
Stabilized Galerkin for Transient Advection

of Differential Forms

H. Heumann and R. Hiptmair and C. Pagliantini

Research Report No. 2015-06
January 2015

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________

Funding SNF: 146355



Stabilized Galerkin for Transient Advection of Differential Forms

Holger Heumann∗, Ralf Hiptmair†, Cecilia Pagliantini‡

January 28, 2015

Abstract

We deal with the discretization of generalized transient advection problems for differen-
tial forms on bounded spatial domains. We pursue an Eulerian method of lines approach
with explicit time-stepping. Concerning spatial discretization we extend the jump sta-
bilized Galerkin discretization proposed in [H. Heumann and R. Hiptmair, Stabilized
Galerkin methods for magnetic advection, Math. Modelling Numer. Analysis, 47 (2013),
pp. 1713–1732] to forms of any degree and, in particular, advection velocities that may
have discontinuities resolved by the mesh. A rigorous a priori convergence theory is estab-
lished for Lipschitz continuous velocities, conforming meshes and standard finite element
spaces of discrete differential forms. However, numerical experiments furnish evidence of
the good performance of the new method also in the presence of jumps of the advection
velocity.

1 Introduction

The equations of magneto-hydrodynamics (MHD) [16, Section 3.8], [22, Section 4.1] provide a
consistent description of the interaction of electromagnetic fields and conducting non-magnetic
fluids like plasmas. The standard model for resistive MHD under a quasi-neutrality assumption
comprises balance equations for mass, momentum and energy together with material laws
and Maxwell’s equations in their magneto-quasistatic reduction (eddy current model) for the
electromagnetic fields.

The traditional formulation of the linear eddy current model in the presence of a conducting
fluid moving with velocity β = β(x, t) boils down to the evolution PDE

∂tu+ curlεcurlu+ αu+ curlu× β + grad(β · u) = f , (1.1)

governing the evolution of the unknown magnetic vector potential u and with ε being the
magnetic diffusion coefficient. Alternatively, one may rely on the magnetic induction field as
unknown, again denoted by u, which yields

∂tu− gradεdivu+ αu+ βdivu+ curl(u× β) = f . (1.2)
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1.1 Generalized advection-diffusion evolution problem

Both (1.1) and (1.2) belong to a single family of second order evolution problems, which we
have dubbed generalized advection-diffusion problems. For a unified statement we rely on the
language of exterior calculus. In that notation, the strong form of the generalized advection-
diffusion equation in the space-time domain Ω× I, I := [0, T ], written in terms of differential
forms reads

⋆∂tω(t) + (−1)k+1dε ⋆dω(t) + ⋆αω(t) + ⋆Lβω(t) = f(t), in Ω× I ,

trω(t) = tr g(t), on (Γin ∪ Γ0)× I ,

tr(inω(t)) = tr s(t), on Γin × I ,

ω(0) = ω0, in Ω .

(1.3)

where ω(t) is a time-dependent differential k-form on the bounded domain Ω ⊂ R
n, β :

Ω× I → R
n is a given velocity field and f(t) ∈ Λn−k (Ω) a source term. The scalar diffusivity

parameter ε and the reaction coefficient α are non-negative and bounded functions Ω → R, and
the boundary conditions are imposed at the inflow boundary Γin := {x ∈ ∂Ω : β · n(x) < 0}
and at the “elliptic boundary” (where the diffusion parameter ε > 0). All other notations are
borrowed from [24, Section 2] and summarized in Table 1.1.

Symbol Meaning in exterior calculus

Λk (Ω) : space of (smooth) differential forms on a bounded domain Ω ⊂ R
n

d : exterior derivative operator Λk (Ω) → Λk+1 (Ω) [37, Definition 1.2.2 e)]
δ : adjoint of the exterior derivative ⋆δ = (−1)kd⋆, [37, Definition 1.2.2 f)]

iβ : contraction Λk (Ω) → Λk−1 (Ω) with vector field β [37, Definition 1.2.2 d)]
jβω : adjoint of the contraction iβ, ⋆jβ = (−1)kiβ⋆, [24, Definition 2.2 (10)]

Lβ : Lie derivative Λk (Ω) → Λk (Ω) associated with vector field β

Lβ : adjoint of the Lie derivative operator Lβ

tr : trace operator Λk (Ω) → Λk (∂Ω) [37, p. 26]

∧ : wedge or exterior product Λk (Ω)× Λℓ (Ω) → Λk+ℓ (Ω) [37, Definition 1.2.2 a)]

⋆ : Euclidean Hodge operator Λk (Ω) → Λn−k (Ω) [37, Definition 1.2.2 c)]
HΛk(Ω) : Sobolev (Hilbert) space of k-forms, [5, Section 2.2]

Table 1.1: Notations from exterior calculus; for details see [24, Section 2] or [26, Sections 2.1
and 2.2] or compendia on differential geometry.

The so-called vector proxies1 establish the connection between (1.1), (1.2) and (1.3). In-
deed, in R

3 endowed with the Euclidean inner product natural isomorphisms between Λk(R3)
and R or R3 can be defined. The fields associated to differential forms are called proxy fields
for the forms and exterior calculus operations on forms correspond to operations on scalar
functions and vector fields, see [24, Section 2], [5, Table 2.1], or Table 1.2 and Table 1.3.
From these identifications we see that (1.1), (1.2) correspond to (1.3) for k = 1 and k = 2,
respectively.

For k = 0 the evolution operator in (1.3) written in vector proxies becomes the familiar and
widely studied second order advection-diffusion equation for the unknown scalar function u

∂tu− divεgradu+ αu+ β · gradu = f. (1.4)

1The term “vector proxy” was coined in [7]
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ω ∈ Λk(Ω) k = 0 k = 1 k = 2 k = 3

dω gradu curlu divu −
iβω − β · u u× β uβ
δω − −divu curlu −gradu
jβω uβ −u× β β · u −
Lβω β · gradu grad(β · u) + curlu× β curl(u× β) + βdivu div(uβ)
Lβω −div(uβ) curl(β × u)− βdivu β × curlu− grad(β · u) −β · gradu
tr u(x) n(x)× u(x) u(x) · n(x) −

HΛk(Ω) H1(Ω) H(curl,Ω) H(div,Ω) L2(Ω)

Table 1.2: Exterior calculus notations and corresponding expressions for vector proxies. For details see
[24, Table 2], [26, Section 2.2], [5, Table 2.2].

Exterior calculus Proxy calculus

∧ product
∧ : Λ1(R3)× Λ1(R3) → Λ2(R3) × : R3 × R

3 → R
3 (cross product)

∧ : Λ1(R3)× Λ2(R3) → Λ3(R3) · : R3 × R
3 → R (dot product)

Hodge operator ⋆
⋆ : Λ0(R3) → Λ3(R3) id: R → R

⋆ : Λ1(R3) → Λ2(R3) id: R3 → R
3

Table 1.3: Correspondence between wedge product and Hodge operator for differential forms and vector
proxies. More details in [26, Section 2.2], [5, Table 2.1].

By analogy we conclude that in the generalized advection-diffusion problem (1.3), the diffusion
operator is d⋆d, the zero-th order term amounts to a reaction term and the advection operator
is the Lie derivative Lβ associated to the velocity field β.

It is well known that for scalar advection-diffusion equation (1.4) straightforward Galerkin
discretization with Lagrangian finite elements will break down in the singular perturbation
limit of vanishing diffusion. Thus, robustness for εց 0 will also be a key issue for the spatial
discretization of (1.1) and (1.2). In this article we tackle the challenge of robust Eulerian
spatial finite element discretization for the general advection-diffusion problem (1.3). In fact,
we will focus on the pure advection problem obtained from (1.3) for ε = 0; if a scheme performs
well in this case, it will also be suitable for (1.3) when augmented with a standard Galerkin
discretization of the diffusion term.

1.2 Pure advection problem: Statement and well-posedness

We introduce the spaces

V := {ω ∈ L2Λk (Ω) : Lβω ∈ L2 Λk (Ω) ,

∫

Γin

tr i−β(ω ∧ ⋆ω) <∞},

W := {ω ∈ V : trω = g, tr inω = s on Γin, g(t) ∈ L2Λk(Γin), s(t) ∈ L2Λk−1(Γin)}.

and state the pure advection initial boundary value problem: For f ∈ C0(I;L2 Λk (Ω)) and
ω0 ∈W|t=0 find ω ∈ C1(I;L2 Λk (Ω)) ∩ C0(I;W ) such that

∂tω(t) + αω(t) + Lβω(t) = f(t), in Ω× I ,

ω(0) = ω0, in Ω .
(1.5)
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If β does not depend on t and β ∈ W 1,∞(Ω), the Hille-Yosida theorem in [19, Theorem
6.52] can be directly applied to show that the variational problem associated to (1.5): find
ω ∈ C1(I;L2 Λk (Ω)) ∩ C0(I;W ) such that, for all η ∈ L2 Λk (Ω)

(∂tω, η)Ω + (αω, η)Ω + (Lβω, η)Ω = (f, η)Ω

(ω(0), η)Ω = (ω0, η)Ω

is well-posed. Here (·, ·)Ω denotes the L2 Λk (Ω) inner product (ω, η)Ω :=
∫
Ω ω ∧ ⋆η.

Further, for velocity fields uniformly continuous in time and Lipschitz continuous in space,
that is, β ∈ C0(I;W 1,∞(Ω)), it can be shown [24, Lemma 3.4] that the monotonicity condition

∫

Ω

(
α+

1

2
(Lβ(·,t) + Lβ(·,t))

)
ω ∧ ⋆ω ≥ α0

∫

Ω
ω ∧ ⋆ω ∀ω ∈ L2Λk (Ω) , ∀t ∈ I , (1.6)

for some constant α0 > 0 and with Lβ = −(−1)k(n−k) ⋆ Lβ⋆, ensures that the operator
α id+Lβ : W → L2 Λk (Ω) is uniformly maximal and monotone. Hence, it can be established
[34, Theorems 2.2 and 2.3] that the Lie advection operator Lβ is stable in the sense of Kato
[34, Definition 2.1, p. 130]. We can therefor revert to known results from semi-group theory
for hyperbolic evolution systems [34, Chapter 5.2-5.4] for well-posedness statements of (1.5).

A coordinate-based representation of Lie derivatives (see Appendix B) highlights that (1.5)
falls into the class of evolution problems for the so-called Friedrichs’ symmetric operators [20]
and then [29, pp. 143-145] gives well-posedness of (1.5) if Ω = R

n.
These results require β to be Lipschitz continuous in space. However, MHD solutions

feature shocks that give rise to discontinuous velocities ; discontinuous transport velocities are
relevant in the context of magneto-quasistatic Maxwell’s equations, also in the limit of small
diffusion.

A well-posedness theory for velocity fields with less regularity is available only for scalar
advection. In [18] DiPerna and Lions showed well-posedness of the scalar advection problem
for velocity fields β ∈ L1

loc(0, T ;W
1,1(Rn)) with divβ ∈ L1(0, T ;L∞(Rn)) through the concept

of renormalized solutions. More recently, Ambrosio in [1] provided an extension of this break-
through to transport velocity fields in L1

loc(0, T ; BVloc(R
n)) and divβ ∈ L1(0, T ; L1

loc(R
n)).

Moreover, a notion of generalized flow associated with low regular velocity fields (the regular
Lagrangian flow) and an extension of the characteristics theory to beyond the smooth con-
text have been subject of investigation of several authors, see [15], [2], [8] and the references
therein. To the best of our knowledge, beside the case of scalar transport, a well-posedness
theory for the generalized transport problem (1.5) with low regular advection velocities has
not been developed.

Even though the above mentioned results have been established for nearly incompressible
velocity fields (see [17] for a detailed overview), the assumption on the boundedness of the
divergence of the velocity (absolute continuity with respect to the Lebesgue measure in the
BV case) is of crucial importance for the well-posedness of the scalar advection problem. In
the context of the generalized transport problem for a differential k-form, this corresponds
to require the operator Lβ + Lβ to be bounded in space, which conceals a rather strong
assumption on the regularity of the velocity itself, when k = 1, 2.

1.3 Novelty and outline

A full discretization of (1.5) was already presented in [24]. There, the authors introduced a
semi-Lagrangian approach. Conversely, in the present paper we pursue a mesh based Eulerian
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method of lines approach to (1.5), employing a (jump) stabilized Galerkin discretization and
piecewise polynomial discrete differential forms for spatial discretization. Our new methods
will be constructed to accommodate discontinuous velocities aligned with the mesh.

A jump-stabilized discontinuous Galerkin method for the stationary advection problem
for 0-forms in R

3 and Lipschitz continuous velocities β ∈ W 1,∞(Ω), was introduced and
theoretically analyzed in [12]. An extension of these results to the magnetic advection problem
(1-forms in R

3, cf. (1.1)) was proposed in [25], where a priori convergence rates were derived
for both fully discontinuous piecewise polynomial functions and H(curl,Ω)-conforming finite
elements. Discontinuous velocity fields were not taken into account. We remark that for
discontinuous velocities, even the spatial discretization of the scalar transport problem (1.4),
for which existence and uniqueness of weak solutions are known, is discussed only rarely ([9],
[38]).

The remainder of the paper is organized as follows. In Section 2, we devise a stabilized
Galerkin spatial semi-discretization for the generalized stationary advection problem (1.5) for
merely piecewise smooth velocity β. It is an extension of the method introduced in [12] for
0-forms and in [25] for 1-forms. Trial and test functions are polynomial discrete differential
forms, which will be introduced in Section 2.5. The new method is a substantial extension of
the scheme presented in [25] to forms of arbitrary degree, any spatial dimension and velocities
with jumps.

Next, Section 3 establishes stability a priori convergence estimates for the stabilized
Galerkin discretization in the stationary setting. For want of well-posedness results for the
generalized advection problem in case of discontinuous β, these investigations are confined to
Lipschitz continuous velocities β ∈ W 1,∞(Ω). The stability and consistency results obtained
in that Section are instrumental for the convergence analysis of the fully discrete scheme in
Section 4. We study explicit time-stepping following the approach of [31] and [13].

Finally, in Section 5 and Section 6 the performance of the new method is tested in various
numerical experiments for both the stationary and transient generalized advection problem
(1.5) in 2D. The tests cover both continuous and discontinuous velocities and employ tensor
product grids and triangular meshes.

2 Spatial discretization

2.1 Stationary generalized advection problem

The Eulerian method of lines policy applies time-stepping after discretization in space. There-
fore, we will first address the spatial discretization of (1.5) and we start from the stationary
generalized advection boundary value problem for a k-form ω on the bounded computational
domain Ω ⊂ R

n:

ω + Lβω = f, in Ω , (2.1a)

trω = g, on Γin , (2.1b)

tr inω = s, on Γin , (2.1c)

with f ∈ L2 Λk (Ω), g ∈ L2Λk(Γin), s ∈ L2Λk−1(Γin), and piecewise Lipschitz continuous
velocity field β. As stated in [23, p. 59], if β ∈ W 1,∞(Ω) problem (2.1) is well-posed in V
under the assumption (1.6).
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2.2 Transmission conditions

We aim for stabilized Galerkin methods that, crudely speaking, involve a penalization of
suitable jumps across interfaces inside Ω. In order to select the right jump terms, we have to
understand the natural transmission conditions across an internal interface f ⊂ Ω satisfied by
a solution ω of (2.1).

For smooth velocity β ∈W 1,∞(Ω), the requirement Lβω ∈ L2 Λk (Ω) read in distributional
sense, involves the transmission condition

tr [iβ(ω ∧ ⋆η)]f = 0 ∀ η ∈ C∞
0 Λk(Ω), (2.2)

for any oriented (piecewise) smooth n−1-dimensional surface f ⊂ Ω. Here, we wrote [·]f for
the jump of a function across the surface f . This formula is a consequence of the integration
by parts formula for the Lie derivative

(Lβω, η)Ω − (ω,Lβη)Ω =

∫

∂Ω
tr iβ(ω ∧ ⋆η) ∀ω, η ∈ C∞Λk(Ω). (2.3)

The transmission conditions (2.2) carry over to Lipschitz continuous velocity β ∈ W 1,∞(Ω).
Clearly, no transmission conditions are imposed across surfaces tangential to β (characteristic
surfaces).

In case of discontinuous velocity β, an interpretation of Lβω in the sense of distributions
is no longer available. Therefore, at jumps of β resort to a strong interpretation of Lβω.
Appealing to Cartan’s homotopy formula (see for example [37, Equation 2.3] or [30, Theorem
14.35]) Lβ = diβ + iβd, we conclude the strong transmission conditions

tr [ω]f = tr [iβω]f = 0 ∀ oriented surfaces f ⊂ Ω, [β]f 6= 0, (2.4)

from demanding ω ∈ L2Λk(Ω), iβω ∈ L2Λk−1(Ω) and dω ∈ L2Λk+1(Ω).

2.3 Stabilized Galerkin variational formulation

In the following, let Th = {T} be a cellular partition (generalized triangulation) of Ω ⊂ R
n

into (curved) polyhedra T . Denote by F◦ and F∂ the set of interior and boundary n−1-faces
of Th (named facets) and F = F◦ ∪ F∂ . The set of facets at the inflow boundary is defined
as F∂

− := {f ∈ F∂ : f ⊂ Γin} and Γin = ∪f∈F∂
−
f , whereas F∂ \ F∂

− is the set of facets at the

outflow boundary. An oriented facet f has a distinguished normal nf . Any facet f , as part
of the boundary of some element T ∈ Th, has either nf = nT |f or nf = −nT |f . Then, given

ω ∈ Λk (Ω), its two different restrictions to f are denoted by ω+ and ω−, e.g. ω+ := ω|
T+

where element T+ has outward normal nf . Hence, we can introduce the notion of jump and
average across a facet f ∈ F◦ as

[ω]f := ω+ − ω− , {ω}f :=
1

2
(ω+ + ω−).

For f ⊂ ∂Ω we assume f to be oriented such that nf points outwards and [ω]f = {ω}f := ω.
We also write hT := diamT and h := maxT∈Th hT .

Further, let Λk
h (Th) denote some piecewise polynomial approximation space for differential

k-forms. Here Λk
h (Th) could be either a HΛk (Ω)-conforming space Λk

h (Th) ⊂ HΛk (Ω) or a
non-conforming space Λk

h (Th) ⊂ L2Λk (Ω) for which Λk
h (Th) 6⊂ HΛk (Ω) .

The method is formulated in the general framework of time-dependent velocity fields β =
β(x, t)and relies on the assumption that the possible (space) discontinuities of the velocity are
resolved by the mesh:
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Assumption 2.1. For every t ∈ I we have β(·, t)|T ∈ W 1,∞(T ) for each T ∈ Th, that is the
velocity field is assumed to be Th-piecewise Lipschitz continuous.

This may seem to be a severe limitation but for our purposes it represents a reasonable
condition in view of the fact that the velocity field is obtained from numerically solving the
MHD system.

Next, multiplying equation (2.1a) by a test form ηh ∈ Λk
h (Th) and applying the integration

by parts rule (2.3), results in

(αωh, ηh)Ω +
∑

T∈Th

(ωh,Lβηh)T +
∑

T∈Th

∫

∂T
tr iβ(ωh ∧ ⋆ηh) = (f, ηh)Ω ∀ηh ∈ Λk

h (Th) .

Let jβ be the formal adjoint of the contraction operator iβ as in Table 1.1. Applying the
following product rule

iβ(ω ∧ ⋆η) = iβω ∧ ⋆η + (−1)k+ℓω ∧ ⋆jβη ∀ω ∈ Λk (Ω) , η ∈ Λℓ (Ω) (2.5)

to the boundary terms, results in, for all ηh ∈ Λk
h (Th)

(αωh, ηh)Ω +
∑

T∈Th

(ωh,Lβηh)T +
∑

f∈F

∫

f
tr [iβωh ∧ ⋆ηh]f +

∫

f
tr [ωh ∧ ⋆jβηh]f = (f, ηh)Ω .

Moreover, it can be easily verified that, for all µh, ηh ∈ Λk
h (Th), it holds

∑

f∈F

∫

f
tr [µh ∧ ⋆ηh]f =

∑

f∈F

∫

f
tr({µh}f ∧ ⋆ [ηh]f ) +

∑

f∈F◦

∫

f
tr([µh]f ∧ ⋆{ηh}f ).

For ω ∈W solution of problem (2.1), the transmission conditions (2.4) at the mesh facets

tr [ω]f = tr [iβω]f = 0 ∀ f ∈ F◦,

yield the variational formulation: find ωh ∈ Λk
h (Th) such that ah (ωh, ηh) = l(ηh) for all

ηh ∈ Λk
h (Th), where

l(ηh) := (f, ηh)Ω −
∑

f∈F∂
−

∫

f
tr iβ(g ∧ ⋆ηh) (2.6)

ah (ωh, ηh) := (αωh, ηh)Ω +
∑

T∈Th

(ωh,Lβηh)T +
∑

f∈F∂\F∂
−

∫

f
tr iβ(ωh ∧ ⋆ηh)+

+
∑

f∈F◦

∫

f
tr({iβωh}f ∧ ⋆ [ηh]f ) +

∫

f
tr({ωh}f ∧ ⋆ [jβηh]f ).

(2.7)

As it is well-known, classical Galerkin finite element discretization of advection problems
suffer from instabilities. Therefore, devising stabilization techniques to counteract this limi-
tation has been investigated widely. We consider the following stabilization operator

sh (ωh, ηh) :=
∑

f∈F◦

∫

f
cf tr([iβωh]f ∧ ⋆ [ηh]f ) +

∫

f
c̄f tr([ωh]f ∧ ⋆ [jβηh]f ) ∀ηh ∈ Λk

h (Th)

(2.8)
where the stabilization scalar functions cf (x) and c̄f (x) may depend on the velocity field and
on the facets diameter hf . Throughout, the stabilization parameters are assumed to satisfy
the following:
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Assumption 2.2. We assume that cf (x) and c̄f (x) satisfy: cfβ ·nf ≥ c0 > 0 and c̄fβ ·nf ≥
c̄0 > 0 uniformly for all facets f ∈ F◦.

In particular, by considering the direction of the numerical fluxes as given by the average
of the velocity field, the choice

cf = c̄f =
1

2

{β}f · nf

|{β}f · nf |
, f ∈ F◦, (2.9)

gives a scheme with upwind fluxes (see [23, Remark 4.1.2] in the case β ∈W 1,∞(Ω)). Indeed,
from (2.7) together with (2.8) the facets contribution, for ωh, ηh ∈ Λk

h (Th), reads

∑

f∈F◦

∫

f
tr({iβωh}f ∧ ⋆ [ηh]f ) +

∫

f
cf tr([iβωh]f ∧ ⋆ [ηh]f )+

+
∑

f∈F◦

∫

f
tr({ωh}f ∧ ⋆ [jβηh]f ) +

∫

f
cf tr([ωh]f ∧ ⋆ [jβηh]f ) =

=
1

2

∑

f∈F◦

∫

f
tr
(
(1 + 2cf )(iβωh)

+ ∧ ⋆ [ηh]f

)
+ tr

(
(1− 2cf )(iβωh)

− ∧ ⋆ [ηh]f

)
+

+
1

2

∑

f∈F◦

∫

f
tr
(
(1 + 2cf )ω

+
h ∧ ⋆ [jβηh]f

)
+ tr

(
(1− 2cf )ω

−
h ∧ ⋆ [jβηh]f

)
.

Note that, since the velocity field is discontinuous, the upwind direction at the mesh facets
may not be well defined. Here we consider the direction of the stream as the one given by the
average of the velocity. However, other possibilities are feasible: an upwind direction given
locally by the velocity field can be used, even if this choice will lead to non-unique numerical
fluxes at mesh facets.

The evaluation of the terms in (2.7) involving the Lie derivative Lβηh requires the knowl-
edge of the first order derivatives of the velocity field β. Note that since the velocity is assumed
to be a smooth function in all elements T ∈ Th, the quantity (ωh,Lβηh)T is well defined for
all T ∈ Th. However, as suggested in [25], a different equivalent formulation of the bilinear
form ah (·, ·) is convenient for implementation purposes.

Proposition 2.3. The following equality holds for all ωh, ηh ∈ Λk
h(Th),

ah (ωh, ηh) = (αωh, ηh)Ω +
∑

T∈Th

(iβdωh, ηh)T + (ωh, jβδηh)T +

+
∑

f∈F∂\F∂
−

∫

f
tr(iβωh ∧ ⋆ηh)−

∑

f∈F∂
−

∫

f
tr(ωh ∧ ⋆jβηh)+

+
∑

f∈F◦

∫

f
tr({iβωh}f ∧ ⋆ [ηh]f )−

∫

f
tr([ωh]f ∧ ⋆{jβηh}f ).

(2.10)

Proof. By using a Leibniz rule for the exterior derivative with respect to the wedge product

d(ω ∧ ⋆η) = dω ∧ ⋆η + (−1)k+ℓω ∧ ⋆δη ω ∈ Λk (Ω) , η ∈ Λℓ (Ω)

and Stokes’ theorem [37, Theorem 1.2.7], it easily follows that
∫

∂Ω
tr(ω ∧ ⋆µ) = (dω, µ)Ω − (ω, δµ)Ω ∀ω ∈ Λk (Ω) , µ ∈ Λk+1 (Ω) . (2.11)
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Hence, using (2.11) together with Cartan’s homotopy formula for the adjoint of the Lie deriva-
tive Lβ results in

(ωh, δjβηh)Ω = (iβdωh, ηh)Ω −

∫

∂Ω
tr(ωh ∧ ⋆jβηh).

Furthermore, exploiting (2.5), yields

∑

T∈Th

(ωh, δjβηh)T =
∑

T∈Th

(iβdωh, ηh)T −
∑

f∈F∂

∫

f
tr(ωh ∧ ⋆jβηh)+

+
∑

f∈F◦

−

∫

f
tr({ωh}f ∧ ⋆ [jβηh]f )−

∫

f
tr([ωh]f ∧ ⋆{jβηh}f ).

(2.12)

where the outflow boundary terms can be recast as
∫

f
tr(iβωh ∧ ⋆ηh) =

∫

f
tr iβ(ωh ∧ ⋆ηh)−

∫

f
tr(ωh ∧ ⋆jβηh) ∀ f ∈ F∂ \ F∂

− . (2.13)

Therefore, substituting (2.12) and (2.13) into the bilinear form (2.7) yields the conclusion.

Note that if Λk
h (Th) is a space of HΛk (Ω)-conforming discrete differential forms, the terms

tr([ωh]f ∧ ⋆{jβηh}f ) in (2.10) and c̄f tr([ωh]f ∧ ⋆ [jβηh]f ) in (2.8) vanish for all f ∈ F◦ and

every ωh, ηh ∈ Λk
h (Th).

Remark 2.4. (Lipschitz continuous velocity fields β ∈W 1,∞(Ω))
Let us consider the particular case of velocity fields that feature Lipschitz continuity in space,
that is β ∈W 1,∞(Ω). An easy computation allows to write, for all ωh, ηh ∈ Λk

h (Th)

∑

f∈F◦

∫

f
tr({iβωh}f ∧ ⋆ [ηh]f ) =

∑

f∈F◦

∫

f
tr(i{β}f {ωh}f ∧ ⋆ [ηh]f ) +

1

4

∫

f
tr(i[β]f [ωh]f ∧ ⋆ [ηh]f )

∑

f∈F◦

∫

f
tr({ωh}f ∧ ⋆ [jβηh]f ) =

∑

f∈F◦

∫

f
tr({ωh}f ∧ ⋆j{β}f [ηh]f ) +

∫

f
tr({ωh}f ∧ ⋆j[β]f {ηh}f )

and similarly for the stabilization terms in (2.8). Since trivially [β]f ≡ 0 for all f ∈ F◦, all the
terms involving the jump of the velocity can be dropped and the variational problem reduces
to: find ωh ∈ Λk

h (Th) such that ah (ωh, ηh) + sh (ωh, ηh) = l(ηh) for all ηh ∈ Λk
h (Th), where

l(ηh) is as in (2.6) while the stabilized bilinear form reads

ah (ωh, ηh) + sh (ωh, ηh) = (αωh, ηh)Ω +
∑

T∈Th

(ωh,Lβηh)T∈Th
+

∑

f∈F∂\F∂
−

∫

f
tr iβ(ωh ∧ ⋆ηh)+

+
∑

f∈F◦

∫

f
tr(iβ {ωh}f ∧ ⋆ [ηh]f ) +

∫

f
tr({ωh}f ∧ ⋆jβ [ηh]f )+

+
∑

f∈F◦

∫

f
cf tr(iβ [ωh]f ∧ ⋆ [ηh]f ) +

∫

f
c̄f tr([ωh]f ∧ ⋆jβ [ηh]f ).

If cf = c̄f , using (2.5) the bilinear form above can be recast as

ah (ωh, ηh) + sh (ωh, ηh) = (αωh, ηh)Ω +
∑

T∈Th

(ωh,Lβηh)T +
∑

f∈F∂\F∂
−

∫

f
tr iβ(ωh ∧ ⋆ηh)+

+
∑

f∈F◦

∫

f
tr iβ({ωh}f ∧ ⋆ [ηh]f ) +

∫

f
cf tr iβ([ωh]f ∧ ⋆ [ηh]f )

(2.14)
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and the formulation in [23, Equation 4.8, p. 61] is recovered. Note that, owing to the fact
that {β}f = β|f , the choice of stabilization given in (2.9) yields a scheme with genuine
upwind fluxes. Moreover, since the stabilization terms vanish for ω ∈ W solution of (2.1),
the variational formulation with stabilized bilinear form given by (2.7) and (2.8) is consistent
with (2.1), namely Galerkin orthogonality

ah (ω − ωh, ηh) + sh (ω − ωh, ηh) = 0 ∀ηh ∈ Λk
h (Th) (2.15)

holds for ωh ∈ Λk
h (Th) numerical solution of the discretized problem. Observe that the stabi-

lized Galerkin formulation (2.6), (2.14) for Lipschitz continuous velocities β ∈ W 1,∞(Ω) can
be equivalently derived by imposing on the mesh facets the transmission conditions (2.2).

Analogously, the bilinear form corresponding to the reformulated variational problem
(2.10) for β ∈W 1,∞(Ω) and ωh, ηh ∈ Λk

h (Th) reads:

ah (ωh, ηh) = (αωh, ηh)Ω +
∑

T∈Th

(iβdωh, ηh)T + (ωh, jβδηh)T +

+
∑

f∈F∂\F∂
−

∫

f
tr(iβωh ∧ ⋆ηh)−

∑

f∈F∂
−

∫

f
tr(ωh ∧ ⋆jβηh)+

+
∑

f∈F◦

∫

f
tr(iβ {ωh}f ∧ ⋆ [ηh]f )−

∫

f
tr([ωh]f ∧ ⋆jβ {ηh}f ).

(2.16)

2.4 Stabilized Galerkin formulation in terms of vector proxies

For the sake of completeness, we present the vector proxy representation of the stabilized
reformulated bilinear form (2.10), (2.8) corresponding to the variational formulation associated
with the transport problem of the corresponding k-form. Table 1.2 and Table 1.3 are used
to establish the correspondences. Let Vh be finite element spaces of vector proxies associated
to the spaces Λk

h (Th) of polynomial differential k-forms on the mesh Th. Let u, v ∈ Vh or
u,v ∈ Vh be the vector proxy representations of the k-forms ωh, ηh ∈ Λk

h (Th):

k = 0 : ah (u, v) + sh (u, v) =

∫

Ω
αuv dx+

∑

T∈Th

∫

T
β · graduv dx−

∑

f∈F∂
−

∫

f
β · nfuv dS+

+
∑

f∈F◦

−

∫

f
[u]f {βv}f · nf dS +

∫

f
c̄f [u]f [βv]f · nf dS.

k = 1 : ah (u,v) + sh (u,v) =

∫

Ω
αu · v dx+

∑

T∈Th

∫

T
(curlu× β) · v dx−

∫

T
u · βdivv dx+

+
∑

f∈F∂\F∂
−

∫

f
(u · β)(v · nf ) dS +

∑

f∈F∂
−

∫

f
(u× nf ) · (β × v) dS+

+
∑

f∈F◦

∫

f
{u · β}f [v]f · nf dS +

∫

f
([u]f × nf ) · {β × v}f dS+

+
∑

f∈F◦

∫

f
cf [u · β]f [v]f · nf dS −

∫

f
c̄f ([u]f × nf ) · [β × v]f dS.



11

k = 2 : ah (u,v) + sh (u,v) =

∫

Ω
αu · v dx+

∑

T∈Th

∫

T
βdivu · v dx+

∫

T
u · (β × curlv) dx+

+
∑

f∈F∂\F∂
−

∫

f
(u× β) · (v × nf ) dS −

∑

f∈F∂
−

∫

f
(u · nf )(v · β) dS+

+
∑

f∈F◦

∫

f
{u× β}f · ([v]f × nf ) dS −

∫

f
[u]f · nf {β · v}f dS+

+
∑

f∈F◦

∫

f
cf [u× β]f · ([v]f × nf ) dS +

∫

f
c̄f [u]f · nf [β · v]f dS.

k = 3 : ah (u, v) + sh (u, v) =

∫

Ω
αuv dx−

∑

T∈Th

∫

T
uβ · gradv dx−

∑

f∈F∂\F∂
−

∫

f
β · nfuv dS+

+
∑

f∈F◦

∫

f
{βu}f · nf [v]f dS +

∫

f
cf [βu]f · nf [v]f dS.

2.5 Trial and test spaces of discrete differential forms

From now, we restrict ourselves to special types of meshes:

• Th is either a simplicial decomposition of Ω ⊂ R
n as defined in [5, Section 4.1 and Section

5.3],

• or a tensor product mesh, namely a compatible, locally quasi-uniform, affine mesh par-
tition of Ω into non-degenerate axiparallel parallelotopes.

On such meshes various families of piecewise polynomial discrete differential forms of any
degree have been constructed, see [5], [3], [26, Section 3] and [4] for a detailed overview.

For a simplicial decomposition Th, the spaces of polynomial totally discontinuous discrete
differential k-forms on Th are defined as

Pd
r Λ

k(Th) := {ω ∈ L2 Λk (Ω) , ω|T ∈ PrΛ
k(T ), T ∈ Th}

where PrΛ
k(T ) is the space of differential k-forms with polynomial coefficients of degree at

most r on the n-cell T ∈ Th, obtained as the restriction of PrΛ
k(Rn) to T . The corresponding

space of HΛk (Ω)-conforming discrete differential forms PrΛ
k(Th) := {ω ∈ HΛk (Ω) , ω|T ∈

PrΛ
k(T ), T ∈ Th} allows to introduce another family of polynomial differential k-forms on Th,

namely

P−
r Λk(Th) = Pr−1Λ

k(Th)⊕ κHr−1Λ
k+1(Th) = Pr−1Λ

k(Th) + κPr−1Λ
k+1(Th)

or equivalently P−
r Λk(Th) := {ω ∈ PrΛ

k(Th) : κω ∈ PrΛ
k−1(Th)}, whereHrΛ

k(Th) is the space
of homogeneous polynomial differential k-forms of degree r and κ : HrΛ

k(Th) → Hr+1Λ
k−1(Th)

denotes the Koszul differential [5, Section 3.2]. The so-called “first family” of finite element
differential k-forms is hence defined as P−

r Λk(Th) = {ω ∈ HΛk (Ω) : ω|T ∈ P−
r Λk(T ), T ∈ Th}

whose functions satisfy the continuity requirement that the trace trω is single-valued on all
n−1-cells which in turn ensures inclusion in HΛk (Ω).

The family Q−
r Λ

k(Th) of finite element differential forms on a tensor product mesh can be
constructed by iteratively applying a tensor product strategy from the 1-dimensional interval.
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This tensor product construction allows to build a subcomplex of the de Rham complex. We
refer the interested reader to [4, Section 5] for details on such constructions.

The HΛk (Ω)-conforming finite element spaces presented above over a cell complex Th
form a discrete de Rham sequence as a cochain projection from the de Rham complex through
projection operators Πk

h, namely the following diagram commutes

HΛ0 (Ω)
d

−−−−→ HΛ1 (Ω)
d

−−−−→ . . .
d

−−−−→ HΛn (Ω)
yΠ0

h

yΠ1
h

yΠn
h

Λ0
h (Th)

d
−−−−→ Λ1

h (Th)
d

−−−−→ . . .
d

−−−−→ Λn
h (Th)

(2.17)

where each Λk
h (Th) → Λk+1

h (Th) can be substituted by PrΛ
k(Th) → Pr−1Λ

k+1(Th), or
P−
r Λk(Th) → P−

r Λk+1(Th), or Q
−
r Λ

k(Th) → Q−
r Λ

k+1(Th) for every r ≥ 1 (see [5, Section 5.5]
and [3]).

In the subsequent analysis we will make use of pairs of HΛk (Ω)-conforming spaces Λk
h (Th)

and non-conforming spaces Λd,k
h (Th) as in the following:

(I) Λd,k
h (Th) = Pd

r Λ
k(Th) and Λk

h (Th) = PrΛ
k(Th) with Th simplicial mesh;

(II) Λd,k
h (Th) = {ω ∈ L2 Λk (Ω) , ω|T ∈ P−

r+1Λ
k(T ), T ∈ Th} and Λk

h (Th) = P−
r+1Λ

k(Th) with
Th simplicial mesh;

(III) Λd,k
h (Th) = {ω ∈ L2 Λk (Ω) , ω|T ∈ Q−

r+1Λ
k(T ), T ∈ Th} and Λk

h (Th) = Q−
r+1Λ

k(Th)
with Th tensor product mesh.

Remark 2.5. We pay particular attention to HΛk (Ω)-conforming trial/test spaces because
they allow the straightforward Galerkin discretization of the diffusion form d ⋆ d present in
(1.3).

3 Stationary transport: Estimates for continuous velocity fields

As explained in Section 1.2, a rigorous convergence analysis is only possible in the case β ∈
W 1,∞(Ω), for want of a well-posedness result for (2.1) with discontinuous velocity fields. Hence,
all theoretical results will rely on the assumption β ∈ W 1,∞(Ω). Moreover, without loss of
generality we can assume the scaling ‖β‖L∞(Ω) = 1.

Also, in this section, we admit only the same special classes of meshes as in Section 2.5. We
recall the notion of shape regularity of a mesh as presented, e.g., in [26, Section 3.6] following
[14, Section 3.1]. Throughout, let Λk

h (Th) denote some piecewise polynomial approximation
space for differential k-forms. If not otherwise specified, Λk

h (Th) could be either a HΛk (Ω)-
conforming approximation space PrΛ

k(Th) or P
−
r+1Λ

k(Th), but also the totally discontinuous
space Pd

r Λ
k(Th) on a simplicial mesh and Q−

r+1Λ
k(Th) on a tensor product mesh. Note that

we will always assume that Λn
h (Th) = Pd

r Λ
n(Th).

Let V (h) := Λk
h (Th) + V , we introduce the discrete operators Ah, Sh : V (h) → Λk

h (Th)
such that for all ω ∈ V (h), ηh ∈ Λk

h (Th),

(Ahω, ηh)Ω := ah (ω, ηh) and (Shω, ηh)Ω := sh (ω, ηh) ;

with ah (·, ·) and sh (·, ·) as in (2.14). Note that the bilinear form sh (·, ·) associated to the
stabilization operator is symmetric and nonnegative on V (h) × V (h). Moreover, for all ηh ∈
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Λk
h (Th), applying (2.3) to ah (ηh, ηh), results in

ah (ηh, ηh) = (αηh, ηh)Ω +
∑

T∈Th

(ηh,Lβηh)T +

+
∑

f∈F∂\F∂
−

∫

f
tr iβ(ηh ∧ ⋆ηh) +

∑

f∈F◦

∫

f
tr iβ({ηh}f ∧ ⋆ [ηh]f ) =

=
∑

T∈Th

(
ηh, α+

1

2
(Lβ + Lβ)ηh

)

T

+

+
1

2

∑

f∈F\F∂
−

∫

f
tr iβ(ηh ∧ ⋆ηh)−

1

2

∑

f∈F∂
−

∫

f
tr iβ(ηh ∧ ⋆ηh) =

=
1

2

∫

∂Ω
|β · n∂Ω| tr in∂Ω

(ηh ∧ ⋆ηh)−
1

2
(Ληh, ηh)Ω

(3.1)

where Λ := −(2α id+Lβ + Lβ). Let us introduce the following norms on V (h),

‖ω‖2h := ‖ω‖2L2Λk(Ω) + |ω|2h ;

with

|ω|2h :=
∑

f∈F∂\F∂
−

‖ω‖2f,β +
∑

f∈F∂
−

‖ω‖2f,−β +
∑

f∈F◦

‖[ω]f‖
2
f,cfβ

, (3.2)

‖ω‖2f,β :=

∫

f
tr iβ(ω ∧ ⋆ω) , and ‖ω‖2f,cfβ :=

∫

f
cf tr iβ(ω ∧ ⋆ω) .

Note that the above norms are well-defined in view of the definition of inflow and outflow
boundary and the fact that tr iβ(ω∧⋆ω) = (β ·nf ) tr inf

(ω∧⋆ω) together with Assumption 2.2
on the stabilization coefficients cf , f ∈ F◦. The above norms are combined into

‖ω‖∗ := h−1/2 ‖ω‖L2Λk(Ω) + h1/2|ω|H1Λk(Th)
+

(∑

f∈F

‖ω‖2L2Λk(f)

)1/2

+ |ω|h (3.3)

where |·|H1Λk(Th)
stands for the broken HΛk-seminorm on Th. Convergence estimates for

the spatial discretization of the stationary boundary value problem are key to analyzing the
convergence of the fully discrete scheme. They hinge on stability results for the differential
operator Lh := Ah + Sh. In order for these results to hold for both non-conforming and
HΛk (Ω)-conforming space discretization, we approximate discontinuous differential forms by
differential forms in HΛk(Th) as in the following:

Proposition 3.1. Let Λd,k
h (Th) and Λk

h (Th) be defined as in either (I), (II) or (III). Then

for every ω ∈ Λd,k
h (Th), there exists ωc ∈ Λk

h (Th) such that

‖ω − ωc‖2L2Λk(Ω) ≤ Ch
∑

f∈F

‖tr[ω]‖2L2Λk(f)

with constant C > 0 depending only on the polynomial degree and the shape regularity of the
mesh.
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The proof of this result is constructive and relegated to Appendix A. Note that the con-
struction of the HΛk (Ω)-conforming approximation is based on an averaging interpolation
which is the extension to discrete differential k-forms of the operator introduced and studied
for scalar functions in R

3 in [28] and [27, Appendix].

Lemma 3.2. There exists a constant CS depending on the stabilization coefficients |cf |
1/2,

the polynomial degree r and the shape regularity of the mesh, such that

|ωh|h ≤ CSh
−1/2 ‖ωh‖L2Λk(Ω) ∀ωh ∈ Λk

h (Th) . (3.4)

Moreover, for every ω ∈ V (h)

‖Lhω‖L2Λk(Ω) ≤ CL ‖ω‖L2Λk(Ω) + |ω|H1Λk(Th)
+ C ′

Lh
−1/2|ω|h; (3.5)

where the constant CL depends on α and |β|W 1,∞(Ω), and the constant C ′
L depends on the

stabilization coefficients |cf |
1/2, |cf |

−1/2, the polynomial degree r and the shape regularity of
the mesh.

Proof. The first inequality (3.4) immediately follows by the definition of h-seminorm in (3.2)
and inverse trace inequalities [14, p. 146].

In order to show (3.5), let ηh ∈ Λk
h (Th). Integration by parts yields

∑

T∈Th

(ω, jβδηh)T =
∑

T∈Th

(diβω, ηh)T −
∑

f∈F∂

∫

f
tr(iβω ∧ ⋆ηh)

+
∑

f∈F◦

−

∫

f
tr(iβ [ω]f ∧ ⋆{ηh}f )−

∫

f
tr(iβ {ω}f ∧ ⋆ [ηh]f ).

Inserting into the expression of ah (ω, ηh) in (2.16) (given in Proposition 2.3) results in

(Lhω, ηh)Ω =(αω, ηh)Ω +
∑

T∈Th

(Lβω, ηh)T −
∑

f∈F∂
−

∫

f
tr iβ(ω ∧ ⋆ηh)+

+
∑

f∈F◦

−

∫

f
tr iβ([ω]f ∧ ⋆{ηh}f ) +

∫

f
cf tr iβ([ω]f ∧ ⋆ [ηh]f ).

(3.6)

Therefore, using Cauchy-Schwarz inequality gives

| (Lhω, ηh)Ω | ≤ (‖α‖L∞(Ω) + |β|W 1,∞(Ω)) ‖ω‖L2Λk(Ω) ‖ηh‖L2Λk(Ω)+

+ ‖β‖L∞(Ω) |ω|H1Λk(Th)
‖ηh‖L2Λk(Ω) +

∑

f∈F∂
−

‖ω‖f,−β ‖ηh‖f,−β +

+
∑

f∈F◦

‖[ω]‖f,cfβ

∥∥∥[ηh]− c−1
f {ηh}

∥∥∥
f,cfβ

.

(3.7)
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The last term can be bounded using inverse trace inequalities as follows

∑

f∈F◦

∥∥∥[ηh]− c−1
f {ηh}

∥∥∥
2

f,cfβ
≤

∑

f∈F◦

f=∂T+∩∂T−

|cf | ‖β‖L∞(Ω)

(
‖ηh‖

2
L2Λk(∂T+) + ‖ηh‖

2
L2Λk(∂T−)+

+
∥∥∥c−1

f ηh

∥∥∥
2

L2Λk(∂T+)
+

∥∥∥c−1
f ηh

∥∥∥
2

L2Λk(∂T−)

)

≤
∑

f∈F◦

f=∂T+∩∂T−

|cf | ‖β‖L∞(Ω)max{1, |cf |
−2} ‖ηh‖

2
L2Λk(∂T+∪∂T−)

≤ ‖β‖L∞(Ω) max
f∈F◦

max{|cf |, |cf |
−1}

∑

T∈Th

h−1 ‖ηh‖
2
L2Λk(T ) .

(3.8)
Combining (3.7) with (3.8) and using inverse trace inequalities on the boundary terms yields

| (Lhω, ηh)Ω | ≤ CL ‖ω‖L2Λk(Ω) ‖ηh‖L2Λk(Ω) + ‖β‖L∞(Ω) |ω|H1Λk(Th)
‖ηh‖L2Λk(Ω)+

+ Ch−1/2 ‖β‖
1/2
L∞(Ω) ‖ηh‖L2Λk(Ω)

∑

f∈F∂
−

‖ω‖f,−β +

+ Ch−1/2 ‖β‖
1/2
L∞(Ω) max

f∈F◦
max{|cf |

1/2, |cf |
−1/2} ‖ηh‖L2Λk(Ω)

∑

f∈F◦

‖[ω]‖f,cfβ

≤
(
CL ‖ω‖L2Λk(Ω) + |ω|H1Λk(Th)

+ C ′
Lh

−1/2|ω|h

)
‖ηh‖L2Λk(Ω) ,

with C ′
L > 0 depending on |cf |

1/2 and |cf |
−1/2, the polynomial degree and the shape reg-

ularity of the mesh. Note that the above result applies to both HΛk (Ω)-conforming and
non-conforming space discretization.

For the sake of conciseness, the following bounds on orthogonal subscales are presented in
the case of full polynomial spaces of discrete differential k-forms on simplices, case (I), namely

for the spaces Λd,k
h (Th) = Pd

r Λ
k(Th) and Λk

h (Th) = PrΛ
k(Th). The proof for the cases (II) and

on tensor product meshes (III), follows mutatis mutandis.

Lemma 3.3. The following statements hold true:

(i) If Πh denotes the L2-orthogonal projection onto Λd,k
h (Th), then there exists a constant

Cπ such that for all ω ∈ Λd,k
h (Th) + V , ηh ∈ Λd,k

h (Th) with r ≥ 1, it holds

|(Lh(ω −Πhω), ηh)Ω| ≤ Cπ ‖ω −Πhω‖∗ ‖ηh‖h ;

(ii) If Πh denotes the global L2-orthogonal projection onto Λk
h (Th), then there exists a con-

stant C ′
π such that for all ω ∈ V (h), ηh ∈ Λk

h (Th)

|(Lh(ω −Πhω), ηh)Ω| ≤ C ′
π ‖ω −Πhω‖∗ ‖ηh‖h ;

where the constants Cπ and C ′
π depend on α, |β|W 1,∞(Ω), the stabilization coefficients |cf |

1/2,

|cf |
−1/2, the polynomial degree r and the shape regularity of the mesh.
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Proof. In order to show (i), we proceed as in [25, Theorem 3.1], namely one can add to the
bilinear form (Lh(ω −Πhω), ηh)Ω given in (2.14) the zero term

∑
T∈Th

(
ω −Πhω,Lβh

ηh
)
T

where βh is the L2-projection of β ∈ W 1,∞(Ω) onto piecewise constant vector fields. Hence,
using estimates on the projection error for β in the L∞-norm, Cauchy-Schwarz inequality and
inverse inequalities, results in

|(Lh(ω−Πhω), ηh)Ω| ≤ ‖α‖L∞(Ω) ‖ω −Πhω‖L2Λk(Ω) ‖ηh‖L2Λk(Ω)+

+ (|β − βh|W 1,∞(Ω) + C|β|W 1,∞(Ω)) ‖ω −Πhω‖L2Λk(Ω) ‖ηh‖L2Λk(Ω)+

+ ‖β‖
1/2
L∞(Ω) max

f∈F◦
max{|cf |

1/2, |cf |
−1/2}|ηh|h

∑

T∈Th

‖ω −Πhω‖L2Λk(∂T )

+ |ηh|h
∑

f∈F∂\F∂
−

‖ω −Πhω‖f,β ≤ Cπ ‖ω −Πhω‖∗ ‖ηh‖h ∀ ηh ∈ Λd,k
h (Th) ,

(3.9)

where the interior facet terms have been bounded has in (3.8).
In the case (ii) ofHΛk (Ω)-conforming discretization, we can proceed as above, use estimate

(3.9), but the non-zero term
∑

T∈Th

(
ω −Πhω,−Lβh

ηh
)
T
has to be bounded. We show that

for all ω ∈ V (h), ηh ∈ PrΛ
k(Th),

∑

T∈Th

∣∣ (ω −Πhω,Lβh
ηh
)
T

∣∣ ≤ Ch−1/2 ‖ω −Πhω‖L2Λk(Ω) ‖ηh‖h , (3.10)

with the constant C > 0 depending only on the polynomial degree and the shape regularity of
the mesh. In order to do that, we exploit the fact that since βh is piecewise constant, for all T ∈
Th, Lβh

= −Lβh
and we build HΛk (Ω)-conforming approximations for each of the two terms

appearing in Cartan’s formula Lβh
= iβh

d + diβh
. In particular, in view of Proposition 3.1,

let γc,k ∈ PrΛ
k(Th) be the HΛk (Ω)-conforming approximation of iβh

dηh ∈ Pd
r Λ

k(Th) and let
γc,k−1 ∈ Pr+1Λ

k−1(Th) be the HΛk (Ω)-conforming approximation of iβh
ηh ∈ Pd

r+1Λ
k−1(Th).

Since γc,k, dγc,k−1 ∈ PrΛ
k(Th),

(
ω −Πhω,Lβh

ηh
)
T
=

(
ω −Πhω, iβh

dηh − γc,k
)
T
+

(
ω −Πhω, d(iβh

ηh − γc,k−1)
)
T
,

and by Cauchy-Schwarz inequality and inverse inequality, one has
∑

T∈Th

∣∣ (ω −Πhω,Lβh
ηh
)
T

∣∣ ≤‖ω −Πhω‖L2Λk(Ω)

∥∥∥iβh
dηh − γc,k

∥∥∥
L2Λk(Ω)

+

+ Ch−1 ‖ω −Πhω‖L2Λk(Ω)

∥∥∥iβh
ηh − γc,k−1

∥∥∥
L2Λk−1(Ω)

.

By the approximation results in Proposition 3.1, the projection errors can be bounded as

∑

T∈Th

∣∣ (ω −Πhω,Lβh
ηh
)
T

∣∣ ≤ Ch ‖ω −Πhω‖L2Λk(Ω)

(∑

f∈F

∥∥∥tr
[
iβh

dηh
]
f

∥∥∥
2

L2Λk(f)

)1/2

+

+ ‖ω −Πhω‖L2Λk(Ω)

(∑

f∈F

∥∥∥tr
[
iβh
ηh
]
f

∥∥∥
2

L2Λk−1(f)

)1/2

.

Upper bounds for the facet terms can be derived as follows: Let us decompose the velocity field
β into its normal component βn := (β · n)n and its tangential component βt := (n× β)× n.
Then we can write

tr(iβηh) = tr(iβn
ηh + iβt

ηh) = (β · n) tr(inηh) + iβt
tr ηh ∀ηh ∈ Λk

h (Th) , ∀k. (3.11)
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If f = ∂T+∩∂T−, using estimates on the projection error for β, trace and inverse inequalities
together with (3.11) and the fact that dηh ∈ HΛk+1 (Ω) due to (2.17), results in

∥∥∥tr
[
iβh

dηh
]
f

∥∥∥
L2Λk(f)

≤
∥∥∥tr

[
i(β−βh)

dηh
]
f

∥∥∥
L2Λk(f)

+
∥∥∥tr [iβdηh]f

∥∥∥
L2Λk(f)

≤ ‖β − βh‖L∞(Ω)

∥∥∥[dηh]f
∥∥∥
L2Λk+1(f)

+
∥∥∥(β · nf ) tr inf

[dηh]f

∥∥∥
L2Λk(f)

≤ Ch|β|W 1,∞(Ω)h
−1/2h−1 ‖ηh‖L2Λk(T+∪T−) + Ch−1

∥∥∥[ηh]f
∥∥∥
f,β

.

Similarly, ηh ∈ PrΛ
k(Th) ⊂ HΛk (Ω) implies

[
iβt

tr ηh
]
f
= 0 for all f ∈ F , hence

∥∥∥tr
[
iβh
ηh
]
f

∥∥∥
L2Λk−1(f)

≤
∥∥∥tr

[
i(β−βh)

ηh
]
f

∥∥∥
L2Λk−1(f)

+
∥∥∥tr [iβηh]f

∥∥∥
L2Λk−1(f)

≤ Ch|β|W 1,∞(Ω)h
−1/2 ‖ηh‖L2Λk(T+∪T−) +

∥∥∥[ηh]f
∥∥∥
f,β

which leads to the desired estimate (3.10). Finally, combining the estimates (3.9) and (3.10)
yields

| (Lh(ω −Πhω), ηh)Ω | ≤ Cπ ‖ω −Πhω‖∗ ‖ηh‖h + Ch−1/2 ‖ω −Πhω‖L2Λk(Ω) ‖ηh‖h

≤ C ′
π ‖ω −Πhω‖∗ ‖ηh‖h .

Note that (3.5) together with the definition of ‖·‖∗ in (3.3), inverse and trace inequalities
gives

‖Lhω‖L2Λk(Ω) ≤ Ch−1/2 ‖ω‖∗ ≤ Ch−1 ‖ω‖L2Λk(Ω) ∀ω ∈ V (h), (3.12)

and C depends only on the polynomial degree and the shape regularity of the mesh.
As it will be shown in the following, stability of second order Runge-Kutta schemes can

be achieved with the standard CFL condition if the space discretization is performed with
piecewise linear finite elements. Therefore, this case is tackled separately. In particular, we
can establish the following estimate.

Lemma 3.4. Let Π0
h denote the L2-orthogonal projection onto Pd

0Λ
k(Th). In the case of space

discretization with piecewise affine elements Λk
h (Th) = Pd

1Λ
k(Th), or Λk

h (Th) = P1Λ
k(Th) or

Λk
h (Th) = P−

1 Λk(Th) or Λk
h (Th) = Q−

1 Λ
k(Th), there exists a constant Cπ which depends on α,

|β|W 1,∞(Ω), the stabilization coefficients |cf |
1/2, |cf |

−1/2 and the shape regularity of the mesh,

such that for all ωh, ηh ∈ Λk
h (Th)

|(Lhωh, ηh −Π0
hηh)Ω| ≤ Cπh

−1/2 ‖ωh‖h
∥∥ηh −Π0

hηh
∥∥
L2Λk(Ω)

.

Proof. The proof we propose is very similar to the proof in [13, Lemma 2.1]. Let us first
consider the case of non-conforming truly discontinuous discretization, namely Λk

h (Th) =
Pd
1Λ

k(Th). Using the formulation in (3.6) and proceeding similarly as in the proof of (i) from
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Lemma 3.3, one has

|(Lhωh, ηh −Π0
hηh)Ω| ≤ ‖α‖L∞(Ω) ‖ωh‖L2Λk(Ω)

∥∥ηh −Π0
hηh

∥∥
L2Λk(Ω)

+

+ (|β − βh|W 1,∞(Ω) + C|β|W 1,∞(Ω)) ‖ωh‖L2Λk(Ω)

∥∥ηh −Π0
hηh

∥∥
L2Λk(Ω)

+

+ C ‖β‖
1/2
L∞(Ω) max

f∈F◦
max{|cf |

1/2, |cf |
−1/2}h−1/2

∥∥ηh −Π0
hηh

∥∥
L2Λk(Ω)

∑

f∈F◦

‖[ωh]‖f,cfβ +

+ C ‖β‖
1/2
L∞(Ω) h

−1/2
∥∥ηh −Π0

hηh
∥∥
L2Λk(Ω)

∑

f∈F∂
−

‖ωh‖f,−β

≤ Cπh
−1/2 ‖ωh‖h

∥∥ηh −Π0
hηh

∥∥
L2Λk(Ω)

(3.13)

where we have used the fact that, for ηh ∈ Pd
1Λ

k(Th), Π0
hηh ∈ Pd

1Λ
k(Th) and Lβh

ωh ∈
Pd
0Λ

k(Th) thus (Lβh
ωh, ηh −Π0

hηh)T = 0 for all T ∈ Th.
In the case of HΛk (Ω)-conforming discretization, we denote yh := ηh −Π0

hηh. Then,

|(Lhωh,Πhyh)Ω| =
∣∣ (αωh,Πhyh)Ω +

∑

T∈Th

(
(Lβ − Lβh

)ωh,Πhyh
)
T
+

+
∑

T∈Th

(
Lβh

ωh,Πhyh
)
T
+

∑

f∈F∂
−

∫

f
tr i−β(ωh ∧ ⋆Πhyh)+

+
∑

f∈F◦

∫

f
cf tr iβ([ωh]f ∧ ⋆ [Πhyh]f )−

∫

f
tr iβ([ωh]f ∧ ⋆{Πhyh}f )

∣∣

≤ Cπh
−1/2 ‖ωh‖h ‖Πhyh‖L2Λk(Ω) +

∑

T∈Th

|(Lβh
ωh,Πhyh)T |

≤ Cπh
−1/2 ‖ωh‖h ‖yh‖L2Λk(Ω) +

∑

T∈Th

|(Lβh
ωh,Πhyh − yh)T | ,

where we have used the estimate derived in (3.13) and again the fact that
(
Lβh

ωh, yh
)
T
= 0

for all T ∈ Th. Moreover, using the bound (3.10), there exists C > 0 depending on the shape
regularity of the mesh such that

∑

T∈Th

(
Lβh

ωh,Πhyh − yh
)
T
≤ Ch−1/2 ‖ωh‖h ‖yh −Πhyh‖L2Λk(Ω)

≤ Ch−1/2 ‖ωh‖h ‖yh‖L2Λk(Ω)

which concludes the proof.

As a consequence of the estimates shown in Lemma 3.2, Lemma 3.3 and Lemma 3.4, we
present a convergence result for the stationary advection problem with Lipschitz continuous
velocity fields. Analogous estimates were proposed in [23, Theorem 4.1.8] for non-conforming
differential forms in R

n. The present result extends toHΛk (Ω)-conforming discrete differential
forms in R

n the a priori convergence estimates derived in [12, Section 5] for 0-forms in R
3

and in [23, Theorem 4.1.13 and 4.1.14] for 1- and 2-forms in R
3. Note that the numerical

experiments presented in Section 6 for non-Lipschitz velocities indicate that the following
convergence result might hold in a more general setting.
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Theorem 3.5. Let α ∈ L∞(Ω) and β ∈ W 1,∞(Ω) in (1.5) satisfy the monotonicity condi-
tion (1.6). Furthermore, let the stabilization parameters cf fulfill the non-negativity Assump-
tion 2.2. Then

ah (ω, ω) + sh (ω, ω) ≥ min

{
1

2
α0, 1

}
‖ω‖2h ∀ω ∈ Λk

h (Th) . (3.14)

Moreover, if ω ∈ Hr+1 Λk (Ω) is solution of the advection problem (1.5) and ωh ∈ Λk
h (Th) is

solution of the discrete variational formulation with bilinear form given in (2.14), then

‖ω − ωh‖h ≤ Chr+1/2 ‖ω‖Hr+1Λk(Ω)

with the constant C > 0 depending on |cf |, |cf |
−1, α, β, the polynomial degree r and the shape

regularity of the mesh.

Proof. The proof of stability (3.14) immediately follows by (3.1), the positivity condition (1.6)
and the definition of the h-norm.

Let Πh denote the L2-projection into Λk
h (Th). By stability and consistency (2.15), one has

min

{
1

2
α0, 1

}
‖ω −Πhω‖

2
h ≤ |(Lh(ω −Πhω), ηh)Ω|

where ηh := ωh − Πhω. We proceed as in the proof of Lemma 3.3 (i) to get (3.9) and use a
multiplicative trace inequality (see [10, Theorem 1.6.6]) for the interior facets terms, i.e.

‖ω −Πhω‖
2
L2Λk(∂T ) ≤ C

(
h−1
T ‖ω −Πhω‖

2
L2Λk(T ) + hT |ω −Πhω|

2
H1Λk(T )

)

with C depending only on the shape of T . Moreover, in the case of HΛk (Ω)-conforming dis-
crete differential forms the extra non-zero terms are bounded as in (3.10). The approximation
estimates [5, Theorem 5.3]

inf
µh∈PrΛk(T )

‖ω − µh‖L2Λk(T ) ≤ Chr+1 ‖ω‖Hr+1Λk(T ) ;

inf
µh∈PrΛk(T )

‖ω − µh‖H1Λk(T ) ≤ Chr ‖ω‖Hr+1Λk(T ) ;

for C > 0 independent of h, yield the conclusion.

Note that in the non-stabilized case (cf = 0), the bilinear form in (2.14) is coercive in
the L2Λk-norm but only sub-optimal convergence is attained, namely ‖ω − ωh‖L2 Λk(Ω) ≤

Chr‖ω‖Hr+1 Λk(Ω) holds with C > 0 independent of the mesh width h.

4 Fully discrete problem

In the present section, we formulate the fully discrete advection problem for a differential
k-form by coupling the stabilized Galerkin spatial discretization introduced in Section 2 with
explicit time-stepping schemes. In particular, the forward Euler method and explicit second-
order and third-order Runge-Kutta (RK) schemes are investigated.

On the time interval I = [0, T ], we consider a uniform partition
⋃N−1

n=0 [t
n, tn+1] for a given

positive integer N and tn = nτ with uniform time step τ such that T = Nτ . The semi-discrete
problem reads: find ωh(t) ∈ Λk

h (Th) such that

(∂tωh(t), ηh)Ω + (Lh(t)ωh(t), ηh)Ω = l(t)(ηh) ∀ηh ∈ Λk
h (Th)

(ωh(0), ηh)Ω =
(
ω0, ηh

)
Ω

∀ηh ∈ Λk
h (Th)

(4.1)
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where the bilinear forms ah (·, ·), sh (·, ·) and the linear functional l(·) are obtained at each
time step through spatial discretization as in (2.7), (2.8) and (2.6) with forcing term f(x, t)
and velocity field β(x, t). The semi-discrete problem (4.1) can equivalently be recast as the
finite dimensional operator evolution equation

∂tωh(t) + Lh(t)ωh(t) = Fh(t) ∀t ∈ [0, T ] (4.2)

where Fh(t) ∈ Λk
h (Th) is such that (Fh(t), ηh)Ω = l(t)(ηh) for all ηh ∈ Λk

h (Th).
In light of the results established in Lemma 3.2, Lemma 3.3 and Lemma 3.4, quasi-optimal

convergence rates for the L2Λk-error in space L∞-error in time can be proven for smooth
solutions of the problem (4.1), along the lines of the analysis proposed by Burman et al. in [13].
In particular, under CFL-type conditions, the efficacy of the proposed space-time discretization
lies in the fact that the anti-diffusive nature of explicit RK schemes is compensated by the
artificial dissipation introduced through the stabilized spatial discretization.

In the following paragraphs, we introduce the fully discrete problem for (4.2) by explicitly
stating the stages corresponding to the time-stepping. Moreover, we present the convergence
results corresponding to each fully discrete scheme.

4.1 Explicit Euler Scheme

The first order explicit Euler scheme for the problem (4.2) reads

ωn+1
h = ωn

h − τLn
hω

n
h + τFn

h (4.3)

where ωn
h = ωh(t

n), Ln
h := Lh(t

n) and Fn
h := Fh(t

n).

Theorem 4.1. Let ω ∈ C0(0, T ;Hr+1 Λk (Ω)) ∩ C2(0, T ;L2 Λk (Ω)) be the exact solution of
(1.5) and let {ωn

h}
N
n=1 ⊂ Λk

h (Th) be the discrete solution of problem (4.3). Let Assumption 2.2
and the monotonicity condition (1.6) for β ∈ C0(0, T ;W 1,∞(Ω)) hold true. Consider the trial
spaces Λk

h (Th) = Pd
r Λ

k(Th) or Λk
h (Th) = PrΛ

k(Th) or Λk
h (Th) = P−

r+1Λ
k(Th) or Λk

h (Th) =
Q−

r+1Λ
k(Th). Then there exist constants C, CCFL > 0 depending only on the constants in

Lemma 3.2, Lemma 3.3 and Lemma 3.4 and the trial/test spaces Λk
h (Th) such that, if

(i) τ ≤ CCFLh, for Λk
h (Th) = Pd

0Λ
k(Th);

(ii) τ ≤ CCFLh
2, for all other choices of Λk

h (Th);

then
max

0≤n≤N
‖ω(tn)− ωn

h‖L2Λk(Ω) ≤ C(τ + hr+1/2).

Proof. For the sake of clarity we briefly sketch here the underlying idea proposed in [31] and
[13], valid also for the higher order time schemes introduced below. For ωn = ω(tn) exact
solution at the n-th time step, the proof starts with writing the error generated at each stage
(here one stage) of the scheme as

ωn − ωn
h = (ωn −Πhω

n)− (ωn
h −Πhω

n) =: enπ − enh

and bounding the error enh by the approximation error enπ. In order to do that, by deriving
the equations governing the time evolution of the error enh, an energy identity associated
with the time scheme can be identified. Starting from this identity, the desired estimate is
obtained by deriving upper bounds on each terms via the estimates established in Lemma 3.2,
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Lemma 3.3 and Lemma 3.4. Note that (3.12) is crucial in order to achieve stability under the
CFL-condition in (ii), while the bound on the orthogonal subscales inferred in Lemma 3.3 and
Lemma 3.4 is instrumental in the derivation of quasi-optimal error estimates. The conclusion
follows by a Gronwall type argument and standard estimates on the projection error enπ.

Remark 4.2. Note that the mild time step constraint in Theorem 4.1 (i) valid for spatial
approximations based on piecewise constants discontinuous elements (finite volume) Λk

h (Th) =
Pd
0Λ

k(Th) hinges on the trivial observation that the bound (3.5) in Lemma 3.2 reduces to
‖Lhω‖L2Λk(Ω) ≤ CL ‖ω‖L2Λk(Ω) + C ′

Lh
−1/2|ω|h for all ω ∈ V (h). This is the standard CFL-

condition for upwind finite volume or finite difference schemes for scalar advection problems.

4.2 Explicit RK2 Schemes

We consider, as in [13, Section 3.1], explicit Runge-Kutta scheme of order two (RK2) for the
problem (4.2) of the form

µnh = ωn
h − τLn

hω
n
h + τFn

h (4.4)

ωn+1
h =

1

2
(µnh + ωn

h)−
1

2
τLn

hµ
n
h +

1

2
τψn

h (4.5)

where ψn
h := Fn

h + τ(∂tFh)(t
n)+ δnh , for f in (1.5) sufficiently smooth in time and δnh such that

‖δnh‖L2Λk(Ω) ≤ Cτ2.
Similarly to the explicit Euler scheme, convergence of the fully discrete problem with

second order two-stage Runge-Kutta schemes of the form (4.4), (4.5) can be established. A
detailed proof of the following theorem can be found in [13, Theorem 3.1 and Theorem 3.2].

Theorem 4.3. Let ω ∈ C0(0, T ;Hr+1 Λk (Ω)) ∩ C3(0, T ;L2 Λk (Ω)) be the exact solution of
(1.5) and let {ωn

h}
N
n=1 ⊂ Λk

h (Th) be the discrete solution of problem (4.4)-(4.5). Let Assump-
tion 2.2 and the monotonicity condition (1.6) for β ∈ C0(0, T ;W 1,∞(Ω)) hold true. Consider
the trial spaces Λk

h (Th) = Pd
r Λ

k(Th) or Λk
h (Th) = PrΛ

k(Th) or Λk
h (Th) = P−

r+1Λ
k(Th) or

Λk
h (Th) = Q−

r+1Λ
k(Th). Then there exist constants C, CCFL > 0 depending only on the con-

stants in Lemma 3.2, Lemma 3.3 and Lemma 3.4 and the trial/test spaces Λk
h (Th) such that,

if

(i) τ ≤ CCFLh, for a non-conforming spatial discretization with Λk
h (Th) = Pd

0Λ
k(Th) or

Λk
h (Th) = Pd

1Λ
k(Th) or for a HΛk (Ω)-conforming approximation with spaces Λk

h (Th) =
P1Λ

k(Th) or Λk
h (Th) = P−

1 Λk(Th) or Λk
h (Th) = Q−

1 Λ
k(Th);

(ii) τ ≤ CCFLh
4/3, for all other choices of Λk

h (Th);

then
max

0≤n≤N
‖ω(tn)− ωn

h‖L2Λk(Ω) ≤ C(τ2 + hr+1/2).

4.3 Explicit RK3 Schemes

The explicit Runge-Kutta scheme of order three (RK3) for the problem (4.2) as in [13, Section
4.1] reads

µnh = ωn
h − τLn

hω
n
h + τFn

h (4.6)

γnh =
1

2
(µnh + ωn

h)−
1

2
τLn

hµ
n
h +

1

2
τ(Fn

h + τ(∂tFh)(t
n)) (4.7)

ωn+1
h =

1

3
(µnh + γnh + ωn

h)−
1

3
τLn

hµ
n
h +

1

3
τψn

h (4.8)
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where ψn
h := Fn

h +τ(∂tFh)(t
n)+ 1

2τ
2(∂ttFh)(t

n)+δnh with f in (1.5) sufficiently smooth in time
and ‖δnh‖L2Λk(Ω) ≤ Cτ3.

A detailed proof of the following theorem can be found in [13, Theorem 4.1].

Theorem 4.4. Let ω ∈ C0(0, T ;Hr+1 Λk (Ω)) ∩ C4(0, T ;L2 Λk (Ω)) be the exact solution of
(1.5) and let {ωn

h}
N
n=1 ⊂ Λk

h (Th) be the discrete solution of problem (4.6), (4.7) and (4.8). Let
Assumption 2.2 and the monotonicity condition (1.6) for β ∈ C0(0, T ;W 1,∞(Ω)) hold true.
Consider the trial spaces Λk

h (Th) = Pd
r Λ

k(Th) or Λ
k
h (Th) = PrΛ

k(Th) or Λ
k
h (Th) = P−

r+1Λ
k(Th)

or Λk
h (Th) = Q−

r+1Λ
k(Th). Then there exist constants C, CCFL > 0 depending only on the

constants in Lemma 3.2, Lemma 3.3 and Lemma 3.4 and the trial/test spaces Λk
h (Th) such

that, under the 1-CFL condition τ ≤ CCFLh it holds

max
0≤n≤N

‖ω(tn)− ωn
h‖L2Λk(Ω) ≤ C(τ3 + hr+1/2).

5 Numerical experiments in 2D: continuous velocity

The two dimensional transport problem written for a 1-form amounts of solving (as in [25,
Section 5])

∂tu+ αu+ grad(β · u)−Rβdiv(Ru) = f in Ω× [0, T ]

u = g on Γin × [0, T ]

u(0) = u0 in Ω

(5.1)

where R corresponds to a clockwise rotation of π/2. We consider the pure transport (α = 0)
problem in the domain Ω = [−1, 1]2 and in the time interval [0, 1]. The time-dependent
Lipschitz continuous velocity field is

β(x, t) := sin(2πt)(1− x2)(1− y2)

(
y
−x

)

so that there is no inflow boundary. The initial condition is defined as the “bump”

u0 :=

{
(ϕ,ϕ)⊤ if x2 + (y − 0.25)2 < 0.25
(0, 0)⊤ otherwise

(5.2)

with

ϕ(x, y) :=

(
cos(π

√
x2 + (y − 0.25)2)4

cos(π
√
x2 + (y − 0.25)2)4

)

and the forcing term is set to zero, f = (0, 0)⊤.
Since at time t = 1 the exact solution coincides with the initial condition u0 in (5.2), we

compare the numerical solution obtained at the final time T = 1 with u0. Figure 5.1 shows the
L2-error at the final time, for a numerical spatial discretization based on non-conforming fully
discontinuous piecewise polynomial vector-valued functions (a) and H(curl,Ω)-conforming
rotated Raviart-Thomas [36] elements (b) of polynomial degree r and explicit Euler time-
stepping. The CFL-condition is chosen in order to fulfill the hypotheses of Theorem 4.1.
Note that the error of the fully discrete scheme attains the convergence rates predicted by the
theory. Analogously, the convergence rates reported for the Heun method (Figure 5.2) and
for the RK3 scheme (Figure 5.3) comply with the error behavior derived in Theorem 4.3 and
Theorem 4.4, respectively.
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Figure 5.1: Stabilized Galerkin discretization with upwind stabilization, polynomial differential 1-forms
Λ1
h (Th) and explicit Euler time-stepping.
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Figure 5.2: Stabilized Galerkin discretization with upwind stabilization, polynomial differential 1-forms
Λ1
h (Th) and second order Heun time-stepping.

10−2 10−1

10−6

10−5

10−4

10−3

10−2

10−1

h

L
2
-e
rr
or

r=0− τ=O(h)

r=1− τ=O(h)

r=2− τ=O(h)

O(τ3 + hr+1)

(a) Λ1
h (Th) = P

d
rΛ

1(Th)

10−2 10−1

10−6

10−5

10−4

10−3

10−2

10−1

h

L
2
-e
rr
or

r=0− τ=O(h)

r=1− τ=O(h)

r=2− τ=O(h)

O(τ3 + hr+1)

(b) Λ1
h (Th) = P

−
r+1Λ

1(Th)

Figure 5.3: Stabilized Galerkin discretization with upwind stabilization, polynomial differential 1-forms
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Remark 5.1. Though we observed an increased convergence rate of the spatial discretization
(also in the stationary case) compared to the predictions of the theory, our results are pro-
bably sharp. In the case of scalar transport it is well-known [35] that on very special meshes,
sometimes called Peterson meshes, the L2-norm estimates are sharp.

6 Numerical experiments in 2D: discontinuous velocity

Lacking a sound convergence theory for the generalized advection problem in the presence
of discontinuous velocity fields, the first set of experiments aims at testing the numerical
performances of the stabilized Galerkin spatial discretization (proposed in Section 2) for the
stationary advection problem.

6.1 Stationary problem: Test of convergence

Let us consider the stationary pure transport (α = 0) problem corresponding to (5.1) in
the unit square Ω = [0, 1]2. We perform a set of numerical simulations on unstructured
meshes {Th}h obtained by uniform refinement of an initial partition T0 which resolves the
jump discontinuity in the velocity field β = (β1, β2)

⊤. The velocity is assumed to be piecewise
polynomial with respect to the open subdomain partition Ω1 = (0, 0.5) × (0, 1) and Ω2 =
(0.5, 1)× (0, 1). Namely,

β1(x) =

{
1 x ∈ Ω1

3 x ∈ Ω2
β2(x, y) = 2y + 1 in Ω.

The data f and g in (5.1) are chosen such that the strong solution of the BVP is given by the
discontinuous vector field u with components

u1(x) =

{
3 x ∈ Ω1

1 x ∈ Ω2
u2(x, y) = (1− x2)(1− y2) in Ω.

Note that the exact solution is tangentially continuous and such that the forcing term f belongs
to L2(Ω). We perform a numerical discretization based on:

(i) Λ1
h (Th) = P−

r+1Λ
1(Th), rotated Raviart-Thomas elements (Figure 6.1);

(ii) Λ1
h (Th) = PrΛ

1(Th), rotated Brezzi-Douglas-Marini (BDM) elements [11] (Figure 6.2);

(iii) Λ1
h (Th) = Pd

r Λ
1(Th), piecewise polynomial discontinuous 1-forms (Figure 6.3);

Figure 6.1, Figure 6.2 and Figure 6.3 show the behavior of the L2-error as the mesh is
refined for the non-stabilized and stabilized Galerkin spatial scheme introduced in Section 2.
As with Lipschitz continuous velocity fields, convergence rate r+1 of the L2-error is attained by
the stabilized scheme with edge elements of polynomial degree r. For lowest order conforming
elements, the rate deteriorates by a factor of 1 when the non-stabilized scheme is applied,
whereas higher order polynomial discretization yields numerical solutions which suffer of large
oscillations.

Note that a discretization based on the full polynomial space (case (ii), Figure 6.2) the
error behaves as in the case of Lipschitz continuous velocity fields when the polynomial degree
r is odd. Even polynomial degrees lead to a deteriorated convergence rate of the error in the
L2-norm.
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(b) Stabilized scheme, cf as in (2.9).

Figure 6.1: H(curl,Ω)-conforming finite elements of the first family, Λ1
h (Th) = P−

r+1Λ
1(Th).
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Figure 6.2: H(curl,Ω)-conforming finite elements of the second family, Λ1
h (Th) = PrΛ

1(Th).
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6.2 Stationary problem: Velocity with non-resolved discontinuities

The derivation of the method, as of Section 2, relies on the assumption that the mesh resolves
the possible discontinuities of the velocity field. In the following experiment we investigate an
example of normal jump discontinuity in the velocity field not resolved by the mesh or any
of its refinements and observe that the instabilities arising downstream of the discontinuity
irremediably compromise the accuracy of the numerical solution and wreck the performance
of the method. The failure of the numerical scheme in this test case may be ascribed to the
fact that, since across the mesh facets the jump of the velocity vanishes, the scheme itself does
not capture the discontinuity of the velocity and hence of the solution. Jump discontinuities
are only taken into account through numerical quadrature.

In more details, the pure magnetic transport problem is solved in the domain Ω = [0, 1]2

with a tensor product mesh and velocity field β = (β1, β2) defined component-wise as

β1(x, y) =

{
1 x < y
3 x > y

β2 ≡ 1 in Ω.

The data f and g are such that the strong solution of the stationary problem corresponding
to (5.1) is given by u = (u1, u2) with

u1(x, y) =

{
3 sin(πx) x < y
sin(πx) x > y

u2 ≡ (1− x2)(1− y2) in Ω,

as shown in Figure 6.4 (first column). The numerical discretization is performed with lowest
order edge elements i.e. Λ1

h (Th) = Q−
1 Λ

1(Th) and upwind stabilization.
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resolved by the mesh.
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On the basis of Figure 6.4, it can be inferred that the numerical solution obtained with
the upwind stabilized scheme is not affected by spurious oscillations but fails to reproduce the
exact solution. An error analysis provides evidence of large errors along the discontinuity and
no convergence is achieved.

6.3 Transient problem: Test cases, shear and collisional velocities

Encouraged by the promising performances of the scheme presented in Section 6.1 for the
stationary advection problem in the presence of resolved discontinuous velocities, we tackle
the full discretization of the transient problem.

Let us consider the two dimensional transient magnetic advection problem (5.1) in the
space domain Ω = [0, 2]2 with periodic boundary conditions at the boundary ∂Ω and time
domain I = [0, 2]. The numerical discretization is performed on a tensor product mesh
with lowest order rotated Raviart-Thomas elements Λ1

h (Th) = Q−
1 Λ

1(Th) and the second
order Heun method as time integrator (in order to avoid restrictive time steps). Let 1S be
the characteristic function on the subset S ⊂ Ω, we consider different velocity fields whose
discontinuities are resolved by the domain partition Ω = Ω1 ∪Ω2 with Ω1 = (0, 1)× (0, 2) and
Ω2 = (1, 2) × (0, 2). Numerical simulations have been conducted with the following velocity
fields and initial conditions:

(i) β = (0,1Ω1
− 1Ω2

)⊤ (see Figure 6.5 (a)) and u0(x, y) = (x(2− x)y(2− y), sin(2πx))⊤

as initial condition: The initial condition is in H(curl,Ω), and its component in the
direction of the velocity field vanishes along the discontinuity;

(ii) β = (0,1Ω1
− 1Ω2

)⊤ (see Figure 6.5 (a)) and initial condition u0(x, y) = (sin(2πx), 4)⊤:
The initial condition is curl-free, while its contraction with the velocity field, namely the
vector component in the velocity direction is not in H1(Ω);

(iii) β = (1Ω1
− 1Ω2

, 0)⊤ (see Figure 6.5 (b)) and initial condition u0(x, y) = (sin(2πx), 4)⊤:
The initial condition is curl-free, and its component in the direction of the velocity field
vanishes along the discontinuity;

(iv) β = (1Ω1
−1Ω2

, 0)⊤ (see Figure 6.5 (b)) and u0(x, y) = (x(2− x)y(2− y), sin(2πx))⊤ as
initial condition: u0 is in H(curl,Ω), and its component in the direction of the velocity
field is not in H1(Ω).

(a) β = (0,1Ω1
− 1Ω2

)⊤ (b) β = (1Ω1
− 1Ω2

, 0)⊤

Figure 6.5: Sketch of shear velocity (a) and collisional velocity (b).

For the case (i), we run the simulation for an entire period, namely until T = 2 and
compare the solution with the initial condition. Figure 6.6 shows that the initial datum is
transported in the two different domains and the L2-error computed at the final time reaches
the expected first order convergence (see Figure 6.7).
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Figure 6.6: First component of the numerical solution obtained from the stabilized scheme (cf as in
(2.9)) with Λ1

h (Th) = Q−

1 Λ
1(Th) and Heun time-stepping (τ = 0.1h), for shear velocity and initial

condition as in (i).
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and initial condition as in (i).

In case (iv), even if the initial condition is smooth, the magnetic advection with nor-
mally discontinuous collisional velocity yields the formation of a shock along the discontinuity
(Figure 6.8 (b)) until complete blow up. An analogous behavior of the numerical magnetic
potential obtained from the stabilized scheme can be reported in the case (ii), where instan-
taneous blow up of the solution along the discontinuity is observed. However, we expect a
blow-up of the solution in these situations: the observed behavior of the numerical solution is
not engendered by instabilities produced within the numerical scheme, but accurately reflects
“physical reality”.
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Figure 6.8: First component of the numerical solution obtained from the stabilized scheme (cf as in
(2.9)) with Λ1

h (Th) = Q−

1 Λ
1(Th) and Heun method (τ = 0.1h), for collisional velocity and smooth

initial condition as in (iv).
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A similar conclusion can be drawn for the case (iii) in Figure 6.9.
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Figure 6.9: First component of the magnetic potential obtained from the stabilized scheme (cf as in
(2.9)) with Λ1

h (Th) = Q−

1 Λ
1(Th) and Heun method (τ = 0.1h), for collisional velocity and smooth

initial condition as in (iii).

6.4 Orszag-Tang benchmark

As last numerical experiment, we rely on a widely used two dimensional benchmark problem,
the so-called Orszag–Tang vortex system [33], which describes the transition to supersonic
turbulence in the MHD equations. The development of shock waves and the complex interac-
tion between various shocks with different speed which characterized the solution, makes the
Orszag-Tang benchmark a challenging test for numerical methods.

Let us consider the two dimensional magnetic advection problem in Ω = [0, 2]2 with pe-
riodic boundary conditions at the boundary ∂Ω. The time interval is I = [0, 1] with uni-
form time step τ = 5 · 10−3. The initial condition is the smooth vector field u0(x, y) =
(sin(2πx), sin(πy))⊤ and the velocity field is piecewise constant with respect to the mesh. In
particular, it is given at each time step as the outcome of a second order Finite Volume sim-
ulation of the full MHD system (from [32] and [21]). Note that even if the initial velocity is
smooth, complex structures such as shocks and shock interactions develop in time. Concern-
ing the discretization, the numerical scheme has been implemented on a tensor product mesh
with 200× 200 elements and H(curl,Ω)-conforming lowest order rotated Raviart-Thomas ele-
ments Λ1

h (Th) = Q−
1 Λ

1(Th) have been used for the spatial discretization, while a second order
two-stage Runge-Kutta time-stepping is deployed in order to exploit the mild CFL-condition
of the scheme. The stabilization parameter is as in (2.9), i.e. the upwind direction is assumed
to be given by the average of the velocity field.

The rotated magnetic potential obtained using the scheme (4.1) has been compared with
the magnetic induction derived from the full MHD system and a second order Finite Volume
discretization (from [32] and [21]). The numerical method we have proposed well resolves
shocks, is stable and no spurious oscillations occur. As can be inferred from Figure 6.10, the
current sheet characterizing the second component of the magnetic induction (black box in
Figure 6.10 (d)) is not captured by the H(curl,Ω)-conforming scheme due to the low order
polynomial space discretization which is highly diffusive.
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Figure 6.10: Orszag-Tang benchmark: Comparison at time T = 1 between the magnetic potential
obtained with the stabilized scheme (2.7)-(2.8), lowest order edge elements and second order Heun
time-stepping (first column (a)-(c)) and the corresponding components of the magnetic field obtained
from the MHD simulation with a finite volume scheme in [21] (second column (b)-(d)). The current
sheet in Figure (d) is framed in the black box.

A Conforming Approximation of Non-Conforming Discrete Dif-

ferential Forms

This Appendix pertains to the proof of Proposition 3.1.
Let us consider the same types of meshes as in Section 2.5. Furthermore, let ∆j(Th) denote

the set of all j-faces of Th, with ∆j(Th) = ∆◦
j (Th)∪∆∂

j (Th) and ∆∂
j (Th) being the set of j-faces

of Th belonging to the domain boundary ∂Ω. With a little abuse of notation, given a m-face
f ∈ ∆m(Th), let ∆j(f) denote the set of all j-dimensional faces of f if j < m and the set of
all j-faces containing f if j > m.

We briefly introduce the degrees of freedom on the spaces Λk
h (Th) needed for the subsequent

analysis. We refer to [6, Section 5] and [4] for a detailed discussion of spaces of finite element
differential forms on simplicial and tensor product meshes, respectively. On a n-simplex
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T ∈ Th, the degrees of freedom of PrΛ
k(T ) are defined on every j-simplex fj ∈ ∆j(T ), with

k ≤ j ≤ min{n, r + k − 1}, as

ω ∈ PrΛ
k(T ) 7−→W ℓ

fj
(ω) :=

∫

fj

trω ∧ ηℓj ∀ℓ = 1, . . . , Nj , (A.1)

where {ηℓj}
Nj

ℓ=1 is a basis of P−
r−j+kΛ

j−k(fj) (see for example [26, Sections 3.2 and 3.4]). Si-

milarly, the degrees of freedom of P−
r Λk(T ) are defined on every j-simplex fj ∈ ∆j(T ), with

k ≤ j ≤ min{n, r + k − 1}, as

ω ∈ P−
r Λk(T ) 7−→W ℓ

fj
(ω) :=

∫

fj

trω ∧ ηℓj ∀ℓ = 1, . . . , Nj ,

where {ηℓj}
Nj

ℓ=1 is a basis of Pr−j+k−1Λ
j−k(fj). Finally, on a n-dimensional hypercube T ∈ Th

the degrees of freedom of Q−
r Λ

k(T ) are defined on every j-face fj ∈ ∆j(T ), with k ≤ j ≤
min{n, r + k − 1}, as

ω ∈ Q−
r Λ

k(T ) 7−→W ℓ
fj
(ω) :=

∫

fj

trω ∧ ηℓj ∀ℓ = 1, . . . , Nj ,

where {ηℓj}
Nj

ℓ=1 is a basis of Q−
r−1Λ

j−k(fj). Furthermore, if fn−1 ∈ ∆n−1(Th) then we rely

on a trace property of the shape function space to infer trω ∈ PrΛ
k(fn−1) which is hence

determined by the degrees of freedom corresponding to the j-faces fj ⊂ fn−1. Note that the
interelement continuity required for the finite element space Λk

h (Th) to belong to HΛk (Ω)
is directly imposed through the choice of degrees of freedom associated to the j-dimensional
faces in Th, with k ≤ j ≤ n− 1.

Without loss of generality, in what follows we can assume that n < r+k−1. Moreover, for
the sake of conciseness, we restrict the analysis to the case Λk

h (Th) = PrΛ
k(Th). The extension

to the cases Λk
h (Th) = P−

r Λk(Th) and Λk
h (Th) = Q−

r Λ
k(Th) follows alike.

Lemma A.1. Let T̂ be the reference n-simplex. Let φ : T̂ → T be an affine isomorphism.
Then there exist C1, C2 > 0 such that, for all ω̂ ∈ PrΛ

k(T̂ ), it holds

C1 ‖ω̂‖
2
L2Λk(T̂ )

≤
n−1∑

j=k

∑

fj∈∆◦
j (T )

Nj∑

ℓ=1

(W ℓ
fj ,T

)2 +

Nn∑

ℓ=1

(W ℓ
T )

2 ≤ C2 ‖ω̂‖
2
L2Λk(T̂ )

.

Proof. The proof relies on standard transformation techniques. Details can be found in [26,
Section 3.6].

Definition A.2. We define the averaging interpolation operator Ph : Pd
r Λ

k(Th) → PrΛ
k(Th)

through the degrees of freedom of ψ := Phω for ω ∈ Pd
r Λ

k(Th) with degrees of freedom defined
locally as in (A.1). In particular,

• Degrees of freedom on n-simplices:

Ψℓ
T :=W ℓ

T , ∀T ∈ ∆n(Th), ℓ = 1, . . . , Nn ; (A.2)

• Degrees of freedom on n−1-simplices: for ℓ = 1, . . . , Nn−1

Ψℓ
fn−1

:=





1
2

∑
T∈∆n(fn−1)

W ℓ
fn−1,T

, ∀fn−1 ∈ ∆◦
n−1(Th);

W ℓ
fn−1,T

∀fn−1 ∈ ∆∂
n−1(Th).

(A.3)
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• Degrees of freedom on j-simplices for k ≤ j ≤ n− 2: for ℓ = 1, . . . , Nj

Ψℓ
fj

:=





1∑
T∈∆n(fj)

1

∑
T∈∆n(fj)

W ℓ
fj ,T

, ∀fj ∈ ∆◦
j (Th);

W ℓ
fj ,T

∀fj ∈ ∆∂
j (Th).

(A.4)

Note that if fn−1 ∈ ∆n−1(T1) ∩∆n−1(T2), then Ψℓ
fn−1

|T1
= Ψℓ

fn−1
|T2

for all ℓ = 1, . . . , Nn−1.
This means that trψ|T1

= trψ|T2
on every fn−1 ∈ ∆n−1(Th).

The averaging operator introduced in Definition A.2 enables to approximate discontin-
uous non-conforming differential forms by HΛk (Ω)-conforming ones through the following
approximation result.

Proposition A.3. Let ω ∈ Pd
r Λ

k(Th) and Ph be the averaging operator introduced in Defini-
tion A.2. Then there exists a constant C > 0 depending only on the polynomial degree r and
the shape regularity of the mesh, such that

‖ω − Phω‖
2
L2Λk(Ω) ≤ Ch

∑

fn−1∈∆n−1(Th)

∥∥∥tr [ω]fn−1

∥∥∥
2

L2Λk(fn−1)
.

Proof. Let T+ ∈ ∆n(Th), T
+ = φ(T̂ ) be fixed. In view of Lemma A.1 and the definition of

averaging operator, it holds

∥∥∥ω̂ − P̂hω
∥∥∥
2

L2Λk(T̂ )
≃

n−1∑

j=k

∑

fj∈∆j(T+)

Nj∑

ℓ=1

(W ℓ
fj ,T+ −Ψℓ

fj
)2.

Let us estimate separately each set of degrees of freedom on the j-subsimplices of Th. First,
we consider the n−1-face fn−1 = ∆◦

n−1(T
+) ∩∆◦

n−1(T
−), then due to (A.3),

Nn−1∑

ℓ=1

(W ℓ
fn−1,T+ −Ψℓ

fn−1
)2 =

1

4

Nn−1∑

ℓ=1

(W ℓ
fn−1,T+ −W ℓ

fn−1,T−)
2.

Consider now the degrees of freedom on the j-subsimplices of Th, fj ∈ ∆◦
j (T

+) with k ≤ j ≤
n− 2. Let Mj :=

∑
T∈∆n(fj)

1. Note that for every k ≤ j ≤ n− 2, Mj is the cardinality of the
set of n-simplices of Th sharing fj and, due to the shape regularity, this number is bounded
uniformly in the mesh width h. By the definition in (A.4) follows

Nj∑

ℓ=1

(W ℓ
fj ,T+ −Ψℓ

fj
)2 =

Nj∑

ℓ=1

(
W ℓ

fj ,T+ −M−1
j

∑

T∈∆◦
n(fj)

W ℓ
fj ,T

)2

≤ CM−2
j

∑

T∈∆◦
n(fj)

Nj∑

ℓ=1

(W ℓ
fj ,T+ −W ℓ

fj ,T
)2

≤ C
∑

fn−1∈∆◦
n−1(fj)

fn−1⊂∂T+∩∂T−

Nj∑

ℓ=1

(W ℓ
fj ,T+ −W ℓ

fj ,T−)
2.
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Moreover, by definition of trace and jump across a face fn−1 = ∆◦
n−1(T

+) ∩ ∆◦
n−1(T

−), the
degrees of freedom of tr [ω]fn−1

are given by the set {W ℓ
fj ,T+ −W ℓ

fj ,T−} for j = k, . . . , n − 1

and ℓ = 1, . . . , j. Hence, applying Lemma A.1 yields

n−2∑

j=k

∑

fj∈∆◦
j (fn−1)

Nj∑

ℓ=1

(W ℓ
fj ,T+ −W ℓ

fj ,T−)
2 +

Nn−1∑

ℓ=1

(W ℓ
fn−1,T+ −W ℓ

fn−1,T−)
2 ≤ C

∥∥∥tr [ω̂]f̂n−1

∥∥∥
2

L2Λk(f̂n−1)
.

Using a scaling argument yields the conclusion.

B A coordinate based representation of Lie derivatives

Let {ekI}
(nk)
I=1 be the orthonormal basis of alternating k-linear forms, e.g. ω =

∑(nk)
I=1 ωIe

k
I with

0-forms ωI for arbitrary ω ∈ Λk (Ω) and ekI ∧ ⋆e
k
J = δI,J . Then the projection of Lβω onto eJ

yields
Lβω ∧ ⋆eJ = Lβ(ω ∧ ⋆eJ) + ω ∧ ⋆LβeJ

= diβ(ω ∧ ⋆eJ) + ω ∧ ⋆LβeJ

= diβωJ +

(nk)∑

I=1

ωIe
k
I ∧ ⋆Lβe

k
J .

Hence, if u = (ω1, . . . , ωI , . . . )
⊤ is a vector proxy of ω ∈ Λk (Ω) then

∑n
i=1 βi∂xi

u+Cu with
CJI := δJ,I(

∑n
i=1 ∂xi

βi) + ekI ∧ ⋆Lβe
k
J is a vector proxy of Lβω.
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