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Abstract

The near-field to far-field mapping is a tool used to describe radiation at far distances
from scatterers. We consider the geometric setting of a bounded scatterer mounted on a
substrate, illuminated by a monochromatic plane wave. For such an structure, the far-field
functional consists of different asymptotic terms including surface waves. We investigate
all contributions closely and show that the only important term at far distances is the
spherical wave. A closed form representation is given based on the Green’s function of a
dipole over a half space. The far-field functional is stated in terms of both volume and
boundary integrals. When finite element methods are used to solve Maxwell’s equations
approximately, the volume based expression is more accurate than the boundary integral.
We confirmed the validity of our results by performing several numerical experiments and
compared them with other numerical and experimental results.

1 Introduction

In many electromagnetic scattering problems, the key quantity of concern is the radiation pat-
tern at far distances. For example, in antenna measurements the receiver is usually located
far away from the sender. Numerical methods such as Finite Elements or Finite Differences
provide the solution to Maxwell’s equations within some finite region of space, i.e. the field
inside the computational domain.
Field values at far distances can be obtained using a post-processing procedure called near-field
to far-field mapping. The mapping is a linear functional of the near-field solution. Formulas for
far-field calculations for structures in free space is well known. However, for structures located
above a substrate, the calculations are more challenging. There have been many investigations
about dipole radiation above a half space [16, 4, 6, 11, 10]. Sommerfeld obtained the first
formula for a dipole oriented vertically above a planar and lossy plane [20, 19]. The asymptotic
evaluation for source and observation points located near the planar surface revealed the contri-
bution of two terms: spherical waves and surface waves [22]. Sommerfeld claimed that surface
waves can be used for long distance radio wave transmission due to their slower radial decay
along the Earth’s surface. However, considering other contributions to the far-field formula
shows that surface waves decay exponentially above lossy interfaces. Sommerfeld’s results were
the basis of many investigations [9, 21, 18].
In this paper we present an asymptotic analysis for outgoing electromagnetic waves and derive
a closed form for the field of a dipole over a substrate at far distances. We generalize the dipole
results to derive a final form for the near-field to far-field mapping using the Huygens principle.
Far-field functionals are stated in terms of a boundary integral over a surface surrounding the
scatterer. Since boundary integrals are not well-defined on the natural variational space, we re-
formulate the far-field mapping in terms of a volume integral. Volume integrals are continuous
on the energy space of the variational formulation. As a matter of fact, for Galerkin solutions,
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the formulation with the volume-based expression is more appropriate than boundary-integrals
for calculating the far-field functional.
To investigate the validity of our results, we analyze the far-field pattern of different structures
and compare them with other numerical and experimental results.

2 Basics

2.1 Potentials

Frequency domain Maxwell’s equations for a piecewise constant, linear, homogeneous, isotropic
material is

∇× E(r) = iωµH(r)

∇×H(r) = −iωǫE(r) + Ji(r)

∇ · µ H(r) = 0

∇ · ǫ E(r) = − i

ω
∇ · Ji(r)

(2.1)

where E(r) and H(r) represent time harmonic electric and magnetic fields at position r ∈ R
3

and angular frequency ω. ǫ ∈ C and µ ∈ C are permittivity and permeability of the material.
ji(r, t) is the impressed current density. It should be noted that the time dependency e−iωt is
considered.
(2.1) consist of two unknown vector fields. In this section we reduce the number of unknowns to
one vector and one scalar field by introducing the potentials. The derivation of vector potential
is based on the fact that B(r) is divergence free. A divergence free field can be expressed as
the rotation of a vector field A(r)

H(r) =
1

µ
∇×A(r) (2.2)

It can also be shown that:
E(r) = iωA(r)−∇φe(r) (2.3)

where φe(r) : R3 → C is a scalar function. A(r) and φe(r) are known as vector and scalar
potentials of an electric source.
To define unique A(r) and φe(r), we need to put constraints on ∇ ·A(r). We can use Lorenz
gauge relationship([16], [4]):

∇ ·A(r) = iωµǫφe(r) (2.4)

Hence, the electric field can be rewritten as:

E(r) = iω

(

A(r) +
1

k2
∇ (∇ ·A(r))

)

(2.5)

where, k = ω
√
µǫ is the wavenumber.

By coupling equations (2.2) and (2.3), using (2.4), one can derive the vector Helmholtz equation
for A(r)

∆A(r) + k2A(r) = −µJi(r) (2.6)

In Cartesian coordinates, there are three scalar Helmholtz equations embedded in (2.6). One
standard technique to solve a second order inhomogeneous partial differential equation such as
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scalar Helmholtz equation, is to consider that the source is a point. The solution to the point
source is known as Green’s function. In the next section, we will study the Green’s function
for scalar Helmholtz equation.

2.2 Green’s functions

The Green’s function for the scalar Helmholtz equation is obtained by considering a point
source at r′ = (x′, y′, z′)

∆g0(r, r
′) + k2 g0(r, r

′) = δ(r− r′). (2.7)

Green’s function has to satisfy radiation conditions.

Proposition 2.1. (Sommerfeld radiation condition)The solution of (2.7) in unbounded free
space must fulfill the radiation condition at infinity

lim
r→∞

r

(

∂g0
∂r

− ikg0

)

= 0. (2.8)

where r = |r|.

As soon as g0(r, r
′) is known, the vector potential can automatically be obtained by an

integration over volume V , where the source term exists

A(r) =
∫

V
µJi(r

′) g0(r, r
′) dr′ (2.9)

The solution of the scalar Green’s function can also be extended to the electromagnetic field
distribution of an electric dipole oriented in direction ℓ̂ (|ℓ̂| = 1). By introducing the vector
Green’s function G0(r, r

′, ℓ̂) = g0(r, r
′)ℓ̂ and using (2.2) and (2.5), we have

GE(r, r′, ℓ̂) = iωµ
(

G0(r, r
′, ℓ̂) + 1

k2
∇(∇ ·G0(r, r

′, ℓ̂))
)

GH(r, r′, ℓ̂) = −∇×G0(r, r
′, ℓ̂)

(2.10)

where GE(r, r′, ℓ̂) and GH(r, r′, ℓ̂) are the electric and magnetic fields observed at r = (x, y, z)
from an electric dipole located at r′ = (x′, y′, z′).

Our main concern in this report is the far-field calculation of structures located either in
free space or over a semi-infinite dielectric domain. When computing far-field in Chapter 3,
it is shown that it is essential to know GE(r, r′, ℓ̂) for the specific geometry . The rest of this
chapter is dedicated to the derivation of Green’s functions in free space and half space.

2.2.1 Dipole in free space

Theorem 2.1. The fundamental solution of (2.7) in free space which has a physical interpre-
tation is [4, Sec. 1.3.4],

g0(r, r
′) =

exp(±ik|r− r′|)
4π|r− r′| . (2.11)

Obviously, g0(r, r
′) satisfies the radiation condition (2.8).

The spatial Fourier transformation of (2.11) can be obtained by the Weyl identity [21]

g0(r, r
′) =

i

8π2

∫ +∞

−∞

∫ +∞

−∞

exp(i(kx(x− x′) + ky(y − y′) + kz(kx, ky) |z − z′|))
kz(kx, ky)

dkx dky
(2.12)
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where k = (kx, ky, kz) is the wave vector. (2.12) is obtained using the method of separation of

variables, and |k| = k, so kz(kx, ky) =
√

k2 − (k2x + k2y). The square root makes kz a double

valued number. The Standard square root branch cut along negative real axis is used to treat
the double valued numbers (see Section 2.3).
In Cartesian coordinates, plane waves eik·r are the solution of the homogeneous Helmholtz
equation. This solution is also obtained using the separation of variables. As a matter of fact,
(2.12) is usually called the plane-wave expansion of function g0(r, r

′).

To reduce the number of integrals in (2.12), one can use cylindrical waves instead of plane
waves. The cylindrical wave expansion of (2.11) is called the Sommerfeld identity [20, Page
242]

g0(r, r
′) =

i

4π

∫ +∞

0

kρJ0(kρρ̄)
exp(ikz(kρ) |z − z′|)

kz(kρ)
dkρ. (2.13)

where ρ̄ = |(x, y)− (x′, y′)|, kz(kρ) =
√

k2 − k2ρ, and J0(kρρ̄) is the zero order Bessel function
of the first kind. Similar to (2.12), kz(kρ) is double valued and is the source of branch points
at kρ = ±k (see Section 2.3).
For subsequent applications, it is more useful to have the integration range from −∞ to +∞
in (2.13). For this end, we put

J0(kρρ̄) =
1

2

(

H1
0 (kρρ̄) +H2

0 (kρρ̄)
)

(2.14)

Using the change of variables k̂ρ = −kρ and keeping in mind that H2
0 (−kρρ̄) = −H1

0 (kρρ̄), we
have

∫ +∞

0

kρH
2
0 (kρρ̄)

exp(ikz(kρ) |z − z′|)
kz(kρ)

dkρ = (2.15)

∫ 0

−∞
k̂ρH

1
0 (k̂ρρ̄)

exp(ikz(k̂ρ) |z − z′|)
kz(k̂ρ)

dk̂ρ

Remark 2.1. If the range of kρ in (2.13) is to be extended to kρ = −∞, one must take into
account that a branch point singularity at kρ = 0 arises from the Bessel function. To preserve
the integrand single valued in the complex kρ plane, we introduce a branch cut along the negative
real kρ axis (see Figure 1).

Finally, we obtain

g0(r, r
′) =

i

8π

∫

P̄ρ

k̂ρH
1
0 (k̂ρρ̄)

exp(ikz(k̂ρ) |z − z′|)
kz(k̂ρ)

dk̂ρ. (2.16)

where H1
0 (k̂ρρ̄) and H

2
0 (k̂ρρ̄) are zero order Hankel functions of the first and the second kind,

respectively. P̄ρ is the integration contour in complex kρ plane as depicted in Figure 1.
The integrals in (2.12) and (2.16) are improper. They will converge only if exp(ikz |z − z′|)

converges to zero as the integration parameters approach +∞ or −∞. To fulfill this condition,
it is necessary to impose Im kz > 0. In Section 2.3, it is thoroughly discussed how the selection
of branch cuts helps us to keep the imaginary part of kz always positive along the integration
contour.

The branch cuts in (2.16) can be removed by introducing the complex angle w:

kρ = k sinw (2.17)
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Figure 1: Integration contour in the complex kρ plane.

In Section 2.3 it is shown that kz(kρ) is no more double valued in complex w plane

kz(w) = +k cosw (2.18)

(2.16) in terms of w is

g0(r, r
′) =

i k

8π

∫

P̄w

sinw H1
0 (kρ̄ sinw)e

(ikz(w)|z−z′|)dw (2.19)

where P̄w is the transformed integration path in the w plane.

For real values of k we obtain from (2.17)

kρ = k(sin(Rew) cosh(Imw) + i cos(Rew) sinh(Imw)) (2.20)

Thus, P̄w lies on
Im kρ = k cos(Rew) sinh(Imw) = 0 (2.21)

This implies that



















If Imw = 0 then Im kρ = 0 & − k ≤ Re kρ ≤ k

If Rew =
π

2
then Im kρ = 0 & Re kρ ≥ k

If Rew =
−π
2

then Im kρ = 0 & Re kρ ≤ −k
(2.22)

Similar to (2.12) and (2.16), the integral in (2.19) is improper. Consequently, the direction of
P̄w must be chosen in such a way that Im kz(w) > 0. Using (2.18), one can simply show that
Im kz = −k sin(Rew) sinh(Imw) for real values of k. In order to keep the imaginary part of kz
always positive along P̄w we must have the followings

• If Rew = π
2

the contour folds down towards Imw < 0.

• If Rew = −π
2

the contour folds up towards Imw > 0

The final form of P̄w is shown in Figure 2.
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Figure 2: Integration contour in the complex w plane.

2.2.2 Dipole over a semi-infinite surface

Figure 3 shows a dipole located over a semi-infinite domain (substrate). Ω1 := {r ∈ R
3 : z > 0}

and Ω2 := {r ∈ R
3 : z < 0}. (ǫ1, µ1) and (ǫ2, µ2) are the material properties of Ω1 and Ω2,

respectively.

Assumption 1. In this report, we consider non magnetic (µα = permeability of free space µ0),
loss-free (Im ǫα = 0) or lossy (Im ǫα > 0) dielectrics. For the sake of simplicity we assume
Re ǫα ≥ 0. α = 1, 2 specifies different coefficients for different subdomains Ωα

Wavenumbers in Ω1 and Ω2 are k1 = n1k0 and k2 = n2k0, respectively. Note that k0 =

ω
√
ǫ0µ0 is the wavenumber in free space, and n1 =

√

ǫ1
ǫ0

and n2 =
√

ǫ2
ǫ0

are refraction indices.

Figure 3: Dipole located over a semi-infinite dielectric domain.

The best way to find the solution of (2.7) in the presence of a substrate is to start with the
solution in free space. As already mentioned, the integrand in (2.12) is a linear superposition of
plane waves. Plane waves in the presence of a semi-infinite dielectric domain can be decomposed
into transverse electric (TE) and transverse magnetic (TM) modes [4, Ch.2]. The electric field
of a TE mode is perpendicular to the plane of incidence, whereas, the magnetic field of a TM
mode is perpendicular to the plane of incidence. The plane of incidence is a plane spanned by
vectors k and n̂, where n̂ is the unit vector normal to the substrate. In the configuration shown
in Figure 3 we have n̂ = ẑ.
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A TM wave incidence on a half space is depicted in Figure 4. The z component of the incident
electric field is Ei

z = E0 e
(i(kxx+kyy−kz1z)). k1 = (kx, ky, kz1) and k2 = (kx, ky, kz2) both belong

to R
3 in a way that |k1| = k1 and |k2| = k2.

Figure 4: TM wave incidence on a semi-infinite dielectric half space. (Ei(r),Hi(r)),
(Er(r),Hr(r)), and (Et(r),Ht(r)) are the incident, reflected, and transmitted fields, respec-
tively.

Proposition 2.2. ([16, Sec. 2.8.1]) Consider an incident TM wave over a semi-infinite half
space shown in Figure 3 with Ei

z = E0 e
(i(kxx+kyy−kz1z)). Then the longitudinal component of

the total field is

TM :











































Ez(r) =E0 e
(i(kxx+kyy−kz1z))

−RTM(kx, ky) E0 e
(i(kxx+kyy+kz1z))

in Ω1

Ez(r) = T TM(kx, ky) E0 e
(i(kxx+kyy−kz2z)) in Ω2

Hz(r) = 0 in Ω1 & Ω2

(2.23)

where RTM(kx, ky) and T
TM(kx, ky) are reflection and transmission coefficients of TM modes,

respectively

RTM(kx, ky) =
ǫ1kz2−ǫ2kz1
ǫ1kz2+ǫ2kz1

T TM(kx, ky) = 1 +RTM(kx, ky)

(2.24)

Proposition 2.3. ([16, Sec. 2.8.1], Consider an incident TE wave over a semi-infinite half
space shown in Figure 3 with H i

z = H0 e
(i(kxx+kyy−kz1z)). Then the longitudinal component of

the total field is

TE :











































Ez(r) = 0 in Ω1 & Ω2

Hz(r) =H0 e
(i(kxx+kyy−kz1z))

+RTE(kx, ky) H0 e
(i(kxx+kyy+kz1z))

in Ω1

Hz(r) = T TE(kx, ky) H0 e
(i(kxx−kyy−kz2z)) in Ω2

(2.25)
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with reflection and transmission coefficients RTE and T TE:

RTE(kx, ky) =
kz1−kz2
kz1+kz2

T TE(kx, ky) = 1 +RTE(kx, ky)

(2.26)

Note that kz1(kx, ky) =
√

k21 − k2x − k2y and kz2(kx, ky) =
√

k22 − k2x − k2y both are double

valued functions and must be treated using branch cuts (see Section 2.3).

In order to expand the field of a dipole oriented in direction ℓ̂ above a substrate using plane
waves, one must choose the correct mode of plane waves. Based on what discussed already
the longitudinal component of the electric field of a dipole GE(r, r′, ℓ̂) · ẑ must be expanded
using TM waves, and similarly the longitudinal component of the magnetic field of a dipole
GH(r, r′, ℓ̂) · ẑ must be expanded in terms of TE waves.

Using (2.12), one can derive the plane wave expansion of the scalar Green’s function in the
presence of a planar dielectric half space in terms of either TM or TE mode expansion

g0(r, r
′) =























































i

8π

∫ +∞

−∞

∫ +∞

−∞

e(i(kx(x−x
′)+ky(y−y′)+kz1 (kx,ky)z))

kz1(kx, ky)
[

e(−ikz1 (kx,ky)z
′) + f(kx, ky)e

(ikz1 (kx,ky)z
′)
]

dkx dky

r ∈ Ω1

i

8π

∫ +∞

−∞

∫ +∞

−∞

e(i(kx(x−x
′)+ky(y−y′)−kz2 (kx,ky)z+kz1 (kx,ky)z′))

kz1(kx, ky)

(1 + f(kx, ky)) dkx dky

r ∈ Ω2

(2.27)

where f(kx, ky) = −RTM(kx, ky) for TM modes, and f(kx, ky) = RTE(kx, ky) for TE modes.

Assumption 2. Green’s functions derived in this report are for r′ ∈ Ω1. A similar procedure
can be used to calculate g0(r, r

′) for r′ ∈ Ω2

In terms of cylindrical waves (2.27) is

g0(r, r
′) =











































i

8π

∫

P̄ρ

kρ H
1
0 (kρρ̄)

kz1(kρ)
e(ikz1 (kρ)z)

[

e(−ikz1 (kρ)z
′) + f(kρ)e

(ikz1 (kρ)z
′)
]

dkρ

r ∈ Ω1

i

8π

∫

P̄ρ

kρ H
1
0 (kρρ̄)

kz1(kρ)
e(i(kz1 (kρ)z

′−kz2 (kρ)z))(1 + f(kρ)) dkρ r ∈ Ω2

. (2.28)

where ρ̄ = |(x, y)− (x′, y′)|, kz1(kρ) =
√

k21 − k2ρ and kz2(kρ) =
√

k22 − k2ρ. Double valued func-

tions kz1(kρ) and kz2(kρ) are the sources of branch cuts at kρ = ±k1 and kρ = ±k2 in both
half spaces (see Section 2.3). f(kρ) is derived in a similar way to f(kx, ky) just by considering
kz1(kρ) and kz2(kρ) instead of kz1(kx, ky) and kz2(kx, ky), respectively.
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(a) (b)

Figure 5: Integration path in the complex kρ plane for a (a) loss-less (b) lossy material.

In terms of the complex angle w, (2.28) is

g0(r, r
′) =



















































i k1
8π

∫

P̄w

sinw H1
0 (k1ρ̄ sinw)e

(ikz1 (w) z)

[

e(−ikz1 (w) z
′) + f(w)e(ikz1 (w) z

′)
]

dw

r ∈ Ω1

i k2
8π

∫

P̄w

sinw H1
0 (k2ρ̄ sinw)e

(−ikz2 (w) z)

e(ikz1 (w)z
′)(1 + f(w)) dw

r ∈ Ω2

(2.29)

where






kz1(w) = +k1 cosw

kz2(w) = k1

√

ǫ2
ǫ1

− sin2w
in Ω1 (2.30)







kz1(w) = k2

√

ǫ1
ǫ2

− sin2w

kz2(w) = −k2 cosw
in Ω2. (2.31)

kz2(w) and kz1(w) are the sources of branch cuts in Ω1 and Ω2, respectively (see Section 2.3).
f(w) is derived in a similar way to f(kx, ky) just by considering kz1(w) and kz2(w) instead of
kz1(kx, ky) and kz2(kx, ky), respectively.

2.3 Branch cuts

The integrand in (2.28) contains branch point singularities at kρ = ±k1 and kρ = ±k2 which

arise from kz1 =
√

k21 − k2ρ and kz2 =
√

k22 − k2ρ, respectively [1]. In loss-less materials, the

branch points lie on the integration path. Then the integration path must be displaced around
singularities (see Figure 5a). By introducing a slight loss in materials, k1 and k2 have small
positive imaginary parts, thus the branch points are no more on the real axis. Typical Integra-
tion paths in complex kρ plane for loss-less and lossy materials are shown in Figure 5a and 5b,
respectively.

Branch cuts originating from double valued functions in a complex plane, e.g. kz1 and kz2 ,
provide a mean to pass from one Riemann sheet to the other [1]. Signs of Im kz1 , and Im kz2 in
different regions of kρ plane depend on Riemann sheet junctions or branch cuts. To ensure the
boundedness of integrands in (2.28) when kz1 |z− z′| → ∞ or kz2 |z− z′| → ∞, it is necessary to
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impose conditions Im kz1 > 0 and Im kz2 > 0. As a matter of fact, the boundedness of radiation
integrals is closely related to branch cuts.
The selection of branch cuts is arbitrary, but cuts along contours Im kzα = 0 or Re kzα = 0,
α = 1, 2 are very useful. If one chooses branch cuts along Im kzα = 0, then Im kzα > 0 in the
whole top Riemann sheet, and the sign of Re kzα changes when kρ crosses the cuts. In [6, Sec.
5.3b], it has been thoroughly argued that Im kzα = 0 and Re kzα = 0 are along the hyperbola
Re kρ Im kρ = Re kα Im kα for |Re kρ| < Re kα and |Re kρ| > Re kα, respectively (see Figure 6).

(a) (b)

Figure 6: Different choices of branch cuts in the complex kρ plane. (a) Branch cuts are along
Im kz = 0. So, Im kz > 0 on the entire top Riemann sheet, Re kz > 0 on shaded regions,
Re kz < 0 on unshaded regions. (b) Branch cuts are along Re kz = 0. So, Im kz > 0 on the
entire top Riemann sheet, Im kz > 0 on shaded regions, Im kz < 0 on unshaded regions.

The number of branch cuts can be reduced to one, if we use the change of variables (2.17).
To discuss this more clearly, we focus on the first integration in (2.29). A similar procedure
can be applied for the radiation integral in Ω2.
The transformation (2.17) is 2π periodic with respect to Rew. Thus, the entire kρ plane can be
mapped into various adjacent sections of width 2π in the w plane. For the sake of simplicity,
we only consider the interval −π < Rew < π.
For a loss-less material, (2.30) boils down to

Im kz1 = −k1 sin(Rew) sinh(Imw) (2.32)

It is easy to see that Im kz1 > 0 for

{

− π < Rew < 0 and Imw > 0

0 < Rew < π and Imw < 0

As a matter of fact, (2.17) maps the two-sheeted kρ plane (with respect to kz1) into adjacent

regions in the w plane, that is kz1 =
√

k21 − k2ρ = 0 is no more double valued and no branch cut

arises from it. However, kz2 = k1
√

η − sin2w is still a source of a branch cut which originates
from the branch point sinwb =

√
η. Note that η = ǫ2

ǫ1
.

3 Far-field calculations

Theorem 3.1. ([4, Sec. 1.4],Huygens’ principle) Let D be a finite domain which contains
all the electromagnetic sources. Furthermore, consider a closed surface Γ which surrounds D
(see Figure 7). Then the scattered field distribution on Γ can be extended to the scattered field

10



outside the surface Γ

E(r) · ℓ̂ = 1

iωµ

∫

Γ

(∇r
′ × E(r′)) ·

(

GE(r, r′, ℓ̂)× n̂(r′)
)

+ (3.1)

(

∇r ×GE(r, r′, ℓ̂)
)

· (E(r′)× n̂(r′)) ds(r′)

where ∇r and ∇r
′

are derivatives with respect to parameter r and r′, respectively, and n̂ is
the outward-pointing normal vector on Γ. GE(r, r′, ℓ̂) is the electric field of an electric dipole,
oriented in direction ℓ̂ and located at r′, observed at point r.

(3.1) is also known as representation formula [15, Ch. 3, Thm. 3.1.1].
In the case of a scattering problem D is the scatterer which contains all sources of the scattered
field.

Figure 7: The scatterer D is shown as a shaded region bounded by Γs. The Integral in (3.1) is
calculated over the contour Γ

Equation (3.1) can be simplified when the observation point is located far away from the
scatterer, i.e. kr → ∞. Since (3.1) relies basically on the electric field distribution of an
electric dipole GE(r, r′, ℓ̂), the primary emphasis is on investigating the far-field behavior of a
single dipole in free space and in semi-infinite half space. The Green’s function for free space is
implicitly embedded inside the formulation for the half space. Henceforth, we mainly discuss
the half-space problem. Among three forms of the scalar Green’s function represented in (2.27),
(2.28), and (2.29), we use (2.29), since it has a reduced number of branch cuts.
To study the behavior of (2.29) at far distances, one needs to evaluate it asymptotically. To put
(2.29) in a proper form for the asymptotic analysis, we do one more step of simplification and
employ the large-argument approximation of Hankel function for far-field observation points

H1
n(z) =

√

2

πz

(

ei(z−
nπ
2
−π

4
) +O

(

1

z

))

for |z| ≫ n | arg z| < π. (3.2)

One can also show that

ρ̄ ∼ ρ− ρ′ cos(φ− φ′) as ρ→ ∞ (3.3)

where ρ = |(x, y)|, ρ′ = |(x, y)|, (x, y) = ρ(cosφ, sinφ), and (x′, y′) = ρ′(cosφ′, sinφ′).

Remark 3.1. If the function f(x) is asymptotically equivalent to g(x) under the limit x→ x0,

that is lim
x→x0

f(x)
g(x)

= 1, we write [14, Pgae 4]

f(x) ∼ g(x) as x→ x0. (3.4)

11



Using (3.4) and (3.3), we rewrite (2.29) as

g0(r, r
′) ∼ C(r, r′)

∫

P̄w

V(w, r, r′)erψ(w,r,r′) dw as r → ∞ (3.5)

where C(r, r′) = ei
π
4

8π

√

2kα
πr sin θ

(α = 1, 2 specifies different coefficients for different subdomains

Ωα), and

ψ(w, r, r′) =











ik1 cos(w − θ) r ∈ Ω1

ik2 cos(w − θ) r ∈ Ω2

(3.6)

V(w, r, r′) =







√
sinw e−ik1r

′ sinw sin θ′ cos(φ−φ′)
[

e(−ik1 coswz
′) + f(w)e(ik1 coswz

′)
]

r ∈ Ω1

√
sinw e−ik2r

′ sinw sin θ′ cos(φ−φ′)e(ikz1 (w)z
′)(1 + f(w)) r ∈ Ω2

. (3.7)

Note that (r, θ, φ) and (r′, θ′, φ′) are the spherical coordinates of r and r′, respectively, where
r = |r|, θ is the longitudinal angle with respect to z and φ is the azimuthal angle in the x-y
plane.
(3.5) is in a suitable form for asymptotic evaluations. In general, the asymptotic analysis of
radiation integrals in complex plane consists of examining following additive contributions:

• Saddle point contribution
The stationary phase method is used to derive it [14, Ch. 4].

• Critical point contributions
There are three types of critical points:

– branch point singularity

– pole singularity

– integration end points.

The far-field asymptotics of each contribution can be determined using the method of
steepest descent [14, Ch. 3] and [3, Ch. 7].

3.1 Saddle point contribution

To keep the procedure clear, we only discuss (3.5) in Ω1. Same calculations can be used for the
integration in Ω2.
The integral in Ω1 has only one first order saddle point at ws = θ

ψ′(ws) = 0 and ψ′′(ws) 6= 0 (3.8)

where ψ′ and ψ′′ mean the first and the second derivatives of ψ with respect to w, respectively.
The steepest-descent path (P̄s) through the saddle point lies on Imψ(w) = const, that is
Imψ(w) = Imψ(ws). If the medium is loss-less, then the Steepest Descent Path (SDP) is:

Imψ(w) = k1 cos(Rew − θ) cosh(Imw) = k1 (3.9)

12



The directions of the SDP at the saddle point are −π
4
and 3π

4
[3, Sec. 7.2, table 7.1]. For this

problem, integration contours must be along a direction which conserves the boundedness of
the integrands when r → ∞. The phase term in (3.5) is

rψ(w) = rk1 [sin(Rew − θ) sinh(Imw) + i cos(Rew − θ) cosh(Imw)] . (3.10)

In order to have bounded integrands for observation points located away from the scatterer we
must have

sin(Rew − θ) sinh(Imw) < 0 (3.11)

which means






0 < Rew − θ <
π

2
→ Imw < 0

− π

2
< Rew − θ < 0 → Imw > 0

(3.12)

Consequently, we choose P̄s along −π
4
and keep P̄w and P̄s in those regions of w plane that

(3.11) is fulfilled (see Figure 8).

Figure 8: Integration contours in the complex w plane. P̄s is the steepest descent path (SDP).

Theorem 3.2. ([14, Ch. 3, Page 50]) if V(w, r, r′) does not have any singularity at w = ws,
then the asymptotic form of the radiation integral (3.5) along SDP is

gs(r, r
′) = C(r, r′)

∫

P̄s

V(w, r, r′)erψ(w,r,r′) dw

∼ C(r, r′)

√

−2π

rψ′′(ws)
V(ws, r, r′)erψ(ws,r,r

′)

(3.13)

=























eik1r

4πr
e−ik1(sin θ cosφ x′+sin θ sinφ y′)

[

e−ik1 cos θ z′ + f(θ)eik1 cos θ z′
]

r ∈ Ω1

eik2r

4πr
e−ik2(sin θ cosφ x′+sin θ sinφ y′)e

−ik2
√

ǫ1
ǫ2

−sin2 θz′
(1 + f(θ)) r ∈ Ω2

The result obtained above is valid as far as no singularity exists in the vicinity of the saddle
point. In Section 3.3, it will be shown that a pole singularity shows up near the saddle point
under some special conditions. In this case, the final result for integrating along SDP changes.
More details are given in Section 3.3.
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3.2 Branch point contribution

As explained in Section 2.3, (3.5) has only one branch cut. In Ω1, kz2 = k1
√

η − sin2w is the
source of branch cut at sin(wb) =

√
η. For a special observation angle θb, the branch point wb

lies on P̄s. Using (3.9), we derive θb as

θb = Rewb − cos−1

(

1

cosh(Imwb)

)

. (3.14)

If θ > θb the branch point intersects with the SDP. For an intersected wb, we surround the
branch cut with an appropriate contour P̄b (see Figure 9).

Figure 9: Integration contours in the complex w plane. wb is the branch point and P̄b surrounds
the branch cut.

Theorem 3.3. The asymptotic form of the radiation integral (3.5) along the contour P̄b is [11]:

gb(r, r
′) = C(r, r′)

∫

P̄b

V(w, r, r′)erψ(w,r,r′) dw

∼ C(r, r′)
V0

√
π

(r|ψ′(wb)|)
3

2

erψ(wb) (3.15)

(3.16)

where V ∼ V0

√

(w − wb), w → wb.

Using Theorem 3.3, one can derive gb(r, r
′) for TM modes as follows

gb(r, r
′) =



















































































e−i
π
4

4π

√

k1
r η sin θ

e−ik2(cosφ x′+sinφ y′)

exp(ik1(
√
1− η(z + z′) +

√
ηρ))

[

k1(
√
1− η r sin θ −√

η r cos θ)
]

3

2 (1− η)
1

4

U(θ − θb)

r ∈ Ω1

ei
3π
4

4π

√

k2
r η sin θ

e−ik1(cosφ x′+sinφ y′)

exp(ik2(
√

1− η−1z +
√

η−1ρ))
[

k2(
√

1− η−1 r sin θ +
√

η−1 r cos θ)
]

3

2

(1− η−1)
1

4

U(θ − θb)
r ∈ Ω2

(3.17)
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where U(x) =

{

1 x > 0

0 x < 0
, and η = ǫ2

ǫ1
.

3.3 Pole contribution

In (3.5), f(w) possesses one pole singularity which must be taken into account in the case that
it intersects the SDP. For the TM mode, we have

f(w) =
η cosw −

√

η − sin2w

η cosw +
√

η − sin2w
. (3.18)

Thus, the pole singularity for the radiation integral in Ω1 lies on
√

η − sin2wp = −η coswp. It
can be shown that

coswp = − 1√
1 + η

(3.19)

and

sinwp =

√

η

1 + η
. (3.20)

Remark 3.2. wp lies on the SDP for the special observation point θp which can be derived
using the same procedure as for θb in Section 2.3

θp = Rewp − cos−1

(

1

cosh(Imwp)

)

. (3.21)

Theorem 3.4. As a result of residue theorem, the pole contribution in the radiation integral
(3.5) under the condition wp 6= θ is

gp(r, r
′) = i2πC(r, r′)Resw=wp

(V(w, r, r′)erψ(w,r,r′))U(θ − θp) (3.22)

Remark 3.3. It can be shown that wp crosses the contour only under the condition that the loss
of substrate material is much bigger than that in the first domain (|η| ≫ 1 and arg η → π/2),
and also the observation point is located on the substrate θ = π/2. Under this condition and
using (3.19), the pole is located at

wp =
π

2
+

1√
η

(3.23)

The pole derived in (3.23) lies near the saddle point (ws = θ = π
2
). Therefor, (3.13) is

no more the correct form of integrating along the SDP. One must consider the effect of the
singularity in the vicinity of the saddle point. For this end, we introduce a more generalized
form of integration along the SDP, g∗s(r, r

′) which is different from gs(r, r
′) when wp ≈ ws

g∗s(r, r
′) =

{

gs(r, r
′) wp 6≈ ws

gsp(r, r
′) wp ≈ ws

(3.24)

Theorem 3.5. ([6, Sec. 4.4]) The asymptotic form of the radiation integral (3.5) along the
SDP, when a pole singularity exists in the vicinity of the saddle point (wp ≈ θ), is

gsp(r, r
′) ∼ C(r, r′)erψ(wp,r,r

′)

[

i2a
√
πe−rb

2

Q(ib
√
r) +

√

π

r
T (0)

]

(3.25)
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and

a = lim
w→wp

[(w − wp)V(w, r, r′)] , b =
√

ψ(ws, r, r′)− ψ(wp, r, r′)

h =

√

−2

ψ′′(ws, r, r′)
, T (0) = hV(ws, r, r′) +

a

b

Q(y) =

∫ ∞

y

e−x
2

dx.

Under the assumptions θ = π/2, |η| ≫ 1 and arg η = π/2 (3.25) becomes

gsp(r, r
′) ∼



































































eik1r

2πr
e−ik1(cosφ x′+sinφ y′)

(

1 + i
√

πζ1e
−ζ1 − i2

√

ζ1e
−ζ1
∫ −i

√
ζ1

0

e−x
2

dx

) r ∈ Ω1

eik2r

2πr
e−ik1(cosφ x′+sinφ y′)

(

1 + i
√

πζ2e
−ζ2 − i2

√

ζ2e
−ζ2
∫ −i

√
ζ2

0

e−x
2

dx

) r ∈ Ω2

(3.26)

where ζα = kαr
2|η| , α = 1, 2.

3.4 Integration end point contribution

Equation (3.6) in Ω1 shows that

Imψ(w, r, r′) = cos(Rew) sinh(Imw) sin(θ)− sin(Rew) sinh(Imw) cos(θ). (3.27)

Using (3.27) and Figure 9, one can easily see that the end points of contours P̄ , P̄s, and P̄b at
|w| → ∞ are situated in regions wherein eik1ψ(w,r,r

′) → 0. In other words no contributions arise
from the end points. The same procedure applies for the integration in Ω2.

3.5 Discussion

The final form of the scalar Green’s function at far away from the dipole source in the presence
of a substrate is obtained by putting together all the contributions discussed earlier

g0(r, r
′) = g∗s(r, r

′) + gb(r, r
′). (3.28)

Each term on the right hand side of (3.28) decays with a different rate with respect to the dis-
tance of the observation point r from r′. Using (3.13) and (3.17), one can see that gs(r, r

′) and
gb(r, r

′) decay according to 1
r
and 1

r2
, respectively. In the case of having the pole contribution,

(3.26), there is a term decreasing as 1√
r
.

• Saddle point contribution

Taking a closer look at (3.13) reveals that gs(r, r
′) comprises direct wave and reflected

wave contributions in Ω1 and the transmitted wave in Ω2. The first term on the right
16



hand side of (3.13) in Ω1 is the spherical wave propagating directly from the source point
to the observation point. This term is identical with the field of a dipole located in free
space observed at far distances. The second term on the right hand side of (3.13) in Ω1

can be interpreted as the reflected wave from the interface which is multiplied by the
reflection coefficient. Finally, the saddle point contribution in Ω2 resembles a transmitted
wave through the interface. The amplitude of the transmitted wave contains the factor
1 + f(θ) which is identical to the transmission coefficient. gs(r, r

′) can also be obtained
directly through ray optics, which means that the direct and the reflected waves are ob-
served at points located in the same half space as the source and the transmitted wave is
received inside the substrate.

• Branch point contribution

(3.17) reveals that gb(r, r
′) does not have that much effect on the final Green’s function

for the faster decay of 1
r2

in comparison with gs(r, r
′). If the material is lossy, gb(r, r

′)
also decays exponentially. However, there are some exceptions, worth being taken into
account:

– medium 1 loss-less, medium 2 lossy and θ → π
2

gs(r, r
′) has no exponential decay in Ω1 whereas gb(r, r

′) decreases in both lateral
and longitudinal directions in Ω1. As a result, gs(r, r

′) dominates gb(r, r
′).

In Ω2, gs(r, r
′) has exponential decay in radial direction, however, gb(r, r

′) decreases
only in z direction. This means that gb(r, r

′) dominates gs(r, r
′) in Ω2 when ρ ≫ z

or in other words θ → π
2
.

– medium 1 lossy, medium 2 loss-less and θ → π
2

gs(r, r
′) has exponential decay in Ω1, while gb(r, r

′) decays only in longitudinal di-
rection. As a result, gb(r, r

′) dominates gs(r, r
′) in Ω1 when ρ≫ z or in other words

θ → π
2
. In Ω2, it is only gb(r, r

′) which suffers from exponential decay.

– θ → π
2
and z′ → 0

In this case, the ray-optical part vanishes and lower order terms, O( 1
r2
), in the asymp-

totic expansion of gs(r, r
′) become important. Under this condition, the gb(r, r

′)
contribution is comparable to the contribution of gs(r, r

′).

• Pole contribution

When medium 2 is highly lossy and medium 1 is loss-less, there can also be the effect of
pole singularity (see Section 3.3). (3.26) has different terms with different decay rates on
the right hand side. The first term on the right hand side of (3.26) is the same as (3.13)
when the substrate is highly lossy. The second term on the right hand side of (3.26)
resembles surface-waves because it decays as 1√

r
. However, this term does not play any

significant role in the field observed at far distances because of the fast exponential decay.

4 Far-field closed form

As explained in the previous section, the dominant contribution to g0(r, r
′) at far distances

when θ 6= 0, θ 6= π
2
arises from the saddle point contribution (3.13), which means that the

Green’s function decays according to 1
r
as r → ∞. Under this condition and using (2.10), one

can easily see that

GE(r, r′, ℓ̂) = iwµ g0(r, r
′)
(

θ̂ + φ̂
)

+O

(

1

r2

)

as r → ∞ (4.1)
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where θ̂ and φ̂ are unit vectors in polar and azimuthal directions at the point ℓ̂ = (ℓ̂x, ℓ̂y, ℓ̂z).

Remark 4.1. Using (4.1), one can see that electromagnetic fields at far distances have only
components in polar and azimuthal directions (polar coordinates). The main conclusion based
on this observation is that the energy flux in the far-field area propagates only along the radial
direction.

Using (4.1), one can see that ∇r × GE(r, r′, ℓ̂) ∼ −∇r
′ × GE(r, r′, ℓ̂) as r → ∞. So, the

far-field representation of the electric field using (3.1), (3.13), and (4.1) is given by the following

Proposition 4.1. The electric field observed at far distances has the following asymptotic form
in direction ℓ̂

E(r) · ℓ̂ = exp(ikαr)

r

(

E∞(r̂) · ℓ̂+O

(

1

r

))

as r → ∞ (4.2)

where α = 1, 2, r̂ = r/r, and

E∞(r̂) · ℓ̂ =
∫

Γ

(∇r
′ × E(r′)) ·

(

G∞(r, r′, ℓ̂)× n̂(r′)
)

−
∫

Γ

(∇r
′ ×G∞(r, r′, ℓ̂)) · (E(r′)× n̂(r′)) ds(r′)

(4.3)

G∞(r, r′, ℓ̂) =



























ℓ̂

4π
e−ik1(sin θ cosφ x′+sin θ sinφ y′)

[

e−ik1 cos θ z′ + f(θ)eik1 cos θ z′
]

r ∈ Ω1

ℓ̂

4π
e−ik1(sin θ cosφ x′+sin θ sinφ y′)e

−ik1
√

ǫ2
ǫ1

−sin2 θz′
(1− f(θ)) r ∈ Ω2

(4.4)

E∞(r̂), which is independent of the observation distance r, is known as far-field pattern.
As mentioned in Remark 4.1, the electric field at far distances, has no component in radial
direction, i.e. E∞(r̂) has only components in θ̂ and φ̂ directions.
For ℓ̂ = θ̂, (2.10) shows that GH(r, r′, ℓ̂) · ẑ = 0, which means that only the TM wave expansion
must be used. Similarly, for ℓ̂ = φ̂, GE(r, r′, ℓ̂) · ẑ = 0. Then the TE wave expansion must be
applied.

Proposition 4.2. (4.3) is valid for any lipschitz surface Γ around the scatterer.

Proof. Consider a subregion Ωf between two closed paths Γi and Γo around the scatterer (see
Figure 10). Using vector calculus we have

∫

Ωf

(∇r
′ ×∇r

′ × E(r′)) ·G∞(r, r′, ℓ̂) dr′ =

∫

Ωf

(∇r
′ × E(r′)) · (∇r

′ ×G∞(r, r′, ℓ̂)) dr′

−
∫

∂Ωf

(∇r
′ × E(r′)) ·

(

G∞(r, r′, ℓ̂)× n̂(r′)
)

ds(r′)

(4.5)
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∫

Ωf

(∇r
′ ×∇r

′ ×G∞(r, r′, ℓ̂)) · E(r′) dr′ =
∫

Ωf

(∇r
′ × E(r′)) · (∇r

′ ×G∞(r, r′, ℓ̂)) dr′

−
∫

∂Ωf

(∇r
′ ×G∞(r, r′, ℓ̂)) · (E(r′)× n̂(r′)) ds(r′)

(4.6)

We also know that

∇r
′ ×∇r

′ × E(r′)− k2α E(r′) = 0

∇r
′ ×∇r

′ ×G∞(r, r′, ℓ̂)− k2α G∞(r, r′, ℓ̂) = 0
(4.7)

subtracting (4.6) from (4.5) and using (4.7), we have
∫

∂Ωf

(∇r
′ × E(r′)) ·

(

G∞(r, r′, ℓ̂)× n̂(r′)
)

−
∫

∂Ωf

(∇r
′ ×G∞(r, r′, ℓ̂)) · (E(r′)× n̂(r′)) ds(r′) = 0

(4.8)

Since ∂Ωf = Γo ∪ Γi, we can rewrite the identity above as follows

∫

Γo

(∇r
′ × E(r′)) ·

(

G∞(r, r′, ℓ̂)× n̂(r′)
)

−
∫

Γo

(∇r
′ ×G∞(r, r′, ℓ̂)) · (E(r′)× n̂(r′)) ds(r′)

=

∫

Γi

(∇r
′ × E(r′)) ·

(

G∞(r, r′, ℓ̂)× n̂(r′)
)

−
∫

Γi

(∇r
′ ×G∞(r, r′, ℓ̂)) · (E(r′)× n̂(r′)) ds(r′)

(4.9)

Proposition 4.3. The far-field pattern representation using a volume integral is [13, Section
13.6]

E∞(r̂) · ℓ̂ =
∫

Ωf

(∇r
′ × E(r′)) · ∇r

′ ×
(

Ψ(r′)G∞(r, r′, ℓ̂)
)

−
∫

Ωf

(∇r
′ ×G∞(r, r′, ℓ̂)) · ∇r

′ × (Ψ(r′)E(r′)) dr′
(4.10)

where Ωf is a subregion between two closed paths Γi and Γo around the scatterer (see Figure
10), and Ψ(r′) ∈ H1(Ωf ) is a cut-off function such that

Ψ(r′)|Γi
≡ 1 , and Ψ(r′)|Γ0

≡ 0 (4.11)

Proof. Considering Γ = Γi, one can write (4.3) in the following way

E∞(r̂) · ℓ̂ =
∫

Γi

(n̂(r′)×∇r
′ × E(r′)) · (Ψ(r′)G∞(r, r′, ℓ̂))

−
∫

Γi

(

n̂(r′)×∇r
′ ×G∞(r, r′, ℓ̂)

)

· (Ψ(r′)E(r′)) ds(r′)

(4.12)
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The first term on the right hand side of (4.12) can be rewritten as
∫

Γi

(n̂(r′)×∇r
′ × E(r′)) · (Ψ(r′)G∞(r, r′, ℓ̂)) ds(r′) =

∫

Ωf

(∇r
′ ×∇r

′ × E(r′)) · (Ψ(r′)G∞(r, r′, ℓ̂)) dr′ (4.13)

−
∫

Ωf

(∇r
′ × E(r′)) · (∇r

′ × (Ψ(r′)G∞(r, r′, ℓ̂))) dr′

In the same way the second term is
∫

Γi

(n̂(r′)×∇r
′ ×G∞(r, r′, ℓ̂)) · (Ψ(r′)E(r′)) ds(r′) =

∫

Ωf

(∇r
′ ×∇r

′ ×G∞(r, r′, ℓ̂)) · (Ψ(r′)E(r′)) dr′ (4.14)

−
∫

Ωf

(∇r
′ ×G∞(r, r′, ℓ̂)) · (∇r

′ × (Ψ(r′)E(r′))) dr′

subtracting (4.14) from (4.13) and keeping in mind that ∇r
′ ×∇r

′ × E(r′) − k2E(r′) = 0 and
∇r

′ ×∇r
′ ×G∞(r, r′, ℓ̂)− k2G∞(r, r′, ℓ̂) = 0 we retrieve (4.10).

Figure 10: Volume-based far-field integration region.

5 Numerical results

We numerically analyze the far-field pattern of different structures in the presence of a substrate.
In our implementations, we use 3rd order Nedelec finite elements on a quasi-uniform tetrahedral
mesh to solve Maxwell’s equations in 3D structures 1. The integrals in the domain are computed
by a 6th order quadrature rule in each element. The unbounded computational region is
truncated using a box Perfectly Matched Layer (PML). The far-field integration region Ωf is
considered to be the domain between two spheres around the scatterer. ro and ri are the radius
of the outer and the inner spheres, respectively. The cut-off function has the following form

Ψ(r) =
r2 − r2o
r2i − r2o

1The experiments are based on a finite element library NGSolve developed by Joachim Schoeberl at the
University of Vienna.
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(a) The finite element solution of the electric field component
in the x̂ direction.
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(b) The far-field pattern for φ = 0 and 0 < θ < π
2 .

Figure 11: An electric dipole located at z′ = 0.5λ, perpendicular to the substrate. ǫ1
ǫ0

= 1 and
ǫ2
ǫ0

= 2 are the relative permittivities for z > 0 and z < 0, respectively.

5.1 Dipole over a substrate

In the first numerical experiment, we consider an electric dipole, oriented in the direction nor-
mal to the substrate and located at the distance z′ = 0.5λ from the substrate (see Figure 3). λ
is the wavelength in free space. The material properties are ( ǫ1

ǫ0
, µ1
µ0
) = (1, 1) and ( ǫ2

ǫ0
, µ2
µ0
) = (2, 1)

in domains z > 0 and z < 0, respectively (ǫ0 and µ0 are the permittivity and permeability of
free space). To avoid the singularity of the dipole field solution at the position of the dipole,
we consider a sphere around the dipole and solve Maxwell’s equations for the total field in the
exterior region (see Figure 11a).

Figure 11b shows a close agreement between the far-field pattern calculated by (4.10) and
the method of multiple multipoles (MMP) [2]. MMP is a boundary discretization method based
on the field expansion using a series of basis fields. Since the far-field pattern calculation has
not been implemented in MMP, we put the observation point at far distances, e.g. r = 1000λ,
to derive the pattern. The finite element method used to solve Maxwell’s equations employs
226246 degrees of freedom (DoFs). Differences between two results decrease asymptotically by
refining the finite element mesh and increasing the number of expansions and matching points
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Figure 12: Comparison of the far-field pattern calculated within two different finite element
meshes. The electric dipole is perpendicular to the substrate ( ǫ1

ǫ0
= 1 and ǫ2

ǫ0
= 2).
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Figure 13: The far-field pattern calculated using three different integration regions. Integra-
tion domains are annuli with inner radius ri and the outer radius ro. The electric dipole is
perpendicular to the substrate ( ǫ1

ǫ0
= 1 and ǫ2

ǫ0
= 2), and the mesh has 226246 DoFs.

in the MMP method.

We repeat the calculations for the dipole over the substrate using a different mesh. This
time we use a finer mesh with 1045348 DoFs. Based on results shown in Figure 12, the far-field
pattern is almost independent of the mesh size. The volume based far-field expression is a
smooth functional which averages errors over the integration region. Consequently, the local
errors arising from the mesh do not have a significant effect on the final result.

Based on Proposition 4.2 the far-field pattern must be independent of the integration
path. To investigate this fact, we consider three different annuli with (ro, ri) = (1.16λ, 0.71λ),
(λ, 0.66λ) and (0.83λ, 0.66λ) as far-field integration regions (ro and ri are the outer and inner
radii of the annulus, respectively) and simulate the structure using a mesh with 226246 DoFs.
The results confirm our expectation and are close to each other (see Figure 13). The slight
differences between results arises from the fact that we plug in the FEM solution in (4.10)
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(a) The finite element solution of the electric field component
in the x̂ direction.
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(b) The far-field pattern for φ = 0 and 0 < θ < π
2 .

Figure 14: An electric dipole in free-space, located at z′ = 0.5λ and oriented in direction ẑ.

. When the finite element solution is employed instead of the exact solution to evaluate the
far-field formula, the path independence breaks down.

For code validation, we consider the same material properties for the substrate as free space,
( ǫ1
ǫ0
, µ1
µ0
) = ( ǫ2

ǫ0
, µ2
µ0
) = (1, 1). Under this assumption, we have the well-known problem of a dipole

in free-space (see Figure 14a). For a dipole in free-space there exists an analytic solution
E∞(r̂) = − iωµ

4π
sin θ θ̂ (see [8, Page 447]). Figure 14b compares the far-field pattern of a dipole

in free-space derived by (4.10) with the analytic solution for φ = 0 and 0 < θ < π
2
.

5.2 Nano-particle over a substrate

In this section, we analyze plasmon resonances of gold nanoparticles in the presence of a glass
substrate (see Figure 15a) . [7] had measured the scattering spectra of several cylindrical gold
NPs (nanoparticles). In the first part of this section, we try to reproduce the results discussed
in [7, Section 3.2]. The nanoparticle is an elliptical gold cylinder. The three principal axes of
the cylinder are a, b, and h (see Figure 15b).

As shown in [7, Section 3.1], the dipolar resonance of the structure depends on the direction
of the excitation. To investigate this phenomenon, we illuminate the structure with an incident
electric field parallel to one of the in-plane axes (a-axis or b-axis).
As mentioned earlier, the NP and the substrate are made of gold and glass, respectively. The
refractive index of glass is n2 ≈ 1.5. However, gold is a dispersive material within the spectrum
of visible light. There have been several measurements to derive the optical constants of gold
[12, 17]. In this report, we use the data given in [12].
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(a)
(b)

Figure 15: (a) Cylindrical nanoparticle mounted on a glass substrate with (b) 3 principal axes
a, b, and h.
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Figure 16: Skin depth of gold.

(a)

(b)

Figure 17: The absolute value of the scattered field of a cylindrical NP with elliptical footprint
(a, b, h) = (132, 95, 110)nm. The incident electric field is parallel to (a) a-axis (b) b-axis.

In [7] the field is collected through an objective with the opening angle of α = 74◦ and centered
on the z-axis. In order to come close to this experiment we consider the following integration
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as the far-field measurement

Q(λ) =

∫

Ωlens

|E∞(r, λ)|2dr (r → ∞) . (5.1)

where Ωlens is the area of the objective, λ is the wavelength in free space and Q(λ) is the the
energy flux through the lens. To determine the mesh size, we keep in mind that gold is a
lossy material, and the electromagnetic field decays rapidly inside it. There is a measure called
skin depth to show how deep the electromagnetic field can penetrate inside the conductor [5,
Section 5.14]. The mesh size must be small enough to model the wave attenuation within the
skin depth. The smallest skin depth of gold in the range of λ = [500 : 900] nm is 59 nm (see
Figure 16). So, we choose the biggest mesh size ∆h ≈ 50nm in our simulations (see Figure 19).
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Figure 18: Normalized energy flux of a cylindrical NP with an elliptical footprint (a, b, h) =
(132, 95, 110) nm. The incident electric field Ei(r) is either parallel to the a-axis or b-axis.The
measurement results are obtained from [7, Figure 3.1].

Figure 18 shows the normalized Q(λ) of a cylindrical NP with elliptical footprint, (a, b, h) =
(132, 95, 110) nm. The Figure compares the results calculated by (4.10) with measurement
results reported in [7, Figure 3.1]. Both measurements and calculations show the resonance-
frequency shift by changing the direction of the incident electric field. Based on calculations,
λa = 660 nm and λb = 610 nm correspond to plasmon resonance frequencies when the incident
electric field is parallel to a-axis or b-axis, respectively. As it is shown in Figure 18, shapes of
resonance curves are the same between measurements and simulation results. However, there is
a frequency difference between them. The disagreement between measurements and simulations
can be due to different problems. Some of these problems are as follows

• The shape inaccuracy of fabricated NPs.
Shape uncertainty is inevitable During the fabrication procedure. This causes changes in
the size of NPs which has a direct effect on the resonance frequency.

• Material properties of gold.
Material properties of gold are dependent on the sample preparation procedure. The data
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Figure 19: Normalized energy flux of a cylindrical NP with an elliptical footprint (a) (a, b, h) =
(132, 132, 110) nm and (b) (a, b, h) = (132, 160, 110) nm. The incident electric field Ei(r) is
either parallel to the a-axis or b-axis.
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Figure 20: Normalized energy flux of a cylindrical NP with elliptical footprint (a, b, h) =
(132, 95, 110)nm calculated using different databases for optical constants of gold.

given by [12, 17] are based on measurements on bulk gold material which is not adequate
in our experiments.

• The size and the location of the objective.

To see the effect of axis size on the resonance frequency, we change the size of b-axis to
132nm and 160nm while the sizes of a and h axes are fixed. λb shifts to the right by increasing
the axis size, whereas λa remains almost constant (see Figures 19a and 19b). Based on this
experiment, any changes in the the shape of NP has a direct effect on the resonance frequency.

26



550 600 650 700 750 800 850 900
0

0.2

0.4

0.6

0.8

1

λ (nm)
Q

(λ
)

 

 

α=74 & θ=0

 α=32 & θ=0

α=32 & θ=20

α=32 & θ=40

Figure 21: Normalized energy flux of a cylindrical NP with circular footprint (a, b, h) =
(132, 132, 110) nm calculated by lenses with different opening angle (α) and centered at different
angles with respect to the z-axis (β).
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Figure 22: Dependence of the resonance frequency on the size of principal axis. The footprint
is elliptical and (a, b, h) = (80 : 190, 120, 20) nm. The incident electric field is parallel to (a)
b-axis and (b) a-axis. The measurement results are from [7, Figure 6.1].

To see how sensitive Q(λ) is to the gold characteristics, we repeat the calculations for the
elliptical footprint (a, b, h) = (132, 95, 110)nm using the data given by Palik [17] and compare
them with the results based on Johnson and Christy data [12]. As one can see, the resonance
frequency is not affected significantly by the changes in gold constants obtained from different
measurements, but the shape of the resonance curve changes significantly (see Figure 20). From
the curve obtained using Palik’s data, one even might think that a second resonance is present
near 700nm. But this is only because of material properties.

The effect of the size and the position of the objective on the normalized energy flux is
investigated using lenses centered at different angles with respect to the z-axis β, and with
different opening angles α. The results show that Q(λ) is almost independent of objective lens
parameters (see Figure 21).

Based on the discussion above, the shape inaccuracy of fabricated NPs plays the most
significant role in making differences between simulation and measurement results.
The size effect has been studied even more closely in [7, Figure 6.1]. It shows how the resonance
frequency of different cylindrical NPs depends on the size of the in-plane axis. The b-axis is
kept constant and the a-axis changes 80 < a < 190nm. We repeat the same experiment with
the elliptical foot print, b = 120nm and h = 20nm and compare them with measurements
(see Figure 22). As one can see, a good agreement between simulations and measurements
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is observed. λb reduces rapidly for the small values of in-plane axial ratio (a
b
< 1), but it

remains almost constant for axial ratios bigger than 1 (See Figure 22a). However, λa increases
by increasing the a-axis size (see Figure 22b).

6 Conclusion

Near-field to far-field mapping is a technique to indirectly evaluate the values of electromagnetic
fields at far distances. For objects located in free space there is a closed formulation. The
procedure gets more challenging for layered media and had remained unsolved for a long time.
We presented rigorous asymptotics for the Green’s function in semi-infinite half space, and a
closed form far-field mapping technique is derived. The mapping can be expressed either as
an integration in volume or as an integration on boundary. It is advisable to use the volume
integration when the finite element method is used. Numerical experiments also show a very
good agreement with other methods.
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