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Parabolic Molecules: Curvelets, Shearlets, and
Beyond

Philipp Grohs, Sandra Keiper, Gitta Kutyniok, and Martin Schäfer

Abstract Anisotropic representation systems such as curvelets and shearlets have
had a significant impact on applied mathematics in the last decade. The main reason
for their success is their superior ability to optimally resolve anisotropic structures
such as singularities concentrated on lower dimensional embedded manifolds, for
instance, edges in images or shock fronts in solutions of transport dominated equa-
tions. By now, a large variety of such anisotropic systems has been introduced, for
instance, second generation curvelets, bandlimited shearlets, and compactly sup-
ported shearlets, all based on a parabolic dilation operation. These systems share
similar approximation properties, which is usually provenon a case-by-case basis
for each different construction. The novel concept of parabolic molecules, which
was recently introduced by two of the authors, allows for a unified framework en-
compassing all known anisotropic frame constructions based on parabolic scaling.
The main result essentially states that all such systems share similar approximation
properties. One main consequence is that at once all the desirable approximation
properties of one system within this framework can be deduced for virtually any
other system based on parabolic scaling. The present paper motivates and surveys
recent results in this direction.

1 Introduction

Wavelets have had a tremendous impact on applications requiring an efficient repre-
sentation system such as image compression or PDE solvers. However, multivariate
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Technische Universität Berlin, Department of Mathematics, 10623 Berlin, Germany, e-mail:
keiper@math.tu-berlin.de; kutyniok@math.tu-berlin.de; schaefer@math.tu-berlin.de

1



2 P. Grohs, S. Keiper, G. Kutyniok, and M. Schäfer

data does typically exhibit the distinct property of being governed by anisotropic
features, which wavelets – as an isotropic system – are not capable of resolving op-
timally in the sense of optimal approximation rates. In imaging sciences, this fact is
even backed up by neurophysiology, since it is today generally accepted that neurons
are highly directional based, thereby reacting most strongly to curvelike structures.

This observation has led to the introduction of various novel representation sys-
tems, which are designed to accommodate the anisotropic nature of most multi-
variate data. The considered model situation are functionswith singularities along
lower dimensional embedded manifolds such as edges or rays in imaging applica-
tions, with the goal to provide optimally sparse approximations of these objects.
Some of the most well-known nowadays termeddirectional representation systems
are ridgelets [4], curvelets [5], and shearlets [19, 28]. With the introduction of such
a variety of systems the appeal has grown to extract the underlying principles of
these new constructions and build an abstract common framework, which can unite
many of these systems ‘under one roof’. The framework shouldbe general enough
to include as many constructions as possible, while on the other hand also be spe-
cific enough to still capture their main features and properties. Such a framework
would help to gain deeper insights into the properties of such systems. Moreover, it
bears an obvious economical advantage. Up to now the properties of each new sys-
tem, e.g. their approximation rates of anisotropic features, have been proven more
or less from scratch, although the proofs often resemble oneanother in many ways.
From the higher level viewpoint provided by such a framework, it becomes possible
to provide proofs, which build upon abstract properties andare therefore indepen-
dent of the specific constructions. Thus, results can be established for many systems
simultaneously.

The introduction ofparabolic moleculesin 2011 by two of the authors [17] was a
first step in this direction. A system of parabolic moleculescan be regarded as being
generated from a set of functions via parabolic dilations, rotations and translations.
Each element in a system of parabolic molecules is thereforenaturally associated
with a certain scale, orientation and spatial location. Thecentral conceptual idea is
now to allow the generators to vary, as long as they obey a prescribed time-frequency
localization, which also explains the terminology ‘molecules’.

At the heart of this is the fundamental observation that it isforemost the time-
frequency localizations of the functions in a system, whichdetermine its properties
and performance. This concept ofvariable generators, where in the extreme case
every element is allowed to have its own individual generator, is a key feature of
the framework and gives it a great amount of flexibility. Additional flexibility is
achieved byparametrizationsto allow generic indexing of the elements. Another
fruitful idea is the relaxation of the rigid vanishing moment conditions imposed
on the generators of most classical constructions by requiring the moments to only
vanish asymptoticallyat high scales without changing the asymptotic behavior of
the approximation.

It was shown in [17] that the concept of parabolic molecules can unify shear-
based and rotation-based constructions under one roof. In particular, it enables to
treat the classical shearlets and curvelets simultaneously, although these specific
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constructions are based on different construction principles: For curvelets the scal-
ing is done by a dilation with respect to polar coordinates and the orientation is
enforced by rotations. Shearlets on the other hand are basedon affine scaling of
a single generator and the directionality is generated by the action of shear matri-
ces. As an example application, in [17] parabolic moleculeswere used to show that
these systems feature a similar approximation behavior, thereby not only unifying
the approximation results for curvelets [5] and shearlets [20, 27], but proving opti-
mal sparse approximations for a much larger class of systemsbelonging to the class
of parabolic molecules.

Our exposition is organized as follows. We begin with a general introduction to
the problem of sparsely representing multivariate data in Section 2. The main issue
with such data is the possible occurrence of anisotropic phenomena, which impair
the otherwise good performance of classical wavelet systems. This motivates the
need for so-called directional representation systems, some classical constructions
of which we present in the next Section 3, namely classical curvelets and shear-
lets. Here we emphasize their similar approximation performance, which is almost
optimal for cartoon-like images.

After this exposition we turn to parabolic molecules as a unifying framework.
We first establish the basic concepts in Section 4 and state one main result, namely
that the cross-Gramian of two systems of parabolic molecules exhibits a strong off-
diagonal decay. This property will become essential in Section 6, where we discuss
the approximation behavior of parabolic molecules. Beforemoving there, however,
we pause for a while in Section 5 to illustrate the versatility of the framework by
giving some examples. After we have convinced the reader of their applicability,
we then turn to the section on approximation, where we essentially prove that any
two systems of parabolic molecules, which are consistent and have sufficiently high
order, exhibit the same approximation behavior.

2 Representation of Multivariate Data

Most applications require efficient encoding of multivariate data in the sense of
optimal (sparse) approximation rates by a suitable representation system. This is
typically phrased as a problem of bestN-term approximation (see Subsection 2.1).
The performance of an approximation scheme is then usually analyzed with respect
to certain subclasses of the Hilbert spaceL2(Rd), which is the standard continuum
domain model ford-dimensional data, in particular, in imaging science. As elab-
orated upon before, the key feature of most multivariate data is the appearance of
anisotropic phenomena. Hence such a subclass ofL2(Rd) is required to provide a
suitable model for this fact, which, ford= 2, is fulfilled by the subclass of so-called
cartoon-like images as introduced in Subsection 2.2. It canthen be easily seen that
wavelets do not deliver optimal approximation rates (Subsection 2.3), which then
naturally leads to the theory of directional representation systems.
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In the sequel, we will use the ‘analyst’s brackets’〈x〉 :=
√

1+ x2 for x∈R. Also,
for two quantitiesA,B∈R, which may depend on several parameters we shall write
A.B, if there exists a constantC> 0 such thatA≤CB, uniformly in the parameters.
If the converse inequality holds true, we writeA & B and if both inequalities hold
we shall writeA≍ B.

2.1 Sparse Approximation

Let us start by briefly discussing some aspects of approximation theory. From a
practical standpoint, a functionf ∈ L2(R2) is a rather intractable object. In order
to analyzef , the most common approach is to represent it with respect to some
representation system(mλ )λ∈Λ ⊆ L2(R2), i.e., to expandf as

f = ∑
λ∈Λ

cλ mλ , (1)

and then consider the coefficientscλ ∈ R. In practice we have to account for noise,
hence it is necessary to ensure the robustness of such a representation. This leads to
the notion of a frame (cf. [9, 8]).

A frame is a generalization of the notion of an orthonormal basis to include re-
dundant systems, while still ensuring stability. More precisely, a system(mλ )λ∈Λ ⊆
L2(R2) forms aframefor L2(R2), if there exist constants 0< A≤ B< ∞ such that

A‖ f‖2
2 ≤ ∑

λ∈Λ
|〈 f ,mλ 〉|2 ≤ B‖ f‖2

2 for all f ∈ L2(R2).

A frame is calledtight, if A= B is possible, andParseval, if A= B= 1. Since the
frame operator S: L2(R2)→ L2(R2) defined byS f= ∑λ∈Λ 〈 f ,mλ 〉mλ is invertible,
it follows that one sequence of coefficients in (1) – note thatfor a redundant system
this sequence is not unique anymore – can be computed as

cλ = 〈 f ,S−1mλ 〉, λ ∈ Λ ,

where(S−1mλ )λ is usually referred to as thecanonical dual frame. This particular
coefficient sequence has the distinct property that it minimizes theℓ2-norm.

When representingf with respect to a frame(mλ )λ ⊆ L2(R2), we are confronted
with yet another problem. Since in real world applications infinitely many coeffi-
cients are infeasible, the functionf has to be approximated by a finite subset of this
system. LettingN be the number of elements allowed in this approximation, we ob-
tain what is called anN-term approximationfor f with respect to(mλ )λ . Thebest
N-term approximation, typically denoted byfN, is optimal among those in terms of
a minimal approximation error and is defined by

fN = argmin
(cλ )λ∈ΛN

‖ f − ∑
λ∈ΛN

cλ mλ ‖2
2 subject to #ΛN ≤ N.
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An appropriate measure for the approximation behavior of a system(mλ )λ for a
subclassC , say, ofL2(R2) is the decay of theL2-error of the bestN-term approxi-
mation‖ f − fN‖2 asN → ∞, thus theasymptotic approximation rate. As discussed
before, the representation system might not form an orthonormal basis in which case
the computation of the bestN-term approximation is far from being understood. The
delicacy of this problem can for instance be seen in [13]. A typical approach to cir-
cumvent this problem is to consider instead theN-term approximation by theN
largest coefficients(cλ )λ∈Λ . It is evident that this error also provides a bound for
the error of bestN-term approximation.

There indeed exists a close relation between theN-term approximation rate
achieved by a frame, and the decay rate of the corresponding frame coefficients.
By measuring this decay rate in terms of theℓp-(quasi)-norms forp > 0, the fol-
lowing lemma shows that membership of the coefficient sequence to anℓp-space
for small p implies ‘good’N-term approximation rates. For the proof, we refer to
[10, 27].

Lemma 1. Let f = ∑cλ mλ be an expansion of f∈ L2(R2) with respect to a frame
(mλ )λ∈Λ . Further, assume that the coefficients satisfy(cλ )λ ∈ ℓ2/(2k+1) for some
k> 0. Then the best N-term approximation rate is at least of orderN−k, i.e.

‖ f − fN‖2 . N−k.

2.2 Image Data and Anisotropic Phenomena

To model the fact that multivariate data appearing in applications is typically gov-
erned by anisotropic features – in the 2-dimensional case curvilinear structures –,
the so-calledcartoon-like functionswere introduced in [11]. This class is by now
widely used as a standard model in particular for natural images. It mimics the fact
that natural images often consist of nearly smooth parts separated by discontinuities,
which is illustrated in Figure 2.2.

The first rigorous mathematical definition was given in [11] and extensively em-
ployed starting from the work in [5]. It postulates that images consist ofC2(R2)-
regions separated by smoothC2(R)-curves. This leads to the next definition (see
also Figure 2.2).

Definition 1. TheclassE 2(R2) of cartoon-like functionsis the set of functionsf :
R2 → C of the form

f = f0+ f1χB,

whereB⊂ [0,1]2 is a set with∂B being a continuous and piecewiseC2-curve with
bounded curvature andfi ∈C2(R2) are functions with suppf0 ⊂ [0,1]2 and‖ fi‖C2 ≤
1 for eachi = 0,1.

We remark that by now several extensions of this model have been introduced
and studied, starting with the extended model in [26].
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(1) (2a) (2b)

Fig. 1 (1): Illustration of the appearance of ‘cartoon-like parts’ in natural images. (2): Illustra-
tion of the fact that the human brain is able to deduce the image (2a) just from its ‘cartoon-like’
ingredients (2b).

Fig. 2 Example of a cartoon-like function.

Having agreed on a suitable subclass of functions, one mightnow ask whether
there exists a maximal asymptotic approximation rate leading to a notion of opti-
mality. Indeed, such a benchmark result was derived by Donoho in [11].

Theorem 1 ([11]). Let (mλ )λ∈Λ ⊆ L2(R2). Under the assumption of polynomial
depth search for the representation coefficients used in theN-term approximation,
the associated asymptotic approximation rate of some f∈ E 2(R2) satisfies

‖ f − fN‖2
2 ≍ N−2, as N→ ∞.

It is in this sense that a system satisfying this approximation rate is coined to
deliveroptimally sparse approximations.
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2.3 2D Wavelet Systems

Nowadays, wavelet systems are widely utilized representation systems both for the-
oretical purposes as well as for engineering applications,for instance for the de-
composition of elliptic operators or for the detection of anomalies in signals. Their
success stems from the fact that wavelets deliver optimal sparse approximations
for data being governed by isotropic features – which is in particular the case for
elliptic operator equations whose solutions may exhibit point singularities (for in-
stance if re-entrant corners are present in the computational domain) as well as in
the 1-dimensional setting – and from the fast numerical realization of the wavelet
transform.

Let us first recall a certain type of wavelet system inL2(R2), obtained by the
following tensor product construction, see e.g. [30] for details. Starting with a given
multiresolution analysis ofL2(R) with scaling functionφ0 ∈ L2(R) and wavelet
φ1 ∈ L2(R), for every indexe= (e1,e2) ∈ E, E = {0,1}2, the generatorsψe ∈
L2(R2) are defined as the tensor products

ψe = φe1 ⊗φe2.

Definition 2. Let φ0, φ1 ∈ L2(R) andψe ∈ L2(R2), e∈ E, be defined as above. For
fixed sampling parametersq> 1, τ > 0 we define thediscrete wavelet system

W
(
φ0,φ1;q,τ

)
=
{

ψ(0,0)(·− τk) : k∈ Z
2
}

∪
{

q jψe(q j ·−τk) : e∈ E\{(0,0)}, j ∈ N0, k∈ Z
2
}
.

The associated index set is given by

Λ w =
{
((0,0),0,k) : k∈ Z

2}∪
{
(e, j,k) : e∈ E\{(0,0)}, j ∈ N0, k∈ Z

2}.

Next, we recall the definition of vanishing moments for univariate wavelets,
which says that the associated wavelet system annihilates polynomials up to some
degree.

Definition 3. A functiong∈ L2(R) is said to possessM vanishing moments, if
∫

R

g(x)xkdx= 0, for all k= 0, . . . ,M−1.

It is well known that this property can be characterized by polynomial decay
near zero of the associated Fourier transform. For the convenience of the reader, we
provide the short proof.

Lemma 2. Suppose that g∈ L2(R)∩C(R) is compactly supported and possesses M
vanishing moments. Then

|ĝ(ξ )|. min(1, |ξ |)M .
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Proof. First, note that, sinceg is continuous and compactly supported,g ∈ L1(R)
and hence ˆg is bounded. This shows that the claimed inequality holds for|ξ | ≤ 1.

Let nowξ ∈ R satisfy|ξ |> 1. For this, observe that, up to a constant,

∫

R

g(x)xkdx=

(
d

dξ

)k

ĝ(0).

Sinceg possessesM vanishing moments, it follows that all derivatives of order
k < M of ĝ vanish at 0. Furthermore, sinceg is compactly supported, its Fourier
transform is analytic. Thus

|ĝ(ξ )|. |ξ |M,

which proves the claim. ⊓⊔

We now assume thatφ0,φ1 ∈ L2(R) satisfy φ̂0, φ̂1 ∈ C∞(R) and that there are
0< a and 0< b< c such that

suppφ̂0 ⊂ [−a,a] and supp̂φ1 ⊂ [−c,c]\[−b,b].

These conditions are fulfilled, for instance, ifφ0,φ1 ∈ L2(R) are the generators of
a Lemarié-Meyer wavelet system. In this case, it is well-known that the associated
tensor product wavelets are indeed suboptimal for approximation of anisotropic fea-
tures modeled by cartoon-like functions.

Theorem 2.For f ∈E 2(R2), the wavelet system W
(
φ0,φ1;a,b

)
provides an asymp-

totic L2-error of best N-term approximation given by

‖ f − fN‖2
2 ≍ N−1,N → ∞.

3 Directional Representation Systems

The reason for the failure of wavelets to provide optimally sparse approximations of
cartoon-like functions is the fact that wavelets are inherently isotropicobjects and
thus not optimally suited for approximatinganisotropicobjects. To overcome this
problem, in recent years various directional representation systems were introduced,
among which are ridgelets, curvelets, and shearlets, to name just a few. Their main
advantage lies in their anisotropic support, which is much better suited to align with
curvilinear structures (see Figure 3), thereby already intuitively promoting a fast
error decay of the bestN-term approximation.

In this section, we now first introduce the second generationcurvelet system,
which was in fact also the first system to provide (almost) optimally sparse ap-
proximations of cartoon-like functions (cf. Subsection 3.1). This is followed by a
discussion of different versions of shearlets in Subsection 3.2.
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(1) (2)

Fig. 3 Approximation of a curve by isotropic-shaped (1) and anisotropic-shaped (2) elements.

3.1 Second Generation Curvelets

Second generation curvelets were introduced in 2004 by Candès and Donoho in the
seminal work [5]. It is this curvelet system which is referred to today when curvelets
are mentioned. The anisotropy of these systems is induced into this system by en-
forcing a parabolic scaling so that the shape of the support essentially follows the
parabolic scaling law ‘length2 ≈ width’. Intuitively, this seems a compromise be-
tween the isotropic scaling, as utilized for wavelets, and scaling in only one coordi-
nate direction, as utilized for ridgelets. However, the reason is much deeper, since
this law is particularly suited for approximatingC2-singularity curves, which is the
type of curves our model is based upon.

We now describe the original construction. For this, letW andV be two window
functions, which are both real, nonnegative,C∞, and supported in

(
1
2,2
)

and in
(−1,1), respectively. We further require that these windows satisfy

∑
j∈Z

W
(
2 j r
)2

= 1 for all r ∈ R+ and ∑
ℓ∈Z

V (t − ℓ)2 = 1 for all t ∈
(
−1

2
,
1
2

)
.

For every scalej ≥ 0, we now define the functionsγ( j ,0,0) in polar coordinates by

γ̂( j ,0,0)(r,ω) := 2−3 j/4W
(
2− j r

)
V
(

2⌊ j/2⌋ω
)
.

For j ∈ Z andθ ∈ T, the parabolic scaling matrixA j and the rotation matrixRθ are
defined by

A j :=

(
2 j 0
0 2j/2

)
and Rθ =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
.

The definition of curvelets then reads as follows:

γ( j ,ℓ,k)(·) := γ( j ,0,0)

(
Rθ j,ℓ ·−x j ,k

)
,

whereθ j ,ℓ = ℓ2−⌊ j/2⌋π, x j ,k = A−1
j k, and( j, ℓ,k) ∈ Λ 0 with set of curvelet indices

given by
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Λ 0 :=
{
( j, ℓ,k) ∈ Z

4 : j ≥ 0, ℓ=−2⌊ j/2⌋−1, . . . ,2⌊ j/2⌋−1
}
. (2)

With appropriate modifications for the low-frequency casej = 0 – for details we
refer to [7] –, the system

Γ 0 :=
{

γλ : λ ∈Λ 0}

constitutes a Parseval frame forL2(R2), which is customarily referred to as the
frame ofsecond generation curvelets. When identifying frame elements oriented in
antipodal directions, this system becomes a frame with real-valued elements.

Let us next discuss the approximation properties ofΓ 0 proved in [5]. Ignor-
ing log-like factors, this frame indeed attains the optimalachievable approximation
rate for the class of cartoon-like functionsE 2(R2). Moreover, this rate is achieved
by simple thresholding, which is even more surprising, since this approximation
scheme is intrinsically non-adaptive.

Theorem 3 ([5]).The second generation curvelet frameΓ 0 provides (almost) opti-
mal sparse approximations of cartoon-like functions f∈ E

2(R2), i.e.,

‖ f − fN‖2
2 . N−2(logN)3 as N→ ∞, (3)

where fN is the nonlinear N-term approximation obtained by choosingthe N largest
curvelet coefficients of f .

The implicit constant in (3) only depends on the maximal curvature of the singular-
ity curve of f , the number of corner points, and the minimal opening angle in the
corners. In particular, the approximation rate is uniform over all functions whose
singularity curve has maximal curvature bounded by a fixed constant.

Finally we remark that due to the construction the frame elements ofΓ 0 are band-
limited functions. Up to now no constructions of compactly supported curvelets are
known.

3.2 Shearlet Systems

Shearlets were introduced in 2006 [19] as the first directional representation system
which not only satisfies the same celebrated properties of curvelets, but is also more
adapted to the digital realm. In fact, shearlets enable a unified treatment of the con-
tinuum and digital setting, which allows implementations faithful to the continuum
domain theory. This key property is achieved through utilization of a shearing ma-
trix instead of rotations as a means to parameterize orientation, thereby preserving
the structure of the integer grid. The resulting different tilings of frequency domain
are illustrated in Figure 4.

We next introduce a selection of the variety of available shearlet systems, namely
bandlimited shearlets (Subsection 3.2.1), the so-called smooth Parseval frames of
shearlets (Subsection 3.2.3), and compactly supported shearlets (Subsection 3.2.2).
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(1) (2)

Fig. 4 Frequency tiling induced by a curvelet system (1) and a shearlet system (2).

For a more detailed exposition of shearlets than given below, we refer to the book
[28].

3.2.1 Bandlimited Shearlets

We first present the classical cone-adapted shearlet construction of band-limited
shearlets presented in [19]. It is worth emphasizing that due to the shearing operator,
the frequency domain needs to be split into four cones to ensure an almost uniform
treatment of the different directions, which comes naturally for rotation as a means
to change the orientation (compare Figure 4).

First, letψ1, ψ2 ∈ L2(R) be chosen such that

suppψ̂1 ⊂
[
−1

2
,− 1

16

]
∪
[

1
16

,
1
2

]
, suppψ̂2 ⊂ [−1,1] ,

∑
j≥0

∣∣ψ̂1
(
2− jω

)∣∣2 = 1 for |ω| ≥ 1
8
,

and
2⌊ j/2⌋

∑
l=−2⌊ j/2⌋

∣∣∣ψ̂2

(
2⌊ j/2⌋ω+ l

)∣∣∣
2
= 1 for |ω| ≤ 1.

Then the classical mother shearletψ is defined by

ψ̂(ξ ) := ψ̂1(ξ1)ψ̂2

(
ξ2

ξ1

)
.

For j, ℓ ∈ Z let now the parabolic scaling matrixA j and the shearing matrixSℓ be
defined by

A j :=

(
2 j 0
0 2j/2

)
and Sℓ :=

(
1 ℓ
0 1

)
.
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Further, for a domainΩ ⊂ R2 let us define the space

L2(Ω)∨ :=
{

f ∈ L2(R2) : supp f̂ ⊂ Ω
}
.

It was then shown in [19] that the system

Σ0 :=
{

23 j/4ψ (SℓA j ·−k) : j ≥ 0, ℓ=−2⌊ j/2⌋, · · · ,2⌊ j/2⌋,k∈ Z
2
}

constitutes a Parseval frame for the Hilbert spaceL2 (C )∨ on the frequency cone

C :=

{
ξ : |ξ1| ≥

1
8
,
|ξ2|
|ξ1|

≤ 1

}
.

By reversing the coordinate axes, also a Parseval frameΣ1 for L2 (C ′)∨, where

C
′ :=

{
ξ : |ξ2| ≥

1
8
,
|ξ1|
|ξ2|

≤ 1

}
,

can be constructed. Finally, we can consider a Parseval frame

Φ :=
{

φ(·− k) : k∈ Z
2}

for the Hilbert spaceL2
([

− 1
8,

1
8

]2)∨
. Combining those systems, we obtain theban-

dlimited shearlet frame
Σ := Σ0∪Σ1∪Φ.

In [20], it was shown that bandlimited shearlet frames achieve (almost) optimal
sparse approximations for elements ofE 2(R2), similar to curvelets and in fact even
with thesamelog-like factor.

Theorem 4 ([20]). The bandlimited shearlet frameΣ provides (almost) optimal
sparse approximations of cartoon-like functions f∈ E 2(R2), i.e.,

‖ f − fN‖2
2 . N−2(logN)3 as N→ ∞,

where fN is the nonlinear N-term approximation obtained by choosingthe N largest
shearlet coefficients of f .

3.2.2 Smooth Parseval Frames of Shearlets

Following [22], a slight modification of the bandlimited shearlet construction,
namely by carefully glueing together boundary elements along the seamlines with
angleπ/4, yields a Parseval frame with smooth and well-localized elements.
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3.2.3 Compactly Supported Shearlets

In 2011, compactly supported shearlets were introduced by one of the authors and
her collaborators in [27]. Currently known constructions of compactly supported
shearlets involve separable generators, i.e.,

ψ(x1,x2) := ψ1(x1)ψ2(x2), ψ̃(x1,x2) := ψ(x2,x1). (4)

with a waveletψ1 and a scaling functionψ2. Following [27], the cone-adapted dis-
crete shearlet system is then defined as follows, whereA j := diag(2 j ,2 j/2) as before
andÃ j := diag(2 j/2,2 j).

Definition 4. For some fixed sampling parameterc > 0, thecone-adapted discrete
shearlet system SH

(
φ,ψ, ψ̃;c

)
generated byφ,ψ, ψ̃ ∈ L2(R2) is defined by

SH
(
φ,ψ, ψ̃;c

)
= Φ(φ;c)∪Ψ(ψ;c)∪Ψ̃(ψ̃;c),

where

Φ(φ;c) = {σk = φ(·− k) : k∈ cZ2},
Ψ(ψ;c) =

{
σ j ,ℓ,k = 23 j/4ψ(SℓA j ·−k) : j ≥ 0, |ℓ| ≤ ⌈2 j/2⌉,k∈ cZ2},

Ψ̃(ψ̃;c) =
{

σ̃ j ,ℓ,k = 23 j/4ψ̃(ST
ℓ Ã j ·−k) : j ≥ 0, |ℓ| ≤ ⌈2 j/2⌉,k∈ cZ2}.

Under certain assumptions onc,ψ, ψ̃ this shearlet system forms a frame with
controllable frame bounds [24].

In [27], it was shown that compactly supported shearlet frames, under assump-
tions on the separable behavior and the directional vanishing moments of the gener-
ators, also achieve (almost) optimal sparse approximations for elements ofE 2(R2).

Theorem 5 ([27]).Let c> 0 and letφ,ψ, ψ̃ ∈ L2(R2) be compactly supported. Sup-
pose that, in addition, for allξ = (ξ1,ξ2) ∈ R2, the shearletψ satisfies

(i) |ψ̂(ξ )| ≤C1min(1, |ξ1|α )min(1, |ξ1|−γ)min(1, |ξ2|−γ) and

(ii)
∣∣∣ ∂

∂ξ2
ψ̂(ξ )

∣∣∣≤ |h(ξ1)|
(

1+ ξ2
ξ1

)−γ
,

whereα > 5, γ ≥ 4, h∈ L1(R), and C1 is a constant, and suppose that the shearlet
ψ̃ satisfies (i) and (ii) with the roles ofξ1 and ξ2 reversed. Further, suppose that
SH(φ,ψ, ψ̃;c) forms a frame for L2(R2).

Then the shearlet frame SH(φ,ψ, ψ̃;c) provides (almost) optimal sparse approx-
imations of cartoon-like functions f∈ E 2(R2), i.e.,

‖ f − fN‖2
2 . N−2(logN)3 as N→ ∞,

where fN is the nonlinear N-term approximation obtained by choosingthe N largest
shearlet coefficients of f .
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With this theorem we end our presentation of directional representation systems,
although there do exist more constructions. It is a strikingfact, that the three pre-
sented examples all exhibit the same approximation behavior, although they are
construction-wise quite different. The framework of parabolic molecules, which we
will present in the subsequent sections, will reveal the fundamental common in-
gredients in these systems which ensure (almost) optimal sparse approximations of
cartoon-like functions.

4 Parabolic Molecules

The concept of parabolic molecules took shape by distillingthe essential principles,
which underly many of the newly constructed directional representation systems, in
particular curvelets and shearlets. It provides a framework, which comprises many
of these classic systems, and allows the design of new constructions with pre-defined
approximation properties.

Moreover, the approximation properties of some new system are usually proven
more or less from scratch. By adopting the higher level viewpoint of time-frequency
localization, the parabolic molecule framework is very general and independent of
specific constructions. This has the advantage, that it enables a unified treatment of
many systems. In particular, it can be used to establish approximation results for
many systems simultaneously.

A system of parabolic molecules consists of functions, obtained from a set of
generators via parabolic dilations, rotations and translations. Similar to curvelets,
each function in a system of parabolic molecules is therefore naturally associated
with a certain scale, orientation and spatial location.

A central feature of the framework, which explains the terminology ‘molecules’,
is the concept of variable generators: In order to gain flexibility the generators are
allowed to vary, as long as they obey a prescribed time-frequency localization. At
the heart of this is the fundamental observation that it is foremost the time-frequency
localization, which determines the approximation properties and performance of a
system.

A nice side-effect of this less rigid construction principle is the fact that the strict
vanishing moment conditions, usually imposed on the generators of classical con-
structions, can be relaxed without changing the asymptoticapproximation behavior
of the system. It suffices to require the moments to vanish asymptotically at high
scales.

4.1 Definition of Parabolic Molecules

Let us now delve into the details of the framework of parabolic molecules. A system
of parabolic molecules is a family of functions(mλ )λ∈Λ obtained from a set of
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generators via parabolic dilations, rotations and translations. Each functionmλ is
therefore associated with a unique point in the parameter spaceP, sometimes also
referred to as phase space, given by

P := R+×T×R
2,

where a pointp= (s,θ,x) ∈ P specifies a scale 2s ∈ R+, an orientationθ ∈ T, and
a locationx∈ R2.

The relation between the indexλ of a moleculemλ and its location(sλ ,θλ ,xλ )
in the parameter spaceP is described via so-called parametrizations.

Definition 5. A parametrizationconsists of a pair(Λ ,ΦΛ ), whereΛ is a discrete
index set andΦΛ is a mapping

ΦΛ : Λ → P, λ 7→ (sλ ,θλ ,xλ ) ,

which associates with eachλ ∈Λ ascale sλ , adirectionθλ and alocation xλ ∈R2.

By using parametrizations, the actual indices of the molecules can be de-coupled
from their associated locations inP. This gives the freedom to assign generic indices
to the molecules, a feature, which is essential to include systems into the frame-
work, whose constructions are based on different principles, like e.g. shearlet-like
and curvelet-like systems. Another benefit of this approachis that a parameteriza-
tion does not have to sample phase space in a regular fashion.The only property it
needs to satisfy for our results to be applicable is consistency as defined below in
Subsection 6.2.

Before defining parabolic molecules we fix the following notation. As defined
in Section 3, letRθ denote the rotation matrix by an angleθ, andA j the parabolic
scaling matrix associated withj ≥ 0.

Definition 6. Let Λ be a parametrization. A family(mλ )λ∈Λ of functionsmλ ∈
L2(R2) is called afamily of parabolic moleculesof order(R,M,N1,N2) if it can be
written as

mλ (x) = 23sλ /4a(λ )
(
Asλ Rθλ (x− xλ )

)

such that
∣∣∣∂β â(λ )(ξ )

∣∣∣. min
(

1,2−sλ + |ξ1|+2−sλ /2|ξ2|
)M

〈|ξ |〉−N1 〈ξ2〉−N2 (5)

for all |β | ≤ R. The implicit constants shall be uniform overλ ∈Λ .

Remark 1.To simplify notation we did not explicitly refer to the utilized parametri-
zationΦΛ .

Notice that a system of parabolic molecules(mλ )λ∈Λ is generated by parabol-
ically scaling, rotating and translating a set of generators (a(λ ))λ∈Λ . In contrast
to many classical constructions, where the set of generators is usually small, each



16 P. Grohs, S. Keiper, G. Kutyniok, and M. Schäfer

molecule is allowed to have its own individual generator. Weonly require these
generators to uniformly obey a prescribed time-frequency localization.

Let us remark, that for convenience the time-frequency conditions in the defini-
tion are formulated on the Fourier side. Thus, the numberR actually describes the
spatial localization,M the number of directional (almost) vanishing moments and
N1,N2 describe the smoothness of an elementmλ .

According to the definition the frequency support of a parabolic molecule is con-
centrated in a parabolic wedge associated to a certain orientation, and in the spatial
domain its essential support lies in a rectangle with parabolic aspect ratio. For illus-
tration purposes, the approximate frequency support of twoparabolic molecules at
different scales and orientations is depicted in Figure 5.

(1) (2)

Fig. 5 (1): The weight function min
(
1,2−sλ + |ξ1|+2−sλ /2|ξ2|

)M 〈|ξ |〉−N1 〈ξ2〉−N2 for sλ = 3,
M = 3, N1 = N2 = 2. (2): Approximate Frequency support of a corresponding moleculem̂λ with
θλ = π/4.

Changing into polar coordinates we obtain the representation

m̂λ (r,ϕ ) = 2−3sλ /4â(λ )
(

2−sλ r cos(ϕ +θλ ),2
−sλ /2r sin(ϕ +θλ )

)
exp(2πi〈xλ ,ξ 〉) ,

which directly implies the estimate

|m̂λ (ξ )|. 2−2sλ /4min
(
1,2−sλ (1+ r)

)M 〈
2−sλ r

〉−N1 〈2−sλ /2r sin(ϕ +θλ )〉−N2.

4.2 Index Distance

An essential ingredient for the theory is the fact that the parameter spaceP can be
equipped with a natural (pseudo-)metric. It was first introduced by Hart-Smith [29],
albeit in a different context, and is therefore sometimes termed theHart-Smith
pseudo metric. Later it was also used in [3].

Definition 7. Following [3, 29], we define for two indicesλ ,µ the index distance
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ω(λ ,µ) := 2|sλ −sµ | (1+2sλ0d (λ ,µ)
)
,

and
d (λ ,µ) := |θλ −θµ |2+ |xλ − xµ |2+ |〈eλ ,xλ − xµ〉|.

whereλ0 = argmin(sλ ,sµ) andeλ = (cos(θλ ),sin(θλ ))
⊤.

Remark 2.The notationω(λ ,µ) is a slight abuse of notation, sinceω is acting on
P. Therefore it should read

ω(ΦΛ (λ ),Φ∆ (µ))

for indicesλ ∈ Λ , µ ∈ ∆ with associated parametrizationsΦΛ , Φ∆ . In order not to
overload the notation we stick with the shorter but slightlyless accurate definition.

Remark 3.We also mention that there is a slight inaccuracy in the abovedefinition.
Real-valued curvelets or shearlets are not associated withan angle but with a ray,
i.e., θ andθ +π need to be identified. This is not reflected in the above defini-
tion. The ‘correct’ definition should assume that|θλ | ≤ π

2 ∈ P1, the projective line.
Therefore, it should read

d (λ ,µ) := |{θλ −θµ}|2+ |xλ − xµ |2+ |〈θλ ,xλ − xµ〉|

with {ϕ} being the projection ofϕ ontoP1 ∼= (−π/2,π/2]. However, for our results
it will make no difference which definition is used. Thus we decided to employ
Definition 7, which avoids additional technicalities.

We point out that the Hart-Smith pseudo metric is not a distance in the strict
sense, e.g. we haveω(λ ,λ ) = 1 6= 0. As we shall see later, it somehow measures the
correlation of a pair of parabolic molecules associated to the corresponding points
in P. The following proposition, whose proof can be found in [3],collects some of
its properties.

Proposition 1 ([3]). For indicesλ , µ , ν we have

(i) Symmetry:ω(λ ,µ)≍ ω(µ ,λ ).
(ii) Triangle Inequality: d(λ ,µ)≤C(ω(λ ,ν)+ω(ν ,µ)) for some constant C> 0.
(iii) Composition: For every integer N> 0 and some positive constant CN it holds

∑
ν

ω(λ ,ν)−Nω(ν ,µ)−N ≤CNω(λ ,µ)−N−1.

4.3 Decay of the Cross-Gramian

Given two systems(mλ )λ∈Λ and(pµ)µ∈∆ of parabolic molecules we are interested
in the magnitudes of the cross-correlations|〈mλ , pµ〉|. A fast decay will be key
to, for instance, transferring sparse approximation properties from one system of
parabolic molecules to another.
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The following theorem establishes a relation to the index distance onP. It states,
that a high distance of two indices can be interpreted as a lowcross-correlation of
the associated molecules. The proof is quite technical and we refer to [17] for the
details.

Theorem 6 ([17]).Let(mλ )λ∈Λ , (pµ)µ∈∆ be two systems of parabolic molecules of
order (R,M,N1,N2) with

R≥ 2N, M > 3N− 5
4
, N1 ≥ N+

3
4
, N2 ≥ 2N.

Then ∣∣〈mλ , pµ
〉∣∣. ω

(
(sλ ,θλ ,xλ ),(sµ ,θµ ,xµ)

)−N
.

This result shows that the Gramian matrix between two systems of parabolic
molecules satisfies a strong off-diagonal decay property and is in that sense very
close to a diagonal matrix. In Section 6 we will present several immediate appli-
cations of this result, most notably for the approximation properties of parabolic
molecules.

5 Examples of Parabolic Molecules

Before going deeper into the theory of parabolic molecules and further exploring
their properties, we pause for a while and give some examplesfor illustration. This
will give evidence about the versatility of the concept. In particular, we show that
both rotation-based and shear-based constructions fit wellinto the framework. It will
also be proven that earlier constructions, which also employ the ‘molecule’ concept,
can be viewed as subclasses of the more general parabolic molecules.

5.1 Curvelet-Like Systems

We begin with the review of curvelet-like systems, i.e. constructions based on rota-
tion. Due to their similar construction principles, it may not come as a surprise that
second generation curvelets are instances of parabolic molecules. It is also easily
verified that curvelet molecules as defined in [3] fall into this framework.

5.1.1 Second Generation Curvelets

We start by specifying the parametrization, which we utilize for fitting second gen-
eration curvelets into the framework of parabolic molecules.

Definition 8. Let



Parabolic Molecules: Curvelets, Shearlets, and Beyond 19

Λ 0 :=
{
( j, ℓ,k) ∈ Z

4 : j ≥ 0, ℓ=−2⌊ j/2⌋−1, · · · ,2⌊ j/2⌋−1
}
,

be the curvelet index from (2) and defineΦ0 : Λ 0 → P by

Φ0( j, ℓ,k) := ( j, ℓ2−⌊ j/2⌋π,R−θλ A−sλ k).

Then(Λ 0,Φ0) is called thecanonical parametrization.

We next prove that the frameΓ 0 of second generation curvelets as defined in
Subsection 3.1 forms a system of parabolic molecules of arbitrary order.

Proposition 2 ([17]).The second generation curvelet frameΓ 0 constitutes a system
of parabolic molecules of arbitrary order associated with the canonical parametriza-
tion.

Proof. Let λ ∈Λ 0. Due to rotation invariance, we may restrict ourselves to the case
θλ = 0. Therefore, denotingγj := γ( j ,0,0), it is sufficient to prove that the function

a(λ )(·) := 2−3sλ /4γj

(
A−1

sλ
·
)

satisfies (5) for(R,M,N1,N2) arbitrary. For this, first note that

â(λ )(·) = 23sλ /4γ̂j
(
Asλ ·

)
.

The function ˆa(λ ), together with all its derivatives has compact support in a rectangle
away from theξ1-axis. Therefore, it only remains to show that, on its support, the
functionâ(λ ) has bounded derivatives, with a bound independent ofj. But this fol-

lows from elementary arguments, usingr =
√

ξ 2
1 + ξ 2

2 , ω = arctan(ξ2/ξ1), which
yields

â(λ )(ξ ) = γ̂( j ,0,0) (A jξ ) =W(α j (ξ ))V (β j(ξ )) ,

α j(ξ ) := 2− j
√

22 jξ 2
1 +2 jξ 2

2 and β j(ξ ) := 2 j/2arctan

(
ξ2

2 j/2ξ1

)
.

By a straightforward calculation, all derivatives ofα j andβ j are bounded on the
support of ˆa(λ ) and uniformly in j. The proposition is proved. ⊓⊔

5.1.2 Hart Smith’s Parabolic Frame

Historically, the first instance of a decomposition into parabolic molecules can be
found in Hart Smith’s work on Fourier Integral Operators andWave Equations [29].
This frame, as well as its dual, again forms a system of parabolic molecules of arbi-
trary order associated with the canonical parametrization. We refer to [29, 1] for the
details of the construction which is essentially identicalto the curvelet construction,
with primal and dual frame being allowed to differ. The same discussion as above
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for curvelets shows that also this system is a special instance of the framework of
parabolic molecules.

5.1.3 Borup and Nielsen’s Construction

Another very similar construction has been given in [2]. In this paper, the focus
has been on the study of associated function spaces. Again, it is straightforward to
prove that this system constitutes a system of parabolic molecules of arbitrary order
associated with the canonical parametrization.

5.1.4 Curvelet Molecules

The final concept of parabolic molecules had many predecessors. In [3] the au-
thors also employed the idea of molecules and introduced thenotion of curvelet
molecules. It proved to be a useful concept for showing sparsity properties of wave
propagators. Let us first give their exact definition.

Definition 9. Let Λ 0 be the canonical parametrization. A family(mλ )λ∈Λ 0 is called
a family of curvelet moleculesof regularityR, if it can be written as

mλ (x) = 23sλ /4a(λ )
(
Asλ Rθλ (x− xλ )

)

such that, for all|β | ≤ Rand eachN = 0,1,2, . . . ,

|∂βa(λ )(x)|. 〈x〉−N

and forM = 0,1, . . .

|â(λ )(ξ )|. min
(

1,2−sλ + |ξ1|+2−sλ /2|ξ2|
)M

.

This definition is similar to our definition of parabolic molecules, however with
two crucial differences: First, (5) allows for arbitrary rotation angles and is therefore
more general. Curvelet molecules on the other hand are only defined for the canon-
ical parametrizationΛ 0 (which, in contrast to our definition, is not sufficiently gen-
eral to also cover shearlet-type systems). Second, the decay conditions analogous
to our condition (5) are more restrictive in the sense that itrequires infinitely many
nearly vanishing moments.

In fact, the following result can be proven using similar arguments as for Propo-
sition 2.

Proposition 3 ([17]). A system of curvelet molecules of regularity R constitutes a
system of parabolic molecules of order(∞,∞,R/2,R/2).
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5.2 Shearlet-Like Systems

It is perhaps not surprising that curvelets and their relatives described above fall
into the framework of parabolic molecules. However, we willnext show that even
shearlets as a very different directional representation system are examples of
parabolic molecules. In this regard we would like to draw thereader’s attention
to the parametrization chosen for fitting shearlets into this framework.

5.2.1 Shearlet Molecules

Shearlet molecules as introduced in [17] provide a framework for shearlet-like sys-
tems in the spirit of curvelet molecules. For their definition we require the index
set

Λ σ :=
{
(ε, j, l ,k) ∈ Z2×Z

4 : ε ∈ {0,1}, j ≥ 0, ℓ=−2⌊ j/2⌋, · · · ,2⌊ j/2⌋
}

(6)

and generating functionsφ,ψ j ,ℓ,k, ψ̃ j ,ℓ,k ∈ L2(R2) for ( j, ℓ,k) ∈ Λ σ . The associated
shearlet system

Σ := {σλ : λ ∈ Λ σ} ,
is then defined by settingσ(ε,0,0,k)(·) = φ(·− k) and for j ≥ 1:

σ(0, j ,ℓ,k)(·) = 23 j/4ψ j ,ℓ,k
(
A jSℓ, j ·−k

)
,

σ(1, j ,ℓ,k)(·) = 23 j/4ψ̃ j ,ℓ,k

(
Ã jS

T
ℓ, j ·−k

)
.

HereSℓ, j denotes the shearing matrix

Sℓ, j :=

(
1 ℓ2−⌊ j/2⌋

0 1

)
.

We proceed to define shearlet molecules of order(R,M,N1,N2), which is a gen-
eralization of shearlets adapted to parabolic molecules, in particular including the
classical shearlet molecules introduced in [21], see Subsection 5.2.5.

Definition 10. We callΣ a system ofshearlet moleculesof order(R,M,N1,N2), if
the functionsψ j ,ℓ,k satisfy

|∂β ψ̂ j ,ℓ,k(ξ1,ξ2)|. min
(

1,2− j + |ξ1|+2− j/2|ξ2|
)M

〈|ξ |〉−N1〈ξ2〉−N2 (7)

and
|∂β φ̂(ξ1,ξ2)|. 〈|ξ |〉−N1〈ξ2〉−N2 (8)

for everyβ ∈ N
2 with |β | ≤ R, and if the functions̃ψ j ,ℓ,k satisfy (7) with the roles

of ξ1 andξ2 reversed.
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Remark 4.In our proofs it is nowhere required that the directional parameterℓ runs
between−2⌊ j/2⌋ and−2⌊ j/2⌋. Indeed,ℓ running in any discrete interval−C2⌊ j/2⌋,
. . . , C2⌊ j/2⌋ would yield the exact same results, as a careful inspection of our argu-
ments shows. Likewise, in certain shearlet constructions,the translational sampling
runs not throughk ∈ Z2, but throughτZ2 with τ > 0 a sampling constant. Our re-
sults are also valid for this case with similar proofs. The same remark applies to all
curvelet-type constructions.

Now we can show the main result of this section, namely that shearlet systems
with generators satisfying (7) and (8) are actually instances of parabolic molecules
associated with a specific shearlet-adapted parametrization (Λ σ ,Φσ ). This result
shows that the concept of parabolic molecules is indeed a unification of in particular
curvelet and shearlet systems.

Proposition 4 ([17]). Assume that the shearlet systemΣ constitutes a system of
shearlet molecules of order(R,M,N1,N2). ThenΣ forms a system of parabolic
molecules of order(R,M,N1,N2), associated to the parametrization(Λ σ ,Φσ ),
where with A0j = A j , A1

j = Ã j , S0
ℓ, j = Sℓ, j , S1

ℓ, j = ST
ℓ, j the mapΦσ is given by

Φσ (λ ) = (sλ ,θλ ,xλ ) :=

(
j,επ/2+arctan(−ℓ2−⌊ j/2⌋),

(
Sε
ℓ, j

)−1(
Aε

j

)−1
k

)
.

Proof. We confine the discussion toε = 0, the other case being the same. Further,
we will suppress the subscriptsj, ℓ,k in our notation. We need to show that

a(λ )(·) := ψ
(

Asλ Sℓ,sλ RT
θλ

A−sλ ·
)

satisfies (5).
We first observe that the Fourier transform ofa(λ ) is given by

â(λ )(·) = ψ̂
(

A−sλ S−T
ℓ,sλ

RT
θλ

Asλ ·
)
,

and the matrixS−T
ℓ,sλ

RT
θλ

has the form

S−T
ℓ,sλ

RT
θλ

=

(
cos(θλ ) sin(θλ )

0 −ℓ2−⌊sλ /2⌋ sin(θλ )+ cos(θλ )

)
=:

(
u v
0 w

)
.

We next claim that the quantitiesu andw are uniformly bounded from above and
below, independent ofj, ℓ. To prove this claim, consider the functions

τ (x) := cos(arctan(x)) and ρ(x) := xsin(arctan(x))+ cos(arctan(x)),

which are bounded from above and below on[−1,1], as elementary arguments show.
In fact, this boundedness holds on any compact interval. We have

u= τ
(
−ℓ2⌊sλ /2⌋

)
and w= ρ

(
−ℓ2⌊sλ /2⌋

)
.
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Since we are only considering indices withε = 0, we have
∣∣−ℓ2⌊sλ /2⌋∣∣≤ 1, which

now implies uniform upper and lower boundedness of the quantities u,w. Hence,
there exist constants 0< δu ≤ ∆u < ∞ and 0< δw ≤ ∆w < ∞ such that for allj, ℓ it
holds

δu ≤ u≤ ∆u and δw ≤ w≤ ∆w.

Observing that the matrixA−sλ RT
θλ

S−T
ℓ,sλ

Asλ has the form

(
u 2−sλ /2v
0 w

)
,

and by using the upper boundedness ofu,v,w and the chain rule, for any|β | ≤ R,
we obtain

|∂β â(λ )(ξ )|. sup
|γ|≤R

∣∣∣∣∂
γψ̂
((

u 2−sλ /2v
0 w

)
ξ
)∣∣∣∣.

(
|ξ1|+2−sλ /2|ξ2|

)M
.

For the last estimate we utilized the moment estimate forψ̂, which is given by (7).
This proves the moment property required in (5).

Finally, we need to show the decay of∂β â(λ ) for large frequenciesξ . Again, due
to the fact thatu,v,w are bounded from above andu,w from below, and utilizing the
large frequency decay estimate in (7), we can estimate

|∂β â(λ )(ξ )| . sup
|γ|≤R

∣∣∣∣∂
γψ̂
((

u 2−sλ /2v
0 w

)
ξ
)∣∣∣∣

.

〈∣∣∣∣
(

u 2−sλ /2v
0 w

)
ξ
∣∣∣∣
〉−N1

〈wξ2〉−N2

. 〈|ξ |〉−N1 〈ξ2〉−N2.

The statement is proven. ⊓⊔

In the remainder of this section we examine the main shearletconstructions
which are known today and show that they indeed fit into the framework of parabolic
molecules.

5.2.2 Classical Shearlets

For the band-limited shearlet systemΣ defined in Subsection 3.2.1, the following
results can be shown using Proposition 4.

Proposition 5 ([17]). The systemΣ := Σ0 ∪ Σ1 ∪Φ constitutes a shearlet frame
which is a system of parabolic molecules of arbitrary order.

It is also straightforward to check that the related Parseval frame constructed in
[22] constitutes a system of parabolic molecules of arbitrary order.
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5.2.3 Bandlimited Shearlets with Nice Duals

The bandlimited shearlet frameΣ as described above suffers from the fact that its
dual frames are unknown. In particular, it is not known whether, in general, there
exists a dual frame which also forms a system of parabolic molecules. In particular
for applications, such a construction is however required.For general framesΣ of
parabolic molecules it can be shown that the canonical dual frameΣ ′ constitutes a
system of parabolic molecules of lower order [16]. However,the result of that paper
is mostly of a qualitative nature and in particular it is difficult to compute the order
of the dual frame for a given construction. In [15] this problem was successfully
resolved by carefully glueing together the two bandlimitedframes associated with
the two frequency cones. The result in this paper in fact provides a construction of
shearlet framesΣ with a dual frameΣ ′ such that bothΣ andΣ ′ form systems of
parabolic molecules of arbitrary order.

5.2.4 Compactly Supported Shearlets

Again by using the general result Proposition 4, it can be shown that the compactly
supported shearlets as introduced in Subsection 3.2.3 alsoconstitute a system of
parabolic molecules, this time with the order being dependent in a more delicate
way on the chosen generators.

Proposition 6 ([17]).Assume thatψ1 ∈CN1 is a compactly supported wavelet with
M +R vanishing moments, andψ2 ∈ CN1+N2 is also compactly supported. Then,
with ψ andψ̃ defined by (4), the associated shearlet systemΣ constitutes a system
of parabolic molecules of order(R,M,N1,N2).

We remark that several assumptions on the generatorsψ, ψ̃ could be weakened,
for instance the separability of the shearlet generators isnot crucial for the argu-
ments of the associated proof. More precisely, neither compact support nor ban-
dlimitedness is necessary.

5.2.5 Shearlet Molecules of [21]

In [21] the results of [3] are established for shearlets instead of curvelets. A crucial
tool in the proof is the introduction of a certain type of shearlet molecules which are
similar to curvelet molecules discussed above, but tailored to the shearing operation
rather than rotations.

Definition 11. Let Λ σ be the shearlet index set as in (6) andAε
j , Sε

ℓ, j be defined
as in Proposition 4. A family(mλ )λ∈Λ σ is called afamily of shearlet moleculesof
regularityR, if it can be written as

mλ (x) = 23sλ /4a(λ )
(

Aε
j S

ε
ℓ, jx− k

)
,
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such that for all|β | ≤ Rand eachN = 0,1,2, . . .

|∂βa(λ )(x)|. 〈x〉−N

and forM = 0,1, . . .

|â(λ )(ξ )|. min
(

1,2−sλ + |ξ1|+2−sλ /2|ξ2|
)M

.

By the results in [21], the shearlet molecules defined therein satisfy the inequality
(7) with the choice of parameters(R,N,N1,N2) = (∞,∞,R/2,R/2). Therefore, in
view of Proposition 4, shearlet molecules of regularityR as defined in [21] form
systems of parabolic molecules of order(∞,∞,R/2,R/2).

Proposition 7 ([17]). A system of shearlet molecules of regularity R constitutes a
system of parabolic molecules of order(∞,∞,R/2,R/2).

6 Sparse Approximation with Parabolic Molecules

This section is devoted to one prominent application of the framework of parabolic
molecules, and, in particular, the result of the decay of thecross-Gramian (Theorem
6), namely to sparse approximation behavior. This result will also show that the
viewpoint of time-frequency localization as adopted by theframework of parabolic
molecules provides the right angle to view questions of approximation behavior.

After introducing a measure for determining similar sparsity behavior, two main
results will be presented: First, it will be shown that any two systems of parabolic
molecules, which are consistent in a certain sense made precise later, of sufficiently
high order exhibit the same approximation behavior. Second, by linking an arbi-
trary system to the curvelet frame, we obtain a ‘stand-aloneresult’ in the sense of
sufficient conditions on the order of a system of parabolic molecules for providing
(almost) optimally sparse approximations of cartoon-likefunctions.

6.1 Sparsity Equivalence

In light of Lemma 1, two frames should possess similar sparseapproximation be-
havior, provided that the corresponding coefficient sequences have the same spar-
sity. This gave rise to the notion of sparsity equivalence from [17], which is a useful
tool to compare such behavior. It is based on the close connection between the best
N-term approximation rate of a frame and theℓp-(quasi-)norm of the associated
coefficient sequence.

Definition 12. Let (mλ )λ∈Λ and(pµ)µ∈∆ be systems of parabolic molecules and let
0< p≤ 1. Then(mλ )λ∈Λ and(pµ)µ∈∆ aresparsity equivalent inℓp, if
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∥∥∥
(
〈mλ , pµ〉

)
λ∈Λ ,µ∈∆

∥∥∥
ℓp→ℓp

< ∞.

Intuitively, systems of parabolic molecules being in the same sparsity equiva-
lence class have similar approximation properties. This will subsequently be elabo-
rated more deeply.

6.2 Consistency of Parametrizations

The next goal will be to find conditions which ensure that two systems of parabolic
molecules are sparsity equivalent. It seems clear from an intuitive viewpoint that this
requires some ‘consistency’ of the associated parametrizations. The next definition
provides the correct notion for making this mathematicallyprecise.

Definition 13. Two parametrizations(Λ ,ΦΛ ) and (∆ ,Φ∆ ) are calledk-consistent
for k> 0, if

sup
λ∈Λ

∑
µ∈∆

ω(λ ,µ)−k < ∞ and sup
µ∈∆

∑
λ∈Λ

ω(λ ,µ)−k < ∞.

In combination with Theorem 6, consistency is the essentialtool to decide
whether two frames of parabolic molecules are sparsity equivalent. We emphasize
that although the original definition of systems of parabolic molecules does not re-
quire those system to form a frame, in the context of approximation theory, however,
the frame property becomes important.

The following result states a sufficient condition for sparsity equivalence.

Theorem 7 ([17]). Two frames(mλ )λ∈Λ and (pµ)µ∈∆ of parabolic molecules of
order(R,M,N1,N2) with k-consistent parametrizations for some k> 0, are sparsity
equivalent inℓp, 0< p≤ 1, if

R≥ 2
k
p
, M > 3

k
p
− 5

4
, N1 ≥

k
p
+

3
4
, and N2 ≥ 2

k
p
.

Proof. By Schur’s test, a well-known result from operator theory, we have

∥∥∥
(
〈mλ , pµ〉

)
λ∈Λ ,µ∈∆

∥∥∥
ℓp→ℓp

≤ max

(
sup
µ∈∆

∑
λ∈Λ

|〈mλ , pµ〉|p, sup
λ∈Λ

∑
µ∈∆

|〈mλ , pµ〉|p
)1/p

.

By Theorem 6, this implies that

∥∥∥
(
〈mλ , pµ〉

)
λ∈Λ ,µ∈∆

∥∥∥
ℓp→ℓp

. max

(
sup
µ∈∆

∑
λ∈Λ

ω(λ ,µ)−k, sup
λ∈Λ

∑
µ∈∆

ω(λ ,µ)−k

)1/p

.
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But the term on the right hand side is finite, due to thek-consistency of the
parametrizations(Λ ,ΦΛ ) and(∆ ,Φ∆ ). This proves that(mλ )λ∈Λ and(pµ)µ∈∆ are
sparsity equivalent inℓp. ⊓⊔

Thus, as long as the parametrizations are consistent, the sparsity equivalence can
be controlled by the order of the molecules.

In the remainder, we fix the frame of second generation curveletsΓ 0 from Sec-
tion 3.1 as a reference frame. Recall that with respect to thecanonical parametriza-
tion (Λ 0,ΦΛ 0), this frame constitutes a system of parabolic molecules, justifying
the following definition.

Definition 14. A parametrization(Λ ,ΦΛ ) is calledk-admissiblefor k > 0, if it is
k-consistent with the canonical parametrization(Λ 0,ΦΛ 0).

Before stating our main results, it seems natural to ask whether the curvelet and
shearlet parametrization arek-admissible. This is the content of the next two lem-
mata.

Lemma 3 ([17]). The canonical parametrization(Λ 0,ΦΛ 0) is k-admissible for all
k> 2.

Proof. Writing sµ = j ′ in the definition ofω(µ ,λ ), we need to prove that

∑
j∈Z+

∑
λ∈Λ 0,sλ = j

2−k| j− j ′|
(

1+2min( j , j ′)d(µ ,λ )
)−k

< ∞. (9)

By [3, Equation (A.2)], for anyq, we have

∑
λ∈Λ 0,sλ = j

(1+2qd(µ ,λ ))−2 . 22( j−q)+. (10)

Hence, for eachk> 2, (9) can be estimated by

∑
j≥0

2−k| j− j ′|22| j− j ′| < ∞,

which finishes the proof. ⊓⊔

Lemma 4 ([17]).The shearlet parametrization(Λ σ ,Φσ ) is k-admissible for k> 2.

Proof. The proof follows the same arguments as the proof of Lemma 3, except
deriving the analogue to (10), i.e.,

∑
λ∈Λ σ ,sλ = j

(1+2qd(µ ,λ ))−2 . 22( j−q)+ , for anyq andµ ∈ Λ 0, (11)

requires a bit more work.
Without loss of generality we assume thatθµ = 0 andxµ = 0. Also, we only

restrict ourselves to the caseε = 0, the other case being exactly the same. In the
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caseq > j, the term on the left hand side of (11) can be bounded by a uniform
constant.

Thus, it remains to deal with thej ≥ q. Now we use the fact that, whenever
|ℓ|. 2− j/2, we have

∣∣∣arctan
(
−ℓ2−⌊ j/2⌋

)∣∣∣&
∣∣∣ℓ2−⌊ j/2⌋

∣∣∣ and |S−1
ℓ A− jk|& |A− jk|,

to estimate (11) by

∑
ℓ
∑
k

(
1+2q

(∣∣∣ℓ2−⌊ j/2⌋
∣∣∣
2
+
∣∣∣2−⌊ j/2⌋k2

∣∣∣
2
+
∣∣∣2− jk1− ℓ2−⌊ j/2⌋k22−⌊ j/2⌋

∣∣∣
))−2

.

This can be interpreted as a Riemann sum and is bounded (up to aconstant) by the
corresponding integral

∫

R2

dx

2−3 j/2

∫

R

dy

2− j/2

(
1+2q(y2+ x2

2+ |x1− x2y|)
)−2

,

compare [3, Equation (A.3)]. This integral is bounded byC× 22( j−q) as can be
seen by the substitutionx1 → 2qx1, x2 → 2q/2x2, y→ 2q/2y. This yields (11), which
completes the proof. ⊓⊔

6.3 Sparse Approximations

The next theorem now states the central fact that any system of parabolic molecules
of sufficiently high order, whose parametrization isk-admissible, is sparsity equiva-
lent to the second generation curvelet frame from Subsection 3.1. This theorem can
interpreted as a means to transfer sparse approximation results from one system of
parabolic molecules to another one, which is also key to Theorem 9.

Theorem 8 ([17]).Assume that0< p≤ 1, (Λ ,ΦΛ ) is a k-admissible parametriza-
tion, and Γ 0 = (γλ )λ∈Λ 0 the tight frame of bandlimited curvelets. Further, as-
sume that(mλ )λ∈Λ is a system of parabolic molecules associated withΛ of order
(R,M,N1,N2) such that

R≥ 2
k
p
, M > 3

k
p
− 5

4
, N1 ≥

k
p
+

3
4
, N2 ≥ 2

k
p
.

Then(mλ )λ∈Λ is sparsity equivalent inℓp to Γ 0.

Recall that it was shown by Donoho in [11] (cf. Theorem 1) that(under natural
conditions) the optimally achievable decay rate of the approximation error for the
classE 2(R2) is given by

‖ f − fN‖2
2 ≍ N−2, asN → ∞.
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As discussed before, in [5, 20, 24] rotation-based as well asshear-based systems
were constructed, which attain this rate up to a log-factor.Since these systems are
instances of parabolic molecules with consistent parametrizations, their similar ap-
proximation behavior is no coincidence, as we will see in thenext result.

Theorem 9 ([17]).Assume that(mλ )λ∈Λ is a system of parabolic molecules of or-
der (R,M,N1,N2) with respect to the parametrization(Λ ,ΦΛ ) such that

(i) (mλ )λ∈Λ constitutes a frame for L2(R2),
(ii) (Λ ,ΦΛ ) is k-admissible for every k> 2,
(iii) it holds that

R≥ 6, M > 9− 5
4
, N1 ≥ 3+

3
4
, N2 ≥ 6.

Then the frame(mλ )λ∈Λ possesses an almost best N-term approximation rate of
order N−1+ε , ε > 0 arbitrary, for the cartoon image classE 2(R2).

We remark that condition (ii) holds in particular for the shearlet parametrization.
Hence this result allows a simple derivation of the results in [20, 24] from [5]. In
fact, Theorem 9 provides a systematic way to, in particular,prove results on sparse
approximation of cartoon-like functions. It moreover enables us to provide a very
general class of systems of parabolic molecules which optimally sparsely approxi-
mate cartoon-like functions by using the known result for curvelets.

7 Outlook and Further Generalizations

Finally, we discuss some possible extensions and directions for future research.

• Higher Dimensional Setting.A general framework such as parabolic molecules
would also be of benefit for higher dimensional functions, inparticular for the
3-dimensional setting which then includes videos with timeas third dimension.
The model of cartoon-like functions was already extended tothis situation in
[26]. Then, in [12], a general framework of parabolic molecules for functions
in L2(R3) was introduced allowing, in particular, a similar result onthe cross-
Gramian of two systems of 3D parabolic molecules. We expect that the 3D frame-
work now indicates a natural extension to higher dimensional settings.

• General Scaling Matrix.Another key question concerns the inclusion of other
types of scaling laws: Can the framework of parabolic molecules be extended to
also include, in particular, wavelets and ridgelets as wellas newer hybrid con-
structions such as [26] or [23]? In the parabolic molecule framework the degree
of anisotropic scaling is confined to parabolic scaling, butone approach to cover
more scaling laws consists in the introduction of a parameter α ∈ [0,1], which
measures the degree of anisotropy. More precisely, one thenconsiders scaling
matrices of the type diag(a,aα ) for α ∈ [0,1], α = 0 corresponding to ridgelets,
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α = 1
2 to curvelets and shearlets, andα = 1 to wavelets. First results using this

approach to introduce an extension of parabolic molecules coinedα -molecules
have been derived in [18].

• Continuum Setting.It would be highly desirable to also introduce such a frame-
work for the continuum setting, i.e., with continuous parameter sets, adapted to
the continuous shearlet and curvelet transform [6, 25, 14].This would, for in-
stance, allow the transfer of characterization results of microlocal smoothness
spaces between different representation systems.

References

1. Andersson, F., de Hoop, M., Smith, H., Uhlmann, G.: A multi-scale approach to hyperbolic
evolution equations with limited smoothness. Comm. PDE33, 988–1017 (2008)

2. Borup, L., Nielsen, M.: Frame decompositions of decomposition spaces. J. Fourier Anal.
Appl. 13, 39–70 (2007)

3. Candès, E. J., Demanet, L.,: The curvelet representation of wave propagators is optimally
sparse. Comm. Pure Appl. Math.58, 1472–1528 (2002)

4. Candès, E. J., Donoho, D. L.: Ridgelets: a key to higher-dimensional intermittency? Phil.
Trans. R. Soc. Lond. A.357, 2495-2509 (1999)

5. Candès, E. J., Donoho, D. L.: New tight frames of curvelets and optimal representations of
objects withC2 singularities. Comm. Pure Appl. Math.56, 219–266 (2004)

6. Candès, E. J., Donoho, D. L.: Continuous curvelet transform: I. Resolution of the wavefront
set. Appl. Comput. Harmon. Anal.19, 162–197 (2005)

7. Candès, E. J., Donoho, D. L.: Continuous curvelet transform: II. Discretization and frames.
Appl. Comput. Harmon. Anal.19, 198–222 (2005)

8. Casazza, P. G., Kutyniok, G., eds.: Finite frames: Theoryand applications. Birkhäuser Boston
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