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Abstract. We describe a shock-capturing streamline diffusion space-time dis-
continuous Galerkin (DG) method to discretize the shallow water equations

with variable bottom topography. This method, based on the entropy variables
as degrees of freedom, is shown to be energy stable as well as well-balanced

with respect to the lake at rest steady state. We present numerical experiments
illustrating the numerical method.

1. Introduction. The shallow water equations model many phenomena of inter-
est to meteorology and oceanography. In one space-dimension, the shallow water
equations with variable bottom topography are given by,

ht + (hu)x = 0,

(hu)t +
(
1
2gh

2 + hu2
)
x
= −ghbx.

(1)

Here h is the water height, u is the depth-averaged velocity, g the gravitational
constant, and b is the bottom topography. The two-dimensional version of the
equations is provided in the appendix.

The shallow water equations with bottom topography are an example of nonlinear
systems of balance laws of the form,

Ut +

d∑

k=1

Fk(U)xk
= S(U) (2)

by defining

U =

(
h
hu

)
, F =

(
hu

hu2 + 1
2gh

2

)
, S =

(
0

−ghbx

)
.

Here and in the following, we drop the index k in the one-dimensional case for
simplicity.

It is well-known that solutions of balance laws (or conservation laws, when the
source term S(U) ≡ 0) can be discontinuous due to the appearance of shock
waves (hydraulic jumps for shallow water equations), even when the initial data
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are smooth. Hence, the solutions to such equations are sought in the weak sense
[3]. However, weak solutions are not unique and one needs to impose additional
admissibility criteria, in the form of entropy conditions, to recover uniqueness [3].
In general, entropy conditions are of the form,

S(U)t +

d∑

k=1

Qk(U)xk
≤ 0, (3)

with the above entropy inequality being satisfied in the sense of distributions.
In the specific case of shallow water equations with variable bottom topography,

it is well-known that the total energy,

S(U) = 1
2hu

2 + 1
2gh

2 + ghb, Q(U) = 1
2hu

3 + gh2u+ ghbu,

serves as the entropy with the energy flux Q.
Furthermore, the entropy variables V = SU(U), with the specific form,

V =

(
g(h+ b)− 1

2u
2

u

)
,

play an important role in the entropy stability analysis. In particular, we can rewrite
(2) in entropy variables as

U(V)t +

d∑

k=1

Fk(V)xk
= S(V) (4)

using the notation Fk(V) = Fk(U(V)) and S(V) = S(U(V)) for simplicity.

1.1. Numerical methods. The design of efficient numerical methods for approxi-
mating systems of conservation (balance) laws is fairly mature. Among the popular
discretization frameworks are the finite volume (conservative finite difference) meth-
ods, based on (approximate) Riemann solvers [12]. High-order of spatial accuracy
can be attained by employing suitable non-oscillatory piecewise polynomial recon-
structions such as TVD, ENO and WENO. An attractive alternative is provided by
the discontinuous Galerkin method.

In the specific case of shallow water equations, a further challenge is provided
by the fact that most situations of interest are modeled as small perturbations of a
steady state, the so-called lake (ocean) at rest state [13] given by,

h+ b = const, u = 0. (5)

Therefore, one needs to design numerical methods that preserve this steady state. If
a numerical method only approximates this steady state to truncation error, then it
will not be able to resolve the very small amplitude waves (perturbations of steady
state) that are of interest, except on very fine meshes. Hence, the goal has been
to design well-balanced schemes, i.e. numerical approximations of the shallow water
equations that preserve a discrete version of the lake at rest steady state [13].

A large number of well-balanced schemes have been designed for the shallow-
water equations over the past decade or so. A (very incomplete) list of references
is [1, 9, 10, 5, 2, 11, 14] and references therein. The basic idea behind most of
these papers is to modify the numerical fluxes by a hydrostatic reconstruction and
introduce a source discretization to balance the flux difference.

Unfortunately, very few rigorous stability results exist in the context of well-
balanced schemes for the shallow water equations with variable bottom topography.
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Given the fact that energy stability appears to be the most natural stability frame-
work, it is natural to seek a well-balanced scheme that is also entropy stable. To the
best of our knowledge, this issue is first tackled in [4], where the authors designed
an energy stable scheme for the shallow water equations with bottom topography.
Additionally, this scheme was also well-balanced with respect to the lake at rest as
well as moving steady states. However, this scheme suffers from two limitations.
Only the semi-discrete version of it was shown to be energy stable. Furthermore,
the multi-dimensional version of the scheme was restricted to Cartesian grids.

The main aim of this paper is to design a scheme for the shallow-water equations
with bottom topography that is

• Fully discrete.
• Able to handle unstructured grids (in several space dimensions).
• Energy stable.
• Well-balanced with respect to the lake at rest steady state.

To this end, we will design a shock-capturing space-time discontinuous Galerkin
(DG) method to approximate the shallow-water equations with bottom topography.
The scheme will be an extension of a space-time DG method for conservation laws,
proposed in [6, 7] and based on earlier work [8] and references therein. The main
novelty of the paper will be to handle the bottom topography source terms such that
the resulting scheme continues to be energy stable and is in addition, well-balanced.

2. The space-time DG formulation. The aim of this section is to present the
entropy stable space-time DG method for the shallow water equations with variable
bottom topography. We start with the description of the mesh.

2.1. The mesh. At the n-th time level tn, we denote the time step as ∆tn =
tn+1− tn and the update time interval as In = [tn, tn+1). For simplicity, we assume
that the spatial domain Ω ⊂ R

d is polyhedral and divide it into a triangulation
T , i.e. a set of open convex polyhedra K ⊂ R

d with plane faces. Furthermore, we
assume mesh regularity [8] and quasiuniformity. For a generic element (cell) K, we
denote

∆xK = diam(K) (element width),

N (K) = {K ′ ∈ T : K ′ 6= K and measd−1(K ∩K ′) > 0} (neighbouring cells).

The mesh width of the triangulation is ∆x(T ) = maxK ∆xK . A generic space-time
element is the prism:

K × In.

We also assume that there exists an (arbitrarily large) constant C > 0 such that

(1/C)∆x ≤ ∆tn ≤ C∆x,

for all time levels n.

2.2. The variational formulation. The formulation reads: find V∆x ∈ Vp such
that

B(V∆x,W∆x) := BDG(V
∆x,W∆x)+BSD(V

∆x,W∆x)+BSC(V
∆x,W∆x) = 0 (6)

for all W∆x ∈ Vp, where Vp denotes the space of piecewise polynomials associated
with the space-time mesh with total degree at most p. The variational formulations
consists of three quasilinear forms, which we will describe in the following.
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2.3. The DG quasilinear form. The form BDG is given by

BDG(V
∆x,W∆x)

=−
∑

n,K

∫

In

∫

K

(〈
U(V∆x),W∆x

t

〉
+

d∑

k=1

〈
Fk(V∆x),W∆x

xk

〉
+
〈
S(V∆x),W∆x

〉)
dxdt

+
∑

n,K

∫

K

〈
U(V∆x

n+1,−,V
∆x
n+1,+),W

∆x
n+1,−

〉
dx−

∑

n,K

∫

K

〈
U(V∆x

n,−,V
∆x
n,+),W

∆x
n,+

〉
dx

+
∑

n,K,K′

∫

In

∫

∂KK′

〈
F(V∆x

K,−,V
∆x
K,+; νKK′) +

d∑

k=1

Bk(V∆x
K,−,V

∆x
K,+)ν

k
KK′ ,W∆x

K,−

〉
dσ(x)dt,

(7)

where the sums are taken over the time steps n = 0, . . . , N−1 and all the cellsK ∈ T
in the mesh. The last sum is also taken over all neighbouring cells K ′ ∈ N (K) of
the cell K. In addition, we have employed the notation

Wn,±(x) = W(x, tn±),

∂KK′ = K ∩K ′,

νKK′ = Unit normal for edge KK′ pointing outwards from element K,

WK,±(x, t) = lim
h→0+

W(x± hν, t), x ∈ ∂KK′ ,

for all W ∈ Vp.
The additional boundary terms for the shallow water equations with bottom

topography are given by

B(V∆x
K,−,V

∆x
K,+) =

(
0

1
2gh[[b]]

)
,

where for any quantity q, q = 1
2 (q− + q+) and [[q]] = q+ − q− denotes the mean and

the jump, respectively.
Upwind fluxes are used for the temporal numerical fluxes

U(V−,V+) = U(V−).

This ensures causality and further allows to perform marching in time.
We use an entropy-stable numerical flux given by

F(V∆x
K,−,V

∆x
K,+; νKK′) =

d∑

k=1

F
k,∗(V∆x

K,−,V
∆x
K,+)ν

k
KK′ −

1

2
D(V∆x

K,+ −V∆x
K,−)

with D = D(V∆x
K,−,V

∆x
K,+; νKK′), which consists of an entropy-conservative flux and

a diffusion operator.
Note that the diffusion is added in terms of entropy variables. This is important

both for the entropy stability and the well-balancedness of the scheme.
More precisely, we will use a Rusanov type of diffusion, which is given by

D(V−,V+; ν) = max{λmax(V−; ν), λmax(V+; ν)}UV

(
1
2 (V− +V+)

)
,

where λmax(U; ν) is the maximal wave speed in the direction of ν.
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An entropy-conservative flux for the shallow water equations is given by (see [4])

F
∗(V∆x

K,−,V
∆x
K,+) =

(
hu

hu2 + 1
2gh

2

)
.

Inserting the numerical fluxes into the form BDG (7), we obtain

BDG(V
∆x,W∆x)

=−
∑

n,K

∫

In

∫

K

(〈
U(V∆x),W∆x

t

〉
+

d∑

k=1

〈
Fk(V∆x),W∆x

xk

〉
+
〈
S(V∆x),W∆x

〉)
dxdt

+
∑

n,K

∫

K

〈
U(V∆x

n+1,−),W
∆x
n+1,−

〉
dx−

∑

n,K

∫

K

〈
U(V∆x

n,−),W
∆x
n,+

〉
dx

+
∑

n,K,K′

∫

In

∫

∂KK′

( d∑

k=1

〈
F
k,∗(V∆x

K,−,V
∆x
K,+),W

∆x
K,−

〉
νkKK′

)
dσ(x)dt

−
1

2

∑

n,K,K′

∫

In

∫

∂KK′

〈
D(V∆x

K,+ −V∆x
K,−),W

∆x
K,−

〉
dσ(x)dt

+
∑

n,K,K′

∫

In

∫

∂KK′

( d∑

k=1

〈
Bk(V∆x

K,−,V
∆x
K,+),W

∆x
K,−

〉
νkKK′

)
dσ(x)dt. (8)

2.4. Streamline diffusion operator. Following [7], we need a streamline diffu-
sion operator to minimize oscillations that might arise in the pure space-time DG
formulation. However, the streamline diffusion operator of [7] needs to be adapted
to balance laws. The equation residual (or intra-element residual) is now

Res := U(V∆x)t +

d∑

k=1

Fk(V∆x)xk
− S(V∆x). (9)

The streamline diffusion operator is then given by

BSD(V
∆x,W∆x) =

∑

n,K

∫

In

∫

K

〈
L(V∆x,W∆x),DSDRes

〉
dxdt, (10)

where L(V∆x,W∆x) denotes a linearised form of the equation in the following
sense:

• L(V∆x,W∆x) is linear in W∆x

• L(V∆x,V∆x) = Res

For conservation laws this operator can be chosen as

L(V∆x,W∆x) = UV(V∆x)W∆x
t +

d∑

k=1

Fk
V
(V∆x)W∆x

xk
.

The difficulty for balance laws is to include the source term in an appropriate
manner without destroying the linearity. For the shallow water equations with
bottom topography, it can be chosen as

L(V∆x,W∆x) = UV(V∆x)W∆x
t +

d∑

k=1

Fk
V
(V∆x)W∆x

xk
+G(V∆x,W∆x) (11)
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with

G

((
v1
v2

)
,

(
w1

w2

))
=

(
−bxw2

−bxv2w2

)
.

This is a consequence of the following. The residual satisfies

Res = UV(V∆x)V∆x
t + FV(V∆x)V∆x

x + FU(U(V∆x))Ux(V
∆x, x)− S(V∆x)

and we have

FU =

(
0 1

gh− u2 2u

)
, Ux(V

∆x, x) =

(
−bx
−bxu

)
, S =

(
0

−ghbx

)
.

This implies

FU(U(V∆x))Ux(V
∆x, x)− S(V∆x) =

(
−bxu
−bxu

2

)

and thus, L satisfies the assumptions.
The scaling matrix in the streamline diffusion operator

DSD := CSD∆tnU−1
V

(V∆x) (12)

remains unchanged. Here, CSD is a positive constant.

2.5. Shock-capturing operator. As in [7], we further need a shock-capturing
operator to stabilize any possible oscillations. The shock-capturing operator of [7]
need to be modified for the shallow water equations. It is given by

BSC(V
∆x,W∆x)

=
∑

n,K

∫

In

∫

K

DSC
n,K

(〈
W∆x

t , ŨVV∆x
t

〉
+

d∑

k=1

∆xK
2

(∆tn)2

〈
W∆x

xk
, ŨVV∆x

xk

〉)
dxdt,

(13a)

with ŨV = UV(Ṽn,K) for brevity and

Ṽn,K =
1

meas(In ×K)

∫

In

∫

K

V∆x(x, t)dxdt.

being the cell average. The scaling factor is

DSC
n,K =

∆tnCSCResn,K + (∆tn)
1
2 C̄SCBResn,K√

∫
In

∫
K

(〈
V∆x

t , ŨVV∆x
t

〉
+

d∑
k=1

∆xK
2

(∆tn)2

〈
V∆x

xk
, ŨVV∆x

xk

〉)
dxdt+ ǫ

,

(13b)

with ǫ := |K|
1
2 (∆tn)

−1
2

(
∆x

diam(Ω)

)θ
, θ ≥ 1/2 (chosen as 1), and CSC and C̄SC being

positive constants. The scaling factor relies on the integrated intra-element residual

Resn,K :=

√∫

In

∫

K

〈
Res,U−1

V
(V∆x)Res

〉
dxdt (13c)
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and on the integrated boundary residual

BResn,K :=

(∫

K

‖U(V∆x
n,−)−U(V∆x

n,+)‖
2
U

−1

V
(V∆x

n,+
)
dx

+
∑

K′

∫

In

∫

∂KK′

∆tn

∆xK

∥∥∥∥F(V
∆x
K,−,V

∆x
K,+; νKK′)−

d∑

k=1

Fk(V∆x
K,−)ν

k
KK′

+

d∑

k=1

Bk(V∆x
K,−,V

∆x
K,+)ν

k
KK′

∥∥∥∥
2

U
−1

V
(V∆x

K,−
)

dσdt

) 1
2

,

(13d)

which needed to be adapted at the spatial boundaries.

3. Entropy stability. We will show that the scheme is entropy-stable even in the
presence of source terms due to the bottom topography.

Theorem 3.1. Consider the space-time DG scheme (6) for the shallow water equa-
tions with non-constant bottom topography (1). For simplicity, assume that the
exact and approximate solutions have compact support inside the spatial domain
Ω. Then, the resulting scheme is entropy-stable, i.e. the approximate solutions
U∆x = U(V∆x) satisfy

∫

Ω

S(U∆x(x, tN− ))dx ≤

∫

Ω

S(U∆x(x, t0−))dx. (14)

Proof. Let us use ˜ to denote the quantities used without bottom topography. In
this case the entropy is given by

S̃(U) = 1
2hu

2 + 1
2gh

2,

with the entropy variables being

Ṽ =

(
gh− 1

2u
2

u

)
.

From the entropy stability proof we know (compare [7, 6])

B̃DG(V
∆x, Ṽ∆x) +

1

2

∑

n,K,K′

∫

In

∫

∂KK′

〈
Ṽ∆x

K,−,D(V∆x
K,+ −V∆x

K,−)
〉
dσdt

≥

∫

Ω

S̃(U∆x(x, tN− ))dx−

∫

Ω

S̃(U∆x(x, t0−))dx.

We will show

BDG(V
∆x,V∆x)− B̃DG(V

∆x, Ṽ∆x)−
1

2

∑

n,K,K′

∫

In

∫

∂KK′

〈
Ṽ∆x

K,−,D(V∆x
K,+ −V∆x

K,−)
〉
dσdt

≥

∫

Ω

S(U∆x(x, tN− ))dx−

∫

Ω

S(U∆x(x, t0−))dx−

∫

Ω

S̃(U∆x(x, tN− ))dx+

∫

Ω

S̃(U∆x(x, t0−))dx.

(15)

This implies

BDG(V
∆x,V∆x) ≥

∫

Ω

S(U∆x(x, tN− ))dx−

∫

Ω

S(U∆x(x, t0−))dx (16)
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The difference in the spatial interior part is given by

∑

n,K

∫

In

∫

K

−
〈
S(V∆x),V∆x

〉
dxdt−

∑

n,K

∫

In

∫

K

〈
F(V∆x), (V∆x − Ṽ∆x)x

〉
dxdt

=
∑

n,K

∫

In

∫

K

(〈(
0

−ghbx

)
,

(
g(h+ b)− 1

2u
2

u

)〉
−

〈(
hu

hu2 + 1
2gh

2

)
,

(
gb
0

)

x

〉)
dxdt

=
∑

n,K

∫

In

∫

K

(ghbxu− hugbx) dxdt = 0

(17)

The difference in the spatial boundary part without diffusion is given by

∑

n,K,K′

∫

In

∫

∂KK′

〈B(V∆x
K,−,V

∆x
K,+),V

∆x
K,−〉νKK′dσdt

+
∑

n,K,K′

∫

In

∫

∂KK′

〈
F
∗(V∆x

K,−,V
∆x
K,+; νKK′), (V∆x

K,− − Ṽ∆x
K,−)

〉
dσdt

=
∑

n,K,K′

∫

In

∫

∂KK′

(〈(
0

1
2gh[[b]]

)
,

(
g(h− + b−)−

1
2u

2
−

u−

)〉

+

〈(
hu

hu2 + 1
2gh

2

)
,

(
gb−
0

)〉)
νKK′dσdt

=
∑

n,K,K′

∫

In

∫

∂KK′

(
1
2gh[[b]]u− + hugb−

)
νKK′dσdt

=
∑

n,K,K′

∫

In

∫

∂KK′

(
1
2gh[[b]]u− 1

2hug[[b]]
)
νKK′dσdt = 0

(18)

For the diffusion part we can proceed as in the case of the conservation law to obtain

−
1

2

∑

n,K,K′

∫

In

∫

∂KK′

〈
V∆x

K,−,D(V∆x
K,+ −V∆x

K,−)
〉
dσdt

≥
1

4

∑

n,K,K′

∫

In

∫

∂KK′

〈
V∆x

K,+ −V∆x
K,−,D(V∆x

K,+ −V∆x
K,−)

〉
dσdt ≥ 0

(19)

The difference in the temporal interior part is given by

−
∑

n,K

∫

In

∫

K

〈
U∆x, (V∆x − Ṽ∆x)t

〉
dxdt

= −
∑

n,K

∫

In

∫

K

〈
U∆x,

(
gb
0

)

t︸ ︷︷ ︸
=0

〉
dxdt = 0

(20)
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The difference in the temporal boundary part is given by

∑

n,K

∫

K

〈
U∆x

n+1,−, (V
∆x
n+1,− − Ṽ∆x

n+1,−)
〉
dx−

∑

n,K

∫

K

〈
U∆x

n,−, (V
∆x
n,+ − Ṽ∆x

n,+)
〉
dx

=
∑

n,K

∫

K

〈(
h
hu

)

n+1,−

,

(
gb
0

)

n+1,−

〉
dx−

∑

n,K

∫

K

〈(
h
hu

)

n,−

,

(
gb
0

)

n,+

〉
dx

=
∑

n,K

∫

K

hn+1,−gbn+1dx−
∑

n,K

∫

K

hn,−gbndx

=
∑

K

∫

K

hN,−gbNdx−
∑

K

∫

K

h0,−gb0dx

=

∫

Ω

S(U∆x(x, tN− ))dx−

∫

Ω

S(U∆x(x, t0−))dx

−

∫

Ω

S̃(U∆x(x, tN− ))dx+

∫

Ω

S̃(U∆x(x, t0−))dx. (21)

Combining the equations (17), (18), (19), (20), and (21), we obtain (15). For the
streamline diffusion and the shock-capturing term, we can proceed anlogously as
for conservation laws to obtain

BSD(V
∆x,V∆x) ≥ 0 (22)

and

BSC(V
∆x,V∆x) ≥ 0. (23)

Combining (6), (16), (22), and (23), we obtain the stability estimate (14).

4. Well-balancedness. We will show that the space-time DG scheme is well-
balanced.

Theorem 4.1. Consider the space-time DG scheme (6) for the shallow water equa-
tions (1). The resulting scheme is well-balanced, i.e. it can preserve the “lake at
rest” state exactly.

Proof. We will concentrate on the one-dimensional case, as the proof can be ex-
tended to the two-dimensional case in a straightforward manner. Let us consider
initial conditions, such that the “lake at rest” condition is satisfied:

u0 = 0, h0 + b = const.

We consider

V∆x =

(
g(h0 + b)

0

)
∀t (24)

and we will show that B(V∆x,W∆x) = 0 is satisfied for all W∆x ∈ Vp.
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We will use the notation U∆x = U(V∆x) = (h, hu)T for simplicity. Let us start
with the temporal part of the DG operator

−
∑

n,K

∫

In

∫

K

〈
U∆x,W∆x

t

〉
dxdt

+
∑

n,K

∫

K

〈
U∆x

n+1,−,W
∆x
n+1,−

〉
dx−

∑

n,K

∫

K

〈
U∆x

n,−,W
∆x
n,+

〉
dx

=
∑

n,K

∫

In

∫

K

〈
U∆x

t ,W∆x
〉
dxdt

−
∑

n,K

∫

K

〈
U∆x

n+1,−,W
∆x
n+1,−

〉
dx+

∑

n,K

∫

K

〈
U∆x

n,+,W
∆x
n,+

〉
dx

+
∑

n,K

∫

K

〈
U∆x

n+1,−,W
∆x
n+1,−

〉
dx−

∑

n,K

∫

K

〈
U∆x

n,−,W
∆x
n,+

〉
dx (int. by parts)

=
∑

n,K

∫

In

∫

K

〈
U∆x

t︸︷︷︸
=0

,W∆x
〉
dxdt+

∑

n,K

∫

K

〈
U∆x

n,+ −U∆x
n,−︸ ︷︷ ︸

=0

,W∆x
n,+

〉
dx

= 0 (by (24)). (25)

Next, we consider the spatial parts of the DG operator. We need to integrate by
parts

−
∑

n,K

∫

In

∫

K

d∑

k=1

〈
Fk(V∆x),W∆x

xk

〉
dxdt

=
∑

n,K

∫

In

∫

K

d∑

k=1

〈
Fk(V∆x)xk

,W∆x
〉
dxdt

−
∑

n,K,K′

∫

In

∫

∂KK′

〈
d∑

k=1

Fk(V∆x
K,−)ν

k
KK′ ,W∆x

K,−

〉
dσdt.

(26)

We start with the resulting interior part and observe that

F(V∆x)x − S(V∆x)

= FU(U∆x)U∆x
x − S(V∆x) =

(
0 1

gh− u2 2u

)(
hx

(hu)x

)
+

(
0

ghbx

)

=

(
0 1
gh 0

)(
hx

0

)
+

(
0

ghbx

)
=

(
0

gh(h+ b)x

)
=

(
0
0

)
(27)

by (24). This trivially implies

∑

n,K

∫

In

∫

K

( d∑

k=1

〈
Fk(V∆x)xk

,W∆x
〉
−
〈
S(V(V∆x),W∆x

〉)
dxdt = 0. (28)
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Now we consider the boundary fluxes without the diffusion part and obtain

(F∗(V∆x
K,−,V

∆x
K,+)− F(V∆x

K,−) +B(V∆x
K,−,V

∆x
K,+))νKK′

=

((
hu

hu2 + 1
2gh

2

)
−

(
h−u−

h−u
2
− + 1

2gh
2
−

)
+

(
0

1
2gh[[b]]

))
νKK′

=

((
0

1
2gh

2

)
−

(
0

1
2gh

2
−

)
+

(
0

1
2gh[[b]]

))
νKK′ (by (24))

=

(
0

1
2g(h

2 − h2
− + h[[b]])

)
νKK′

Let us add and subtract h[[h]] to obtain

h2 − h2
− + h[[b]] = h2 − h2

− − h[[h]] + h [[h+ b]]︸ ︷︷ ︸
=0

= h2 − h2
− − h[[h]].

A short calculation confirms that h2 − h2
− − h[[h]] actually vanishes:

h2 − h2
− − h[[h]] = 1

2h
2
+ + 1

2h
2
− − h2

− − 1
2 (h− + h+)(h+ − h−)

= 1
2h

2
+ + 1

2h
2
− − h2

− − 1
2h

2
+ + 1

2h
2
− = 0.

This results in

(F∗(V∆x
K,−,V

∆x
K,+)− F(V∆x

K,−) +B(V∆x
K,−,V

∆x
K,+))νKK′ = 0 (29)

and
∑

n,K,K′

∫

In

∫

∂KK′

(〈
(F∗(V∆x

K,−,V
∆x
K,+)− F(V∆x

K,−)

+B(V∆x
K,−,V

∆x
K,+))νKK′ ,W∆x

K,−

〉)
dσdt = 0.

(30)

Now we consider the diffusion part of the flux:

D(V∆x
K,+ −V∆x

K,−)

Note that

V∆x
K,+ −V∆x

K,− =

(
g[[h+ b]]− 1

2 [[u
2]]

[[u]]

)
=

(
0
0

)
(by (24)).

This yields

D(V∆x
K,+ −V∆x

K,−) = 0 (31)

and

−
1

2

∑

n,K,K′

∫

In

∫

∂KK′

〈
D(V∆x

K,+ −V∆x
K,−),W

∆x
K,−

〉
dσdt = 0. (32)

Combining (25), (28), (30), and (32) we obtain that the DG form is satisfied, i.e.

BDG(V
∆x,W∆x) = 0. (33)

For the streamline and shock-capturing terms, first note that the interior residual
vanishes by (27):

Res = U∆x
t +

d∑

k=1

Fk(V∆x)xk
− S(V∆x) = 0.
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Similarly, also the boundary residual vanishes by (29) and (31):

BResn,K =

(∫

K

‖U∆x
n,− −U∆x

n,+‖
2
U

−1

V
(V∆x

n,+
)
dx

+
∑

K′

∫

In

∫

∂KK′

∆tn

∆xK

∥∥(F∗(V∆x
K,−,V

∆x
K,+)− F(V∆x

K,−)

+B(V∆x
K,−,V

∆x
K,+))νKK′

∥∥2
U

−1

V
(V∆x

K,−
)
dσdt

) 1
2

= 0.

This trivally implies

BSD(V
∆x,W∆x) = 0

and

BSC(V
∆x,W∆x) = 0.

We conclude that the scheme is indeed well-balanced.

Remark 1. The proof relies on an integration by parts in the spatial terms. If
numerical quadrature is used, this introduces an additional error and the resulting
scheme will in general not be well-balanced. Therefore, rather than implementing
(8) directly, one should implement it after an integration by parts is performed
as in (26). This will guarantee that the scheme is well-balanced even if numerical
quadrature is used.

5. Numerical Experiments. We present several numerical experiments to demon-
strate the shock-capturing streamline diffusion space-time DG scheme. In all exper-
iments, we have chosen to represent the bottom topography exactly. The constant
in the scheme are set to CSD = 10, CSC = 1 and C̄SC = 0. A value of g = 9.812 is
used for the gravitational constant in all the experiments.

5.1. Lake at rest. Let us consider the following problem taken from [4]. The
bottom topography is given

b(x) =

{
4−(x−10)2

20 if |x− 10| < 2

0 otherwise
(34)

The initial condition are “lake at rest”, i.e. u = 0 and h + b = 1. We compute on
the domain [0, 20] and calculate up to the final time t = 10.

The bottom topography and the computed surface height of one example run are
shown in Figure 1.

The well-balanced property of the scheme is best demonstrated by tabulating
relative L1 errors of the total height h+ b (Table 1) with respect to the resolution
as well as the polynomial order.

The results show that scheme preserves the exact steady state up to machine
precision. The error is slightly bigger for higher polynomial degrees. This is to
be expected as the conditioning becomes slightly worse with a higher polynomial
degree (or increased resolution).
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Figure 1. Water level h+ b and bottom topography b for the lake
at rest for p = 2 and Nc = 80.

Nc p = 0 p = 1 p = 2
20 1.1e-17 3.3e-16 3.3e-15
40 5.6e-18 1.9e-15 1.6e-15
80 2.8e-18 5.0e-15 5.5e-15

160 4.2e-18 1.2e-14 1.3e-14
320 6.9e-18 2.5e-14 1.6e-14

Table 1. Relative L1 errors of the water surface h+ b for the lake
at rest case.

5.2. Perturbed lake at rest. The main interest is not in steady state itself (as
it is known in advance), but rather waves, representing small perturbations of the
lake at rest. Therefore, we perturb the lake of rest initial condition of the last
experiment by choosing (as in [4])

h(x) =

{
1.01− b(x) if |x− 6| < 1/4

1− b(x) otherwise
(35)

The bottom topography and the initial velocity are unchanged, i.e. u = 0 and
b is given by (34). The exact solution consists of a left-going and a right-going
wave. We evolve the flow only up to t = 1.5 such that the waves have not yet left
the domain. Figure 2 shows the water surface height h + b for piecewise constant,
linear, and quadratic functions. For all polynomial degrees, the waves can be clearly
identified without any spurious numerical artifacts or additional waves. The waves
are quite diffused in the case of p = 0. However, the accuracy improves to a great
extent by considering higher polynomial degrees.

5.3. Two-dimensional lake at rest. We consider the following bottom topogra-
phy

b(x) = 0.8 exp(−5(x− 0.9)2 − 50(y − 0.5)2) (36)

in the domain [0, 2]× [0, 1]. The bottom topography is illustrated in Figure 3. The
initial condition is given by the lake at rest state u = 0 and h+ b = 1.

We compute up to the final time t = 1. We start on a triangular mesh with
178 cells and perform uniform refinements. Table 2 shows the resulting relative L1
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(c) p = 2

Figure 2. h+ b for the perturbed lake at rest.

errors of h + b for different polynomial degrees. The error is again on the order of
machine precision, which demonstrates the well-balancedness of the scheme also in
the two-dimensional case.

Figure 3. Bottom topography b for the lake at rest case.

5.4. Perturbed two-dimensional lake at rest. The experiment in the last sub-
section is perturbed by adding 0.01 to h in the region 0.1 ≤ x ≤ 0.2. We use
reflecting wall boundary conditions at the top and the bottom boundary. The left
and right boundaries are specified as non-reflecting boundaries. Thus, the initial
bump separates into two waves, a left-going and a right-going one. The leftgoing
wave hits the left boundary at about t = 0.03 and leaves the domain without any
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Nc p = 0 p = 1 p = 2
178 3.3e-17 2.3e-15 1.6e-15
712 3.6e-17 4.0e-15 4.0e-15
2848 3.7e-17 1.8e-14 1.4e-14

Table 2. Relative L1 errors of the water surface h + b for the
two-dimensional lake at rest case.

reflections. The rightgoing wave is slowed down in the middle by the bottom to-
pography and this then creates a complicated pattern. Figure 4 shows the flow at
various times for piecewise constant and piecewise linear functions. The results for
piecewise quadratic functions can be found in Figure 5. The results for p = 0 are
very smeared, but still qualitatively the flow is captured. The results for higher
degrees are much more accurate, even on a coarse mesh. This experiment clearly
demonstrates the ability of the proposed space-time DG method to compute small
perturbations of the lake at rest steady state, in a stable and accurate manner.

(a) p = 0, t = 0.2 (b) p = 1, t = 0.2

(c) p = 0, t = 0.4 (d) p = 1, t = 0.4

(e) p = 0, t = 0.6 (f) p = 1, t = 0.6

Figure 4. h + b for the perturbed lake at rest. The number of
cells is 182272 and 45568 for p = 0 and p = 1, respectively.
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(a) t = 0.2 (b) t = 0.4

(c) t = 0.6

Figure 5. h+b for the perturbed lake at rest with 11392 cells and
p = 2.

6. Conclusion. We extend the shock-capturing streamline diffusion space-time
DG method of [6, 7] to approximate the shallow water equations with variable
bottom topography. The proposed schemes are energy stable, even for the fully dis-
crete case. Furthermore, we show that the proposed schemes are well-balanced i.e.
they preserve the lake at rest steady state. The key design elements of the scheme
are the use of entropy (energy) variables as degrees of freedom, energy conservative
numerical fluxes and discretizations of the bottom topography and the design of
suitable streamline diffusion and shock-capturing operators.

Numerical experiments that demonstrate the well-balancing of the schemes and
the stability and accuracy in resolving small perturbations of the lake at rest steady
state are presented. They illustrate that the schemes, particularly with piecewise
linear and piecewise quadratic basis functions, perform very well.

The proposed schemes are implicit in time and involve the solution of non-linear
algebraic equations in every time step. However, the schemes are unconditionally
energy stable. Hence, very large time steps can be chosen. This flexibility is par-
ticularly advantageous while dealing with problems in oceanography, where gravity
waves can lead to excessively small time steps for explicit methods. The schemes
uses unstructured grids in two space dimensions. This is a marked advantage, when
dealing with flows in domains with complicated boundaries such as shorelines. Fur-
thermore, space-time DG schemes lend themselves to adaptive algorithms (particu-
larly goal oriented adaptive algorithms) in a natural manner, see [6]. Hence, these
schemes could form an attractive alternative to standard well-balanced schemes for
shallow water flows in complex domains that involve multiple time scales. Such
extensions will be considered in the future.
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7. Appendix - two-dimensional formulation. The shallow water equations in
two spatial dimensions are given by

ht + (hu)x = 0,

(hu)t +
(
1
2gh

2 + hu2
)
x
+ (huv)y = −ghbx,

(hv)t + (huv)x +
(
1
2gh

2 + hv2
)
y
= −ghby.

(37)

This can be written in the form (2) by defining

U =




h
hu
hv


 , F1 =




hu
hu2 + 1

2gh
2

huv


 , F2 =




hu
huv

hv2 + 1
2gh

2


 , S =




0
−ghbx
−ghby


 .

An entropy pair is given by

S(U) = 1
2hu

2 + 1
2hv

2 + 1
2gh

2 + ghb,

Q1(U) = 1
2hu

3 + 1
2huv

2 + gh2u+ ghbu,

Q2(U) = 1
2hu

2v + 1
2hv

3 + gh2v + ghbv,

which leads to the entropy variables

V =



g(h+ b)− 1

2u
2 − 1

2v
2

u
v


 .

Entropy-conservative fluxes are given by (see [4])

F
1,∗(V∆x

K,−,V
∆x
K,+) =




hu

hu2 + 1
2gh

2

huv


 , F

2,∗(V∆x
K,−,V

∆x
K,+) =




hu

huv

hu2 + 1
2gh

2


 .

The additional boundary terms are given by

B1(V∆x
K,−,V

∆x
K,+) =




0
1
2gh[[b]]

0


 , B2(V∆x

K,−,V
∆x
K,+) =




0
0

1
2gh[[b]]


 .

The function G in the linearised operator L in the streamline diffusion operator
(11) can be chosen as

G





v1
v2
v3


 ,



w1

w2

w3




 = (−bxw2 − byw3)




1
v2
v3


 .

This can be seen as follows. The residual satisfies

Res = UV(V∆x)V∆x
t

+

2∑

k=1

(
Fk

V
(V∆x)V∆x

xk
+ Fk

U
(U(V∆x))Uxk

(V∆x, x)
)
− S(V∆x)
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and

F1
U

=




0 1 0
gh− u2 2u 0
−uv v u


 , Ux(V

∆x, x) =




−bx
−bxu
−bxv


 ,

F2
U

=




0 0 1
−uv v u

gh− v2 0 2v


 , Uy(V

∆x, x) =




−by
−byu
−byv


 , S =




0
−ghbx
−ghby


 .

Therefore,

2∑

k=1

Fk
U
(U(V∆x))Uxk

(V∆x, x)− S(V∆x) = (−bxu− byv)



1
u
v




and then L satisfies the assumptions.
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