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ABSTRACT. We study linear parabolic initial-value problems in a space-time variational for-
mulation based on fractional calculus. This formulation uses “time derivatives of order one
half” on the bi-infinite time axis. We show that for linear, parabolic initial-boundary value
problems on (0, c0), the corresponding bilinear form admits an inf-sup condition with sparse
tensor product trial and test function spaces. We deduce optimality of compressive, space-
time Galerkin discretizations, where stability of Galerkin approximations is implied by the
well-posedness of the parabolic operator equation. The variational setting adopted here ad-
mits more general Riesz bases than previous work; in particular, no stability in negative
order Sobolev spaces on the spatial or temporal domains is required of the Riesz bases ac-
commodated by the present formulation. The trial and test spaces are based on Sobolev
spaces of equal order 1/2 with respect to the temporal variable. Sparse tensor products of
multi-level decompositions of the spatial and temporal spaces in Galerkin discretizations lead
to large, non-symmetric linear systems of equations. We prove that their condition numbers
are uniformly bounded with respect to the discretization level. In terms of the total number
of degrees of freedom, the convergence orders equal, up to logarithmic terms, those of best
N-term approximations of solutions of the corresponding elliptic problems.
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1. INTRODUCTION

For a bounded linear and self-adjoint operator A € £(V,V*) in an evolution triplet V' C
H ~ H* C V* and a bounded domain D C R", we consider the initial boundary value
problem for abstract, linear parabolic evolution equations

(1.1) Bu:=0u+Au=f in Ry =(0,00),
with homogeneous initial condition
(1.2) u(0)=0.

In ([J), we think of A as linear, strongly elliptic (pseudo)differential operator of order 2m >
0, and of V' as a closed subspace of H™(D) supporting homogeneous, essential boundary
conditions of the initial boundary value problem (I.1), (T2).

Optimality of adaptive variational space-time Galerkin discretizations of (LLI), (2] on
(0,T) for T' < oo were shown for the first time in [20]. There, well-posedness of suitable space-
time variational saddle-point formulations of the parabolic initial boundary value problems
(CI), (C2) were established. By means of tensorized Riesz bases of the Bochner spaces
which underlie the space-time variational formulations, the parabolic initial boundary value
problems were converted to equivalent bi-infinite matrix problems. These matrix problems
were subsequently solved numerically, in optimal complexity, by means of adaptive wavelet
discretizations from [6]. We note that adaptive wavelet techniques from [6] were essential
in the algorithms in [20], since it used the paradigm “stability by adaptivity” from [6]. In
particular in [20], no stability result for nonadaptive discretizations could be obtained, but
rather followed from the well-posedness of the infinite-dimensional problem, the Riesz basis
property and certain optimality properties of the adaptive Galerkin discretizations (“stability
by adaptivity”).

In the present paper, building on fractional calculus techniques pioneered in variational
formulations of parabolic initial boundary value problems by M. Fontes [10} 1], we propose a
space-time variational formulation based on bilinear forms, which are, unlike the formulations
considered in [20], “symmetric” in the sense that trial and test spaces, which arise in the
variational formulation, are Sobolev spaces of equal orders with respect to time differentiation.
Stability (in the sense that a discrete inf-sup condition holds) of our space-time Galerkin
discretization requires that the finite-dimensional trial and test spaces are different.

The presently considered space-time variational formulation admits a unique variational
solution in a Bochner space X, which is intermediate to the solution spaces which are obtained
by the “classical” approach. Moreover, as shown by M. Fontes in [I1], [12], the presently
considered solutions can be obtained by monotone operator methods and, therefore, Galerkin
approximations are well-defined and stable with any closed subspaces, including in particular
sparse tensor products of multilevel hierarchies in space and time. It is interesting to note
that time derivatives of order 1/2 were used already in [2] [I7] in order to prove error estimates
in the X-norm for finite element approximations of ((LI)—(T2).

As in [20], we establish in the present paper quasi-optimality of linear and nonlinear space-
time adaptive and compressive Galerkin discretizations in the space-time cylinder. To this
end, we show a discrete inf-sup condition in the present paper, for a suitable sparse tensor
space-time Petrov-Galerkin discretization. The use of wavelet-type Riesz bases in space and
time then results in uniformly bounded condition numbers of the finite-dimensional prob-
lems; notably, this holds without the Riesz basis property in V* of the spatial wavelet basis
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Y, which was essential in [20]. In the presently considered variational formulation, we con-
sider in particular long-term evolution, i.e., the time interval (0,7") with T' = oo, and analyze
space-time compressive and adaptive numerical approximation of long-time integration for
these problems. Unlike [I], 20], we obtain stability, multilevel preconditioning and space-time
compressibility even without adaptivity, and with trial and test spaces of equal dimension
(albeit being possibly different so that we consider a Petrov-Galerkin formulation as in [1J).
Moreover, the optimality results in Section [l entail optimal, adaptive and space-time com-
pressive methods for long-time integration (i.e., 7' = oo) for parabolic evolution problems.

The outline of this paper is as follows: in Section 2] we present basic definitions and
facts from functional analysis and fractional calculus. In Section Bl we present the space-
time variational formulation of (LIJ), (I2). Section M we consider compressive space-time
Galerkin discretization with sparse tensor subspaces. Section [l addresses the space-time
adaptive discretization of the variational formulation in Section 3] and establishes optimality.
The analysis in Sections [BHAl is developed for long-time integration, i.e., for T' = oo.

2. PRELIMINARIES

2.1. Functional analysis. We require some tools from functional analysis. Throughout this
paper all vector spaces are real unless explicitly stated otherwise. Consider two Banach spaces
X and Y and a bilinear form B: X x Y — R, which is bounded, i.e., there exists a constant
C such that

(2.1) B(w,v)| < Cllw|x|lvlly YweX,veY.

We are interested in solving the linear, variational problem: for each F' € Y*, find a unique
u € X such that

(2.2) B(u,v) = F(v) YveY.
The form B(-,-) induces in a one-to-one fashion a bounded, linear operator B € L(X,Y™) via
y+(Bw,v)y = B(w,v) Ywe X, veY,

so that the unique solvability of (2.2]) is related to the question of bounded invertibility of
the operator B € £(X,Y ™). There holds:

Proposition 2.1. Let X,Y be Banach spaces; Y reflexive. Let B: X XY — R be a bounded
bilinear form and consider the inf-sup condition:

B(w,
(2.3) inf  sup _Blw,v) >v>0,
0AweX ovey [l xv]ly

and the (adjoint) injectivity condition:

(2.4) sup B(w,v) >0 Y0#veY.
weX

The conditions (23)—(Z4) hold if and only if for each F € Y*, the variational problem (2.2
admits a unique solution u € X and in this case there holds the estimate

1
Jullx < =1 F[ly- -
5

In other words, 23)—(Z4) hold if and only if the corresponding operator B € L(X,Y™) is

boundedly invertible, in which case |[B™Y| gy« xy <yt
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The Proposition 2.1 was used in [20] in verifying that space-time saddle point formulations
of (LI) are well-posed. Below, we shall be interested in the following special case where
X=Y.

Corollary 2.2. Assume that X is a reflexive Banach space, and that the bounded bilinear
form B: X x X — R is coercive-equivalent, i.e., there exists an isomorphism S € L(X,X)
such that B(-,S") is coercive, i.e., there exists ¢ > 0 such that

(2.5) B(w, Sw) > c|w|% VYwe X .
Then the corresponding operator B € L(X, X™) is boundedly invertible.

Proof. We assume (Z3]) and verify conditions (Z3)—(2Z4]) in Proposition 21l For 0 # w € X,
we have ||Sw||x < csl|w||x and Sw # 0, since S is an isomorphism. Together with (Z3]) this
leads to

wp Blow) | Bw.Sw | Juli |
o Tollx = TSl = “TSullx = e

This proves (Z3]). To verify (Z4]) we compute

sup B(w,v) > B(S_lv,v) = B(S_lv,S(S_lv)) > c||S_1v||§( > %HUH?X >0
weX €s

for 0 #v e X. O

2.2. The elliptic operator. We let (H, (-, )xr) and (V, (-, -)y) denote two separable Hilbert
spaces with dense embedding V' C H and duals H* and V*. We identify H ~ H* according
to the Riesz representation theorem and obtain the Gel’fand triple

VCH~H"CV*,

again with dense injections. Let A € L(V,V*) be a bounded self-adjoint linear operator such
that the corresponding bilinear form a(v, w) = y+(Av, w)y is coercive and bounded on V x V|
i.e., for some 0 < A_ < Ay < o0,

(2.6) a(v,0) > A_|olly,  la(v,w)] < Apfollvwly -

Example 2.3. In a bounded Lipschitz domain D C R™ of dimension n > 1, we consider the
linear, second order divergence form operator given for v € C3°(D) by

Av ==V - (a(z)Vv) + c(z)v .
Here, a € (L>(D))ix and c € L>(D) satisfy the ellipticity conditions
>0 VEER: £lag >, essinf e(w) 2 0.
In this case V = H}(D), H = L*(D), a(v,w) = (aVv, Vw) + (cv,w), and Z0) is valid.
Example 2.4. With D as in Example 2.3, we consider the Stokes equation. Then
H={ve D) :divo =0 in L2(D) ,y(v-n) =0 in H 2(3D)},
V ={ve H}(D)":divv =0 in L*(D)},

where v denotes the trace operator and the bilinear form is given by a(w,v) = fD Vw : Vodz.
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2.3. Bochner spaces. We require Bochner spaces of vector-valued functions defined on in-
tervals. For an interval I, a Banach space X with norm || -||x, and for 1 < p < oo, we denote
by LP(I; X) the space of strongly measurable functions w: I — X such that

1/p
ullr i = ( [ ol dt) < oo

for 1 < p < oo with the usual modification for p = co. Similarly, we denote by H!(I; X)
the space of functions whose distributional time derivative belongs to L?(I; X). We also
need spaces of continuous functions: for & € Ny, we denote by C¥(I; X) the Banach space
of k-times continuously differentiable and bounded mappings u: I — X endowed with the
standard norm || - ||k (7. x)-

2.4. Interpolation spaces. We repeatedly use assorted facts from the theory of function
space interpolation (see, e.g., [3l I8, 25]). In particular, we use the interpolation spaces
[X,Y]s, 0 < s <1, between two Hilbert spaces with dense embedding X C Y, as defined, for
example, in [I8, Chap. 1, Déf. 2.1].

For 0 < T < oo we denote by I = (=71,T) the symmetric interval, with / = R implied if
T = oo, and set I~ = I N{t > 0}. For a separable Hilbert space H, we define

Hg oy (Is; H) := {v € H'(I>; H) : v(0) = 0} .

By the continuity of the embedding H'(I~; H) C C°(Is; H), the set Hol {0}(I>;H) is the
null space of the trace operator at ¢ = 0 and, therefore, a norm-closed, linear subspace of

H!(I-; H). We introduce the interpolation spaces

H*(I;H) = [LX(I; H), H' (I, H)]; , s€(0,1),
HS(Is;H) = [L*(Is; H), H (Is; H)], , se(0,1),
ooy (Iss H) == [L*(Is; H), Hyoy (Iss H)ls » - s € (0,1)\ {3},
H oy (3 H) = (L3I H), H (1 )3

Remark 2.5. With I~ = (0,T) for 0 < T < oo there holds:

(1) Consider the interpolation spaces [L*(Is; H), H, {0}(I>;H)]s for0<s<1,s#41. For
0<s< %; it holds that [L2(1>;H),Hé,{0}(l>;H)]s = H*(I; H) = [L*(Is; H), H' (I; H),
i.e., the homogeneous boundary condition at {0} is “not seen” by the interpolation space,
whereas for % < s <1 we have that

[L2(I>§H)7Hé,{0}(1>§H)]s = HS,{O}(I>;H) - [L2(I>;H)7H1(I>;H)]s = H*(I>; H)
is a subspace which is norm-closed in H*(I~; H), [18, Chap. 1, Remarque 11.3].
(2) The space H(%O’{O}(B; H), which will be important in the present paper, is strictly included
in H3 (I H) = [L*(Io; H), H' (I H)]
H2(I.; H), [I8, Chap. 1, Thm. 11.7].
(3) Ho%o,{o}(l>5H) is not closed in the norm of H%(I>;H). It is a dense subspace ([16,
Theorem 1.4.2.4] with p = 2) and the embedding Ho%o,{o}
[12, Lemma 4.8].

with a topology which is strictly finer than that of

1
2

(Is;H) C H%(I>;H) is continuous,
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The following intrinsic characterizations of the spaces of order % will be useful. We refer
to [18, Chap. 1], in particular, for the first one Théoreme 9.1 and (10.23) in Section 10.3, and
for the second one, Théoreme 11.7 and Remarque 11.4.

Proposition 2.6. Let I = (-T.,T), I. = (0,T) for T € (0,00].
(1) The interpolation space H%(I>;H) consists of all u € L*(Is; H) which are equal to the
restriction to Is. of some @ € H%(I; H). The interpolation norm of H%(I>; H) is equivalent

to the intrinsic norm || - HH%(I ) given by
>

s e Jus) = u(®) I,
27) [l gy = IlBacrssny + / / L asar.

1

(2) The interpolation space Hoao,{o} (Is; H) consists of allu € H3 (Is; H) such that the function

S s’%u(s) belongs to L*(Is; H) with intrinsic norm || - || 1 ( given by
I .
00,{0} \* >

- 75)”21&1 1
2.8 ul|? = ||ul? . +/ / luls) = ul dsdt+/ u(s)||% ds .
(2.8) [[ul O%O’{O}( .. | ||L2(I>,H) . Jr |s t\2 L sH ()l

The constants implied by the norm equivalences are independent of T' € (0, 00].

2.5. Fractional calculus on the half line. To render our presentation self-contained, we
recapitulate here fractional calculus from [19] as necessary by our subsequent analysis.
For ¢ € L'(R-;C), a € (0,1), the Riemann-Liouville fractional integrals [I9, Def. 2.1] are
I 1
@500 = o [ =9 o) ds, tes .

(I%9)(t) = ﬁ /too(s — 1) lp(s)ds, teR..

Then we have integration by parts [19] (2.20) and Corollary to Theorem 3.5 p. 67]:
(2.9 [ asomewd = [ v

R> R>
and the semigroup property [19, (2.21)]:

(2.10) 1776 =10100, 1" =121"¢, a,8>0.

The proofs of [2.9]), (ZI0) are elementary calculations with integrals.
By D we denote the time derivative of order 1 and we define time derivatives of fractional
order o € (0,1) for u € C§°(R),

1 ! —a
mD/O (t—s) “u(s)ds,
—ﬁD/t (s —t) “u(s)ds.

We require a space of test functions, which is closed under the action of D} and D?; to this
end we introduce (cp. [12])

F(R;C) := {u € C(R;C) : [|ull grsmscy < o0 Vs € R} .

(2.11) (DY) (1) = (DI} u) (1) =

(2.12) (Du)(t) := — (DI %u)(t) =
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The set F(R;C) is a Fréchet space with respect to the topology induced by the family of norms
{II'- |75 m;c) } ser and we have the dense embeddings D(R; C) C S(R;C) C F(R;C) C E(R;C)
(where D, S, and & are the classical test function spaces). We observe that the definitions
(2I11), (212) remain meaningful for u € F(R;C). We further define test function spaces

FRs;C) ={u e C*(R;C) : Ju € F(R;C) such that v = u|g. }
and, with Ey the “extension by zero” operator,

Fo(Rs;C) = {u € C®(R+;C) : Egu € F(R;C)} .

The subspaces Fy(R~;C) C HOO {0}(R>;(C), F(R+;C) C H%(R>;(C) are dense, see [12]
Lemma 3.7].

We denote the corresponding spaces of distributions by Fj(Rs;C) = F(R;C)* and
F'(Rs;C) = Fy(R~;C)*. Then it follows that, see [12, (2.24)-(2.29)],

D% : Fo(R5;C) = Fo(R5;C), D2: F(R.;C) — F(R-;C),
D¢ : Fy(Rs;C) — Fy(R>;C), D%: F'(Rs;C) — F'(R>;C) .
Here the F)(R>;C) distribution derivative DY means
(DY u, @) :/ uD%¢dt V¢ e F(Rs;C),
R>
and the F'(R-;C) distribution derivative D* means
(D%u, ¢) = / uDS¢dt V¢ € Fo(R5;C) .
R>
We can now prove a relevant integration by parts formula.

Lemma 2.7. The Fy(R~;C) distribution derivative Dw of w € HOO {0}

(R<;C) satisfies
1 1
(2.13) (Dw,v) = / DiwD2vdt Yve F(R.;C).
R>
Proof. By definition we have

(Dw,v) = /R w (—=Dv)dt = (w,—Dv) Vv e F(R;C).

Since Fyp(R~;C) C H()Qo {0}

(Rs;C) is dense, it suffices to show
1 1
(w,=Dv) = (D3w,D2v) Vw e F(R;C), ve F(R;C).

If w e Fy(Rs;C), then w(0) = 0, so that w = Iy = IQIszb, where 1) = Dw. Similarly, If

v € F(Rs;C), then v(co) = 0, so that v = I ¢ = 1212¢, where ¢ = —Dwv. Therefore, by
integration by parts (2.9),

(w,~Dv) = (2124, ¢) = (129, 126) = (DIw, D2v).
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2.6. Extension by zero. In the previous Subsection 2.4 the space H00 {0}(R>; H) is charac-

terized by means of an intrinsic norm. Here we give an alternative characterization in terms
of extension by zero, denoted Ej.

Proposition 2 8. The space H00 {0}(R>; H) is equals {w € H%(R>; H): Eyw € H%(R; H)}.

A norm on H

00 {0}(R>;H), which is equivalent to (Z8), is given by || Ep -

HH%(R;H); more

precisely, for every w € HOO {0} (Rs; H) there holds

(2.14) Jwll? < |Bowl?, < 2fwl? .
Hg 1oy (R>;H) (R;H) HOO{O}(]R>, )

Proof. For a proof of the ﬁrst part, we refer to [I12, Lemma 3.5]. It remains to show (2I4]).
Consider an arbitrary w € H

o {0}(R>,H) Then @ = Eyw € H2(R H) and [|w||r2r. 5y =
0|l 2 m; iy = 1 Eow| 2 (r;rry- We next compute with the seminorm defined in ([2.I8]) below:

2 2 * lw(t) —w(t )HH /
Bowly o = Pt o / / t_t,|2 dtdt
> Jlw(t) — w ()% / > () — o (t)||% )
dedt’ + 2 dedt
\t—t’ t——o0 J 1= it =t
/ / ot = w0y gy [ L ool "
|t—t’ 0 t

By comparison with the seminorm part of the norm (Z2.8]), we conclude that

wl? < |Bow|? , < 2fw|?
HOO oy (R>;H) H2(R;H) — H00 0y (R>3H)
and the proof is complete. O

2.7. Further characterizations. The preceding function spaces are intimately connected
1 1

to the fractional derivatives D2 and D2 on F(R-;C). As these derivatives are essential in
the proposed space—tlme formulatlon we discuss their properties in detail. By continuity,

the operators D2 extend to bounded operators from H: (R~;C) to L?(R+;C). The following
1

proposition collects several properties of th.

Proposition 2.9. Let H denote an arbitrary Hilbert space over R. Then there holds
1
(1) A function u € L*(Rs;H) belongs to Hg, {0}(]R>;H) if and only if its F)(Rs; H)-
1

derivative D3 u € L*(Rs; H).

(2) A function u € L*(Rs; H) belongs to H%(R>; H) if and only if its F'(R~; H)-derivative
1
DE € LZ(R>7 H)
(3

) A norm on H

00 {0}(R>; H), equivalent to the norm 23], is given by

1
(2.15) Jul? = lull3 o sary + IDF ulZa e ) -

1
HZ(R>:H)
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A norm on H%(R>; H), equivalent to the norm 27), is given by
(2.16) Julf?

1
3 = Hu|li2(R>;H) + H133““%2(1R>;l’1’) '

>;H)

Moreover, for every u € H? (R; H) there holds

1 1

(2.17) HUHZ%(R.H) = HUH%%R;H) + HDEUH%P(R;H) = HUH%%R;H) + ”D—QI—UH%Q(]R;H) )
L u(s) —u(t)|?

2.18 D2 yl? ~ |ul? ::/ / H—Hdsdt.

218 IRl = Wy = [ w51

For the proof of (2I5)), (2I6]) we refer to [12) Lemmas 3.5, 3.8] and to [I2, Lemmas 3.6,
1

3.9], respectively. The identity (2I7) is immediate from the Fourier characterizations of D2

in [I1) Sect. 3]. For ([2I8]), we refer to [11} (4.13)]. We remark that the expression |- ]H%(R'H)

introduced in (2.I8]) is indeed a seminorm, as it vanishes on all functions v € H independent
of .

In view of Lemma [27 and Proposition 2.9] it is now clear that the bilinear form (Dw,v) is

1 1
bounded on H0207{0}(]R>;H) x H2(Rs; H).

2.8. Coercivity over R. A key ingredient in the theory of Fontes is that the time derivative
is coercive in the sense of Corollary for functions defined on R. We demonstrate this here
by considering the operator, with A as in Subsection 2.2]

Bv=Dv+Av, veF(R;V).

1
By fractional integration by parts (immediate from the Fourier characterizations of D), we

find
1 1
(2.19) (Bw,v) = / <(Diw,DEv)H + a(w,v)) dt, w,ve F(R;V).
R
We also define the operator
H® := cos(ma)l + sin(ma)H, a€R,

where H is the Hilbert transform acting with respect to the t-variable. By using (2.0), we
then obtain the fundamental coercivity inequality: for any w € F(R; V)

(Bw,H “w) = (Dw + Aw, cos(ra)w — sin(ma)Hw)
1 1
= cos(ma)(Dw,w) — sin(ra)(D?w, D? Hw)

+ / (cos(ra)a(w, w) — sin(ra)a(w, Hw)) dt
R
1
> sin(wa)HDin%Q(R;H) + ()\, cos(ma) — Ay Sin(ﬂa)) HwH%Q(R;V) )

1 1 1
because (Dw,w) = 0, |[Hw| 2w;vy < |w|p2m;vy, and D2H = ~D2H z = —D2, see [12].
Fixing the parameter o > 0 sufficiently small, by density of F(R; V) in e (R; HYNL2(R; V),
and (2I7), we find the coercivity inequality (cp. Corollary [Z2]): there exists ¢ > 0 such that

o 1
(Bw,H “w) > C(||w||2%(R;H) +[lwlF2@yy) Yw e H2 (R H)NL*(R; V).
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Hence, by Corollary and Proposition 2] we conclude that the bilinear form in (219
satisfies the inf-sup conditions [2.3)), (24) with X =Y = H 2 (R; H) N L2(R; V).

2.9. Coercivity over R-. In order to prove the inf-sup condition (23] for functions on

1
R, we take an arbitrary w € Hg {O}(R>;H) N L?(R-;V). Then its extension by zero,

w = FEow, belongs to H%(R; H) N L%*(R;V) according to Proposition Similarly, if o €
H3 (R; H)NL%(R; V), then its restriction to R+, v = R~ 9, belongs to H> (R; H)NL2(R; V)
according to Proposition (1). We have the bounds

2.20 <|IE ,
( ) HwHH(é),{o}(R>;H)OL2(R>;V) < OwHH%(R;H)ﬂLQ(R;V)
(221) HR>UHH%(R>;H)0L2(R>;V) < HUHH%(R;H)OB(R;V) :
Moreover,
1
1 1 ¢ LDtt—s_iwsds, t>0,
Oh)0) = D [ (¢ sy by s = D P70
F(i) —o0 0, t<0,
1 1
that is, D? Eyw = EoDFw. Similarly,
1 1

(Déﬁ)(t) = — D/too(s — 1) 25(s)ds = ———

I'(3)
1 1
that is, R~D?9 = D? R~v. Hence,

1 1 1 1 1 1
/(DiEow,DQG)Hdt:/(EODiw,DQf))Hdt:/ (D2w, RuD2 ) dt
R R R~

1 1
_ / (D2w,D? Rod)p dt .
R>

If we denote by Bg(-,-) and Bg. (-,-) bilinear forms as in (ZI9) computed over R and R,
respectively, then we conclude that
(2.22) B]R> (w, R>?~}) = B]R(Eow, ?7) .

The inf-sup condition proved in the previous subsection means that for each w € H 3 (R; H)N
L2(R; V) there is a © € H%(]R; H) N L?(R; V) (namely, & = H-%%) such that

(2.23) B (@, )

; > el . .
= HZ (R;H)NL2(R;V
”UHH%(R;H)OLQ(]R;V) ( INLA®V)

1
For arbitrary w € H {0}(]R>; H)NL*(Rs; V), we let w = Eqw and take © as above and set
v = R0, that is, v = R-H *FEyw. Then, by 220), 221)), (222]), and ([223]), we obtain

B]R> (U],’U) > BR(wa/ﬁ)

ol @ menz@ny — Plad@amansey)
> c||lw

1 > 1 )
”H2 (R;H)NL2(R;V) Hg (o) R>;H)NL2(R>;V)

This is the desired inf-sup condition.
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3. LINEAR PARABOLIC EVOLUTION EQUATIONS

We present a space-time variational formulation of the initial boundary value problem for
the abstract, linear parabolic evolution equation ([LI]) with homogeneous initial condition
(L2). For the operator A € L(V,V*), we assume (2.6)). In what follows, all Hilbert spaces
are taken over the coefficient field R. Using the function spaces developed in Section 2] we
now state the weak form of the linear parabolic initial-value problem (LI]), (L2]): it is based
on the Bochner Spaces

1
(3.1) X = Hoo oy (Rs; H) N L*(Rs; V) ~ (Hgo 10y (R>) @ H) 0 (F*Rs)@V),

Y = H2(Rs; H) N LA(Rs; V) ~ (H2(Rs) @ H) N (L2(Rs) @ V)
Here, ® signifies the Hilbert tensor product space endowed with the (unique) cross norm.
The parabolic operator takes the form B = D + A with the F}-distributional derivative D
introduced in Section 2.5 Lemma 2.7
Besides the spaces X and Y in (B1]), we will also need the space
(3.2) Z = H3(R; H)NLA(R; V) .

We shall make use of the following continuity properties of extensions and restrictions which
follow from Proposition and Proposition

Proposition 3.1. For X, Y, and Z as in B1), B2) there holds:

(1) X C Z with continuous embedding given by the zero extension Ey.
) Y R>( ) with R~ denoting the operator of restriction of elements of L*(R; H) to R~.
) 2%~ (H3(R; H))* + L (R V)" = H 3 (R; H) + L(R; V).
) Y* is isomorphic to {g € Z* : supp(g) C R-}.

5) X is a dense subset of Y, that is, xy —y,

From A € L(V,V*) it follows that B :=D + A € L(X,Y™). More precisely, there holds for
every v € X,

Bu= (D + Ay =Dv+ Av € (H?(Rs; H))* + L*(Rs; V")
~ (H2(Rsi H))* + LR V)* =~ (HZ (Ro; H) N LA(R5: V)" = Y™
For any source term f € Y*, we consider the space-time weak formulation of (L)), (L2)): find
(3.3) ue€ X: Bpya(u,v)=F(v) YveY.
Here, the linear functional F'(-) is defined by
F(v)=(f,v) YveY
with (-, -) denoting the Y* x Y duality pairing. The bilinear form is given by, cp. Lemma 27,
(3.4) Bpia(w,v) = / {(D_%_w,D%v)H + a(w,v)} dt, welX,veY,

R>

(2
(3
(4
(

where X and Y are as in ([B.)). The form BD+ A(+, ) in (3] is continuous by Proposition
1

(1) and (2), stating that for every w € H (R>; H) we have D2w € L*(R~; H) and that

00,{0}

for every v € H2(]R>,H) we have Div € L*(Rs; H).
The unique solvability of ([B3]) was proved in [12], Sect. 4.1] by extension to a problem over
R, where coercivity in the sense of Corollary can be proved, see Subsection As a
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result of the unique solvability of ([B3]) we conclude that the inf-sup conditions (23]), (24])
hold. We formulate this in the following proposition.

Proposition 3.2. Suppose that assumption ([2.6]) holds. Then, for the choice B.1) of spaces,
the bilinear form B.A4) satisfies the continuity condition [21I) and the inf-sup conditions ([2.3)),
@4). In particular, for every f € Y* there exists a unique solution u € X of ([B.3]).

Thm. 4.3, Sect. 4.1] with p = 2. It is shown there that the operator B=D+A € L(X,Y™) is
bijective. Therefore, Proposition 2ZIlimplies the inf-sup conditions (23], (2.4]) for the bilinear

form ([B4]) on the spaces X x Y in (BJ). O

1 1
Proof. We observe that Y o~ Bol’Q(QJF) and that X ~ Bé:OQ (Q+) in the notation of [12]

4. SPARSE TENSOR GALERKIN DISCRETIZATION

Having established the well-posedness and the unique solvability of (), (IZ) we now
turn to Galerkin approximations. Rather than considering time-stepping (as studied, e.g.,
in [23]), we are interested in compressive space-time Galerkin discretizations, as analyzed for
the first time in [20]. We present and analyze adaptive, compressive, space-time schemes
which are based on the weak space-time formulation ([B.3). The adaptive, and space-time
compressive schemes inherit, being instances of the general theory in [ [6], stability from
the well-posedness of the infinite-dimensional problem shown in Proposition and from
the stability of the Riesz bases. As in [20], they are based on tensor product constructions
of Riesz bases of X and Y; however, the variational formulation ([B.3]) obviates the need for
stability of Riesz bases in negative order Sobolev spaces. We present classes of spline wavelets
in the time domain and also in the spatial domain D C R", which we assume to be a polygon
or polyhedron. Rather than focusing on a particular family of wavelets, we specify several
axioms from [20] to be satisfied by the tensorized multiresolution bases in the spatial and
temporal domains in order for our analysis to apply. We assume that V and H are modeled
on Sobolev spaces on the bounded Lipschitz polyhedron D C R™, n > 1. As in [20], our
analysis accommodates two cases: case ([A): n = 2,3 and D is a bounded polyhedron with
plane faces; and the high-dimensional case (B)): n > 1 and D = (0,1)". In D we consider
general elliptic operators A of order 2m, m > 1. The generic example is A = —A, V = H}(D),
and H = L*(D), in which case m = 1. The domain for the parabolic initial-boundary value
problem is the space-time cylinder @)~ := Rs x D.

4.1. Space-time wavelet Galerkin discretization. The Galerkin discretization of the
space-time variational formulation (B3] will be based on two dense, nested families { X*} ey,
{Y*}yen, of subspaces of X and Y as in ([3I)). The inf-sup condition ([Z3)) makes it necessary to
allow X¢ # V! (leading in effect to Petrov-Galerkin discretizations), so that Proposition 2]
is used in full generality. As indicated above, we choose {X*}scn, as tensor-products of
spaces of continuous, piecewise polynomial functions of t € Ry and x € D, in order to
obtain good (space-time compressive) approximation of solutions, whereas Y will be selected
to ensure good stability. Multiresolution bases will be required to ensure: (a) multilevel
preconditioning, i.e., all stiffness matrices have (generalized) condition numbers, which are
bounded independently of ¢; and (b) matrix and (space-time) solution compression.
Thus, we consider the Galerkin discretization: to find, for £ € Ny,

(4.1) ut e Xt Bpiawh,ot) =F@Y) vtev’.
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We assume that
Ny = dim(X*) = dim(Y?) < o0 ,

1
such that X! ¢ X = He oy (R H) N LX(Rs; V) and Y C Y = H2(Ro; H) N LA(R; V) are

closed and Upen X¢ and UpenY? are dense in X, respectively in Y. Proposition 21 implies

Proposition 4.1. Assume that the Galerkin discretization [@I) of B3) is stable, in the
sense that there exists 7 such that, for all ¢ € Ny,

B
(4.2) inf sup 7D+A(w7v)
Oséwexlo;éver HwHXHUHY

Y

5>0.

Then, for every F' € Y* and for every { € N, the Galerkin approximation (A1) admits a
unique solution u* € Xt In particular, the (in general, non-symmetric) stiffness matriz
corresponding to (LI) is nonsingular. Let u € X be the corresponding unique solution to
B3) and C be the constant in (Z1)). Then there holds the quasi-optimality estimate

c .
(4.3) o= u'llx < = inf u=of]x

The proof of Proposition ET] is straightforward: existence and uniqueness of u’ in (&I
and the invertibility of the Ny x N, matrix follows from (4.2]) with Proposition 2l The error
estimate (£3)) follows from the Galerkin orthogonality

Bpya(u—ut,v") =0 Vot e Y,
by noting that the error is u — u’ = (I — R®)(u —v"), where R’ is the Ritz projector that maps
u +— u’. Therefore, ([@3) holds with constant || — RKH[:(X,X) = ||R€||1:(X,X) < C/, [27].

For preconditioning and efficient computation, as well for adaptive space-time Galerkin
discretizations with optimality properties, the concept of Riesz basis takes a central role.

4.2. Riesz bases and bi-infinite matrix vector equations. We assume at hand a Riesz
basis UX = {Q,Z)i( : A € VX} for X. The Riesz basis property amounts to saying that the
synthesis operator
sgx  Lo(VY) = X icr cTUX = Z ey
AeVX
is boundedly invertible. Its adjoint, known as the analysis operator, reads

spx 2 X5 = (V) D g (g8 )aev -
Similarly, let UV = {wg\/ : A € VV} denote a Riesz basis for Y, with synthesis operator sgv
and adjoint s(ij. Ahead, we construct Riesz bases X and WY by tensorization of wavelet
bases in R~ and in D.

By Proposition B2 B = D + A € L£(X,Y") is boundedly invertible with the choice of
spaces in ([B]). We may write ([B.3]) equivalently as operator equation: given f € Y*, find

(4.4) ueX: Bu=/fin Y".
Writing u = syxu, B3] and (£4)) are equivalent to the bi-infinite matrix vector problem
(4.5) Bu=f,

where £ = s,y f = [f(¥} )aevy € 2(VY) , and where the “stiffness” or system matriz

B = syy Bsyx = [(BYp ) () ey pevx € LI(VY), (V)
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is boundedly invertible. We may write

Bpia: X xY = R: (w,v)— (Bw)(v),
and we also use the notations

B =Bp4(UX, 0Y) and f= f(TY).
With the Riesz constants

AX = HS “ || V‘( H \II HX
‘ v o 7 LI
X ( 2( ) ) O#CGZQ( ) H[HZQ(;X) ,
)\X . H — ||— — &
PpX T ’E\I/X E(X,ZQ(C ))

0#£celz(VX) HC||52(VX) ,

and analogous constants Agy and )\}I/Jy, the bounded invertibility of B € £(X,Y™) implies

that the condition number of B is finite, i.e.,
1Bl 2(es (v3).009v)) < I1BlleixyAgx Ay

B! - 1B 2o+, x)
IB™ {20097 ), 02(w %)) < XY
X Y

We next construct Riesz bases of the spaces X and Y in (B.1)).

1
4.3. Riesz bases in H? ,,(Rs) and H %(]R>). We assume at our disposal two countable

00,{0}
collections ©%,0Y ¢ H'(R-) of functions such that

0% = (0 : A e V) € HY ) ()

is a normalized Riesz basis for L*(Rs.) which, when renormalized in H'(Rs.), is a Riesz basis
for H} {0}(R>). Analogously, we assume available ©Y = {#Y : A € VI'} ¢ H'(R.), a Riesz

basis of L?(R-) which, when renormalized in H'(R-), is a Riesz basis for H*(Rx).
From Proposition we obtain the following result.

Proposition 4.2. Assume given two collections ©X and ©Y with the above properties. Then,
for 0 < s <1, the collections [©X] and [©Y],, which are obtained by rescaling ©F and ©Y by
{250 XN e Vi), (eg., [©X]5 = {250 . X € VX)) are Riesz bases of [L2(R>), H] {0}(R>)]3
and of [L*(Rs), HY(Rs)]s, respectively. In particular, for s = 3, [@X]% is a Riesz basis for

1

H2

00,{0} 18 a Riesz basis for H%(]R>),

(R>) and [©Y]

1
2
We denote by Hf\( elements of the collection ©X and, likewise, by 6}\/ elements of ©Y.
Further assumptions on the bases ©X, ©Y are as in [20]: denoting by @) a generic element in
either of the collections ©X and ©Y, we require the 6y to be
(t1) local: that is, sup;er. e, #{A 1 A = ¢, t € supp Oy} < oo and [suppOy| S 2~ 1A,
(t2) piecewise polynomial of order di: here, “piecewise” means that the singular support
consists of a finite number of points whose number is uniformly bounded with respect
to [Al,
(t3) globally continuous: specifically, [|0x[lywx r.) < 2GR for ;e {0,1},
(t4) wvanishing moments: for |A| > 0, the 6 have d; > d; vanishing moments.
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Properties (EI)-(E4]) are assumed to hold for both ©% and ©Y. We remark that property
([3), global continuity, is necessary to ensure H %(R>)—conformity, even though H %(R>) is
not embedded into CO(R-).

Properties () () can be satisfied by collections ©X, ©Y that are continuous, piecewise
polynomial wavelet bases on dyadic refinements of R~, which are of order d; > 1. For k € Ny

we denote by ng) the set of A € V; with refinement level |\| < k. It holds that #ng) ~ 2k,
Setting also ngl) := (), we define the biorthogonal projector Qi(,t = Q)V(““) by
t

Quew= D (0507,

AevimX

where ©'% denotes the dual basis, and analogously for Q};t = Q}v/(k). We have
t

_NX —kdy X —k(dt—l)
11d — Qitll £errar mo),r2Rs)) S 2 ., 1d Qk’t||£(Hdt(R>),HO%O’{O}(R>)) S2 3
1
and analogously for Qky’t with H %(R>) in place of HOQO, () (R-).

Constructions of compactly supported spline wavelet systems © on (—1,1) and on R, as
well as direct constructions (i.e., not based on antisymmetry) of Riesz bases ©% and ©Y on
R satisfying properties (L) (&) with 65 (£)|;=0 = 0 are available, for example, in [4, 8, 9, 26]
and the references there.

4.4. Riesz bases in H and V. With H = L?(D) and the assumption that V coincides with
a closed subspace (supporting homogeneous essential boundary conditions) of the Sobolev
space H™(D) for some m > 0, we assume at our disposal a Riesz basis

Y={or:AeV,}CV.

Specifically, ¥ is a collection of functions that is a normalized Riesz basis for H which, upon
renormalization in V', is a Riesz basis denoted [E]y for V. Riesz bases of divergence-free
functions in the context of Example 2.4] are constructed in [22] 26] and the references there.
For the spatial wavelet basis X, we consider as in [20], two cases:

(A) it is a wavelet basis of order d, > m with isotropic supports constructed from a dyadic
multiresolution analysis in L?(D),
(B) D =(0,1)"™ and ¥ is the tensor product of (possibly different) univariate wavelet bases
¥; as in ([A]) in each of the coordinate spaces.
In case ([A]), for some sufficiently large K depending on m, where 2m is the order of A, and
for some r, € Ng such that m —1 <7r, <d, —2 and czx € Ny, we will assume that the o) are

(s1) local and piecewise smooth: for any ¢ € Ny there exist collections {Dy,, : v € Oy} of

disjoint, uniformly shape regular, open subdomains such that D = Uveo, De,w, Dy y is
the union of some Dy 5, diam(Dy,) ~ 2=¢ supp oy is connected and is the union of

a uniformly bounded number of D),|,, each Dy, has non-empty intersection with the
supports of a uniformly bounded number of o) with |A| = ¢, and, for k € {0, K},

(2 4k
loxllwe () S 2NEH,

(s2) globally C™=: specifically, [[oxllwr (py < 2NEHR) for ke {0,7, + 1},
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(s3) for |\ > 0, have cancellation properties of order d,:
| / wos| £ 27 ME Pl ) for ke 0.4}, w e WED)NV .
D

(s4) In addition to (gIl), we assume that for any ¢ and v € Oy, there exists a sufficiently
smooth transformation of coordinates k, with derivatives bounded uniformly in ¢ and
v, such that for all [A| = ¢, (o 0 K)|,-1(p, ) is a polynomial of some fixed degree.

For case (BI), we assume that each of the ¥; satisfies the above conditions with (D,n) =
((0,1),1). In this case, we assume that the wavelets are piecewise polynomials of order d,,
with those on positive levels being orthogonal to all polynomials of order d, that are in V.

Assumption 4.3. The bi-infinite matrices M = (3,%)g and A = a([X]y, [X]v) for the
spatial operators in (BI)) are s* computable, in the sense that for each N € N, there exist
approximate matrices My and Ay with at most N non-zero entries in each column and such
that, for every 0 < § < s*, the expressions

sup N[[M — My||'/*,  sup N|A — Ax|"/*
NeN NeN

are finite. Here, || - || denotes the spectral norm.

A number of practically viable constructions of Riesz bases 33, which satisfy Assumption [4.3]
for several classes of operators A € L(V,V*) have become available in recent years: for
example, for second order, elliptic divergence form differential operators A, and also for self-
adjoint, integro-differential operators A of fractional order (in which case V' coincides with

the domain of A%); also tensorized ¥ for diffusions on D = (0,1)" have become available,
which satisfy Assumption We refer to [20, Sect. 8.3] for this. For 0 < s < 1, we denote
by [X]s the Riesz basis ¥ rescaled to [H,V]s.

4.5. Riesz bases in X and Y. We assume that we have at our disposal Riesz bases 6% =
{6F - X e Vi), ©Y = {0 : X € V}'} of L?(R>) for which rescaling renders ©F a Riesz

basis of H} (0} (R-) and ©Y a Riesz basis of H'(R-). The bases [@X]% and [@Y]% are then

defined as in Proposition In the spatial domain D, we assume available a Riesz basis
Y = {on : A € V,} of H which, when rescaled to V, becomes a Riesz basis [X]y for V:
Elv ={ox/lloallv : A € Va}.

Proposition 4.4. Given Riesz bases O, ©Y and ¥ of L*(R-) and H, respectively, as above,
the collections ¥~ := ©X @Y , U := @Y @ , are Riesz bases of L*>(R~; H) ~ L>(Rs)® H.
Moreover, the collection

X
o = (1) oy (Do) ) € VX = VE XV,
fieE T3,

1
020,{0} R>)

1
is a Riesz basis for X = H?

00,{0}(R>; H) N L3(R~;V), and the collection

0y (t
\I’Y — (t,x) s )\( )O-ﬂ(x) : ()":U’) e VY — vzf XV
2 Y |12
\/uauuv IO,
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is a Riesz basis for' Y = H%(R>;H) NL2(Rs; V).
The Riesz constants for U~ and Y depend only on the respective Riesz constants for ©X,
[©%]1, ©Y, [0Y]1 and for %, [X]y.
2 2

Proof. The Riesz basis property for W follows from our assumptions on © and X, the result
[15, Prop. 1, Prop. 2] on tensor products of Riesz bases and from Proposition O

4.6. Space-time compressible approximation rates of smooth solutions. Using the
tensor product Riesz bases U of X in Proposition @4 in a Petrov-Galerkin discretization
(1)) of the space-time variational formulation (3.3]) allows for space-time compressive approx-
imations of smooth solutions, provided test function spaces Y are available which are stable,
i.e., which satisfy ([£2]). The approximate solutions thus obtained will be quasi-optimal. Such
stable test spaces can be constructed on the basis of the coercivity property in Subsection 29
However, we shall not develop this here but refer to [I0, Chapt. 5]. Likewise, in the adap-
tive setting, sequences of approximate solutions are produced, which converge at best possible
rates, when compared to best N-term approximations of the solution. We therefore exemplify
the best possible approximation rates in X which can be achieved in terms of the parameters
d; and d.

4.6.1. Best rate in case (&]). For any A C V,, let Qp : L?(D) — span(fy : A € A) denote the
L?(D)-biorthogonal projector associated to ¥ and A. The assumption of 3 being of order d,,

means that, with V;k) being the set of A € V, with refinement level |\| < k € Ny, it holds
that #V;(rk) ~ 2F7 Setting V(m_l) := (), we obtain for the projector Qy , = Qv(k) that

I = Qk,all (e DYV V) S 2 Hdamm) - 1d — Qkell c(rres (pyrw,m S 2775
In case d; < &= with ¢/k € [d;ﬁm +¢&,2 —¢] for (small) € > 0, we have
koot
a- 1;) g(%t = Q108 Que = Q1| o, o ase oy sy S

Here Zl;:o Zgzo(Qp,t — Qp-1.1) ® (Qqz — Qq—1.2) is the L2(D)-biorthogonal projector asso-
ciated to the tensor product basis ¥ = © ® X and the “sparse” tensor-product index set

—1 _
Ap = U Uy (WIP\TP D) s (W vl |

which satisfies #(Ap) < 2%, see [14].

In view of the approximation orders of the bases being applied, and the tensor product
1

structure of X = Hoio (0} (R-; H) N L?(R-; V), by interpolation we obtain the rate

do=my

(4.6) -, 2

with € > 0 arbitrarily small due to the appearance of logarithmic factors. This rate is best
possible for functions which are smooth with respect to  and ¢, and for Riesz bases ¥ with
isotropic supports in D as are admitted in case ((Al).
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4.6.2. Best rate in case (Bl). Throughout the discussion of case (Bl), we assume n > 2 (the
case n = 1 being a particular instance of (A])). For 1 < i < n, let V; be either H™(0,1) or
a closed subspace incorporating essential boundary conditions. Let ¥; = {0 5, : \; € V;} be
a normalized Riesz basis for H; := LZ(O, 1), that renormalized in V; is a Riesz basis for V;.
For any A; C V; we denote by Qy, : L?(0,1) — span(fy : A € V;) the L?(0, 1)-biorthogonal
projectors associated to X; and A;. The assumption of ¥; consisting of continuous, piecewise

Ek) ={A eV, : |\ <k e Ny}, on any

finite subinterval (0,7") C R~ it holds that #VZ(-k) ~ 2k (with the constant implied in =~ being
O(T)). With the convention Vz(fl) =10, and Q_1; =0, we have for Qj; := QV(.I“) that

polynomial functions of order d, means that, with V

2 M=) 1d = Quill e gras (o,1)rwvm S 27

11d — Quill £(rra= 0,1)0v;v7) S

The collection ¥ := ®],%; = {0y = ®_ 0, ), : A € V, := [[I"; Vi} is a normalized Riesz
basis for L?(D). Rescaling this basis in

H;, whenj#1i,

V=N, ®;~‘:1 Wij , where Wy := {Vij when j =i .

it is a Riesz basis for V as well.
Recall that for any A C V,, Qa denotes the L?(D)-biorthogonal projector associated to %

and A. As shown in [I4] [24], there exist “optimized” sparse product sets Vél) C Vél) c--C
V. and @;(,;1) C %1) C --- C V, with #VS) ~ 2k = %’“), such that with Q. == Qv(k) and
with Qk,x = Q@(k), and

H,; when j # i
H%= (D) :=N"_, ®"_, Zi; , where Z;; :={ ./ ’
(D)= Ny @y 2y, where Z {de(o,l)ﬂ‘/i, when j =1,

it holds that

5 2—k(dx—m) , 5 2—kdx .

11d — Qx| £ (3= (D), v) 1d = Qr.ll 30 (D). 11y

Choosing as index set Ap the union of sparse products of the index sets (V,Ep ))ogpgk with
(Véq))ogqg or (@;(L«Q))ogqgg for suitable k and ¢, we obtain L?(R~ x D)-biorthogonal projectors
associated to Xy, C X = closx(©@®¥) that, for u € (H% OH&{O})(R>) ®@H% (D), with a set
of at most N basis functions give rise to an error in Hg,{o}(R>; V') of order 9 kmin(d;—s,dy—m)

for s = 0, 1. Interpolation between L*(R>) and H} {0}(R>) results, by Proposition 2.6 in the

1
norm of the Bochner space X ~ H 3 0 (R>) ® V in the (best possible, for smooth functions)
rate

1
(4.7) min(d; — 2’ dy —m) .

Summarizing ([A.6]) and (7)), for solutions which are smooth functions of space and time, the
rate

(4.8) P {min(dt -5 d”;m) —¢ in case (4],
: max +—

min(d; — 3,d, —m)  in case (B) .

is realized with the index sets Ax, Ag C V.
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5. ADAPTIVITY

The sparse tensor space-time Galerkin discretization (4.I]) based on the a priori choices Xy, ,
X g of sparse tensor product trial spaces and the corresponding testfunction spaces Y5, YA,
lead to quasi-optimal approximations; the quality of the Galerkin approximation thus being
determined by the best approximation property. Alternatively, following [0 3], (sequences
of ) subspaces X* = X Ax C X and Y¢ = YA{ C Y may be selected adaptively, with sequences
{Ak}tr>0 C Vi x V, of sets of “active” basis elements 0y ® 0, € ¥ = © ® ¥ determined so
as to ensure optimality properties of the corresponding Galerkin approximations u AX for the
given set of data. In doing this, a key role is played by the (approximate) computability of
(finite sections of) the bi-infinite matrix B defined by

(5.0) B=((D16Y1,).D20" 1)) o, @ (5.5),; + (0%.6Y) e, @ al[Sly. [Sly) -

1

2 2
We recapitulate basic properties of adaptive wavelet-Galerkin methods, in particular, the
notions of admissibility and computability of the corresponding discretized operators; our
presentation will be synoptic, and we refer readers who are unfamiliar with these to [21]
20]. We will, in particular, review the notions of s-admissibility, s-computability and s-
compressibility of Galerkin matrices of operators. Finally, we obtain an optimality result for
the adaptive wavelet Galerkin discretization of the space-time variational formulation (B.3]):
the sequence of Galerkin solutions produced by the adaptive scheme is optimal in the norm of
X with respect to the best N-term approximation of the solution in space-time tensor product
wavelet bases; thereby offering the first result on optimality for a nonlinear and compressive
algorithm for long-time parabolic evolution problems. This is distinct from [4] 20], where the
constants in the error and complexity estimates depend on the length of the time interval.

5.1. Nonlinear approximation. Nonlinear approximations to u € X are obtained from its
coeflicient vector u by best N-term approximations uy. These vectors, with supports of size
N € Ny, encode the N largest coefficients in modulus of u. For s > 0, the approximation
class A3 (£2(VY)) == {v € £,(V¥) : [V1l.as_ (e2(vx)) < 0o}, where

HV”AgO(Kg(VX)) = ili}g(s X [mm{N € Np: HV — VNH&(VX) < (5}]3

contains all v whose best N-term approximations converge to v with rate s.

Since best N-term approximations involve searching the entire vector v, they cannot be
realized in practice. In addition, for a solution u € X of the PDE (LT]), the vector u to be
approximated is not explicitly available. It is only given implicitly via (I.T]), (I2]) through the
(equivalent) bi-infinite matrix vector problem (AT with respect to some Riesz basis ¥X. Our
aim is to construct a practical method that produces approximations to u which, whenever
u € A3 (fo(VX)) for some s > 0, converge with this rate s in linear computational complexity.

5.2. Adaptive Galerkin methods. Let s > 0 be such that u € A% (f5(VX)). In [6] and the
references there, adaptive wavelet Galerkin methods for solving (LI]) were introduced. These
methods are iterative methods which address the non-elliptic nature of the operator (ILI]) by
iterating, instead of (B.J]), on the associated normal equations, i.e., on the linear system

(5.2) B*Bu = B*f .

Key ingredients in the estimates of their complexity are asymptotic cost bounds for approxi-
mate matrix-vector products in terms of the prescribed tolerance ¢.
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Definition 5.1. (s*-admissibility) B € L({2(VX),lo(VY)) is s*-admissible if there exists a
routine
APPLYg|w,c] — z

which yields, for any € > 0 and any finitely supported w € 5(VX), a finitely supported
z € (5(VY) with |Bw — z||gyvvy < € and for which, for any 5 € (0,s%), there exists an
1/5

A (62(VX))”
arithmetic operations and storage locations used by the call APPLYg[w,e] is bounded by
some absolute multiple of

admissibility constant ap s such that #suppz < ap s~ /%[ w|| and the number of

1
aB,s€ 1/SHWHA/SS (02 (VX)) + #suppw + 1.

One key step in adaptive wavelet methods for (435]) is thus the construction of a valid
routine APPLY g[w, ¢] for the bi-infinite matrices B defined in (5.1]).

In order to approximate u one should be able to approximate f. Throughout what follows,
we therefore assume availability of the following routine.

RHS¢[e] — f. : For given ¢ > 0, it yields a finitely supported f. € lo(VY) with

|f — fellgyvvy <€ and #suppf. Smin{N : |If —fx| < e},

~

with the number of arithmetic operations and storage locations used by the call RHStle]
bounded by some absolute multiple of #suppf. + 1.
The availability of APPLY g and RHS¢ implies the following result.

Proposition 5.2. Let B in ([L3) be s*-admissible. Then for any 5 € (0,s%), we have
HBHE(AS (£2(VX)), A, (62(VY))) < aB _. For Z: — APPLYB[W E] there holds HZSHAgo(fg(VY)) <
GB, HWHAgo(eQ(vX))

For proofs, we refer to [6] or [Tl Prop. 3.3]. Using the definition of A% (¢2(VY)) and the
properties of RHS¢, we have

Corollary 5.3. If, in (X)), B is s*-admissible and u € A ((2(VX)) for s < s*, then for

f. = RHS¢[e], #suppf. < aB7se_1/5Hu||414/f (62(VX)) with the number of arithmetic operations
and storage locations used by the call RHS¢[e] being bounded by some absolute multiple of
1
am,se ol o)) + 1

Remark 5.4. Besides ||f—f.||,,(vv) < €, the complezity bounds in Corollary[5.3 with ap,s > 0
being independent of € are essential for the use of RHS¢ in the adaptive wavelet methods.

The following corollary of Proposition can be used for example for the construction of
valid APPLY and RHS routines in case the adaptive wavelet algorithms are applied to a
preconditioned system.

Corollary 5.5. If B € L({3(VX),l(VY)), C € LUs(VY),l2(V?)) are both s*-admissible,
then so is CB € L({2(VX),45(V?)). A valid routine APPLY ¢g is

(5.3) [w,e] = APPLY c[APPLYg[w,¢/(2(|C|)],£/2] ,

with admissibility constant acs s S a s(||C||Y° + acs) for 5 € (0,s*).

~

For some s* > s, let C € E(EQ(VY) KQ(VZ)) be s*-admissible. Then for
(5.4) RHSc¢le] := APPLY ¢[RHS¢[e/(2]|C||)], e/2] ,
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there holds
S —1/s 1/s
#supp RHSc¢[e] S aB,S(chl/ +ac,s)e Y HuHA/gO(Zg(VX)) )
|Cf — RHSct[e]l gy (v7) < €,

with the number of arithmetic operations and storage locations used by the call RHScrle]
bounded by a multiple of

s —1/s 1/s
aB,s (IC]"* + ac,o)e ™ [[ull s oy oy + 1

Remark 5.6. RHScy allows to approximate Cf in the sense of Remark [5.4)

Consider first the case that B is self-adjoint positive definite, i.e., VX = VY and B = B* >
0. In this case the adaptive wavelet methods from [6] are optimal in the following sense.

Theorem 5.7. ([6,[13]) If in (7-3) B is self-adjoint positive definite and s*-admissible, then
for any € > 0, the adaptive wavelet method from [6] produces an approzimation u. to u with
[u—ucllgyvx) <e. If in {@LE) for some s > 0 it holds u € A3 (02(VX)), then #suppue <

afl/sﬂuHi(ss (0(%)) and if, in addition, s < s*, the number of arithmetic operations and
storage locations required by one call of either of these adaptive wavelet solvers with tolerance

€ s bounded by a multiple of

“1/s 1/s
el +GB,S)||uHA/go(£2(VX)) L

The factor depends only on s when it tends to 0 or co, and on |B| and |B7!|.

The adaptive Galerkin discretization method from [5] for self-adjoint operators B consists
of the application of a damped Richardson iteration to Bu = f, where the required residual
computations are approximated using calls of APPLY g and RHS¢ within tolerances that
decrease linearly with the iteration counter.

With the method from [5], a sequence Z¢g C Zy C -+ C V¥ is produced, together with
corresponding (approximate) Galerkin solutions u; € ¢2(E;). The coefficients of approximate
residuals f — Bu; are used as indicators how to expand =; to =;11 such that it gives rise to
an improved Galerkin approximation.

The method of [5] relies on a recurrent coarsening of the approximation vectors, where small
coefficients are removed to maintain optimal balance between accuracy and support length.
We have s*-admissibility of B once the stiffness matrix with respect to suitable wavelet bases
is close to a computable sparse matrix. The next definition makes this precise.

Definition 5.8. (s*-computability) B € L({o(VX),£2(VY)) is s*-computable if, for each
N €N, there exists a By € L({2(VX), (V) having in each column at most N non-zero
entries whose joint computation takes an absolute multiple of N operations, such that the
computability constants

o _ 1/5
B 1= ;%%NHB BNl wx) ()
are finite for any s € (0,s*).

Theorem 5.9. An s*-computable B is s*-admissible. Moreover, for 5 < s*, aps S cBs
where the constant in this estimate depends only on §] 0, §1 s*, and on |B| — oc.
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This theorem is proven by the construction of a suitable APPLY g routine as was done in
[0l §6.4], see also [21] and the references there.

The non-elliptic nature of B was addressed in [6] by applying the adaptive schemes to the
normal equations (5.2)): From Subsection we deduce that B*B € L(lo(VX), (VX)) is
boundedly invertible, self-adjoint positive definite, with

IB*Bll £, (v),62v%)) < IBlIZ (190097 ) -
||(B*B)71HL(ég(vX),zg(VX)) < ||Bil‘|%(52(vY),gQ(vX)) :

Now let u € A3, (f2(V*)), and assume that for some s* > s, both B and B* are s*-admissible.
By Corollary 5.5 with B* in place of C, a valid RHSg+¢ routine is given by (5.4)), and B*B is
s*-admissible with a valid APPLY g-p routine given by (5.3). A combination of Theorem [5.7]
and Corollary yields the following result.

Theorem 5.10. For any € > 0, the adaptive wavelet methods from [6] applied to the normal
equations ([B.2)) using above APPLY g+ and RHSg«¢ routines produce approrimations u.
to w which satisfy [|u—ue| g, (vxy < e. If for some s >0, u € A3 (02(VX), then #suppue <

_ 1
el oyvx):
and ||B~|| when they tend to infinity.
If s < s*, then the number of arithmetic operations and storage locations required by a call

of either of these adaptive wavelet methods with tolerance € > 0 is bounded by some multiple

of

with constant only dependent on s when it tends to 0 or oo, and on ||B]|

1/ 1/s
1+e 1/ (1 +aB,S(1 +aB*,s))||uHA/go(Zg(VX))

where this multiple only depends on s when it tends to 0 or oo, and on |B|| and |B~!|| when
they tend to infinity.

5.3. s*-computability of B in (G5I)). We apply the general concepts to the space-time
variational formulation (3.3) and the space-time tensor-product wavelet bases ¥* = 0% @ %
and UV = ©Y ® ¥ in Proposition {4l

Due to the discussion in Section .6l it suffices to show s*-admissibility of both, B and B*,
for s* > Smax With Spax as defined in (4.8)). The bi-infinite matrix B defined in (5.]) comprises
of a sum of tensor products of bi-infinite matrices, each factor matrix corresponding to either
the Gram matrices (©>,05)2r. ) or (X, %) 2(p) or of the “stiffness” matrices a([X]v, [X]v)
with respect to the Riesz bases ©~ and X (cp. Section [A.1]).

To apply the general theory of adaptive wavelet discretizations of [5] [6l 21], the key step is
the verification of s*-compressibility and of s*-computability of the matrix B in (5.1J).

We verify s*-computability of B in (5.1) with the following result [20, Prop. 8.1].

Proposition 5.11. Let for some s* > 0, D, E be s*-computable. Then

(a) D ®E is s*-computable with computability constant satisfying, for 0 < § < § < s*,
cbeEs S (cpscr3)®/® and

(b) for any e € (0,5*), D®E is (s* — ¢)-computable, with computability constant cpgE,s
satisfying, for 0 <5 < s* —e < § < s*, cpgE,s S max(cp s, 1) max(cg s, 1).

~

The constants implicit by < in the bounds on the computability constants in (@) and (D)
depend only on 5, § — oo and on § —§ | 0.
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We recall that we work under Assumption [4.3] so that the bi-infinite mass matrix M =
(¥, %) 2(py and the bi-infinite stiffness matrix A = a([X]y, [X]y) are both s* computable and
compressible under our assumptions (sI)—(&4)).

5.4. s*-computability of the fractional time derivatives. Proposition[EITland Assump-
tion reduce the analysis of s*-compressibility of B in (B.]) to the verification of the s*-
compressibility of the temporal “stiffness” and “mass” matrices

1 1

2 10X 21Y X Y
(5.5) D::<D3r[@ ]%,DE[@ ]%>L2 G:z(@ ,0 >L2

(R>)? R>)

i.e., on the compressibility of the “stiffness” matrix D and of the “mass”’-matrix G of the
fractional time derivative in (B.4)).

We discuss s*-computability of ]13 and G in the sense of Definition We assume at
our disposal Riesz bases ©X of Hoﬁo,{o}(R>) and ©Y of H%(R>) as in Section and, in
particular, that properties ([{Il)—(4) of that section hold for elements of either of these bases.

The s*-computability of G follows as in [20] Sect. 8.2] from the properties ({I))—(&)) of 6%
and ©Y. Tt remains to address s*-computability of D in (5.H]).

To this end, we observe that by a density argument, Lemma 2.7 alnd, in particular, the

fractional integration by parts identity (ZI3) remain valid for w € H2 ., (Rs) and for v €

00,{0}
1
H? (R-). Since ©F is a Riesz basis of HZ, (0 (R-) and ©Y of H? (R-), we obtain from (ZI3])
that

1 1
D = (D:[0"]1,D2[0"]1) 55 ) = (DIO¥]1,0") oy -

Now using properties () (4] of the temporal wavelet bases ©% and ©Y, we establish s*-
computability of D as in [20, Sect. 8.2].

5.5. Optimality. The preceding considerations can be combined into

Theorem 5.12. Consider the parabolic problem (1)), [L2]) in the weak form B3) with
spatial bilinear form as in Section [Z22. Consider its representation Bu = f using temporal
and spatial wavelet bases © and X as above.

Then for any € > 0, the adaptive wavelet methods from [6] applied to the normal equations
(E2) produce an approximation u. with

lu—ul[@®E]|x = u-ulf <e.

If for some s > 0, u € A (l2(VX)), then suppu. < 8*1/5\\u]]i1/85 (t2(V X))’ with the implied
constant only dependent on s when it tends to 0 or oo.

If, for arbitrary s* > 0, it holds s < s*, then the number of operations and storage locations
required by one call of the space-time adaptive algorithm with tolerance € > 0 is bounded by
some absolute multiple of

—1/s, 2 1/s
e %n ”uHAgo(zg(VX)) +1.
Here, the implied constant depends only on the Riesz and the admissibility constants of the
spatial wavelet bases 3.
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