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Abstract. We consider a nonlinear variational wave equation that models the dynamics of
nematic liquid crystals. Finite difference schemes, that either conserve or dissipate a discrete

version of the energy, associated with these equations, are designed. Numerical experiments,
in both one and two-space dimensions, illustrating the stability and efficiency of the schemes
are presented. An interesting feature of these schemes is their ability to approximate both the
conservative as well as the dissipative weak solution of the underlying system.

1. Introduction

1.1. The model. The dynamics of nematic liquid crystals is an important object of study in
both physics and engineering. Many popular models of nematic liquid crystals consider a medium
consisting of thin rods that are allowed to rotate about their center of mass but are not allowed
to translate. Under the assumption that the medium is not flowing and deformations only occur
when the mean orientation of long molecules is changed, one can describe the the orientation of
the molecules at each location x ∈ R3 and time t ∈ R using a field of unit vectors

n = n(x, t) ∈ S2.

This field n is termed as the director field.
Given a director field n, the well-known Oseen-Frank potential energy density W, associated

with this field, is given by

(1.1) W(n,∇n) = α |n× (∇× n)|2 + β (∇ · n)2 + γ (n · (∇× n))
2
.

The positive constants α, β and γ are elastic constants of the liquid crystal. Note that each term
on the right hand side of (1.1) arises from different types of distortions. For instance, the term

α |n× (∇× n)|2 corresponds to the bending of the medium, the term β (∇ · n)2 corresponds to a

type of deformation called splay, and the term γ (n · (∇× n))
2
corresponds to the twisting of the

medium.
For the special case of α = β = γ, the potential energy density (1.1) reduces to

W(n,∇n) = α |∇n|2 ,

which corresponds to the potential energy density used in harmonic maps into the sphere S2. The
constrained elliptic system of equations for n, derived from the potential (1.1) using a variational
principle, and the parabolic flow associated with it, are widely studied, see [1, 4, 6] and references
therein.

However in the regime where inertial effects are dominant (over the viscosity), it is more natural
to model the propagation of orientation waves in the director field by employing the principle of
least action [12] i.e,

(1.2)
δ

δu

∫∫

(

n2
t −W(n,∇n)

)

dx dt = 0, n · n = 1.

Date: November 8, 2013.
The research of SM has been partially funded by the ERC starting grant N. 306279 SPARCCLE.

1



2 U. KOLEY, SIDDHARTHA MISHRA, N. H. RISEBRO, AND F. WEBER

Again in the special case of α = β = γ, this variational principle (1.2) yields the equation for
harmonic wave maps from (1+3)-dimensional Minkowski space into the two sphere, see [3, 13, 14]
and references therein.

1.1.1. One-dimensional planar waves. Planar deformations are of great interest in the study of
nematic liquid crystals. In particular, if we assume that the deformation depends on a single space
variable x, the director field n has a special form:

n = cosu(x, t)ex + sinu(x, t)ey.

Here, the unknown u ∈ R measures the angle of the director field to the x-direction, and ex and
ey are the coordinate vectors in the x and y directions, respectively. In this case, the variational
principle (1.2) reduces to

(1.3)











utt − c(u) (c(u)ux)x = 0, (x, t) ∈ ΠT ,

u(x, 0) = u0(x), x ∈ R,

ut(x, 0) = u1(x), x ∈ R.

where ΠT = R× [0, T ] with fixed T > 0 , and the wave speed c(u) given by

(1.4) c2(u) = α cos2 u+ β sin2 u,

for some positive constants α, β. The form (1.3) is the standard form of the nonlinear variational
wave equation considered in the literature.

If we consider the following energy :

(1.5) E(t) =
∫

R

(

u2t + c2(u)u2x
)

dx,

a simple calculation shows that smooth solutions of the variational wave equation (1.3) conserve
this energy i.e, they satisfy

(1.6)
dE(t)
dt

≡ 0.

1.1.2. Two-dimensional planar waves. Similarly, if the deformation depends on two space variables
x, y, the director field has the form:

n = cosu(x, y, t)ex + sinu(x, y, t)ey,

with u being the angle to the x− y plane. The corresponding wave equation is given by,

(1.7)











utt − c(u) (c(u)ux)x − b(u) (b(u)uy)y − a′(u)uxuy − 2a(u)uxy = 0, (x, y, t) ∈ QT ,

u(x, y, 0) = u0(x, y), (x, y) ∈ R2,

ut(x, y, 0) = u1(x, y), (x, y) ∈ R2.

where QT = R2 × [0, T ] with T > 0 fixed, u : QT → R is the unknown function and a, b, c are
given by

c2(u) = α cos2 u+ β sin2 u,

b2(u) = α sin2 u+ β cos2 u,

a(u) =
α− β

2
sin(2u).

for some constants α and β. Furthermore, smooth solutions of (1.7) also conserve the following
energy:

(1.8)

E(t) =
∫∫

R2

(

u2t + c2(u)u2x + b2(u)u2y + 2a(u)uxuy
)

dx dy

=

∫∫

R2

(

u2t + α(cos(u)ux + sin(u)uy)
2 + β(sin(u)ux − cos(u)uy)

2
)

dx dy,

i.e, smooth solutions satisfy (1.6) with respect to the above energy.
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1.2. Mathematical issues. It is well known that the solution of the initial value problem, even
for the one-dimensional planar wave equation (1.3) develops singularities in finite time, even if the
initial data are smooth [7]. Hence, solutions of (1.3) are defined in the sense of distributions, i.e.,

Definition 1.1. Set ΠT = R× (0, T ). A function

u(t, x) ∈ L∞
(

[0, T ];W 1,p(R)
)

∩ C(ΠT ), ut ∈ L∞ ([0, T ];Lp(R)) ,

for all p ∈ [1, 3 + q], where q > 0 is some positive constant is a weak solution of the initial value

problem (1.3) if it satisfies:
• For all test functions ϕ ∈ D(R× [0, T ))

(1.9)

∫∫

ΠT

(

utϕt − c2(u)uxϕx − c(u)c′(u)(ux)
2ϕ

)

dx dt = 0.

• u(·, t) → u0 in C
(

[0, T ];L2(R)
)

as t→ 0+.
• ut(·, t) → v0 as a distribution in ΠT when t→ 0+.

It is highly non-trivial to extend the solution after the appearance of singularities. In particular,
the choice of this extension is non-unique. Two distinct types of solutions, the so-called conserva-

tive and dissipative solutions are known. To illustrate this difference, one considers initial data for
which the solution vanishes identically at some specific (finite) time. At this point, at least two
possibilities exist: to continue with the trivial zero solution, termed as the dissipative solution.
As an alternative, one can show that there exists a nontrivial solution that appears as a natural
continuation of the solution prior to the critical time. This solution is denoted the conservative
solution as it preserves the total energy of the system. This dichotomy makes the question of
well-posedness of the initial value problem (1.3) very difficult. Additional admissibility conditions
are needed to select a physically relevant solution. The specification of such admissibility criteria
is still open.

Although the problem of global existence and uniqueness of solutions to the Cauchy problem
of the nonlinear variational wave equation (1.3) is still open, several recent papers have explored
related questions or particular cases of (1.3). It has been demonstrated in [9] that (1.3) is rich in
structural phenomena associated with weak solutions. In fact rewriting the highest derivatives of
(1.3) in conservative form

utt −
(

c2(u)ux
)

x
= −c(u)c′(u)u2x,

we see that the strong precompactness in L2 of the derivatives {ux} of a sequence of approximate
solutions is essential in establishing the existence of a global weak solution. However, the equation
shows the phenomenon of persistence of oscillations [5] and annihilation in which a sequence
of exact solutions with bounded energy can oscillate forever so that the sequence {ux} is not
precompact in L2, but the weak limit of the sequence is still a weak solution.

There has been a number of papers concerning the existence of weak solutions of the Cauchy
problem (1.3), starting with the papers by Zhang and Zheng [15, 16, 17, 18, 19, 20], Bressan and
Zheng [2] and Holden et al [10]. In [19], the authors show existence of a global weak solution,
using method of Young measures, for initial data u0 ∈ H1(R) and u1 ∈ L2(R). The function c is
assumed to be smooth, bounded, positive with derivative that is non-negative and strictly positive
on the initial data u0.

A different approach to the study of (1.3) was taken by Bressan and Zheng [2]. Here, they
rewrote the equation in new variables such that the singularities disappeared. They show that for
u0 absolutely continuous with (u0)x, u1 ∈ L2(R), the Cauchy problem (1.3) allows a global weak
solution with the following properties: the solution u is locally Lipschitz continuous and the map
t→ u(t, ·) is continuously differentiable with values in Lploc(R) for 1 ≤ p < 2.

In [10], Holden and Raynaud prove the existence of a global semigroup for conservative solutions
of (1.3), allowing for concentration of energy density on sets of zero measure. Furthermore they
also allow for initial data u0, u1 that contain measures. The proof involves constructing the
solution by introducing new variables related to the characteristics, leading to a characterization



4 U. KOLEY, SIDDHARTHA MISHRA, N. H. RISEBRO, AND F. WEBER

of singularities in the energy density. They also prove that energy can only focus on a set of times
of zero measure or at points where c′(u) vanishes.

In contrast to the one-dimensional case, hardly any rigorous wellposedness or even qualitative
results are available for the two-dimensional version of the variational wave equation (1.7).

1.3. Numerical schemes. Given the nonlinear nature of the variational wave equations (1.3)
and (1.7), explicit solution formulas are hard to obtain. Consequently, robust numerical schemes
for approximating the variational wave equation, are very important in the study of nematic liquid
crystals. However, there is a paucity of efficient numerical schemes for these equations. Within
the existing literature, we can refer to [8], where the authors present some numerical examples to
illustrate their theory. In recent years, a semi-discrete finite difference scheme for approximating
one-dimensional equation (1.3) was considered in [11]. The authors were even able to prove
convergence of the numerical approximation, generated by their scheme, to the dissipative solutions
of (1.3). However, the underlying assumptions on the wave speed c (positivity of the derivative of
c) precludes consideration of realistic wave speeds given by (1.4). Another recent paper dealing
with numerical approximation of (1.3) is [10]. Here, the authors use their analytical construction to
define a numerical method that can approximate the conservative solution. However, the method
is computationally very expensive as there is no time marching.

1.4. Aims and scope of the current paper. The above discussion clearly highlights the lack
of robust and efficient numerical schemes to simulate the nonlinear variational wave equation
(1.3). In particular, one needs a scheme that is both efficient, simple to implement and is able
to approximate the solutions of (1.3) accurately. Furthermore, one can expect both conservative

as well as dissipative solutions of the variational wave equation (1.3), after singularity formation.
Hence, it is essential to design schemes that approximate these different types of solutions.

To this end, we will construct robust finite difference schemes for approximating the variational
wave equation in both one and two space dimensions. The key design principle will be energy
conservation (dissipation). As pointed out before, smooth solutions of (1.3) and (1.7) are energy
conservative. After singularity formation, either this energy is conserved or dissipated. We will
design numerical schemes that imitate this energy principle. In other words, our schemes will
either conserve a discrete form of the energy (1.5) or dissipative it. Hence, we construct both en-
ergy conservative schemes as well as energy dissipative schemes for the variational wave equation,
in both one and two space dimensions. Extensive numerical experiments are presented to illus-
trate that the energy conservative (dissipative) schemes converge to the conservative (dissipative)
solution of the variational wave equation as the mesh is refined. To the best of our knowledge,
these are the first finite difference schemes that can approximate the conservative solutions of the
one-dimensional variational wave equation. Furthermore, we present the first set of numerical
schemes to approximate the two-dimensional version of these equations. Our energy conservative
(dissipative) schemes are based on either rewriting the wave equation as a first-order system of
equations or using a Hamiltonian formulation of our system.

The rest of the paper is organized as follows: In section 2, we present energy conservative
and energy dissipative schemes for the one-dimensional equation (1.3). Numerical experiments
illustrating these schemes are presented in section 3. The two-dimensional schemes are presented
in section 4.

2. Numerical schemes for the one-dimensional variational wave equation (1.3)

2.1. The grid and notation. We begin by introducing some notation needed to define the finite
difference schemes. Throughout this paper, we reserve ∆x and ∆t to denote two small positive
numbers that represent the spatial and temporal discretization parameters, respectively, of the
numerical schemes. For j ∈ N0 = N ∪ {0}, we set xj = j∆x, and for n = 0, 1, ..., N , where
N∆t = T for some fixed time horizon T > 0, we set tn = n∆t. For any function g = g(x)
admitting point values we write gj = g(xj), and similarly for any function h = h(x, t) admitting
point values we write hnj = h(xj , tn). We also introduce the spatial and temporal grid cells

Ij = [xj− 1

2

, xj+ 1

2

), Inj = Ij × [tn, tn+1).
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Furthermore we introduce the jump, and respectively, the average of any grid function ρ across
the interface xj+ 1

2

ρj+ 1

2

:=
ρj + ρj+1

2
,

JρKj+ 1

2

:= ρj+1 − ρj .

The following identities are readily verified:

(2.1)

JuvKj+ 1

2

= uj+ 1

2

JvKj+ 1

2

+ JuKj+ 1

2

vj+ 1

2

,

vj = vj± 1

2

∓ 1

2
JvKj± 1

2

.

2.2. A first-order system for (1.3). It is easy to check that the variational wave equation (1.3)
can be rewritten as a first-order system by introducing the independent variables:

v := ut

w := c(u)ux.

Then, for smooth solutions, equation (1.3) is equivalent to the following system for (v, w, u),

(2.2)











vt − (c(u)w)x = −cx(u)w
wt − (c(u)v)x = 0,

ut = v.

Furthermore, the energy associated with the above equation is

(2.3) E(t) =
∫

R

(

v2 + w2
)

dx.

Again, we can check that smooth solutions of (2.2) preserve this energy. Weak solutions can be
either energy conservative or energy dissipative.

2.3. Energy Preserving Scheme Based On System (2.2). Our objective is to design a (semi-
discrete) finite difference scheme such that the numerical approximations conserve a discrete ver-
sion of the energy (2.3). To this end, we suggest the following finite difference scheme:

(2.4)

(vj)t −
1

∆x

(

cj+ 1

2

wj+ 1

2

− cj− 1

2

wj− 1

2

)

= − 1

2∆x

(

JcKj+ 1

2

wj+ 1

2

+ JcKj− 1

2

wj− 1

2

)

,

(wj)t −
1

∆x

(

cvj+ 1

2

− cvj− 1

2

)

= 0,

(uj)t = vj .

The energy conservative property of this semi-discrete scheme is presented in the following
theorem:

Theorem 2.1. Let vj(t) and wj(t) be approximate solutions generated by the scheme (2.4). Then

∂t





∆x

2

∑

j

(v2j (t) + w2
j (t))



 = 0.

Proof. We start by multiplying the first equation of (2.4) by vj and second equation by wj re-
spectively. Using relations (2.1), we have

1

2

d

dt
(v2j + w2

j )

=
1

∆x
vj+ 1

2

cj+ 1

2

wj+ 1

2

− 1

2∆x
JvKj+ 1

2

cj+ 1

2

wj+ 1

2

− 1

∆x
vj− 1

2

cj− 1

2

wj− 1

2

− 1

2∆x
JvKj− 1

2

cj− 1

2

wj− 1

2

− 1

2∆x
vj+ 1

2

JcKj+ 1

2

wj+ 1

2

+
1

4∆x
JvKj+ 1

2

JcKj+ 1

2

wj+ 1

2
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− 1

2∆x
vj− 1

2

JcKj− 1

2

wj− 1

2

− 1

4∆x
JvKj− 1

2

JcKj− 1

2

wj− 1

2

+
1

∆x
wj+ 1

2

cvj+ 1

2

− 1

2∆x
JwKj+ 1

2

cvj+ 1

2

− 1

∆x
wj− 1

2

cvj− 1

2

− 1

2∆x
JwKj− 1

2

cvj− 1

2

,

which implies

(2.5)
1

2

d

dt
(v2j + w2

j ) =
1

∆x

(

Hj+ 1

2

−Hj− 1

2

)

− 1

2∆x

(

JcvwKj+ 1

2

+ JcvwKj− 1

2

)

,

where

Hj+ 1

2

= vj+ 1

2

cj+ 1

2

wj+ 1

2

+
1

4
JvKj+ 1

2

JcKj+ 1

2

wj+ 1

2

+ wj+ 1

2

cvj+ 1

2

.

Next, multiplying (2.5) by ∆x and summing over j gives

d

dt





∆x

2

∑

j

(v2j + w2
j )



 =
∑

j

(

Hj+ 1

2

−Hj− 1

2

)

− 1

2

∑

j

(

JcvwKj+ 1

2

+ JcvwKj− 1

2

)

= 0.

This proves the theorem.
�

2.4. Energy dissipating Scheme Based On System (2.2). We expect the above designed
energy conservative scheme (2.4) to approximate a conservative solution of the underlying system
(1.3). In order to be able to approximate a dissipative solution of (1.3), we propose the following
modification of the energy conservative scheme (2.4):

(2.6)

(vj)t −
1

∆x

(

cj+ 1

2

wj+ 1

2

− cj− 1

2

wj− 1

2

)

= − 1

2∆x

(

JcKj+ 1

2

wj+ 1

2

+ JcKj− 1

2

wj− 1

2

)

+
1

2∆x

(

sj+ 1

2

JvKj+ 1

2

− sj− 1

2

JvKj− 1

2

)

(wj)t −
1

∆x

(

cvj+ 1

2

− cvj− 1

2

)

=
1

2∆x

(

sj+ 1

2

JwKj+ 1

2

− sj− 1

2

JwKj− 1

2

)

,

(uj)t = vj ,

where we have chosen sj± 1

2

= max{cj , cj±1} i.e, the maximum local wave speed.

We show that the above scheme dissipates energy in the following theorem:

Theorem 2.2. Let vj(t) and wj(t) be approximate solutions generated by the scheme (2.6). Then

one can prove that

∂t





∆x

2

∑

j

(v2j (t) + w2
j (t))



 ≤ 0.

Proof. First note that sj± 1

2

are positive for all j, since cj > 0 for all j. Emulating the calculations

of previous theorem, i.e., first multiplying the first equation of (2.6) by ∆xvj and second equation
by ∆xwj respectively, and summing over all j we have

d

dt





∆x

2

∑

j

(v2j + w2
j )





=
∑

j

(

Hj+ 1

2

−Hj− 1

2

)

− 1

2

∑

j

(

JcvwKj+ 1

2

+ JcvwKj− 1

2

)

+
1

2

∑

j

sj+ 1

2

vj+ 1

2

JvKj+ 1

2

− 1

4

∑

j

sj+ 1

2

JvK2j+ 1

2

− 1

2

∑

j

sj− 1

2

vj− 1

2

JvKj− 1

2

− 1

4

∑

j

sj− 1

2

JvK2j− 1

2

+
1

2

∑

j

sj+ 1

2

wj+ 1

2

JwKj+ 1

2

− 1

4

∑

j

sj+ 1

2

JwK2j+ 1

2
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− 1

2

∑

j

sj− 1

2

wj− 1

2

JwKj− 1

2

− 1

4

∑

j

sj− 1

2

JwK2j− 1

2

Next, define

Kj+ 1

2

= Hj+ 1

2

+
1

2
sj+ 1

2

vj+ 1

2

JvKj+ 1

2

+
1

2
sj+ 1

2

wj+ 1

2

JwKj+ 1

2

Mj+ 1

2

=
1

4
sj+ 1

2

(

JvK2j+ 1

2

+ JwK2j+ 1

2

)

.

Then we have

d

dt





∆x

2

∑

j

(v2j + w2
j )



 =
∑

j

(

Kj+ 1

2

−Kj− 1

2

)

− 1

2

∑

j

(

JcvwKj+ 1

2

+ JcvwKj− 1

2

)

−
∑

j

(

Mj+ 1

2

+Mj− 1

2

)

≤ 0.

This proves the theorem.
�

Hence, the scheme (2.6) is energy stable (dissipating) and we expect it to converge to a dissipa-
tive solution of (1.3) as the mesh is refined. We remark that energy dissipation results by adding
numerical viscosity (scaled by the maximum wave speed) to the energy conservative scheme (2.4).

2.5. A first-order system for (1.3) based on Riemann invariants. We can also rewrite the
one-dimensional variational wave equation (1.3) as a first-order system of equations by introducing
the Riemann invariants:

R : = ut + c(u)ux

S : = ut − c(u)ux.

Again, for smooth solutions, equation (1.3) is equivalent to the following system in non-conservative
form for (R,S, u),

(2.7)











Rt − c(u)Rx = c′(u)
4c(u)

(

R2 − S2
)

,

St + c(u)Sx = − c′(u)
4c(u)

(

R2 − S2
)

,

ut =
R+S
2 .

Observe that one can also rewrite the equation (1.3) in conservative form for (R,S, u),

(2.8)











Rt − (c(u)R)x = − cx(u)
2 (R− S) ,

St + (c(u)S)x = − cx(u)
2 (R− S) ,

ut =
R+S
2 .

The corresponding energy associated with the system (2.7) is

(2.9) E(t) = 1

2

∫

R

(

R2 + S2
)

dx.

A simple calculation shows that smooth solutions of (2.7) satisfy the energy identity:

(2.10) (R2 + S2)t −
(

c(u)(R2 − S2)
)

x
= 0.

Hence, the fact that the total energy (2.9) is conserved follows from integrating the above identity
in space and assuming that the functions R,S decay at infinity.
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2.6. Energy Preserving Scheme Based On System (2.8). We also propose the following
energy conservative scheme based on the Riemann invariant system (2.8): to (2.8)

(2.11)

(Rj)t −
1

∆x

(

cj+ 1

2

Rj+ 1

2

− cj− 1

2

Rj− 1

2

)

= − Rj
4∆x

(

JcKj+ 1

2

+ JcKj− 1

2

)

+
Sj
4∆x

(

JcKj+ 1

2

+ JcKj− 1

2

)

(Sj)t +
1

∆x

(

cj+ 1

2

Sj+ 1

2

− cj− 1

2

Sj− 1

2

)

= − Rj
4∆x

(

JcKj+ 1

2

+ JcKj− 1

2

)

+
Sj
4∆x

(

JcKj+ 1

2

+ JcKj− 1

2

)

,

(uj)t =
Rj + Sj

2
.

We have the following theorem for the scheme:

Theorem 2.3. Let Rj(t) and Sj(t) be approximate solutions generated by the scheme (2.11).
Then

∂t





∆x

2

∑

j

(R2
j (t) + S2

j (t))



 = 0.

Proof. Proof of this theorem is very similar to Theorem 2.1. We multiply Rj to the first equation
of (2.11), Sj to the second equation of (2.11) and add resulting equations. This yields,

1

2

d

dt
(R2

j + S2
j )

=
1

∆x
Rj+ 1

2

cj+ 1

2

Rj+ 1

2

− 1

2∆x
JRKj+ 1

2

cj+ 1

2

Rj+ 1

2

− 1

∆x
Rj− 1

2

cj− 1

2

Rj− 1

2

− 1

2∆x
JRKj− 1

2

cj− 1

2

Rj− 1

2

−
R2
j

4∆x

(

JcKj+ 1

2

+ JcKj− 1

2

)

+
RjSj
4∆x

(

JcKj+ 1

2

+ JcKj− 1

2

)

− 1

∆x
Sj+ 1

2

cj+ 1

2

Sj+ 1

2

+
1

2∆x
JSKj+ 1

2

cj+ 1

2

Sj+ 1

2

+
1

∆x
Sj− 1

2

cj− 1

2

Sj− 1

2

− 1

2∆x
JSKj− 1

2

cj− 1

2

Sj− 1

2

+
S2
j

4∆x

(

JcKj+ 1

2

+ JcKj− 1

2

)

− RjSj
4∆x

(

JcKj+ 1

2

+ JcKj− 1

2

)

Next, multiplying by ∆x and summing over all j gives

d

dt





∆x

2

∑

j

(R2
j + S2

j )



 =
∑

j

(

Fj+ 1

2

− Fj− 1

2

)

− 1

2

∑

j

(

Jc
R2

2
K
j+ 1

2

+ Jc
R2

2
K
j− 1

2

)

+
1

2

∑

j

(

Jc
S2

2
K
j+ 1

2

+ Jc
S2

2
K
j− 1

2

)

= 0,

where

Fj+ 1

2

= Rj+ 1

2

cj+ 1

2

Rj+ 1

2

−Rj+ 1

2

cj+ 1

2

Rj+ 1

2

.

This proves the theorem.
�
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2.7. Energy Dissipating Scheme Based On System (2.8). In-order to approximate dissi-
pative solutions, we add some numerical viscosity to the energy conservative scheme (2.11) to
obtain,

(2.12)

(Rj)t −
1

∆x

(

cj+ 1

2

Rj+ 1

2

− cj− 1

2

Rj− 1

2

)

= − Rj
4∆x

(

JcKj+ 1

2

+ JcKj− 1

2

)

+
Sj
4∆x

(

JcKj+ 1

2

+ JcKj− 1

2

)

+
1

2∆x

(

sj+ 1

2

JRKj+ 1

2

− sj− 1

2

JRKj− 1

2

)

,

(Sj)t +
1

∆x

(

cj+ 1

2

Sj+ 1

2

− cj− 1

2

Sj− 1

2

)

= − Rj
4∆x

(

JcKj+ 1

2

+ JcKj− 1

2

)

+
Sj
4∆x

(

JcKj+ 1

2

+ JcKj− 1

2

)

+
1

2∆x

(

sj+ 1

2

JSKj+ 1

2

− sj− 1

2

JSKj− 1

2

)

,

(uj)t =
Rj + Sj

2
.

where we have chosen sj± 1

2

= max{cj , cj±1}, i.e, the maximum local wave speed.

We have the following theorem illustrating the energy dissipation associated with (2.12)

Theorem 2.4. Let Rj(t) and Sj(t) be approximate solutions generated by the scheme (2.12).
Then,

∂t





∆x

2

∑

j

(R2
j (t) + S2

j (t))



 ≤ 0.

Proof. Emulating the calculations of previous theorem, i.e., multiplying the first equation of (2.12)
by Rj and second equation by Sj respectively, we have

d

dt





∆x

2

∑

j

(R2
j + S2

j )



 =
∑

j

(

Fj+ 1

2

− Fj− 1

2

)

− 1

2

∑

j

(

Jc
R2

2
K
j+ 1

2

+ Jc
R2

2
K
j− 1

2

)

+
1

2

∑

j

(

Jc
S2

2
K
j+ 1

2

+ Jc
S2

2
K
j− 1

2

)

+
1

2

∑

j

sj+ 1

2

Rj+ 1

2

JRKj+ 1

2

− 1

4

∑

j

sj+ 1

2

JRK2j+ 1

2

− 1

2

∑

j

sj− 1

2

Rj− 1

2

JRKj− 1

2

− 1

4

∑

j

sj− 1

2

JRK2j− 1

2

+
1

2

∑

j

sj+ 1

2

Sj+ 1

2

JSKj+ 1

2

− 1

4

∑

j

sj+ 1

2

JSK2j+ 1

2

− 1

2

∑

j

sj− 1

2

Sj− 1

2

JSKj− 1

2

− 1

4

∑

j

sj− 1

2

JSK2j− 1

2

Next, define

Gj+ 1

2

= Fj+ 1

2

+
1

2
sj+ 1

2

Rj+ 1

2

JRKj+ 1

2

+
1

2
sj+ 1

2

Sj+ 1

2

JSKj+ 1

2

Nj+ 1

2

=
1

4
sj+ 1

2

(

JRK2j+ 1

2

+ JSK2j+ 1

2

)

.

Then we have

d

dt





∆x

2

∑

j

(R2
j + S2

j )



 =
∑

j

(

Gj+ 1

2

−Gj− 1

2

)

−
∑

j

(

Nj+ 1

2

+Nj− 1

2

)
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− 1

2

∑

j

(

Jc
R2

2
K
j+ 1

2

+ Jc
R2

2
K
j− 1

2

)

+
1

2

∑

j

(

Jc
S2

2
K
j+ 1

2

+ Jc
S2

2
K
j− 1

2

)

≤ 0.

This proves the theorem.
�

2.8. Energy Preserving Scheme Based On a Variational Formulation. All the above
schemes were designed by rewriting the variational wave equation (1.3) as first-order systems
and approximating these systems. However, one also design an energy conservative scheme by
approximating the nonlinear wave equation (1.3) directly. To this end. we write the nonlinear
wave equation (1.3) in the general form:

(2.13) utt = −δH
δu

,

with H = H(u, ux) :=
1
2c

2(u)u2x being a part of the ”Hamiltonian”, and δH
δu being the variational

derivative of function H(u, ux) with respect to u.
In general, it is easy to show that for (2.13)

(2.14)
d

dt

∫

R

(

1

2
u2t +H(u, ux)

)

dx = 0.

In fact, this is a direct consequence of the fact that

(2.15)
δH

δu
=
∂H

∂u
− d

dx

(

∂H

∂ux

)

.

We also note that for equation (1.3),

δH

δu
= c(u)c′(u)u2x −

(

c2(u)ux
)

x
= −c2(u)uxx − c(u)c′(u)u2x = −c(u) (c(u)ux)x .

Based on above observations, we propose the following scheme for (1.3)

(2.16) (uj)tt + c(uj)c
′(uj)(D

0uj)
2 −D0

(

c2(uj)D
0uj

)

= 0.

This scheme happens to be energy preserving as shown in the following theorem:

Theorem 2.5. Let uj(t) be approximate solution generated by the scheme (2.16). Then we have

∂t





∆x

2

∑

j

((uj)
2
t + c2(uj)

(

D0uj
)2
)



 = 0.

Proof. We start by calculating

∂t





∆x

2

∑

j

((uj)
2
t + c2(uj)

(

D0uj
)2
)





= ∆x
∑

j

(

(uj)t(uj)tt + c(uj)c
′(uj)

(

D0uj
)2

(uj)t + c2(uj)D
0ujD

0(uj)t

)

= ∆x
∑

j

(

(uj)t(uj)tt + c(uj)c
′(uj)

(

D0uj
)2

(uj)t −D0
(

c2(uj)D
0uj

)

(uj)t

)

= 0.

�
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3. Numerical experiments

In this section, we will test the numerical schemes developed in the previous section on several
examples. The semi-discrete schemes (2.4), (2.6), (2.11) and (2.12) are integrated in time using
a third order SSP-Runge Kutta method. The timestep ∆t is chosen such that it satisfies the
CFL-condition

(3.1) ∆t = θ
∆x

supu c(u)

for some 0 ≤ θ ≤ 0.5. We denote by N the number of gridpoints in the spatial dimension.

3.1. Gaussian pulse. As a first test problem we consider (1.3) augmented with the initial data

u0(x) =
π

4
+ exp(−x2),

u1(x) = −c(u0(x)) (u0)x(x),
(3.2)

on the domain D = [−15, 15] with periodic boundary conditions and the function c(u) given by

(3.3) c(u) =

√

α cos2(u) + β sin2(u),

where α, β are positive constants. For this experiment, we choose α = 0.5 and β = 4.5. This
Cauchy problem has already been numerically investigated in [8] and [11]. We compute approx-
imations by the schemes at times, T = 1, 10. In Figure 3.1 the approximations computed by

−15 −10 −5 0 5 10 15
−1

−0.5

0

0.5

1

1.5

2

x

u

 

 
T = 0
T = 1
T = 10

−15 −10 −5 0 5 10 15
−1

−0.5

0

0.5

1

1.5

2

x

v

 

 
T = 0
T = 1
T = 10

Figure 3.1. Approximations of u in (1.3), (3.2), (3.3) computed by scheme (2.4)
and scheme (2.6) on a grid with Nx = 15 · 212 points at time T = 1, 10 and with
CFL-number θ = 0.05. Left: Approximation by energy conservative scheme (2.4),
Right: Approximation by energy dissipative scheme (2.6).

scheme (2.4) and (2.6) with CFL-number θ = 0.05 at times T = 1, 10 are shown. We observe that
at time T = 1 the approximated solution appears smooth whereas at time T = 10, we observe
kinks in the solution indicating that singularities have appeared by this time.

As schemes (2.4) and (2.6), are based on the first-order system (2.2), we plot the quantities
v and w in Figures 3.2 and 3.3, and observe high frequency oscillations in the approximations
computed by the energy-conservative scheme (2.4). This is not unexpected as there is no numerical
viscosity in this approximations and the high frequency oscillations are a manifestation of this
effect. Furthermore, at time T = 1, the two approximations computed by (2.4) and (2.6) look
alike, whereas we observe visible differences at time T = 10.

Similarly, the approximations computed with schemes (2.11) and (2.16) are qualitatively very
close to those computed by the energy conservative scheme (2.4), whereas the approximations
computed with (2.12) resembled those computed with (2.6). Furthermore, as predicted by our
analysis and shown in Figure 3.4, the conservative schemes almost preserve the discrete L2-energy
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T = 10

−15 −10 −5 0 5 10 15
−3

−2

−1

0

1

2

3

x

v

 

 

T = 0

T = 1

T = 10

Figure 3.2. Approximations of the quantity v in (2.2), (3.2), (3.3) computed
by scheme (2.4) and scheme (2.6) on a grid with Nx = 15 · 212 points at time
T = 1, 10 and with CFL-number θ = 0.05. Left: Approximation by scheme (2.4),
Right: Approximation by scheme (2.6).

−15 −10 −5 0 5 10 15
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T = 0

T = 1

T = 10
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T = 0
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T = 10

Figure 3.3. Approximations of the quantity w in (2.2), (3.2), (3.3) computed
by scheme (2.4) and scheme (2.6) on a grid with Nx = 15 · 212 points at time
T = 1, 10 and with CFL-number θ = 0.05. Left: Approximation by scheme (2.4),
Right: Approximation by scheme (2.6).

over time whereas the approximations computed by the dissipative schemes lose energy by a
significant amount. Note the difference in scales (in the Y-axis) between the adjacent plots in
figure 3.4.

To investigate the possibility of different limit solutions approximated by the conservative and
dissipative schemes, we compute reference approximations by schemes (2.4) and (2.6) at times
T = 1, 10, with CFL-number θ = 0.05 on a grid with cell size ∆x = 2−11 (i.e. the number of grid
points is Nx = 15 · 212) and test the convergence of the schemes towards these reference solutions.
We measure the distance to the reference solutions in the following discrete relative L2-distance,

(3.4) d2(aN ,bN ) := 200×
(
∑

j(a
N
j − bNj )2

)1/2

(
∑

j(a
N
j )2

)1/2
+
(
∑

j(b
N
j )2

)1/2

for vectors aN = (. . . , aNj−1, a
N
j , a

N
j+1, . . . ), b

N = (. . . , bNj−1, b
N
j , b

N
j+1, . . . ). The distances to the

conservative and dissipative reference solution respectively, are shown in Tables 3.1, 3.2, 3.3 and
3.4. From Tables 3.1 and 3.2, we see that at time T = 1, all approximations to the variable u
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Figure 3.4. Evolution of discrete energies over time, Left: Energies for the con-
servative schemes (2.4), (2.11), (2.16), Right: Energies for the diffusive schemes
(2.6), (2.12).

∆x (2.4) (2.6) (2.11) (2.12) (2.16)
2−2 3.2367 8.4373 3.2710 8.5292 2.8605
2−3 1.1274 4.9475 1.1314 4.9974 1.0724
2−4 0.4723 2.7432 0.4727 2.7693 0.4644
2−5 0.2217 1.4592 0.2217 1.4726 0.2206
2−6 0.1088 0.7557 0.1088 0.7625 0.1087
2−7 0.0541 0.3852 0.0541 0.3886 0.0541
2−8 0.0269 0.1946 0.0269 0.1963 0.0269
2−9 0.0131 0.0978 0.0131 0.0986 0.0131

Table 3.1. d2(uN∆x,u
N
ref) for different mesh resolutions, T = 1, CFL-number

θ = 0.05, uN∆x approximation computed by the various schemes at different mesh
resolutions, uNref the reference solution computed by scheme (2.4).

∆x (2.4) (2.6) (2.11) (2.12) (2.16)
2−2 3.2353 8.4145 3.2700 8.5065 2.8565
2−3 1.1280 4.9240 1.1322 4.9740 1.0713
2−4 0.4735 2.7194 0.4741 2.7455 0.4647
2−5 0.2234 1.4352 0.2235 1.4486 0.2219
2−6 0.1117 0.7316 0.1118 0.7384 0.1114
2−7 0.0594 0.3611 0.0594 0.3645 0.0593
2−8 0.0363 0.1705 0.0363 0.1722 0.0362
2−9 0.0276 0.0737 0.0276 0.0746 0.0276

Table 3.2. d2(uN∆x,u
N
ref) for different mesh resolutions, T = 1, CFL-number

θ = 0.05, uN∆x approximation computed by the various schemes at different mesh
resolutions, uNref the dissipative reference solution computed by scheme (2.6).

seem to converge to both reference solutions, so the two reference solutions are very close to each
other.

However, at time T = 10, the approximations of the conservative schemes still seem to be
converging to the reference solution computed by (2.4) whereas no convergence can be observed
for the energy dissipative schemes (2.6) and (2.12) (Table 3.3). Similarly, the dissipative schemes
seem to be converging to the dissipative reference solution whereas the distance of the conservative
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∆x (2.4) (2.6) (2.11) (2.12) (2.16)
2−2 49.9592 95.6001 52.2856 96.0428 66.2850
2−3 75.9922 75.1585 76.9143 75.2326 78.6955
2−4 71.5391 75.4320 71.9087 75.4286 72.5368
2−5 52.2962 75.9529 52.4645 75.9412 52.7209
2−6 36.9257 74.3883 36.9673 74.3799 36.9809
2−7 25.7497 72.4280 25.7554 72.4241 25.6531
2−8 16.4966 71.5233 16.4962 71.5220 16.2811
2−9 9.4041 71.8735 9.4031 71.8734 9.0068

Table 3.3. d2(uN∆x,u
N
ref) for different mesh resolutions, T = 10, CFL-number

θ = 0.05, uN∆x approximation computed by the various schemes at different
mesh resolutions, uNref the reference solution computed by the energy-conservative
scheme (2.4).

∆x (2.4) (2.6) (2.11) (2.12) (2.16)
2−2 60.0811 81.5763 59.6149 81.9256 62.0062
2−3 71.5451 50.5324 72.0433 50.5400 72.7812
2−4 67.0084 41.7781 67.1806 41.8145 67.4443
2−5 59.7701 34.6851 59.7986 34.7138 59.8481
2−6 62.0292 27.4402 62.0238 27.4533 62.0309
2−7 64.0325 20.2404 64.0339 20.2445 64.0901
2−8 67.1313 13.6321 67.1327 13.6326 67.2587
2−9 70.3864 7.9905 70.3874 7.9899 70.6403

Table 3.4. d2(uN∆x,u
N
ref) for different mesh resolutions, T = 10, CFL-number

θ = 0.05, uN∆x approximation computed by the various schemes at different mesh
resolutions, uNref the reference solution computed by the dissipative scheme (2.6).

approximations computed by (2.4), (2.11) and (2.16) to the dissipative reference solution remains
(approximately) constant despite mesh refinement (Table 3.4). We conclude that the energy-
conservative schemes converge to a different limit solution than the energy-dissipative schemes in
this example. Furthermore, as the conservative schemes preserve energy, the limit of these schemes
is the conservative solution. Similarly, the dissipative schemes converge to a solution that has lower
energy than the initial data. Hence, this solution appears to be a dissipative solution of (1.3). This
dichotomy of solutions is also illustrated in Figure 3.5 where the difference of conservative and
dissipative solutions (realized as limits of the energy conservative and energy dissipative schemes,
respectively) is apparent at time T = 10 (after singularity formation).

3.2. Traveling wave with infinite local energy. As a second example we consider a traveling
wave solution of (1.3), that is a solution of the form

(3.5) u(t, x) = ψ(x− st),

where s ∈ R is the wave speed. Glassey, Hunter and Zheng have shown in [9], that the function ψ
is given as the solution of the ODE

(3.6) ψ′
√

|s2 − c2(ψ)| = k,

where k is an integration constant. If |s| /∈ [c0, c1], where

c0 = min
v∈R

c(v), c1 = max
v∈R

c(v),

the solution to the ODE (3.6) is smooth and unbounded on R. If |s| ∈ [c0, c1] on the other hand,
then exists u0 ∈ [0, π/2] such that |s| = c(u0) and ψ

′ has a singularity. One can then construct a
bounded traveling wave solution as

ψ(ξ) = u0, for ξ ≤ ξ0,
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Figure 3.5. Approximations of (1.3), (3.2), (3.3) computed by schemes (2.4),
(2.6), (2.11), (2.12) and (2.16) on a grid with 15 · 210 points and CFL-number
θ = 0.2. Left: At time T = 1, Right: At time T = 10.

∫ ψ(ξ)

u0

√

|c2(u0)− c2(v)| dv = k1(ξ − ξ0), for ξ0 ≤ ξ ≤ ψ−1(π − u0),(3.7)

ψ(ξ) = π − u0, for ξ ≥ ψ−1(π − u0),

for any u0 ∈ [0, π/2], any ξ0 ∈ R and and k1 > 0. We choose (for this example) s =
√
α, since for

this case, we obtain an explicit expression for ψ, namely, for α = 0.5 and β = 1.5, the function

ψ(ξ) =











0 ξ ≤ 0,

cos−1(−2ξ + 1), 0 < ξ < 1,

π, ξ ≥ 1,

(3.8)

with

ψ′(ξ) =















0 ξ ≤ 0,
1√
ξ−ξ2

, 0 < ξ < 1,

0, ξ ≥ 1,

(3.9)

is a traveling wave solution. This function has infinite local energy as demonstrated in [9]. We
compute approximations to the solution at time T = 0.5 and T = 1, when it has the form

u(T, x) =











0 x ≤ √
αT,

cos−1(−2(x−√
αT ) + 1),

√
αT < x < 1 +

√
αT,

π, x ≥ 1 +
√
αT.

(3.10)

In Figure 3.6, we plot the approximations of (3.10) computed by the different schemes on a mesh
with ∆x = 2−13 gridpoints and CFL-number θ = 0.4 at time T = 0.5 and T = 1. We observe
that in the lower part between y = 0 and y = 0.4, the approximations appear to differ from the
exact solution, and the discrepancy increases with time T . However, as we can see from Tables
3.5 and 3.6 it appears all that all the schemes but the hamiltonian scheme converge, at however,
a very slow rate. This slow rate of convergence is not unexpected given the presence of strong
singularities (with infinite local energy).

3.3. Multiplicity of dissipative solutions. The above numerical experiments clearly illustrate
that one set of schemes converge to a conservative solution whereas another to a dissipative solution
of the variational wave equation (1.3). Is there uniqueness within these two classes of solutions
? A priori, it seems that in contrast to conservative solutions, one might be able to construct
multiple dissipative solutions by varying the amount and rate of energy dissipation. We study this
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Figure 3.6. Approximations of (3.10) computed by schemes (2.4), (2.6), (2.11),
(2.12) and (2.16) on a grid with cell size ∆x = 2−13 points and CFL-number
θ = 0.4. Left: At time T = 0.5, Right: At time T = 1.

scheme (2.4) (2.11) (2.16) (2.6) (2.12)
∆x = 2−5 6.2205 6.2292 4.4418 5.0283 5.1028
∆x = 2−6 4.6404 4.6546 3.3480 3.8852 3.9214
∆x = 2−7 3.4806 3.4937 2.5925 2.9698 2.9897
∆x = 2−8 2.7565 2.7672 2.2064 2.3253 2.3367
∆x = 2−9 2.3243 2.3365 2.0482 1.8115 1.8181
∆x = 2−10 2.1222 2.1437 2.0499 1.4261 1.4300
∆x = 2−11 2.0401 2.0828 2.1209 1.1282 1.1306
∆x = 2−12 1.9870 2.0666 2.2118 0.8970 0.8984
∆x = 2−13 1.8997 2.0318 2.2988 0.7167 0.7175

Table 3.5. d2(u∆x,uexact) between the exact solution (3.10) and the approxi-
mations for different mesh resolutions, T = 0.5, θ = 0.2.

scheme (2.4) (2.11) (2.16) (2.6) (2.12)
∆x = 2−5 11.7380 11.6747 10.2197 11.7075 11.4846
∆x = 2−6 9.2074 9.1694 8.1966 9.5308 9.4172
∆x = 2−7 7.4764 7.4783 6.9984 7.7588 7.6963
∆x = 2−8 6.2859 6.3612 6.4006 6.2545 6.2171
∆x = 2−9 5.4966 5.7117 6.3075 5.0454 5.0213
∆x = 2−10 4.8401 5.2414 6.4866 4.0728 4.0568
∆x = 2−11 4.1818 4.7290 6.7554 3.2958 3.2850
∆x = 2−12 3.5273 4.1234 7.0079 2.6766 2.6695
∆x = 2−13 2.9187 3.4861 7.1997 2.1830 2.1783

Table 3.6. d2(u∆x,uexact) between the exact solution (3.10) and the approxi-
mations for different mesh resolutions, T = 1, θ = 0.4.

possibility by modifying the dissipative scheme (2.6) to

(3.11)

(vj)t −
1

∆x

(

c̄j+ 1

2

w̄j+ 1

2

− c̄j− 1

2

w̄j− 1

2

)

= − 1

2∆x

(

JcKj+ 1

2

w̄j+ 1

2

+ JcKj− 1

2

w̄j− 1

2

)

+
κ

2∆x

(

sj+ 1

2

JvKj+ 1

2

− sj− 1

2

JvKj− 1

2

)

(wj)t −
1

∆x

(

cvj+ 1

2

− cvj− 1

2

)

=
κ

2∆x

(

sj+ 1

2

JwKj+ 1

2

− sj− 1

2

JwKj− 1

2

)

(uj)t = vj ,
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by adding κ to scale the numerical viscosity in (2.6) 1. We investigate the above question by
setting κ to different values, resulting in different amounts of energy-loss and possibly, convergence
to different dissipative solutions. We test the convergence of resulting numerical approximations
by (3.11) of (1.3), (3.2), (3.3) for κ = 0.01, 0.05, 0.1, 1, 2, 5, 10, 20 towards the reference solutions
from Section 3.1, computed by both schemes (2.4) and (2.6). The distances d2 as defined in
(3.4) are displayed in Tables 3.7 (dissipative reference solution) for time T = 10 (after singularity
formation) and CFL-number θ = 0.05.

∆x \κ 0.01 0.05 0.1 1 2 5 10 20
2−2 54.93 47.42 43.86 81.58 142.49 162.03 166.35 169.59
2−3 71.27 63.95 47.50 50.53 85.11 151.50 162.14 166.37
2−4 66.01 48.50 31.36 41.78 50.76 108.55 151.64 162.18
2−5 58.34 28.33 17.25 34.69 41.71 56.59 108.74 151.68
2−6 51.59 11.03 8.19 27.44 34.54 44.12 56.61 108.79
2−7 37.25 3.40 2.84 20.24 27.31 36.80 44.11 56.61
2−8 24.40 3.62 0.7 13.63 20.15 29.60 36.8 44.11
2−9 18.93 4.88 3.01 7.99 13.59 22.39 29.6 36.8

Table 3.7. d2(u∆x,uref) between the dissipative reference solution computed by
(2.6) and the approximations by (3.11) for different mesh resolutions and diffusion
coefficient κ, T = 10, θ = 0.05.

The results, presented Table 3.7, clearly show that all the approximations (computed with
different values of the diffusion coefficient κ), clearly converge to the same dissipative reference
solution. Furthermore, we have listed the discrete energy ratio

(3.12) Erel =

∑

j

{

(vMj )2 + (wMj )2
}

∑

j

{

(v0j )
2 + (w0

j )
2
} ,

where v0j , w
0
j are the approximations at the initial time and vMj , wMj are the approximations at

the final time T . From Table 3.8, we observe that these ratios seem to converge to ≈ 0.2 for
all the tested κ, showing that there is a universal rate of energy dissipation, associated with the
dissipative solutions (at least in this example).

∆x \κ 0.01 0.05 0.1 1 2 5 10 20
2−2 0.8438 0.5002 0.3326 0.0740 0.0257 0.0052 0.0014 0.0003
2−3 0.8021 0.4899 0.3124 0.1291 0.0702 0.0171 0.0051 0.0014
2−4 0.7086 0.3760 0.2505 0.1630 0.1269 0.0515 0.0170 0.0051
2−5 0.6174 0.2939 0.214 0.1779 0.1615 0.1095 0.0514 0.0170
2−6 0.5304 0.2368 0.2034 0.1842 0.1769 0.1526 0.1094 0.0514
2−7 0.4216 0.2122 0.2037 0.1891 0.1837 0.1730 0.1525 0.1094
2−8 0.3331 0.2081 0.2051 0.1943 0.1889 0.1817 0.1729 0.1525
2−9 0.2801 0.2076 0.2060 0.1987 0.1942 0.1871 0.1817 0.1729

Table 3.8. Erel as in (3.12) for different mesh resolutions and diffusion coefficient
κ, T = 10, θ = 0.05.

3.4. Time stepping schemes. Energy conservation for the schemes (2.4) and (2.11) has only
been proved in the semi-discrete setting. Some time integration routine needs to be used in order to
obtain a fully discrete scheme. The choice of the time integration scheme might lead to some energy
dissipation or production. We explore this issue by integrating the energy conservative scheme (2.4)
in time using different Runge-Kutta methods, namely the 2nd-order strong stability preserving
(SSPRK2) method, the 3rd-order SSPRK3 and the standard RK4 procedure. Furthermore, a

1In a similar way, we generalize scheme (2.12).
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standard Leap-Frog (LF) time-stepping procedure has also been used for the sake of comparison.
It can be readily shown that the fully discrete scheme, combining leap-frog time stepping with the
energy conservative scheme (2.4) conserves the discrete energy:

∆x
∑

j

{

vnj v
n+1
j + wnj w

n+1
j

}

,

for all time levels n.
To illustrate the energy balance of the above time stepping procedures, we have computed

the energy ratio (3.12) for the variational wave equation (1.3), (3.2), (3.3), α = 0.5, β = 4.5;
with different time-stepping methods, for all the above mentioned time-stepping schemes at CFL-
numbers θ = 0.1, 0.2, 0.4 . The results of the mesh refinement study are displayed in Table 3.9.

∆x θ SSPRK2 SSPRK3 RK4 lf
2−2 0.4 1.1006 0.9761 0.9996 1.0018
2−3 0.4 1.1602 0.9660 0.9994 1.0017
2−4 0.4 1.5334 0.9285 0.9984 1.0016
2−5 0.4 2.3257 0.8699 0.9968 1.0011
2−6 0.4 4.8354 0.8022 0.9939 1.0008
2−7 0.4 7.4642 0.7197 0.9886 1.0008
2−8 0.4 6.0891 0.6684 0.9794 1.0008
2−2 0.2 1.0111 0.9969 1.0000 1.0004
2−3 0.2 1.0153 0.9954 1.0000 1.0004
2−4 0.2 1.0361 0.9895 0.9999 1.0004
2−5 0.2 1.0740 0.9790 0.9999 1.0003
2−6 0.2 1.1509 0.9619 0.9998 1.0002
2−7 0.2 1.3280 0.9302 0.9996 1.0002
2−8 0.2 1.8364 0.8822 0.9993 1.0002
2−2 0.1 1.0014 0.9996 1.0000 1.0001
2−3 0.1 1.0018 0.9994 1.0000 1.0001
2−4 0.1 1.0042 0.9987 1.0000 1.0001
2−5 0.1 1.0084 0.9973 1.0000 1.0001
2−6 0.1 1.0158 0.9949 1.0000 1.0000
2−7 0.1 1.0307 0.9904 1.0000 1.0001
2−8 0.1 1.0584 0.9825 1.0000 1.0001

Table 3.9. Erel as in (3.12) for scheme (2.4), problem (1.3), (3.2), (3.3), for differ-
ent mesh resolutions, time stepping methods and CFL-numbers θ = 0.1, 0.2, 0.4,
T = 10.

We observe that for ‘higher’ CFL-numbers, such as 0.4, the leap frog scheme performs best
whereas the 2nd and 3rd order SSPRK methods can produce/dissipative energy of significant
amplitude. However, for lower CFL numbers, the standard RK4 also performs adequately in
terms of energy balance, vis a vis the leap frog time stepping scheme.

4. Numerical schemes in two-space dimensions

As in the one-dimensional case, we will design energy conservative and energy dissipative finite
difference discretizations of the two-dimensional version of the nonlinear variational wave equation
(1.7) by rewriting it as a first-order system. To this end, we introduce three new independent
variables:

p := ut,

v := cos(u)ux + sin(u)uy,

w := sin(u)ux − cos(u)uy,
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Then, for smooth solutions, equation (1.7) is equivalent to the following system for (p, v, w, u),

(4.1)



















pt − α(φ(u)v)x − α(ψ(u)v)y − β(ψ(u)w)x + β(φ(u)w)y − αvw + βvw = 0,

vt − (φ(u)p)x + pφx − (ψ(u)p)y + pψy + pw = 0,

wt − (ψ(u)p)x + pψx + (φ(u)p)y − pφy − pv = 0,

ut = v .

where φ(u) := cos(u), and ψ(u) := sin(u).

4.1. The grid. We introduce some notation needed to define the finite difference schemes in two
dimensions. we reserve ∆x,∆y and ∆t to denote three small positive numbers that represent
the spatial and temporal discretization parameters, respectively, of the numerical schemes. Given
∆x,∆y,∆t > 0, let D± denote the discrete forward and backward differences, respectively, in the
spatial direction, i.e.,

D±
x g(x, y) = ± 1

∆x
(g(x±∆x, y)− g(x, y)) , D±

y g(x, y) = ± 1

∆x
(g(x, y ±∆y)− g(x, y)) ,

D0
xg(x, y) =

1

2

(

D+
x g(x) +D−

x g(x)
)

, D0
yg(x, y) =

1

2

(

D+
y g(x) +D−

y g(x)
)

.

for any function g : R × R → R admitting pointvalues. Similarly, we let D±
t denote the forward

and backward differences, respectively, in the time direction, i.e.,

D±
t h(x, y, t) = ± 1

∆t
(h(x, y, t±∆t)− h(x, y, t))

for any function h : QT → R admitting pointvalues. For i, j ∈ N0 = N ∪ {0}, we set xi = i∆x,
yj = j∆y and for n = 0, 1, ..., N , where N∆t = T for some fixed time horizon T > 0, we set
tn = n∆t. For any function g = g(x, y) admitting pointvalues we write gi,j = g(xi, yj), and
similarly for any function h = h(x, y, t) admitting pointvalues we write hni,j = h(xi, yj , tn). We
also introduce the Cartesian spatial and temporal grid cells

Ii,j = [xi− 1

2

, xi+ 1

2

)× [yj− 1

2

, yj+ 1

2

), Ini,j = Ii,j × [tn, tn+1).

Furthermore we introduce the jump, and respectively, the average of a quantity w across the
interfaces xi+ 1

2

and yj+ 1

2

w̄i,j+ 1

2

:=
wi,j + wi,j+1

2
,

w̄i+ 1

2
,j :=

wi,j + wi+1,j

2
,

JwKi,j+ 1

2

:= wi,j+1 − wi,j ,

JwKi+ 1

2
,j := wi+1,j − wi,j .

The following identities are readily verified:

(4.2)

JuvKi,j+ 1

2

= ui,j+ 1

2

JvKi,j+ 1

2

+ JuKi,j+ 1

2

vi,j+ 1

2

,

JuvKi+ 1

2
,j = ui+ 1

2
,jJvKi+ 1

2
,j + JuKi+ 1

2
,jvi+ 1

2
,j ,

vi,j = vi,j± 1

2

∓ 1

2
JvKi,j± 1

2

,

vi,j = vi± 1

2
,j ∓

1

2
JvKi± 1

2
,j .
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4.2. Energy conservative scheme. Based on the first-order system (4.1), We propose the fol-
lowing finite difference scheme to approximate the two-dimensional version of the nonlinear vari-
ational wave equation (1.7):
(4.3)

(pi,j)t −
α

∆x

(

φvi+ 1

2
,j − φvi− 1

2
,j

)

− α

∆y

(

ψvi,j+ 1

2

− ψvi,j− 1

2

)

− β

∆x

(

ψwi+ 1

2
,j − ψwi− 1

2
,j

)

+
β

∆y

(

φwi,j+ 1

2

− φwi,j− 1

2

)

− αvi,j wi,j + βvi,j wi,j = 0,

(vi,j)t −
1

∆x

(

φ̄i+ 1

2
,j p̄i+ 1

2
,j − φ̄i− 1

2
,j p̄i− 1

2
,j

)

+
1

2∆x
p̄i+ 1

2
,jJφKi+ 1

2
,j +

1

2∆x
p̄i− 1

2
,jJφKi− 1

2
,j

− 1

∆y

(

ψ̄i,j+ 1

2

p̄i,j+ 1

2

− ψ̄i,j− 1

2

p̄i,j− 1

2

)

+
1

2∆y
p̄i,j+ 1

2

JψKi,j+ 1

2

+
1

2∆y
p̄i,j− 1

2

JψKi,j− 1

2

+ pi,j wi,j = 0,

(wi,j)t −
1

∆x

(

ψ̄i+ 1

2
,j p̄i+ 1

2
,j − ψ̄i− 1

2
,j p̄i− 1

2
,j

)

+
1

2∆x
p̄i+ 1

2
,jJψKi+ 1

2
,j +

1

2∆x
p̄i− 1

2
,jJψKi− 1

2
,j

+
1

∆y

(

φ̄i,j+ 1

2

p̄i,j+ 1

2

− φ̄i,j− 1

2

p̄i,j− 1

2

)

− 1

2∆y
p̄i,j+ 1

2

JφKi,j+ 1

2

− 1

2∆y
p̄i,j− 1

2

JφKi,j− 1

2

− pi,j vi,j = 0,

(ui,j)t = vi,j .

The above scheme preserves a discrete version of the energy as reported in the following theorem:

Theorem 4.1. Let pij(t), vi,j(t) and wi,j(t) be approximate solutions generated by the scheme

(4.3). Then

∂t





∆x∆y

2

∑

i

∑

j

(p2i,j(t) + α v2i,j(t) + β w2
i,j(t))



 = 0.

Proof. The proof of this theorem is identical to Theorem 2.1. In fact multiplying the first equation
of (4.3) by pi,j , second equation by vi,j and third equation by wi,j respectively, adding those
resulting equations and using relations (4.2) we obtain the desired result. �

4.3. Energy dissipative scheme. As in the one-dimensional case, we can add some numerical

viscosity to the energy conservative scheme (4.3) to obtain the following energy dissipative scheme
for approximating the variational wave equation (1.7):
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(4.4)

(pi,j)t −
α

∆x

(

φvi+ 1

2
,j − φvi− 1

2
,j

)

− α

∆y

(

ψvi,j+ 1

2

− ψvi,j− 1

2

)

− β

∆x

(

ψwi+ 1

2
,j − ψwi− 1

2
,j

)

+
β

∆y

(

φwi,j+ 1

2

− φwi,j− 1

2

)

− αvi,j wi,j + βvi,j wi,j

=
1

2∆y

(

si,j+ 1

2

JpKi,j+ 1

2

− si,j− 1

2

JpKi,j− 1

2

)

+
1

2∆x

(

si+ 1

2
,jJpKi+ 1

2
,j − si− 1

2
,jJpKi− 1

2
,j

)

,

(vi,j)t −
1

∆x

(

φ̄i+ 1

2
,j p̄i+ 1

2
,j − φ̄i− 1

2
,j p̄i− 1

2
,j

)

+
1

2∆x
p̄i+ 1

2
,jJφKi+ 1

2
,j +

1

2∆x
p̄i− 1

2
,jJφKi− 1

2
,j

− 1

∆y

(

ψ̄i,j+ 1

2

p̄i,j+ 1

2

− ψ̄i,j− 1

2

p̄i,j− 1

2

)

+
1

2∆y
p̄i,j+ 1

2

JψKi,j+ 1

2

+
1

2∆y
p̄i,j− 1

2

JψKi,j− 1

2

+ pi,j wi,j =
1

2∆y

(

JvKi,j+ 1

2

− JvKi,j− 1

2

)

+
1

2∆x

(

JvKi+ 1

2
,j − JvKi− 1

2
,j

)

,

(wi,j)t −
1

∆x

(

ψ̄i+ 1

2
,j p̄i+ 1

2
,j − ψ̄i− 1

2
,j p̄i− 1

2
,j

)

+
1

2∆x
p̄i+ 1

2
,jJψKi+ 1

2
,j +

1

2∆x
p̄i− 1

2
,jJψKi− 1

2
,j

+
1

∆y

(

φ̄i,j+ 1

2

p̄i,j+ 1

2

− φ̄i,j− 1

2

p̄i,j− 1

2

)

− 1

2∆y
p̄i,j+ 1

2

JφKi,j+ 1

2

− 1

2∆y
p̄i,j− 1

2

JφKi,j− 1

2

− pi,j vi,j =
ν

2∆y

(

JwKi,j+ 1

2

− JwKi,j− 1

2

)

+
ν

2∆x

(

JwKi+ 1

2
,j − JwKi− 1

2
,j

)

,

(ui,j)t = vi,j .

Following very similar arguments, as used in the proof of Theorem 2.2, we can prove the
following theorem:

Theorem 4.2. Let pij(t), vi,j(t) and wi,j(t) be approximate solutions generated by the scheme

(4.4). Then

∂t





∆x∆y

2

∑

i

∑

j

(p2i,j(t) + α v2i,j(t) + β w2
i,j(t))



 ≤ 0.

4.4. Numerical experiments. We illustrate the energy conservative scheme (4.3) and the energy
dissipative scheme (4.4) by considering the first-order system (4.1) with the following initial data

u0(x, y) = 2 cos(2πx) sin(2πy),(4.5a)

u1(x, y) = sin(2π(x− y)),(4.5b)

on the domain D = [0, 1]2 with periodic boundary conditions and coefficients α = 0.5, β = 1.5
in a, b and c at times T = 2 and T = 4. For the time integration we have chosen a 3rd order
strong stability preserving Runge Kutta method for the energy-dissipative scheme and leap-frog
time stepping for the energy-conservative scheme

Approximations computed by schemes (4.3), (4.4) respectively, on a mesh with 2048 points in
each coordinate direction can be seen in Figures 4.1, 4.2, 4.3 and 4.4. From the above figures,
we observe that both the conservative and dissipative schemes seem to resolve the solution in a
stable manner. Although the two schemes seems to converge to the same limit at time T = 2, the
limits, computed by the energy conservative and energy dissipative schemes differ at time T = 4.
These results are also confirmed by a convergence study, performed in a manner analogous to the
one-dimensional case. However, we omit the convergence tables for brevity in the exposition.

5. Conclusion

We have considered a nonlinear variational wave equation, that models (both one and two di-
mensional) planar waves in the dynamics of nematic liquid crystals. Our schemes are based on
either the conservation or the dissipation of the energy associated with these equations. In the
one-dimensional case, we rewrite the variational wave equation (1.3) in the form of two equivalent
first-order systems. Energy conservative as well as energy dissipative schemes, approximating both
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Figure 4.1. Approximations of the solution of (1.7) computed by scheme (4.3)
on a grid with cell size ∆x = ∆y = 2−11, CFL-number θ = 0.4 at time T = 2.
Left: the angle u, right: the corresponding director n = (cos(u), sin(u)).

x

y

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Figure 4.2. Approximations of the solution of (1.7) computed by scheme (4.4)
on a grid with cell size ∆x = ∆y = 2−11, CFL-number θ = 0.4 at time T = 2.
Left: the angle u, right: the corresponding director n = (cos(u), sin(u)).

these formulations are derived. Furthermore, we also design an energy conservative scheme based
on a Hamiltonian formulation of the variational wave equation (1.3). Numerical experiments,
performed with these schemes, strongly suggest

• All the designed schemes resolved the solution (including possible singularities in the angle
u) in a stable manner.
• The energy conservative schemes converge to a limit solution (as the mesh is refined), whose
energy is preserved. This solution is a conservative solution of (1.3).
• The energy dissipative schemes also converge to a limit solution with energy being dissipated
with time. This solution is a dissipative solution of the variational wave equation. Furthermore,
this solutions appears to be unique. Varying the amount of numerical viscosity did not affect the
limiting rate of entropy dissipation.

We also design both energy conservative as well as energy dissipative finite difference schemes
for the two-dimensional version of the variational wave equation (1.7), based on the first-order
system (4.1). Again, these schemes approximate the conservative, resp. dissipative, solutions
efficiently.
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Figure 4.3. Approximations of the solution of (1.7) computed by scheme (4.3)
on a grid with cell size ∆x = ∆y = 2−11, CFL-number θ = 0.4 at time T = 4.
Left: the angle u, right: the corresponding director n = (cos(u), sin(u)).
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Figure 4.4. Approximations of the solution of (1.7) computed by scheme (4.4)
on a grid with cell size ∆x = ∆y = 2−11, CFL-number θ = 0.4 at time T = 4.
Left: the angle u, right: the corresponding director n = (cos(u), sin(u)).

Thus, we have designed a stable, simple to implement, set of finite difference schemes that can
approximate both the conservative as well as the dissipative solutions of the nonlinear variational
wave equations. These schemes will be utilized in a forthcoming paper to study realistic modeling
scenarios involving liquid crystals.
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