in (2.1) is defined as Vh = {v ∈ L2(Ω)d : v ∈ N I

q (T ), T ∈ Th} . where N I
q (T ) is the

local space of Nédélec elements of the first family of degree k as in (2.4), the results in Theorem 4.1 carry
over.
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We close this section by providing a Lemma, similar to [92, Theorem 4.5], that shows that the use of
an overlapping smoother in Proposition 4.17 is indeed necessary.

Lemma 4.19. Let Th be a mesh of simplices, shape regular and quasi-uniform. Let Vh be the space defined
in (2.1) with M(T ) = N II(T ). Let W c

h
be the H(curl,Ω)-conforming finite element space defined in (3.6).

Let s(·, ·) be any of the pointwise smoothers defined in (4.9) and (4.10). Then, there exist v ∈ Vh, w ∈ W c

h

and v0 ∈ Vh such that v = v0 +w and

s(v0,v0) + a
W
(w,w) ≤ Cmax

{
1, max

T∈Th

αT (ν)h
−2
T

βT

}
aDG(v,v) ,

where C > 0 depends on the shape regularity of the mesh and on the polynomial degree. As a consequence,
except for the reaction dominated regime, the spectral condition number of the preconditioned system (using
W c

h
and s(·, ·)) would depend on the mesh size and the problem coefficients.

Proof. The proof is constructive. Let T be a fixed tetrahedron with barycentric coordinates λ1, . . . , λ4.
Let e = eij ⊂ ∂T be a fixed edge of T with endpoints i and j and let be be the basis function relative to
the edge e corresponding to a local shape function of the form ∇(3λiλj) i.e. the gradient of a quadratic
edge bubble. Note that be ∈ N II(T ) rN I(T ) and be can be considered as a global function extended by
zero outside of its support (the “macroelement” consisting of the union of the tetrahedra sharing the edge
e). Then be ∈ Vh , be ∈ V c

h
but be /∈ W c

h
.

Observe that arguing as in the proof of Proposition 4.17, by taking vh := be ∈ Vh, we plainly have
χ := Ph(be) ≡ be ∈ V c

h
and w := ΠN,I(be) ≡ 0. Therefore, it holds

a
W
(ΠN,I(be),Π

N,I(be)) = 0 ,

and taking into account the definition of the pointwise smoother (see the proof of the scaling (4.8) given
in Lemma 4.4), we have

s(be, be) ≃
∑

T∈Th

∑

e∈E(T )

βT ‖be‖20,T +
∑

T∈Th

αT (ν)
∑

e∈E(T )

∑

f∈F(e)

h−1
f ‖n× be‖20,f

≃
∑

T∈T (e)

βT ‖be‖20,T +
∑

T∈T (e)

αT (ν)h
−2
T ‖be‖20,T .

On the other hand, since be ∈ V c

h
its jumps [[ be ]]τ ≡ 0 across the mesh faces. Hence,

aDG(be, be) ≃
∑

T∈T (e)

βT ‖be‖20,T .

Therefore, for vh := be ∈ Vh, the splitting vh := be + 0 gives

s(be, be) + a
W
(ΠN,I(be),Π

N,I(be)) = s(be, be) ≤ c̃0(hT , β, ν) aDG(be, be) ,

where c̃0(hT , β, ν) is defined as

c̃0(hT , β, ν) := Cmax

{
1, max

T∈T (e)

αT (ν)h
−2
T

βT

}
,

and C depends only on the shape regularity of the mesh and on the polynomial degree of Vh. The last
inequality shows that unless the problem is reaction dominated (i.e. βT ≥ h−2

T αT (ν)), the smoother would
not be effective in damping the function be (not seen by the auxiliary space) and the spectral condition
number of the preconditioned system would show dependence on the mesh size, deteriorating when the
mesh is refined.
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5 Numerical Experiments in 2D

In the following numerical simulations we will restrict to the two dimensional problem (1.1) in the unit
square Ω = [0, 1]2. The numerical effort required for the validation of the theoretical results on very fine
meshes where the asymptotical behavior of the proposed preconditioner emerges, deterred us from dealing
with the three-dimensional case. The two dimensional operators are defined as

curlv = ∂v2/∂x1 − ∂v1/∂x2 ∀ v = (v1, v2) ∈ H(curl,Ω);

curlφ = ∇⊥φ := (∂φ/∂x2,−∂φ/∂x1)
T ∀φ ∈ H(curl,Ω).

Throughout, if not otherwise specified, the constant penalty parameter c0 in (2.8) entering the IP-DG
discretization is assumed to be c0 = 10. Concerning the solver, we will compare the performances of the
non-preconditioned and preconditioned conjugate gradient algorithms, with stopping criterion based on a
tolerance fixed to 10−7. As initial guess we will use the default one, namely the zero vector. A Lanczos
procedure (see [52, Chapter 9]) within the PCG routine is used to compute the extremal eigenvalues of the
preconditioned system.

To validate the theoretical results, we consider numerical experiments on both structured, locally
refined and quasi-uniform triangular meshes, with continuous (the first three test cases) and strongly
varying discontinuous coefficients ν and β (the last three set of experiments). Finally, we present some
numerical results and considerations for the case of tensor product meshes along the lines of Remark 4.18.

As it is well known, in two dimensions, the space H(curl,Ω) is isomorphic to H(div,Ω) through a π/2
rotation. We will exploit this isomorphism in order to derive H(curl,Ω)-conforming finite element spaces
from H(div,Ω)-conforming spaces by means of a vector rotation: The space M(T ) in (2.3) corresponds
to the rotated Raviart-Thomas (RT) finite element space RT k [80] and similarly the space M(T ) in (2.2)
corresponds to the rotated Brezzi-Douglas-Marini (BDM) element space BDMk [29]. With a small abuse
of notation and due to space constraints, in some of the graphics and tables the term “rotated” is not
explicitly specified when referring to the finite element spaces. However, the finite element spaces are
always meant “rotated”.

5.1 Structured triangular meshes. Constant coefficients.

As first test case, the problem with constant coefficients β = ν = 1 is considered on a uniform structured
triangular mesh. The IP-DG discretization is based on the full polynomial space (2.2) and is preconditioned
with lowest order rotated BDM elements (3.5) for the auxiliary space and Jacobi pointwise smoother (4.9).
As shown in Figure 5.1, the spectral condition number of the preconditioned matrix is independent of the
mesh width (see also Table 5.1 for the number of iterations required for convergence).

In the same graphic and table are reported the results obtained with the preconditioner of type (b)
(see Section 3) based on the lowest order rotated Raviart-Thomas elements in the discretization of the
auxiliary space (3.6) combined with different pointwise and patch smoothers. Note that only in the case
of a block relaxation (overlapping additive Schwarz), the condition number is independent of the mesh
width. The non-efficacy of pointwise (Jacobi or block Jacobi) smoothers is in agreement with Remark 3.3
and Lemma 4.19. The efficiency of the different smoothers can be also observed in Table 5.1.
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Figure 5.1: Spectral condition number vs number
of dofs. The DG discretization is based on the full
polynomial space (lowest order rotated BDM ele-
ments) and lowest order rotated RT elements for the
auxiliary space (BDM-RT) or lowest order rotated
BDM elements (BDM-BDM). Different choices of the
smoother are considered.

Vh −W smoother

♯Th
23 25 27 29 211 213 215 217

BDM Non-prec 45 190 434 889 1784 − − −

BDM-RT Jacobi 36 73 90 90 93 94 − −

BDM-RT block Jacobi 32 67 78 82 85 86 − −

BDM-RT Schwarz (element) 15 26 29 28 27 26 26 24

BDM-RT Schwarz (edge) 20 32 34 34 32 31 29 28

BDM-RT Schwarz (vertex) 12 15 16 17 17 16 16 16

BDM-BDM Jacobi 11 12 12 11 11 11 10 10

Table 5.1: Number of iterations for decreasing mesh width. Cases as in Figure 5.1.

5.2 Quasi-uniform triangular mesh. Constant coefficients.

For coefficients β = ν = 1, the spectral condition number of the preconditioned system for an auxiliary
space based on lowest order rotated BDM elements with pointwise relaxation has shown to be independent
of the mesh width even on quasi-uniform triangular meshes (see Figure 5.2 and Table 5.2).

Number of dofs: 48 192 768 3072 12288

BDM Non-prec 45 238 641 1521 4455

BDM-BDM Jacobi 10 10 10 10 13

Table 5.2: Number of iterations for decreasing mesh width on quasi-uniform triangular meshes.
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Figure 5.2: Condition number vs number of dofs for quasi-uniform meshes. Lowest order rotated BDM element for
the DG space and second family edge elements on the auxiliary space. Jacobi smoother.

5.3 Triangular mesh, local refinement. Constant coefficients.

Under the same discretization as in the previous test case, with β = ν = 1, the preconditioner proposed
in Section 3.2 case (a), has proven competitive for locally refined meshes, see Figure 5.3 and Table 5.3. In
particular, we consider three different test cases which often occur in applications, namely a local refinement
towards a corner of the domain, towards a boundary side and towards a point/region inside the domain Ω.
The refinement strategy is not driven by any error estimator. As can be easily observed, in all cases, the
convergence of the preconditioner (measured from the spectral condition number or number of iterates) is
uniform with respect to the mesh size.
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Figure 5.3: Three different local refinement strategies. Condition number vs number of dofs for a numerical dis-
cretization based on full polynomial DG spaces and second family edge elements (rotated BDM0) for the auxiliary
space. Pointwise Jacobi smoother.
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Case 1, in Figure 5.3

♯Th 128 180 254 358 490 640 772 838

BDM Non-prec 434 705 1065 1488 2171 3073 4439 6024

BDM-BDM Jacobi 12 12 12 12 12 12 12 12

Case 2, in Figure 5.3

♯Th 128 224 376 632 1032 1672

BDM Non-prec 434 678 1042 1445 2123 3090

BDM-BDM Jacobi 12 12 12 12 12 12

Case 3, in Figure 5.3

♯Th 128 200 280 408 576 776 944 1016

BDM Non-prec 434 682 1046 1399 2094 3049 4324 6156

BDM-BDM Jacobi 12 12 12 12 12 12 12 12

Table 5.3: Number of iterations for decreasing mesh width.

5.4 Structured triangular mesh. Coefficients: β = 1, ν discontinuous.

Let us assume that β = 1, whilst the magnetic diffusivity ν is discontinuous and piecewise constant, namely

ν(x) =





ν1 if x ∈ Ω1 := [0, 0.5]2 ∪ [0.5, 1]2

ν2 otherwise

The coefficient ν2 = 1 is fixed. Note that the initial uniform triangulation resolves the jump discontinuities
of the coefficient ν. We compare the performances of the preconditioner as the mesh is uniformly refined
and for different values of the coefficient ν1. The discretization is based on lowest order rotated BDM
elements (2.2) and preconditioned with auxiliary space as in (3.5) with pointwise Jacobi smoother (4.9).
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Figure 5.4: Condition number vs number of dofs for different values of the coefficient ν (left). Condition number vs
values of ν for different mesh widths (right). Discretization based on full polynomial DG space. Non preconditioned
system.
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When the problem is solved without appealing to a preconditioner, the spectral condition number
depends, as expected, on the mesh width and on the magnitude of the jump (Figure 5.4 and Table 5.4,
Table 5.5). Concerning the preconditioned system, the condition number is independent of the mesh width
(Figure 5.5, left) and it is asymptotically independent on the magnitude of the jump of the coefficient ν
(see Figure 5.5, right). This can be readily checked also from Table 5.4 and Table 5.5, which report the
condition number and number of iterations for different values of the coefficient ν1. This is in agreement
with Theorem 4.1 (see also Remark 4.10) which predicts uniform convergence when only one of the two
coefficients is allowed to vary.
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Figure 5.5: Condition number vs number of dofs for different values of the coefficient ν (left). Condition number vs
values of ν for different mesh widths (right). Discretization based on full polynomial DG space and second family
edge elements for the auxiliary space. Pointwise Jacobi smoother.

Non-preconditioned system

♯Th

ν1 25 27 29 211

10−5 1.09e+4 4.29e+4 1.64e+5 5.93e+5

10−3 7.86e+3 3.18e+4 1.27e+5 5.11e+5

10−1 7.01e+3 2.98e+4 1.21e+5 4.87e+5

1 6.53e+3 2.79e+4 1.13e+5 4.57e+5

101 6.84e+4 2.91e+5 1.18e+6 4.76e+6

103 6.98e+6 2.97e+7 1.20e+8 4.86e+8

105 6.98e+8 2.97e+9 1.21e+10 4.86e+10

Preconditioned system

♯Th

27 29 211 213 215 217

18.7612 15.6055 10.0127 5.0084 3.2176 2.6177

4.6201 2.9498 2.5266 2.5303 2.3620 2.3514

3.3639 3.2011 3.2118 3.2136 3.1995 3.1938

3.1205 3.1208 3.1202 3.1200 3.1197 3.1188

3.2055 3.2093 3.2154 3.2163 3.2171 3.2170

3.2676 3.2700 3.2760 3.2811 3.2829 3.2836

3.2124 3.1906 3.2486 3.2671 3.2284 3.2340

Table 5.4: Condition number of the preconditioned and non-preconditioned system. Coefficients: β = 1, ν discon-
tinuous. Discretization based on full polynomial DG space and second family edge elements for the auxiliary space.
Pointwise Jacobi smoother.
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Non-preconditioned system

♯Th

ν1 25 27 29 211

10−5 172 424 810 1598

10−3 158 465 1281 3333

10−1 199 619 1405 2777

1 144 374 760 1490

101 280 905 2073 3807

103 640 3732 12324 31630

105 1155 7091 27563 >50000

Preconditioned system

♯Th

ν1 25 27 29 211 213 215 217

10−5 27 33 31 22 16 11 9

10−3 20 16 13 12 12 11 11

10−1 13 13 12 12 12 11 11

1 12 12 12 11 11 11 10

101 12 12 12 12 11 11 11

103 13 15 13 12 12 12 12

105 14 15 14 14 14 13 13

Table 5.5: Number of iterations. Coefficients: β = 1, ν discontinuous. Discretization based on full polynomial DG
space and second family edge elements for the auxiliary space. Pointwise Jacobi smoother.

5.5 Structured triangular mesh. Coefficients: β discontinuous, ν = 1.

In this experiment, we assume the magnetic diffusivity to be ν = 1, while the reaction coefficient β is
discontinuous and piecewise constant, namely

β(x) =





β1 if x ∈ Ω1 := [0, 0.5]2 ∪ [0.5, 1]2

β2 otherwise

The coefficient β1 = 1 is fixed. Lowest order rotated BDM elements (2.2) are used for both the DG
discretization and the auxiliary space (3.5). The auxiliary space preconditioner uses here pointwise Jacobi
smoother (4.9). Table 5.6 and Table 5.7 report the condition number and number of iterations as the
coefficient β1 varies.
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Figure 5.6: Condition number vs number of dofs for different values of the coefficient β (left). Condition number vs
values of β for different mesh widths (right). Discretization based on full polynomial DG space and second family
edge elements for the auxiliary space. Pointwise Jacobi smoother.

As it can be observed (see also Figure 5.6), the condition number of the preconditioned system is
asymptotically independent both on the mesh width and on the magnitude of the jump of the coefficient
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β. This is in agreement with Theorem 4.1 (and Remark 4.10) which predicts uniform convergence when
only one of the two coefficients is allowed to vary.

Non-preconditioned system

♯Th

β2 25 27 29

10−4 5.45e+7 2.62e+8 1.11e+9

10−3 5.45e+6 2.62e+7 1.11e+8

10−2 5.46e+5 2.62e+6 1.11e+7

10−1 5.47e+4 2.62e+5 1.12e+6

1 6.53e+3 2.79e+4 1.13e+5

101 5.53e+3 2.63e+4 1.12e+5

102 6.20e+3 2.71e+4 1.12e+5

103 1.58e+4 3.73e+4 1.23e+5

104 1.23e+5 1.62e+5 2.43e+5

Preconditioned system

♯Th

β2 27 29 211 213 215 217

10−4 3.1207 3.1209 3.1202 3.1200 3.1147 3.1147

10−3 3.1207 3.1209 3.1202 3.1200 3.1147 3.1147

10−2 3.1207 3.1209 3.1202 3.1200 3.1147 3.1147

10−1 3.1207 3.1209 3.1202 3.1200 3.1147 3.1147

1 3.1205 3.1208 3.1202 3.1200 3.1197 3.1188

101 3.1271 3.1215 3.1201 3.1199 3.1146 3.1146

102 3.3061 3.1578 3.1274 3.1215 3.1115 3.1115

103 4.5832 3.3566 3.1415 3.0827 2.8449 2.8449

104 12.3839 6.6833 3.6772 2.7703 2.3719 2.3719

Table 5.6: Condition number of the preconditioned and non-preconditioned system. Coefficients: ν = 1, β discon-
tinuous. Discretization based on full polynomial DG space and second family edge elements for the auxiliary space.
Pointwise Jacobi smoother.

Non-preconditioned system

♯Th

β2 25 27 29

10−4 284 2250 3685

10−3 252 1980 4823

10−2 305 1559 4048

10−1 248 877 2003

1 144 374 760

101 173 570 1302

102 124 538 1254

103 116 356 751

104 121 340 555

Preconditioned system

♯Th

β2 25 27 29 211 213 215 217

10−4 12 12 12 11 11 10 10

10−3 12 12 12 11 11 10 10

10−2 12 12 12 11 11 10 10

10−1 12 12 12 11 11 10 10

1 12 12 12 11 11 11 10

101 12 12 12 11 11 10 10

102 15 13 12 11 11 10 10

103 21 16 13 11 10 9 9

104 28 24 18 13 11 9 9

Table 5.7: Number of iterations. Coefficients: ν = 1, β discontinuous. Discretization based on full polynomial DG
space and second family edge elements for the auxiliary space. Pointwise Jacobi smoother.

5.6 Structured triangular mesh. Coefficients: β and ν discontinuous.

We now turn to the more interesting and challenging case of both β and ν discontinuous. Let Ω1 :=
[0, 0.5]2 ∪ [0.5, 1]2, we define

ν(x) =





10−4 if x ∈ Ω1

10−2 otherwise
and β(x) =





2δ · 10−4 if x ∈ Ω1

2δ · 10−2 otherwise
(5.1)



40

where δ ∈ [−20, 45] ∩ Z. For a given mesh with ♯Th = 512 elements, we analyze the spectral condition
number of the non-preconditioned and preconditioned system as the ratio

L(h, ν, β) := h2T
βT
νT

, (5.2)

varies. Note that due to quasi-uniformity of the mesh and the choice of the coefficients in (5.1), the ratio
L(h, ν, β) is constant on every T ∈ Th and only depends on the parameter δ. For a discretization based
on lowest order piecewise polynomials (2.2), we consider three different preconditioners: a single pointwise
Jacobi as in (4.9), the ASM preconditioner based on the lowest order second kind edge elements for the
auxiliary space (3.5) with pointwise Jacobi as smoother (4.9) and, as third case, the ASM preconditioner
based on lowest order first kind edge elements for the auxiliary space (3.5) and overlapping additive Schwarz
smoother (edge based) (3.14). As predicted by Proposition 4.9, when L(h, ν, β) > 1, the auxiliary space
is not needed to ensure uniform convergence with respect to both the problem coefficients and the mesh
width (see Figure 5.7).
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Figure 5.7: Condition number vs ratio L for a
fixed mesh size h. The condition number refers
to the non-preconditioned system (blue), the
pointwise Jacobi preconditioner (green), the
auxiliary space preconditioner based on low-
est order rotated BDM elements with point-
wise Jacobi smoother (red) and the auxiliary
space preconditioner based on lowest order ro-
tated RT elements with overlapping Schwarz
smoother (black). Discretization: Lowest or-
der rotated BDM elements.

5.6.1 Checkerboard Experiment

We consider an experiment where the distribution of the coefficients follows a checkerboard pattern ac-
cording to the partition:

Ω1 :=
3⋃

i=0

[1/4i, 1/4(i + 1)]2 ∪
3⋃

i=0

[1/4i, 1/4(i + 1)]× [1/4(i + 2)mod4, 1/4(i + 2)mod4 + 1/4],

as depicted in Figure 5.8 (white patches correspond to Ω1). We define

ν(x) =





ν1 if x ∈ Ω1

ν2 otherwise
and β(x) =





β1 if x ∈ Ω1

β2 otherwise

where ν1, ν2, β1 and β2 are set to different values for the three experiments carried out; see Table 5.8.
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Figure 5.8: Components of the analytical vector-valued solution of the checkerboard experiment with ν1 = 10−2, ν2 =
104, β1 = 103, β2 = 1.

Lowest order rotated BDM elements (2.2) are used in the DG discretization and also for the auxiliary
space (3.5) in the ASM preconditioner together with a pointwise Jacobi smoother (4.9). In Figure 5.8
(center and rightmost) are represented the two components of the approximate solution. We note that
the weak regularity of the solution leads to a significantly reduced convergence rate of the DG scheme. In
Table 5.8 are given the estimated conditioned numbers and iterations required for convergence for the three
different configurations of the coefficients. As can be observed in Table 5.8, the preconditioner significantly
outperforms the non-preconditioned system even if a slight dependence of the jump of the coefficients
might be recorded. Such slight dependence however seem to hinge on the possible transition from reaction
dominated to curl dominated. Notice that the first and third cases reported in Table 5.8, correspond to
cases where curl-dominated and reaction-dominated regimes alternate in the checkerboard pattern (for the
first case the problem becomes curl-dominated in the whole domain for the two finest meshes), while the
second case reported in Table 5.8 corresponds to the curl-dominated regime.

♯Th 27 29 211 213 215

ν1 = 10−2, ν2 = 104; β1 = 103, β2 = 1

CG 2.45e+8 - (1881) 1.17e+9 - (7840) 5.00e+9 - (18899) − −

PCG 19.0353 - (28) 15.4283 - (30) 9.9327 - (26) 5.7309 - (19) 3.3871 - (14)

ν1 = 104, ν2 = 10; β1 = 10−2, β2 = 10−4

CG 2.45e+12 - (15275) 1.17e+13 - (>50000) 5.03e+13 - (>50000) − −

PCG 3.5079 - (13) 3.5062 - (13) 3.4686 - (13) 3.3397 - (13) 3.2869 - (16)

ν1 = 10−3, ν2 = 1; β1 = 104, β2 = 102

CG 1.35e+3 - (148) 2.23e+3 - (228) 5.56e+3 - (363) − −

PCG 20.5140 - (28) 19.8753 - (30) 19.5633 - (30) 18.8764 - (29) 16.7841 - (28)

Table 5.8: Condition number and number of iterations for the checkerboard experiment. Condition number and
number of iterations (in brackets). Discretization based on lowest order rotated BDM elements. Auxiliary space
preconditioner based on lowest order edge element of the second family and pointwise Jacobi smoother.

6 Tensor product meshes

On tensor product meshes, we restrict to the case of continuous constant coefficients ν and β. As pointed
out in Remark 4.18, on quadrilateral meshes a DG discretization of model problem (1.1) based on the
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full polynomial space of degree k in each variable, is not spectrally correct (see Figure 6.2). Therefore,
a preconditioner built on an auxiliary space where the H0(curl,Ω)-conforming discretization is spectrally
correct (e.g. Nédélec elements of the first family) is not effective, independently of the choice of the smoother
and the amount of domain overlaps involved in its construction as it can be inferred from Figure 6.1. As
alternative, piecewise polynomial approximation based on the rotated H(curl,Ω)-conforming version of
the following H(div,Ω)-conforming elements [19, Section 2.4.2] and [9, Section 5]

Sk+1 = RT k + {curlxk+2y, curlyxk+2, curlxk+2, curlyk+2} ;

ABFk = Pk+2,k × Pk,k+2 ;

have been implemented for k = 0 (recall that RT k = Pk+1,k × Pk,k+1). Even in this case, a preconditioner
based on lowest order rotated Raviart-Thomas elements on the auxiliary space performs poorly (see Ta-
ble 6.1). In view of Theorem 4.1, the remedy seems to be relying on using the same local spaces for the
discretization and for the H(curl,Ω)-conforming auxiliary space. This can be easily checked in Figure 6.1
and Table 6.1 where are (also) reported the results obtained with DG discretizations based on local spaces
of first family edge elements (corresponding to the elements in [19, Section 2.4.1]) and full polynomials
space Qk(T )

2, preconditioned with auxiliary space built on the H(curl,Ω)-conforming global elements of
the same family in each case.
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 Q1 Non−precond

Q1−RT − Schwarz

ABF−RT − Schwarz

S1−RT − Schwarz

Q1−Q1 − Jacobi

RT−RT − Jacobi

Figure 6.1: Condition number vs number of dofs for:
non-preconditioned matrix from a piecewise bilinear La-
grangian elements discretization (pink), with auxiliary
space preconditioner based on lowest order rotated RT el-
ements with overlapping additive Schwarz smoother (red);
same auxiliary space and smoother coupled with DG dis-
cretizations associated to ABF0 (blue) and S1 (black); DG
discretization with lowest order rotated RT discontinuous
elements and Nédélec elements of the first family as aux-
iliary space with pointwise Jacobi smoother (yellow); dis-
continuous bilinear Lagrangian elements with H(curl,Ω)-
conforming full polynomial auxiliary space and Jacobi
smoother (green).

♯Th 16× 16 32× 32 64× 64 128× 128 256 × 256

Q1 Non-prec 202 410 815 − −

Q1-RT Jacobi 124 259 471 1622 2936

Q1-RT overlapping 34 61 113 202 337

ABF0-RT overlapping 32 59 116 230 458

S1-RT overlapping 19 22 28 39 57

Q1-Q1 Jacobi 22 22 21 20 19

RT-RT Jacobi 9 9 9 9 9

Table 6.1: Number of iterations for decreasing mesh width, for different discretization spaces and smoothers on a
tensor product mesh.
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Figure 6.2: Spectrum of the non-preconditioned matrices obtained with different polynomial discretization (left) and
spectrum of the corresponding preconditioning matrices (right), for different combinations as in Figure 6.1.

A Local estimates. Proof of Lemma 4.2

We first show (4.5) and (4.6). Taking into account the representation (2.5) of v ∈ M(T ) and since we use
a contravariant transformation, the degrees of freedom of v̂ coincide with those of v up to a sign change
(see [74, pp. 79-80, Theorem 5.34]). Hence,

∑

ê∈E(T̂ )

Ne∑

i=1

(v̂i
ê,T̂

)2+
∑

f̂∈F(T̂ )

Nf∑

i=1

(v̂i
f̂ ,T̂

)2+

Nb∑

i=1

(v̂i
T̂
)2 =

∑

e∈E(T )

Ne∑

i=1

(vi
e,T )

2+
∑

f∈F(T )

Nf∑

i=1

(vi
f,T )

2+

Nb∑

i=1

(vi
T )

2 . (A.1)

On the other hand, a straightforward computation on the reference element T̂ and the above identity give

‖v̂‖2
0,T̂

≃
∑

ê∈E(T̂ )

Ne∑

i=1

(v̂i
ê,T̂

)2‖ϕ̂i
ê,T̂

‖2
0,T̂

+
∑

f̂∈F(T̂ )

Nf∑

i=1

(v̂i
f̂ ,T̂

)2‖ϕ̂i
f̂ ,T̂

‖2
0,T̂

+

Nb∑

i=1

(v̂i
T̂
)2‖ϕ̂i

T̂
‖2
0,T̂

=
∑

e∈E(T )

Ne∑

i=1

(vi
e,T )

2 +
∑

f∈F(T )

Nf∑

i=1

(vi
f,T )

2 +

Nb∑

i=1

(vi
T )

2 .

Furthermore, since on T̂ it holds ‖∇̂ × v̂‖2
0,T̂

≤ C‖v̂‖2
0,T̂

, then (4.5) follows.

In order to prove (4.6), we recall that, from the definition of the local spaces M(T ), the tangential trace
n× v on f ⊂ ∂T is fully determined by the degrees of freedom of v on the edges and on the faces (see [74,
Lemma 5.35]). Then, arguing as before and using (A.1) (with no volume degrees of freedom in the sums)
yields (4.6) on the reference element.

The estimates in (4.2) and the inequalities (4.3) can be found in [19, Lemma 2.10] and [74, Section 3.9].
In particular, (4.3) ensues from

∇× v(x) = B−T

T ∇̂× v̂(F−1
T (x))B−1

T

and the fact that the affine transformation FT satisfies det(DFT ) = det(BT ) ≤ Ch3 and ‖B−1
T ‖ ≤ Ch−1

T

where ‖B−1
T ‖ stands for the Euclidean matrix norm. The proof of the estimate (4.4) relies on scaling

arguments, using that by means of the (affine) contravariant transformation FT the unit normal n̂ vector
to f̂ is mapped to the unit normal n through n ◦ FT = B−T

T n̂/|B−T

T n̂|.
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B Proof of Lemma 4.12

Without loss of generality we can assume that T is an interior element, since the degrees of freedom on
the boundaries of the domain can be bounded exactly as in Lemma 4.7. We proceed as in the proof of
Lemma 4.7 but locally. Two cases have to be considered: first assume that F ′(T ) 6= ∅ and F(T )\F ′(T ) 6= ∅.
In view of the Definition 4.11 of the operator Ph, by the inequalities (4.2) and (4.5),

h−2
T αT (ν)‖v − Ph(v)‖20,T ≤ ChTh

−2
T αT (ν)

( ∑

f∈F(T )

∥∥vf,T − χf

∥∥2
ℓ2
+

∑

e∈E(T )

‖ve,T − χe‖2ℓ2
)

≤ Ch−1
T

( ∑

f∈F(T )\F ′(T )

αT (ν)
∥∥vf,T − χf

∥∥2
ℓ2
+

∑

f∈F ′(T )

αT (ν) ‖vf,T ‖2ℓ2

+
∑

f∈F(T )\F ′(T )

∑

e∈E(f)

αT (ν) ‖ve,T − χe‖2ℓ2 +
∑

f∈F ′(T )

∑

e∈E(f)

αT (ν) ‖ve,T‖2ℓ2
)
.

We now estimate each of the contributions on the right hand side above separately. The degrees of freedom
on the faces can be bounded as in (4.26) from Lemma 4.7:

∑

f∈F(T )\F ′(T )

αT (ν)
∥∥vf,T − χf

∥∥2
ℓ2

≤
∑

f∈F(T )\F ′(T )
f=∂T∩∂T ′

αT (ν)(ωf,T ′)2
∥∥vf,T − vf,T ′

∥∥2
ℓ2

≤ C
∑

f∈F(T )\F ′(T )

αT (ν) ‖[[v ]]τ ‖20,f . (B.1)

The degrees of freedom corresponding to faces where the dofs of the conforming approximation have been
set to zero are estimated by means of (4.7), (4.2) and (4.5) as

∑

f∈F ′(T )

αT (ν) ‖vf,T ‖2ℓ2 ≤
∑

f∈F ′(T )
f=∂T∩∂T ′

2αT (ν)
∥∥vf,T − vf,T ′

∥∥2
ℓ2
+ 2αT (ν)

∥∥vf,T ′

∥∥2
ℓ2

≤ C
∑

f∈F ′(T )

αT (ν) ‖[[v ]]τ ‖20,f + C
∑

T ′∈Th
∂T∩∂T ′∈F ′(T )

αT (ν)h
−1
T ‖v‖20,T ′ . (B.2)

Analogously, the degrees of freedom corresponding to edges belonging to faces in F ′(T ) can be bounded as
∑

f∈F ′(T )

∑

e∈E(f)

αT (ν) ‖ve,T‖2ℓ2 ≤
∑

f∈F ′(T )
f=∂T∩∂T ′

∑

e∈E(f)

2αT (ν)
∥∥ve,T − ve,T ′

∥∥2
ℓ2
+ 2αT (ν)

∥∥ve,T ′

∥∥2
ℓ2

≤ C
∑

f∈F ′(T )

αT (ν) ‖[[v ]]τ ‖20,f + C
∑

T ′∈Th
∂T∩∂T ′∈F ′(T )

αT (ν)h
−1
T ‖v‖20,T ′ . (B.3)

Finally, the bound on the remaining edges can be derived as in (4.29) from Lemma 4.7,
∑

f∈F(T )\F ′(T )

∑

e∈E(f)

αT (ν) ‖ve,T −χe‖2ℓ2 ≤
∑

f∈F(T )\F ′(T )

∑

e∈E(f)

∑

Tℓ∈T (e)\{T}

αT (ν)(ωe,Tℓ
)2 ‖ve,T − ve,Tℓ

‖2ℓ2

≤ C
∑

f∈F(T )\F ′(T )

∑

e∈E(f)

∑

f∈F(e)

αT (ν) ‖[[v ]]τ ‖20,f

≤ C
∑

e∈E(T )

∑

f∈F(e)

αT (ν) ‖[[v ]]τ ‖20,f . (B.4)
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Combining the estimates (B.1), (B.2), (B.3) and (B.4) results in

h−2
T αT (ν)‖v − Ph(v)‖20,T ≤ C

∑

f∈F(T )\F ′(T )

αT (ν)h
−1
T ‖[[v ]]τ ‖20,f +

∑

f∈F ′(T )

αT (ν)h
−1
T ‖[[v ]]τ‖20,f

+
∑

T ′∈Th
∂T∩∂T ′∈F ′(T )

αT (ν)h
−2
T ‖v‖20,T ′ +

∑

e∈E(T )

∑

f∈F(e)

αT (ν)h
−1
T ‖[[v ]]τ ‖20,f

≤ C
∑

T ′∈Th
∂T∩∂T ′∈F ′(T )

αT (ν)

αT ′(ν)
αT ′(ν)h−2

T ‖v‖20,T ′ +
∑

e∈E(T )

∑

f∈F(e)

αT (ν)h
−1
T ‖[[v ]]τ ‖20,f .

Using the shape regularity of the mesh and the fact that h−2
T ′ αT ′(ν) < βT ′ for all T ′ ∈ Th with ∂T ∩ ∂T ′ ∈

F ′(T ), yields (4.38).
For the case F ′(T ) ≡ F(T ), by Definition 4.11 of Ph, one has χe = 0 for every e ∈ E(T ), χf = 0 for

every f ∈ F(T ) and χT = χT . Therefore, the approximation error can be estimated as

h−2
T αT (ν)‖v − Ph(v)‖20,T ≤ Ch−1

T

( ∑

f∈F(T )

αT (ν) ‖vf,T ‖2ℓ2 +
∑

e∈E(T )

αT (ν) ‖ve,T‖2ℓ2
)
.

For the degrees of freedom on the faces we use (B.2) whereas the degrees of freedom on the edges can be
estimated through (B.3) with F ′(T ) ≡ F(T ). This results in

h−2
T αT (ν)‖v − Ph(v)‖20,T ≤ C

∑

f∈F(T )

αT (ν)h
−1
f ‖[[v ]]τ ‖20,f +

∑

T ′∈Th
∂T∩∂T ′∈F(T )

h−2
T αT (ν) ‖v‖20,T ′

≤ C
∑

f∈F(T )

αT (ν)h
−1
f ‖[[v ]]τ ‖20,f +

∑

T ′∈Th
∂T∩∂T ′∈F(T )

αT (ν)

αT ′(ν)
h−2
T αT ′(ν) ‖v‖20,T ′

≤ C
∑

f∈F(T )

αT (ν)h
−1
f ‖[[v ]]τ ‖20,f +

∑

T ′∈Th
∂T∩∂T ′∈F(T )

αT (ν)

αT ′(ν)
βT ′ ‖v‖20,T ′ ,

where we have used again the fact that for all T ′ ∈ Th, ∂T ∩ ∂T ′ ∈ F ′(T ), it holds h−2
T ′ αT ′(ν) < βT ′ .

C Proof of Lemma 4.13

Using the Definition 4.11 of the operator Ph, since F ′(T ) = ∅, we have χf = χf for all f ∈ F(T ). Therefore,
using the representation in terms of degrees of freedom (2.5) together with (4.2) and (4.5) results in

h−2
T αT (ν)‖v − Phv‖20,T ≤ Ch−1

T

( ∑

f∈F(T )

αT (ν)
∥∥vf,T − χf

∥∥2
ℓ2
+

∑

e∈E(T )

αT (ν) ‖ve,T − χe‖2ℓ2
)

≤ Ch−1
T

( ∑

f∈F(T )

αT (ν)
∥∥vf,T − χf

∥∥2
ℓ2
+

∑

e∈E ′(T )

αT (ν) ‖ve,T ‖2ℓ2

+
∑

e∈E(T )\E ′(T )

αT (ν) ‖ve,T − χe‖2ℓ2
)
.
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Hence, the degrees of freedom on the faces can be bounded as in (4.26) in Lemma 4.7:

∑

f∈F(T )

αT (ν)
∥∥vf,T − χf

∥∥2
ℓ2

≤
∑

f∈F(T )
f=∂T∩∂T ′

αT (ν)(ωf,T ′)2
∥∥vf,T − vf,T ′

∥∥2
ℓ2

≤ C
∑

f∈F(T )

αT (ν) ‖[[v ]]τ ‖20,f . (C.1)

Concerning the edges, the estimate (4.29) in Lemma 4.7 gives

∑

e∈E(T )\E ′(T )

αT (ν) ‖ve,T − χe‖2ℓ2 ≤C
∑

e∈E(T )\E ′(T )

∑

f∈F(e)

αT (ν) ‖[[v ]]τ ‖20,f .
(C.2)

The degrees of freedom on the edges in E ′(T ) can be bounded using triangle inequality as follows. Let
e ∈ E ′(T ) be fixed and let Tk ∈ T ′(T ) ∩ T (e). Let T (e) =

⋃Me

j=0 Tj be as in (4.28), with T0 := T . Then,

αT0
(ν) ‖ve,T0

‖2ℓ2 ≤ C αT0
(ν)

(
‖ve,T0

− ve,T1
‖2ℓ2 +

∑

1≤j<k

∥∥ve,Tj
− ve,Tj+1

∥∥2
ℓ2
+ ‖ve,Tk

‖2ℓ2
)
.

Hence, ∑

e∈E ′(T )

αT (ν) ‖ve,T‖2ℓ2 ≤ C
∑

f∈F(T )

αT (ν) ‖[[v ]]τ ‖20,f +
∑

T ′∈T ′(T )

αT (ν)h
−1
T ‖v‖20,T ′

+
∑

e∈E ′(T )

∑

f∈F(e)\F(T )

αT (ν) ‖[[v ]]τ ‖20,f .
(C.3)

Coupling (C.1), (C.2) and (C.3) yields

h−2
T αT (ν)‖v − Phv‖20,T ≤ C

∑

T ′∈T ′(T )

αT (ν)

αT ′(ν)
αT ′(ν)h−2

T ‖v‖20,T ′ +
∑

e∈E(T )

∑

f∈F(e)

αT (ν)h
−1
T ‖[[v ]]τ ‖20,f .

Using the fact that h−2
T ′ αT ′(ν) < βT ′ for all T ′ ∈ T ′(T ) yields (4.40) and concludes the proof.
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[81] J. Schöberl and Ch. Lehrenfeld. Domain decomposition preconditioning for high order hybrid discontinuous Galerkin
methods on tetrahedral meshes. In Advanced finite element methods and applications, volume 66 of Lect. Notes Appl.
Comput. Mech., pages 27–56. Springer, Heidelberg, 2013.

[82] B. F. Smith, P. E. Bjørstad, and W. D. Gropp. Domain decomposition. Cambridge University Press, Cambridge, 1996.

[83] A. Toselli. Neumann-Neumann methods for vector field problems. Electron. Trans. Numer. Anal., 11:1–24, 2000.

[84] A. Toselli. Overlapping Schwarz methods for Maxwell’s equations in three dimensions. Numer. Math., 86(4):733–752,
2000.

[85] A. Toselli. Dual-primal FETI algorithms for edge finite-element approximations in 3D. IMA J. Numer. Anal., 26(1):96–
130, 2006.



50

[86] A. Toselli and X. Vasseur. Dual-primal FETI algorithms for edge element approximations: two-dimensional H and P

finite elements on shape-regular meshes. SIAM J. Numer. Anal., 42(6):2590–2611, 2005.

[87] A. Toselli and O. B. Widlund. Domain decomposition methods—algorithms and theory, volume 34 of Springer Series in
Computational Mathematics. Springer-Verlag, Berlin, 2005.

[88] A. Toselli, O. B. Widlund, and B. I. Wohlmuth. An iterative substructuring method for Maxwell’s equations in two
dimensions. Math. Comp., 70(235):935–949, 2001.

[89] M. F. Wheeler. An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal., 15(1):152–
161, 1978.

[90] J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Rev., 34(4):581–613, 1992.

[91] J. Xu. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing,
56(3):215–235, 1996. International GAMM-Workshop on Multi-level Methods (Meisdorf, 1994).

[92] L. T. Zikatanov. Two-sided bounds on the convergence rate of two-level methods. Numer. Linear Algebra Appl., 15(5):439–
454, 2008.



Recent Research Reports

Nr. Authors/Title

2015-04 S. Larsson and Ch. Schwab
Compressive Space-Time Galerkin Discretizations of Parabolic Partial

Differential Equations

2015-05 S. May
New spacetime discontinuous Galerkin methods for solving convection-diffusion
systems

2015-06 H. Heumann and R. Hiptmair and C. Pagliantini
Stabilized Galerkin for Transient Advection of Differential Forms

2015-07 J. Dick and F.Y. Kuo and Q.T. Le Gia and Ch. Schwab
Fast QMC matrix-vector multiplication

2015-08 P. Chen and Ch. Schwab
Adaptive Sparse Grid Model Order Reduction for Fast Bayesian Estimation and
Inversion

2015-09 J.-L. Bouchot and B. Bykowski and H. Rauhut and Ch. Schwab
Compressed Sensing Petrov-Galerkin Approximations for Parametric PDEs

2015-10 A. Jentzen and P. Pusnik
Strong convergence rates for an explicit numerical

approximation method for stochastic evolution equations with

non-globally Lipschitz continuous nonlinearities


	Introduction
	Interior Penalty discontinuous Galerkin discretization: abstract setting
	Mesh Partition and Jump operators
	Finite Element Spaces and local representation
	Symmetric Interior Penalty method
	Convergence of the approximation

	Auxiliary space preconditioning
	Fictitious space and auxiliary space method
	Auxiliary space preconditioners for the IP-DG discretization in H0(curl,Ω)
	Smoothers for the auxiliary space preconditioner

	Asymptotic optimality of preconditioner
	Auxiliary results: Local estimates
	Smoothers
	Averaging operator
	Stable decomposition
	Localized results
	``Coarser solver'' in the auxiliary space

	Numerical Experiments in 2D
	Structured triangular meshes. Constant coefficients.
	Quasi-uniform triangular mesh. Constant coefficients.
	Triangular mesh, local refinement. Constant coefficients.
	Structured triangular mesh. Coefficients: β=1, ν discontinuous.
	Structured triangular mesh. Coefficients: β discontinuous, ν=1.
	Structured triangular mesh. Coefficients: β and ν discontinuous.
	Checkerboard Experiment


	Tensor product meshes
	Local estimates. Proof of le:aux0
	Proof of Lemma 4.12
	Proof of Lemma 4.13

