
Multilevel Monte Carlo approximations of
statistical solutions to the Navier-Stokes

equation

A. Barth and Ch. Schwab and J. Sukys

Research Report No. 2013-33

November 2013

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________
Funding ERC: AdG 247277
Funding: ETH CHIRP1-03 10-1 and CSCS production project ID S366



MULTILEVEL MONTE CARLO APPROXIMATIONS

OF

STATISTICAL SOLUTIONS TO THE NAVIER–STOKES EQUATION

ANDREA BARTH, CHRISTOPH SCHWAB, AND JONAS ŠUKYS

Abstract. We present Monte Carlo and multilevel Monte Carlo discretizations for the nu-
merical approximation of the statistical solution to the viscous, incompressible Navier–Stokes
equation in a bounded domain D ⊂ Rd. We prove that Monte Carlo sampling produces se-
quences of sample averages of (Leray-Hopf) solutions to the Navier–Stokes equations which
converge to a (generalized) moment of a (in two space dimensions unique) statistical solu-

tion (in the sense of Foiaş and Prodi), at the rate M−1/2 in terms of the number of samples

M ∈ N. The convergence rate M−1/2 is shown to hold independently of the Reynolds
number, with constant depending only on the mean kinetic energy of the initial velocity.

We discuss the effect of a space-time discretization on the Monte Carlo convergence with
particular attention on the kinematic viscosity ν resp. on the Reynolds number. For a
multilevel Monte Carlo estimator, composed of ensembles of solutions with finite mean kinetic
energy in L2(D), we establish robust mean-square convergence to a (generalized) moment
of the statistical solution. It is concluded that robust (i.e. Reynolds number independent)
convergence rates are possible for multilevel Monte Carlo sample averages provided that
solution samples on coarse discretization levels are computed with turbulence models which
deliver mean-square consistent bulk properties of the turbulent flow.

1. Introduction

In the bounded domain D ⊂ Rd, for d = 1, 2, 3, with boundary ∂D and in the finite
time interval J̄ := [0, T ], for T < ∞, we consider a viscous, incompressible flow subject to
a prescribed divergence-free initial velocity field u0 : D 7→ R and subject to a body force f
acting on the fluid particles in D. We assume that D is connected, and, in dimension d = 1
in addition, we assume that D = (0, 1) (which could be achieved by scaling). The Navier–
Stokes equations for viscous, incompressible flow of a Newtonian fluid are given in terms of
the velocity field u : J̄ ×D 7→ Rd, and the pressure p : J̄ ×D 7→ R. The pressure takes the
role of a Lagrange multiplier, enforcing the divergence-free constraint. They read, for d ≥ 2
in J̄ ×D (see, e.g., [31]),

∂

∂t
u− ν∆u+ (u · ∇)u+∇p = f,

∇ · u = 0,
(1.1)

with the kinematic viscosity ν > 0 and with a given initial velocity field u(0) = u0.
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We focus our exposition on Equation (1.1) equipped with either no-slip boundary condi-
tions1 or periodic boundary conditions. No-slip boundary conditions take the form

u = 0 on ∂D. (1.2)

When dealing with periodic boundary conditions of length I > 0, in which case we denote
the physical domain by D = (0, I)d, we are interested in I-periodic solutions which satisfy

u(t, x) = u(t, x+ Iei), (1.3)

for i = 1, . . . , d and x ∈ D. Here, (ei, i = 1, . . . , d) denotes the set of unit vectors in the
direction of the coordinate axes. Naturally, different periods Ii may be considered in the
coordinate directions, all following results will hold in this case as well. To simplify notation
and unless explicitly stated otherwise, we shall assume I = 1.

For the sake of numerical analysis and for facilitating some of the numerical experiments in
the second half of the present paper, we shall also consider Equation (1.1) in space dimension
d = 1. In this case, we mean by Navier–Stokes equation the viscous Burgers’ equation,
with viscosity ν (which, in this particular case, of course takes on the meaning of a diffusion
coefficient rather than the reciprocal Reynolds number). Then, the velocity field is scalar and
Equation (1.1) simplifies to the viscous Burgers’ equation, given by

∂

∂t
u+

1

2

∂

∂x
(u2) = ν

∂2

∂x2
u+ f, (1.4)

with initial condition u(0) = u0. Here the incompressibility constraint ∇·u = 0 becomes void
and the pressure variable (the Lagrange multiplier for the constraint) is discarded from the
formulation. In particular, for Equation (1.4) the vanishing viscosity limit ν = 0 of solutions
is well-understood, and we refer for details to [20, Appendix B] and the references therein.

In this paper we consider numerical methods for statistical solutions to the Navier–Stokes
equation, given in Equation (1.1) and, in space dimension d = 1, the Burgers’ equation,
given in Equation (1.4). The initial condition is then given by a probability measure and the
solution is, therefore, at every time point also a measure. There are several, nonequivalent,
mathematical definitions of a statistical solution for Equation (1.1). One way to define a
statistical solution is, therefore, as one-parameter family of probability measures on the space
of all velocity fields. This historically first definition is due to C. Foiaş and G. Prodi (see [9,
12]). This construction of statistical solutions is based on weak solutions of the Navier–
Stokes equations in the sense of Leray–Hopf. Foiaş’ statistical solution takes the form of a
one-parametric family of Borel probability measures (µt, t ∈ [0, T ]) describing the distribution
of the velocity fields of the flow at all times. The second approach to statistical solutions is due
to M. I. Vǐsik and A. V. Foursikov (see [33, 32]). Their construction takes mathematically the
form of one single (“Vǐsik–Foursikov”) measure on the space of flow trajectories. Recently,
in [13], a modification of the original Vǐsik–Foursikov construction has been proposed to yield
a Vǐsik-Foursikov measure supported by the set of all Leray–Hopf weak solutions which is,
moreover, under mild additional conditions, consistent with the earlier notion of statistical
solution from C. Foiaş in [9]. The case of periodic boundary conditions is here of particular
interest as it has been proved in [33, 15] that any homogeneous, statistical solution of the
Navier–Stokes equation is a limit (in the weak sense) of homogeneous, statistical solutions
which are concentrated on flow fields which are periodic in the space variables.

1Our results will hold with minor modifications also for the slip boundary condition u · n|∂D = 0, where n
denotes the unit outward normal to the Lipschitz boundary ∂D.
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We adhere in our presentation closely to the notation and results in [11] and [13].
The paper is organized as follows: In Section 2 we introduce basic definitions and properties

of probability measures on function spaces. In Section 3, we sum up the concept of statistical
solutions of the Navier–Stokes equation. In Section 4, we introduce the Monte Carlo method
for the approximation of (generalized) moments of Hilbert-space-valued random variables and
establish a convergence estimate. We introduce space and time discretizations in Section 5.
In Section 6, we investigate the effect of space and time discretization on the approxima-
tions, leading to a singlelevel Monte Carlo estimator. We then proceed to the analysis of a
multilevel Monte Carlo discretization for the efficient approximation of statistical averages.
As in our previous work on the multilevel Monte Carlo approximation of random PDEs (e.g.
[4, 6, 7, 25, 26, 30] and the references there), we prove that a judicious combination of space
and time discretization with Monte Carlo sampling, where the sample numbers depend on the
discretization level and the Reynolds number, allow to approximate (generalized) moments of
statistical solutions with work versus accuracy which, asymptotically, equals that for numer-
ically computing one Leray–Hopf solution on the finest mesh. We give a convergence result
for the approximation of the, possibly infinite dimensional, initial distribution in Section 7.
The concluding Section 8 presents numerical experiments for a model problem, confirming
the theoretical results of this manuscript.

2. Measures on function spaces

As statistical solutions are by definition families of probability measures on the space of
all flows with finite mean kinetic energy, and as our algorithms exploit the properties of such
measures in an essential fashion, we recapitulate, for the convenience of the reader, basic
definitions of such measures, from [8, Chap.1].

Let (Ω,F) be a measurable space. If (E,G) denotes a second measurable space, then an
E-valued random variable (or random variable taking values in E) is a mapping X : Ω→ E
such that the set {ω ∈ Ω: X(ω) ∈ A} = {X ∈ A} ∈ F for any A ∈ G, i.e. such that X is a
G-measurable mapping from Ω into E.

Assume now that E is a metric space equipped with the Borel σ-algebra B(E), then
(E,B(E)) is a measurable space and we shall always assume that E-valued random vari-
ables X are F-B(E)-measurable. If E is a separable Banach space with norm ‖ · ‖E and
(topological) dual E∗, then B(E) is the smallest σ-field of subsets of E containing all sets

{x ∈ E : ϕ(x) ≤ α},
for ϕ ∈ E∗ and α ∈ R. Hence, if E is a separable Banach space, then X is an E-valued
random variable if and only if for every ϕ ∈ E∗, the mapping ω 7→ ϕ(X(ω)) is an R-valued
random variable. Moreover, we have the following lemma.

Lemma 2.1. Let E be a separable Banach space and let X be an E-valued random variable
on (Ω,F). Then the mapping ω 7→ ‖X(ω)‖E is measurable.

Proof. Since E is separable, there exists a sequence (ϕi, i ∈ N) ⊂ E∗ such that for all x ∈ E
holds

‖x‖E = sup
i∈N
|ϕi(x)|.

Hence, we find, for all ω ∈ Ω,

‖X(ω)‖E = sup
i∈N
|ϕi(X(ω))|
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which implies that ‖X‖E is an R-valued random variable. �

The random variable X is called Bochner integrable if, for any probability measure P on
the measurable space (Ω,F), we have∫

Ω
‖X‖E dP < +∞.

Here, a probability measure P on (Ω,F) is a σ-additive set function from Ω into [0, 1] such that
P(Ω) = 1, and the resulting measure space (Ω,F ,P) is a probability space. We shall always
assume, unless explicitly stated, that (Ω,F ,P) is complete, i.e. for every null-set B ∈ F ,
every subset A ⊂ B is measurable, meaning A ∈ F .

For an E-valued random variable X, L(X) denotes the law of X under P, i.e. for all
A ∈ B(E)

L(X)(A) = P({ω ∈ Ω : X(ω) ∈ A}).
The image measure µX = L(X) on (E, E) is called distribution of X.

A random variable taking values in E is called simple if it can only take finitely many
values, i.e. if it has the explicit form

X =
N∑
i=1

xi χAi ,

for Ai ∈ F and xi ∈ E, for i = 1, . . . , N and N < +∞, where χA denotes the indicator
function of A ∈ F . We set, for a simple random variable X taking values in E and for any
B ∈ F , ∫

B
X dP :=

N∑
i=1

xi P(Ai ∩B). (2.1)

For such a simple random variable X, and all B ∈ F , we have∥∥∥∥∫
B
X dP

∥∥∥∥
E

≤
∫
B
‖X‖E dP. (2.2)

By density and continuity, Equation (2.2) extends to to all X ∈ L1(Ω;E).
For any random variable X taking values in E which is Bochner integrable, there exists

a sequence (Xi, i ∈ N) of simple random variables such that, for P-a.e. ω ∈ Ω, ‖X(ω) −
Xi(ω)‖E → 0 as i→ +∞. Therefore, Equation (2.1) and Equation (2.2) extend in the usual
fashion by continuity to any E-valued random variable. We denote the integral∫

Ω
X dP = lim

i→+∞

∫
Ω
Xi dP

by E(X) and call it expectation of X.
We shall require for 1 ≤ p ≤ ∞ Bochner spaces of p-summable random variables X taking

values in the Banach space E. By L1(Ω;E) we denote the set of all (equivalence classes of)
integrable, E-valued random variables X and we equip it with the norm

‖X‖L1(Ω;E) =

∫
Ω
‖X‖E dP = E(‖X‖E).

More generally, for 1 ≤ p <∞, we define Lp(Ω;E) as the set of p-summable random variables
taking values E and equip it with norm

‖X‖Lp(Ω;E) :=
(
E(‖X‖pE)

)1/p
.
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For p = ∞, we denote by L∞(Ω;E) the set of all E-valued random variables which are
essentially bounded. This set is a Banach space equipped with the norm

‖X‖L∞(Ω;E) := ess sup
ω∈Ω
‖X(ω)‖E .

Likewise we define, for 1 ≤ p < ∞ (with the obvious modification for p = ∞) and for
T < +∞ the Bochner space Lp(J̄ ;E) of strongly measurable functions taking values in E,
endowed with the norm

‖f‖Lp(J̄ ;E) :=

{( ∫ T
0 ‖f(t)‖pE dt

)1/p
, for 1 ≤ p <∞,

ess supt∈(0,T ) ‖f(t)‖E , for p =∞.

For any separable Banach space E, and for any r ≥ p ≥ 1, we have

Lr(J ;E), C0(J̄ ;E) ∈ B
(
Lp(J ;E)

)
.

3. Statistical solutions

We recapitulate the concept and definition of a statistical solution of the Navier–Stokes
equation in the sense of C. Foiaş and R. Prodi as introduced in [9, 12]. To this end, follow-
ing [11], we first review the variational formulation of the Navier–Stokes equation in space,
and its interpretation as dynamical system for u(t) ∈ V . Here, V is an appropriate function
space of divergence-free velocity fields which is made precise later in this section. We review
known existence and uniqueness results for weak solutions in the sense of Leray–Hopf. To
distinguish these from statistical solutions, we shall call them subsequently “individual weak
solutions”. We then turn to the definition of a statistical solution for the Navier–Stokes equa-
tion as introduced by C. Foiaş in [9] and by C. Foiaş and G. Prodi in [12]; we shall refer to
these statistical solutions as Foiaş–Prodi statistical solutions, for conciseness. Existence proofs
in [9, 12] for Foiaş–Prodi statistical solutions were based on the classical “Faedo–Galerkin”
approach due to J. Leray and H. Hopf. Foiaş–Prodi statistical solutions take the form of a
one-parameter family of probability measures (the parameter being the time variable) on the
space of divergence-free velocity fields in D.

A different notion of statistical solution was introduced by M. I. Vǐsik and A. V. Foursikov
in [33, 32]. We shall refer to these statistical solutions as Vǐsik–Foursikov statistical solutions.
Vǐsik–Foursikov statistical solutions take the form of probability measures supported on sets
of velocity trajectories generated by the family of individual weak solutions in the sense of
Leray–Hopf.

In [13], the concepts of Foiaş–Prodi and Vǐsik–Foursikov statistical solutions were recon-
ciled: Under slightly stronger assumptions than those imposed by M. I. Vǐsik and A. V.
Foursikov in [33, 32], it was shown that Vǐsik–Foursikov and Foiaş–Prodi statistical solutions
coincide. Both solution concepts coincide in the sense that the ‘time-t projection’ of the mea-
sure constituting the Vǐsik–Foursikov statistical solution is a Foiaş–Prodi statistical solution
(see [13, Thm. 3.4]).

3.1. Function spaces. In a bounded, connected domain D ⊂ Rd, for d = 2, 3, we consider
the incompressible, instationary Navier–Stokes equation, given in Equation (1.1), with either
no–slip or periodic boundary conditions (see Equation (1.2) and Equation (1.3)).

The domain D is assumed to be open, bounded and connected and its boundary ∂D is
assumed to be either C2 or D is assumed to be convex, in order to ensure local H2(D)
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regularity of the velocity field (we refer to [24] and the references there for details on spatial
regularity of velocity and pressure field in polyhedral domains).

We denote by H a subspace of divergence-free vector fields in L2(D)d and by V a subspace
of the closure of H in H1(D)d. For no-slip boundary conditions in space dimensions d = 2, 3

H = {v ∈ L2(D)d : ∇ · v = 0 in H−1(D), v · n|∂D = 0 in H−1/2(∂D)},

which implies that H ⊂ L2(D)d is a closed, linear subspace of L2(D). Here, n denotes the
outward unit normal to the domain D which is defined almost everywhere on the Lipschitz
boundary ∂D. The space V is defined for no-slip boundary conditions as

V = Vdir := {v ∈ H1(D)d : ∇ · v = 0 in L2(D), v|∂D = 0}. (3.1)

For periodic boundary conditions, with D =]0, I]d we choose

V = Vper := {v ∈ H1
per(D)d : ∇ · v = 0 in L2(D),

∫
D
v dx = 0}, (3.2)

H = {v ∈ L2(D)d :

∫
D
v dx = 0} .

Evidently, we have the dense inclusions V ⊂ H and, throughout the following, we identify
the Hilbert space H with its own dual, i.e., H ' H∗. On the spaces H and V we have the
(canonical) inner products

(v, w)H =

∫
D
v · w dx and (v, w)V =

∫
D

d∑
i=1

∂v

∂xi
· ∂w
∂xi

dx,

where x = (x1, . . . , xd) denotes a point in D, with associated norms

‖v‖H = ((v, v)H)1/2, for v ∈ H, ‖v‖V = ((v, v)V )1/2, for v ∈ V.

In the following, we shall use the symbols V and H in all statements which apply generically,
i.e. to either choice of V and of H. For any subset X ⊆ H, we denote by Xw this subset
endowed with the weak topology of H. For X = H, then, Hw denotes the space H endowed
with its weak topology. For R > 0, we denote the closed ball of radius R in H by BH(R).
Since H is separable, BH(R)w is a complete, metrizable space.

3.2. Leray–Hopf weak solutions. With the function spaces just defined, the weak for-
mulation of Equation (1.1) reads: given T > 0, u0 ∈ H and f ∈ L2(J ;H), find u ∈
L∞(J ;H) ∩ L2(J ;V ), such that, for all v ∈ V

d

dt
(u, v)H + ν(u, v)V + b(u, u, v) = (f, v)H . (3.3)

Since our formulation is divergence-free there is no pressure term entering in the weak
formulation. In Equation (3.3), the trilinear form b is defined by

b(u, v, w) =
d∑

i,j=1

∫
D
ui
∂vj
∂xi

wj dx.

The trilinear form b is continuous on V and

∀u, v, w ∈ V : b(u, v, v) = 0 and b(u, v, w) = −b(u,w, v) .
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Alongside with the weak formulation we can achieve an equivalent formulation involving the
Stokes operator

Au = −P∆u, (3.4)

for all u ∈ V ∩ H2(D)d. Here, P denotes the Leray projection onto H in L2(D)d. Defined
like this, the Stokes operator A is a positive, self-adjoint operator and therefore we can define
fractional powers of A. We denote the fractional powers by Aa, for a ∈ R, and by D(Aa) the

domain of Aa. We have D(A1/2) = V . Further, the trilinear form b induces, for fixed u ∈ V ,

a bilinear operator B : D(A1/2)×D(A1/2)→ D(A−1/2) defined by

D(A−1/2)〈B(u, v), w〉D(A1/2) = b(u, v, w),

for all u, v, w ∈ D(A1/2). This in hand, we introduce the functional formulation of the Navier–
Stokes equation (1.1): given T > 0, u0 ∈ H and f ∈ L2(J ;H), find u ∈ L∞(J ;H) ∩ L2(J ;V )

with u′ ∈ L1(J ;D(A−1/2)) such that

u′ + νAu+B(u, u) = f . (3.5)

Then, we have the following definition.

Definition 3.1. On a time interval J ⊂ R, a function u : J 7→ H is called a Leray–Hopf weak
solution of Equation (1.1) if

(i) u ∈ L∞loc(J ;H) ∩ L2
loc(J ;V ),

(ii) (∂tu)(·) ∈ L4/3
loc (J ;V ′),

(iii) t 7→ u(t) ∈ Cloc(J ;Hw) (i.e. for every v ∈ H, t 7→ (u(t), v)H is continuous from J to
R),

(iv) u satisfies Equation (3.5) in the sense of distributions on J with values in V ′,
(v) for almost all t, t′ ∈ J , u satisfies the energy inequality

1

2
‖u(t)‖2H + ν

∫ t

t′
‖u(s)‖2V ds ≤

1

2
‖u(t′)‖2H +

∫ t

t′
(f(s), u(s))H ds. (3.6)

If further J = [t0, t1] is closed and left-bounded then

(vi) u(t) is strongly right-continuous in H at t0, i.e. u0 = limt↓t0 u(t) in H.

Under (vi), Equation (3.6) holds for all time instances t′∈ [t0, t1] where the Leray–Hopf
solution u is strongly (in H) right continuous. We note that the set of such points is of full
measure in J .

In abstract form, we may rewrite the solution to Equation (3.5) as a nonlinear dynamical
system according to

u′(t) = F (t, u(t)), (3.7)

where the right hand side is given by F (t, u) = f − νAu−B(u, u).
We call Leray–Hopf solutions from now on simply weak solutions of the Navier–Stokes

equation. It is by now classical that for any t0 ∈ R and for any u0 ∈ H, there exists at least
one global weak solution in [t0,∞) such that u(t0) = u0 in H. In space dimension d = 2,
this solution is, moreover, unique (see [31] and the references there). We denote by S(t, 0)
the solution operator that maps u0 into u(t). The solution operator is well defined in space
dimension d = 2 thanks to the uniqueness of weak solutions (see, e.g. [31, Thm. 3.1] and
the references there). It is, however, in general not a semigroup on H, since f could be time
dependent. In space dimension d = 3, the definition of the solution operator is more involved,
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since in the presence of a time-dependent forcing function f , only local uniqueness has been
shown to date [31, Thm. 3.2 ii)].

3.3. A-priori estimates for Leray–Hopf solutions. Here, we collect classical a-priori
estimates on Leray–Hopf solutions. The Navier–Stokes equation is, at positive kinematic
viscosity ν, formally a parabolic problem. Hence, various types of a-priori estimates and
regularity results are available. As a rule, most available regularity estimates establish a-priori
bounds on the solution in terms of Sobolev or Besov spaces without explicit dependence of
constants on ν. The estimates which we require in our analysis are classical and elementary
relative to recent developments. However, the dependence of constants on ν is explicit in
these estimates.

First, for Leray–Hopf solutions u of Equation (1.1) with no-slip boundary conditions, we
multiply with the testfunction u(t) and integrate by parts, which implies immediately the
differential inequality (compare Equation (3.6))

d

dt
‖u(t)‖2H + ν‖u(t)‖2V ≤

1

ν
‖f(t)‖2V ∗ .

Further, for u0 ∈ H, this gives ∫ T

0
‖u(t)‖2V dt ≤ K,

where K is defined by K := ν−1
(
‖u0‖2H + 1

ν

∫ T
0 ‖f(t)‖2V ∗ dt

)
. For 0 < s < T , we may write

‖u(s)‖2H ≤ ‖u0‖2H +
1

ν

∫ s

0
‖f(t)‖2V ∗ dt,

so that

sup
s∈[0,T ]

‖u(s)‖2H ≤ νK = ‖u0‖2H +
1

ν

∫ T

0
‖f(t)‖2V ∗ dt .

This bound is, in particular, independent of ν if f ≡ 0, i.e. if the flow is not externally forced.
Estimates in the V -norm (and in stronger norms) of u(t) become poor as ν → 0. One

exception from this are space dimensions d = 1, 2, and periodic boundary conditions. Here
(see, e.g., [31, Chapter 3.1, iii)]) holds the following energy equality

1

2

d

dt
‖u(t)‖2V + ν‖Au(t)‖2H = (f(t), Au(t))H ,

which implies (recall the definition of V in Equation (3.1) and (3.2) in the periodic setting in
space dimension d = 2)

d

dt
‖u(t)‖2V + ν‖Au(t)‖2H ≤

1

ν
‖f(t)‖2H .

Further, we get

sup
0≤t≤T

‖u(t)‖2V ≤ ‖u0‖2V +
1

ν
‖f(t)‖2H ,

and, moreover, ∫ T

0
‖Au(t)‖2Hdt ≤ C(T, ν),

where, however, the dependence of C(T, ν) is exponential with respect to T/ν ([31, Eq.
(3.23)]).
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3.4. Statistical solutions. Contrary to the dynamical systems viewpoint of the Navier–
Stokes equation, which associates a (unique in dimension d = 2) weak solution u(t) to a
given initial condition u0 ∈ H, statistical solutions try to describe the evolution if the initial
data is given by a probability distribution. Specifically, we assume that we are given a
probability measure µ0 on the space H describing the initial data. Then, a statistical solution
is a (family of) probability measure(s). Rather than being restricted to one single initial
condition, a Foiaş–Prodi statistical solution of the Navier–Stokes equation is a one-parameter
family of probability measures which describes the evolution of velocity ensembles and their
statistical distribution as time proceeds. We remark that the initial-boundary value problem
in Equation (3.3) can be interpreted as a special case of a statistical solution: In this case, the
measure µ0 places unit mass at one initial velocity u0 ∈ H. In general, the initial distribution
is defined on an underlying probability space (Ω,F ,P) and is assumed to be given as an image
measure under an H-valued random variable with distribution µ0. This random variable is
defined as a mapping from the measurable space (Ω,F) into the measurable space (H,B(H))
such that µ0 = X ◦ P. As a consequence we have a time-dependent family of measures
µ = (µt, t ≥ 0) on H given by

µt(E) = µ0(S(t, 0)−1E),

for all measurable ensembles of initial velocities E ⊂ H, i.e., for all E ∈ B(H). In other words,
the probability µt(E) for u(t) to be in E ∈ B(H) is the same as for u0 to be in S(t, 0)−1E,
i.e., µ0(S(t, 0)−1E). For any time t ≥ 0, we then define the generalized moment∫

H
Φ(v) dµt(v)

for a µt-integrable function Φ on H. The evolution of statistical moments of the flow in time
may be formally derived then as

d

dt

∫
H

Φ(v) dµt(v) =
d

dt

∫
H

Φ(S(t, 0)v) dµ0(v)

=

∫
H

(F (t, S(t, 0)v),Φ′(S(t, 0)v))H dµ0(v)

=

∫
H

(F (t, v),Φ′(v))H dµt(v),

for suitable testfunctionals Φ. The expression

d

dt

∫
H

Φ(v) dµt(v) =

∫
H

(F (t, v),Φ′(v))H dµt(v) (3.8)

with F as in Equation (3.7) is meaningful even if the solution operator is not defined, as in the
general case for d = 3. A suitable class of testfunctionals is given by the following definition.

Definition 3.2. Let C be the space of cylindrical test functionals Φ on H which are real-
valued and depend only on a finite number of components of v ∈ H, i.e. for k <∞

Φ(v) = φ((v, g1)H , . . . , (v, gk)H),

where φ is a compactly supported C1 scalar function on Rk and g1, . . . , gk ∈ V .

For Φ ∈ C we denote by Φ′ its differential in H, which is given by

Φ′(v) =

k∑
i=1

∂iφ((v, g1)H , . . . , (v, gk)H)gi .
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As a linear combination of elements in V , Φ′(v) belongs to V .
Energy-type inequalities are central to the notion of statistical solutions of Equation (1.1).

Suppose for now that the mapping

t 7→
∫
V
‖v‖2V dµt

is integrable on J = (0, T ) (resp. locally integrable on (0,∞)). This implies that the family
of measures (µt, t ∈ J) does not carry any mass on H\V and that, for any Φ ∈ C the mapping

v 7→ (F (t, v),Φ′(v))V

is continuous in V and that the right hand side of Equation (3.8) is well defined. Then, we
may integrate Equation (3.8), which gives∫

H
Φ(v) dµt(v) =

∫
H

Φ(v) dµ0(v) +

∫ t

0

∫
H

(F (s, v),Φ′(v))H dµs(v) ds.

This leads to an energy-type inequality, given, for all t ∈ [0, T ], by∫
H
‖v‖2H dµt(v) + 2ν

∫ t

0

∫
V
‖v‖2V dµs(v) ds

≤
∫ t

0

∫
H

(f(s), v)H dµs(v) ds+

∫
H
‖v‖2H dµ0(v).

(3.9)

We remark that for d = 2 we have equality in Equation (3.9) (see, e.g., [11, Eqn. (V.1.9)]).
Equation (3.8) and Equation (3.9) motivate the definition of statistical solutions of (1.1).

Definition 3.3. A one-parameter family µ = (µt, t ∈ J) of Borel probability measures on H
is called statistical solution of Equation (1.1) on J ⊂ R if

(i) the initial Borel probability measure µ0 on H has finite mean kinetic energy, i.e.,∫
H
‖v‖2H dµ0(v) <∞,

(ii) f ∈ L2(J ;H) and the Borel probability measures µt satisfy Equation (3.8) for all Φ ∈ C
and Equation (3.9) holds,

(iii) the mapping

J 3 t 7→
∫
H
ϕ(v) dµt(v)

is measurable on J for every bounded, continuous, real-valued function ϕ : H 7→ R and
the Borel probability measures (µt, t ∈ J) satisfies (compare [11, (V.1.12), (V.1.13)])

t 7→
∫
V
‖v‖2V dµt(v) ∈ L1(J), t 7→

∫
H
‖v‖2H dµt(v) ∈ L∞(J)

(iv) (Liouville Equation) for every cylindrical testfunction Φ as in Definition 3.2, and for
every t, t′ ∈ J , µt satisfies∫
H

Φ(v) dµt(v) =

∫
H

Φ(v) dµt′(v)

+

∫ t

t′

∫
H

(f,Φ′(v))− ν(Av,Φ′(v))− (B(v, v),Φ′(v)) dµs(v) ds.
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(v) (strengthened mean energy inequality (3.9)) on the time interval J ⊂ R there exists a
subset J ′ ⊂ J of full measure such that, for every nonnegative continuously differen-
tiable function ψ : [0,∞)→ R with ‖ψ′‖L∞((0,∞)) <∞, there holds

1

2

∫
H
ψ(‖u‖2H) dµt(u) + ν

∫ t

t′

∫
H
ψ′(‖u‖2H)‖u‖2V dµs(u) ds

≤ 1

2

∫
H
ψ(‖u‖2H) dµt′(u) +

∫ t

t′

∫
H
ψ′(‖u(s)‖2H)(f(s), u(s))H dµs(u) ds

for every t′ ∈ J ′ and every t ∈ J with t′ < t.

Having the definition of the statistical solution in place, we state the following result (see [9,
Thm. 1 and Prop.1] and [13]).

Theorem 3.4. Let µ0 be a Borel probability measure on H with finite mean kinetic energy,∫
H
‖v‖2H dµ0(v) < +∞ .

Let, moreover, f ∈ L2(J ;H) be a forcing term. Then, for either the no-slip case (see
Equation (3.1)) or the periodic case (see Equation (3.2)), there exists a statistical solution
(µt, t ∈ J) of the Navier–Stokes equation on H in the sense of Definition 3.3.

In dimension d = 2, if µ0 is supported in BH(R) for some 0 < R < ∞, and if the forcing
term f ∈ H is time-independent, the statistical solution is unique and explicitly given by
µt = S(t, 0)µ0, for t ≥ t0, i.e. by µ0 transported under the flow (S(t, 0), t ∈ J) of (unique)
Leray–Hopf solution operators of Equation (3.3).

The proof of the existence (and uniqueness in dimension d = 2) result can be found in [11,
Thms. V.1.1, V.1.2] in the case of no-slip boundary conditions and in [11, Thm. V.1.3-V.1.5]
in the case of periodic boundary conditions.

4. Monte Carlo method

In this section we prove that, for every M ∈ N, Monte Carlo sample averages built from
a finite ensemble of M individual weak solutions in the sense of Leray–Hopf approximate
generalized moments of a Foiaş–Prodi statistical solution with finite mean kinetic energy
in mean square sense at rate M−1/2 with a constant which is independent of the Reynolds
number. This Monte Carlo convergence result assumes, however, availability of M exact
solutions in the sense of Leray–Hopf in the Monte Carlo estimator. In practice, the M Leray-
Hopf solutions which constitute the sample average need to be approximated numerically.
This is addressed in Section 5. The Monte Carlo convergence analysis sets the stage for
discretization error bounds which have to be satisfied by discretizations of the individual
weak solution of the Navier–Stokes equation.

4.1. Monte Carlo method. Our goal is the numerical approximation of (generalized) mo-
ments of a Foiaş–Prodi statistical solution (µt, t ∈ J) for a given initial distribution µ0 on
H. More precisely, we are interested in approximating, for given Φ ∈ C (with C as in Defini-
tion 3.2) and for µ0 with finite mean kinetic energy,

Eµt(Φ) =

∫
H

Φ(v) dµt(v) , t ∈ J.
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For the first approach, we assume that we can sample from the exact initial distribution µ0.
Since µ0 is a distribution on the infinite-dimensional space H, this is, in general, a simplifying
assumption. However, if µ0 is given by a finite-dimensional measure the assumption is no
constraint. We discuss an appropriate approximation of the initial distribution in Section 7.
We generate M ∈ N independent copies (vi, i = 1, . . . ,M) of u0, where u0 is µ0-distributed.
We assume further that for each sample, distributed according to µ0, we can solve u(t) =
S(t, 0)u0 exactly. Further, we suppose that we can evaluate the real-valued functional Φ(u(t))
exactly. Then, we have the approximation

Eµt(Φ) ≈ EMµt (Φ) :=
1

M

M∑
i=1

Φ(S(t, 0)vi), (4.1)

where we denoted by (EMµt ,M ∈ N) the sequence of Monte Carlo estimators which approxi-
mate the (generalized) expectation Eµt(Φ).

To state the error bound on the variance of the Monte Carlo estimator, given in Equa-
tion (4.1), we assume for simplicity that the right hand side of Equation (1.1) is equal to zero,
i.e., f ≡ 0 (all results that follow have an analog for nonzero forcing). All test functions in C
fulfill, for some constant C > 0, the linear growth condition

∀v ∈ H : |Φ(v)| ≤ C(1 + ‖v‖H) . (4.2)

Proposition 4.1. Let Φ ∈ C be a testfunction. Then, an error bound on the mean-square
error of the Monte Carlo estimator EMµt , for M ∈ N, is given by

‖Eµt(Φ)− EMµt (Φ)‖L2(H;R) =
1√
M

(Varµt(Φ))1/2 ≤ C 1√
M

(
1 +

( ∫
H
‖v‖2H dµ0(v)

)1/2)
.

For ν > 0, the latter inequality is strict.

Proof. We have, with the independence of the copies (vi, i = 1, . . . ,M) and the fact that they
are identically distributed

Eµt
(
|Eµt(Φ)− EMµt (Φ)|2

)
= Eµt

( 1

M

∣∣ ∫
H

Φ(v) dµt(v)− Φ(S(t, 0)v)
∣∣2) .

Now, we may write, by the linearity of the expectation,

1

M
Eµt

(∣∣ ∫
H

Φ(v) dµt(v)− Φ(S(t, 0)v)
∣∣2) =

1

M
Varµt(Φ(v)).

Further we have with the linear growth condition in Equation (4.2).

1

M
Varµt(Φ(v)) ≤ 1

M
‖Φ‖2L2(H;R)

≤ C 1

M

∫
H

(
1 + ‖v‖2H

)
dµt(v)

≤ C 1

M

(
1 +

∫
H
‖v‖2H dµt(v)

)
.

Equation (3.9) reads (under the assumption that f ≡ 0)∫
H
‖v‖2H dµt(v) + 2ν

∫ t

0

∫
V
‖v‖2V dµs(v) ds ≤

∫
H
‖v‖2H dµ0(v),
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and since all terms are positive we have∫
H
‖v‖2H dµt(v) ≤

∫
H
‖v‖2H dµ0(v),

which proves the assertion. �

We remark that the error estimate in Proposition 4.1 does not contain any implicit constant.
We therefore conclude that the (mean-square over all flow configurations) convergence rate of
Monte Carlo sample averages is uniform with respect to the physical parameters of the flow
but depends, of course, on the second moment of µ0, i.e. on the mean kinetic energy of the
initial probability measure µ0.

4.2. Convergence of Monte Carlo sample averages to Vǐsik–Foursikov solutions.
The significance of Monte Carlo sampling in the approximation of generalized moments of
a statistical solution (µt, t ∈ J) is highlighted by the fact that for any finite number M of
samples, the Monte Carlo estimator EMµt converges in distribution to the expectation of a
Vǐsik–Foursikov statistical solution.

Using the Krein–Milman argument from [11, 13], Monte Carlo sample averages, being
convex combinations of Vǐsik–Foursikov statistical solutions which are Dirac measures sup-
ported on single Leray–Hopf solutions, can be shown to converge (in the sense of measures)
as M →∞, to a Vǐsik–Foursikov statistical solution, which coincides with the unique Foiaş–
Prodi statistical solution in space dimension d = 2. We refer to [14, Sec. 4.3] for details.

5. Space and time discretization

The convergence bound in Proposition 4.1 indicates that numerical ensemble averaging
over many flow configurations can yield mean-square convergent approximations to general-
ized moments of statistical solutions with convergence rates which are uniform with respect to
the kinematic viscosity of the flow under the sole (physically meaningful) assumption that the
ensemble of initial velocities has finite mean kinetic energy. The Monte Carlo error bounds
in Proposition 4.1 are semi-discrete in the sense that they assume the availability of an ex-
act Leray–Hopf solution of the Navier–Stokes equation for each initial velocity sample drawn
from µ0, and they pertain to bulk properties of the flow in the sense that they depend on the
H-norm of the individual flows. We have, therefore, to perform additional space and time
discretizations in order to obtain computationally feasible approximations of (generalized)
moments of statistical solutions. In this section, we address the effect of additional discretiza-
tion errors incurred by space- and time-discretizations on the accuracy of the Monte Carlo
sample averages.

For viscous, incompressible flows, there are by now numerous space and time discretization
methods with convergence rate estimates available. We refer to [31, 19, 18, 17, 16] and the
references there. While [31] contains the classical (due to Hopf and Leray) Faedo–Galerkin
discretization and establishes convergence without any rate (which suffices to claim existence
of Leray–Hopf solutions), for the multilevel Monte Carlo approach we require error bounds
with convergence rates such as those provided in [19, 18, 17, 16]. As is customary in numerical
analysis, these convergence rates depend on the smoothness s in scales of Sobolev or other
function spaces of the Leray–Hopf solutions which arise as individual solutions in the Monte
Carlo sampling. It is common in the discretization error analysis to state error bounds with
constants which depend on the viscosity parameter ν > 0 in an unspecified fashion. This
precludes, in our ensuing multilevel Monte Carlo error analysis, to obtain convergence rates
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which are robust with respect to the Reynolds number. In order to do so, we work under the
hypothesis that robust convergence rates, i.e. error bounds with constants independent of ν,
require scale resolving discretizations, i.e. spatial resolution of the flow to the scale of viscous
cut-off. All results which follow will hold under this assumption which is, however, prohibitive
in most practical applications. In multilevel Monte Carlo sampling strategies such as those
proposed in the next section, we consider a sequence of (space and time) discretizations
which are indexed by a level index `. We shall allow a level-dependent sample number M`

to estimate (generalized) moments of statistical solutions. In this approach, the coarse level
samples entail, inevitably, numerical simulations on scale-underresolving meshes, even in the
(ideal) setting when the finest discretization level reaches the viscous cut-off. On the other

hand, the convergence rate M−1/2 shown in Proposition 4.1 is in “mean kinetic energy” of the
solution ensemble. The analysis in the next section indicates that, as long as bulk properties
and ensemble averages of the flows are of interest, scale-underresolution can be compensated
with multilevel Monte Carlo, in the sense of mean-square kinetic energy, by sufficiently large
sample numbers M` on coarse discretization levels. Nevertheless, the issue of robustness and
of turbulence modeling in the solvers used in multilevel Monte Carlo simulations of statistical
solutions is a crucial one. Our multilevel error analysis indicates in particular that some form
of turbulence modeling must be used in fully discrete multilevel Monte Carlo approximations
of statistical solutions to generate numerical sample averages whose accuracy is uniform with
respect to the Reynolds number. In this way the ν-independence of the error bounds in
Proposition 4.1 is preserved under space and time discretization.

5.1. Space semi-discrete formulation. For the space semi-discrete formulation, we con-
sider a dense, nested family of finite dimensional subspaces V = (V`, ` ∈ N0) of V and
therefore of H. Associated to the subspaces V`, we have the refinement levels ` ∈ N0 and the
refinement sizes (h`, ` ∈ N0) and the H-orthogonal projections (P`, ` ∈ N0). Furthermore,
we endow the finite dimensional spaces in V with the norm induced by H. For ` ∈ N0 the
sequence is supposed to be dense in H in the sense that

lim
`→+∞

‖v − P`v‖H = 0.

Then the space semi-discrete weak formulation of the initial-boundary value problem Equa-
tion (1.1) reads: given T > 0, u0 ∈ H and f ∈ L2((0, T );H), find u` ∈ L∞((0, T );H) ∩
L2((0, T );V`), such that, for all v` ∈ V`, there holds

d

dt
(u`, v`)H + ν(u`, v`)V + b(u`, u`, v`) = (f, v`)H . (5.1)

We assume that the spaces in V are chosen such that the following asymptotic discretization
error bound holds.

Assumption 5.1. The sequence of semi-discrete solutions u` = (u`(t), t ≥ 0) converges to
the solution u = (u(t), t ≥ 0) of Equation (1.1). Then the discretization error is bounded, for
t ∈ [0, T ], by

(a) ‖u(t)− u`(t)‖H ≤ Chs` , (5.2)
for d = 1 and for some s ∈ [0, 1);

(b) ‖u(t)− u`(t)‖H ≤ C
hσ`
ν
, (5.3)

for d ≥ 2 and for some σ > 0.

In both cases C > 0 is independent of ν, ` and h`.
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Let us comment on Assumption 5.1. The convergence estimates (5.2) and (5.3) are explicit
in the discretization parameter h` (equal to, for example, a meshwidth of Finite Volume mesh,
or to N−1 where N denotes the spectral order of a spectral method) and in the kinematic
viscosity ν. The assumption that Equation (5.3) holds with some σ ≥ 0 implies robust
convergence, i.e. a rate of convergence that holds for large Reynolds numbers. Straightforward
discretizations of the Navier–Stokes equation in space dimension d = 2, 3, such as those
in [31, 19, 18, 17, 16], will not satisfy Equation (5.3) with σ > 0, unless some form of
upscaling or turbulence modelling is included. Establishing this error bound for particular
turbulence models is an interesting open problem.

In spatial dimension d = 1, it is shown in [21] that Equation (5.2) holds, with s = 1/2 and
for some constant C > 0 independent of ν (strictly speaking, the bound is shown in L1(D),
but the result in H = L2(D) can be derived with the L∞(D)-stability of the discretization
scheme and with an application of Hölder’s inequality). In space dimension d ≥ 2, there is
a rather substantial body of numerical analysis of space (and time) discretization schemes
for the Navier–Stokes equation; we mention only [19, 18, 17, 16, 28, 29]. All error bounds,
however, of the type of Equation (5.3) which are proved in these works have constants C > 0
which implicitly depend (exponentially) on T/ν and which are, therefore, not suitable to infer
statements on the performance of the multilevel Monte Carlo approximation of statistical
solutions for small values of ν.

For the case d ≥ 2, in order to achieve asymptotic convergence under Assumption 5.1, it is
required, that there exists `∗ ∈ N0 such that hσ`∗ ≤ ν. In this case we have convergence for all
` > `∗. If we are in the regime ` < `∗ (implying hσ` > ν), then the convergence requirement
is not fulfilled.

Unfortunately, ν can become very small for certain problems. In these cases we cannot
expect to fulfill the convergence requirement in any simulation.

5.2. Fully-discrete formulation. The approximation of the weak formulation in Equa-
tion (5.1) is space semi-discrete. In order to obtain a computationally feasible method, we
introduce a sequence of time discretizations Θ = (Θ`, ` ∈ N0) of the time interval [0, T ], for
T < +∞, each of equidistant/maximum time steps of size ∆`t. The time discretization at
level ` ∈ N0, Θ`, is the partition of [0, T ] which is given by

Θ` = {ti` ∈ [0, T ] : ti` = i ·∆`t, i = 0, . . . ,
T

∆`t
} .

We view the fully-discrete solution to Equation (3.5) as the solution to a nonlinear dynamical
system according to

Dt(u`,`) = F`(t, u`,`),

where the right hand side is given by (compare Equation (3.7))

F`(t, v) = f − νA`v −B`(v, v) .

Here, A` denotes the discrete Stokes operator and B` the associated bilinear form.
We denote by S` = (S`(t

i
`, 0), i = 0, . . . , T/∆`t) the fully-discrete solution operator that

maps u0 into u`,` = (u`,`(t
i
`), i = 0, . . . , T/∆`t).

We assume that the spaces in V and the time discretizations Θ are chosen such that the
following error bound holds.
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Assumption 5.2. The sequence of fully-discrete solutions (u`,`, ` ∈ N0) converges to the
(unique, in space dimension d ≤ 2) solution u of Equation (1.1). The space and time dis-
cretization error is bounded, for ` ∈ N and t ∈ Θ`, by

(a) ‖u(t)− u`,`‖H = ‖S(t, 0)u0 − S`(t, 0)u0‖H ≤ C (hs` + (∆`t)
s),

for d = 1 and for some s ∈ [0, 1);

(b) ‖u(t)− u`,`‖H = ‖S(t, 0)u0 − S`(t, 0)u0‖H ≤ C (
hσ`
ν

+
(∆`t)

σ

ν
),

for d ≥ 2 and for some σ > 0.

In both cases C > 0 is independent of ν, ` and h`. With the choice h` ' ∆`t this reduces to

(a) ‖u(t)− u`,`‖H ≤ C hs` , (5.4)
for d = 1 and for some s ∈ [0, 1);

(b) ‖u(t)− u`,`‖H ≤ C
hσ`
ν
, (5.5)

for d ≥ 2 and for some σ > 0.

Here, as in Assumption 5.1, for d ≥ 2 we obtain the convergence requirement ` > `∗, where
`∗ ∈ N0 such that ν ≥ hσ`∗ .

Remark 5.3. The assumption of a space and time discretization with the convergence
bounds (5.4) and (5.5) where the constant C > 0 is independent of the fluid viscosity in
the norm L∞(J ;H) is strong. It amounts to saying that, essentially, the numerical scheme
resolves the bulk properties of the flow consistent to order s > 0 independent of the small
scale features of the flow. In practice, therefore, Assumptions 5.1 and 5.2 imply that, for flows
with large Reynolds number, a proper turbulence model is used for discretizations which do
not resolve physical length scales of the flow.

6. Multilevel Monte Carlo method

The space and time discretization introduces a bias in the error bound of the variance of the
(discrete) Monte Carlo estimator. In this section, we first introduce the singlelevel approxi-
mation, where all samples of the Monte Carlo estimator are approximated with one common
space and time discretization. Then we extend this approach to a multilevel discretization.

6.1. Singlelevel Monte Carlo method. With the discretization in hand we can combine
the error in the spatial and temporal domain with the statistical sampling by the Monte Carlo
method, leading to what we shall refer to as the singlelevel Monte Carlo approach.

We define, for ` ∈ N0 and t ∈ Θ`, the Monte Carlo estimator with M` samples

EM`
µt (Φ`) :=

1

M`

M∑̀
i=1

Φ(S`(t, 0)vi) .

Here, S` denotes the fully-discrete solution operator, defined in Section 5. We assume further
that the testfunction Φ ∈ C satisfies a Lipschitz condition: there exists C > 0 such that

∀u, v ∈ H : |Φ(u)− Φ(v)| ≤ C‖u− v‖H . (6.1)

We remark that Equation (6.1) constitutes an additional constraint, in contrast to the linear
growth condition in Equation (4.2). Under Equation (6.1), the Monte Carlo estimator admits
the following mean-square error bound.
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Theorem 6.1. If, for Φ ∈ C fulfilling Equation (6.1) and ` ∈ N0, the fully-discrete Monte
Carlo estimator EM`

µt (Φ`) for the generalized moment of the statistical solution fulfills As-
sumption 5.2, for some s ∈ [0, 1) or some σ > 0 and h` ' ∆`t, then the variance of the
estimator admits, for t ∈ Θ`, the bound

‖Eµt(Φ)− EM`
µt (Φ`)‖L2(H;R) ≤

1√
M`

(
Varµt(Φ)

)1/2
+ ‖Φ− Φ`‖L2(H;R)

≤ C
( 1√

M`
+ ρ(h`)

)
.

Here, ρ(z) = zs for d = 1 and ρ(z) = zσ

ν for d ≥ 2 and z ∈ [0, 1]. The constant C > 0 is
independent of `, h` and of ν.

Proof. We use the triangle inequality and may write

‖Eµt(Φ)− EM`
µt (Φ`)‖L2(H;R) ≤ ‖Eµt(Φ)− EM`

µt (Φ)‖L2(H;R) + ‖EM`
µt (Φ)− EM`

µt (Φ`)‖L2(H;R).

The first term on the right hand side is bounded with Proposition 4.1 by

‖Eµt(Φ)− EM`
µt (Φ)‖L2(H;R) ≤ C

1√
M`

(
1 +

( ∫
H
‖v‖2H dµ0(v)

)1/2)
.

Further, we have that

‖EM`
µt (Φ)‖L2(H;R) ≤ ‖Φ‖L2(H;R) =

( ∫
H
‖Φ(v)‖2K dµt(v)

)1/2
.

Then the second term is bounded, with Assumption 5.2, by

‖EM`
µt (Φ)− EM`

µt (Φ`)‖L2(H;R) ≤ ‖Φ− Φ`‖L2(H;R)

≤ Eµ0
(
|Φ(S(t, 0)v)− Φ(S`(t, 0)v)|2

)1/2
≤ C Eµ0

(
‖S(t, 0)v − S`(t, 0)v‖2H

)1/2
≤ C

(
ρ(h`) + ρ(∆`t)

)
µ0(H) .

Overall this leads to the bound

‖Eµt(Φ)− EM`
µt (Φ`)‖L2(H;R) ≤ C

( 1√
M`

+ ρ(h`) + ρ(∆`t)
)
.

In the case that h` ' ∆`t, we have

‖Eµt(Φ)− EM`
µt (Φ`)‖L2(H;R) ≤ C

( 1√
M`

+ ρ(h`)
)
.

This proves the theorem. �

The error bound for the singlelevel Monte Carlo estimator consists of two additive compo-
nents, the approximation of the spatial and temporal discretization and of the Monte Carlo
sampling. Although we only established an upper bound, one can show that this error is,
indeed, of additive nature. This, in turn, indicates that the lack of scale-resolution in the spa-
tial and temporal approximation, i.e. if the discretization underresolves the scale of viscous
cut-off can partly (in a mean-square sense) be offset by increasing the number of samples,
on all mesh-levels (also scale-underresolving ones) in the Monte Carlo approximation. This
is in line with similar findings for multilevel Monte Carlo Galerkin discretizations for elliptic
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homogenization problems in [3]. In order to ensure that the total error in Theorem 6.1 is
smaller than a prescribed tolerance ε > 0, we require

1√
M`

(
Varµt(Φ)

)1/2
+ ‖Φ− Φ`‖L2(H;K) ≤ ε .

This is the case if, for some η ∈ (0, 1)

1√
M`

(
Varµt(Φ)

)1/2 ≤ η · ε and ‖Φ− Φ`‖L2(H;K) ≤ (1− η)ε

In the case of a discretization, which does not fulfill the convergence requirement, the second
term will be large (and η will be small), and an increase of the number of samples may achieve
an error of order ε.

6.2. Multilevel Monte Carlo method. The idea of the multilevel Monte Carlo estimator
is to expand the expectation of the approximation of the solution on some discretization level
L, for t ∈ ΘL, as the expectation of the solution on the (initial) discretization level 0 and a
sum of correcting terms on all discretization levels ` = 1, . . . , L, i.e.,

Eµt(Φ`) = Eµt(Φ0) +
L∑
`=1

Eµt(Φ` − Φ`−1).

Then we approximate the expectation in each term on the right hand side with a Monte Carlo
estimator with a level dependent number of samples, so that we may write

ELµt(ΦL) = EM0
µt (Φ0) +

L∑
`=1

EM`
µt (Φ` − Φ`−1).

We call ELµt the multilevel Monte Carlo estimator for discretization level L ∈ N0. The
multilevel Monte Carlo estimator has the following mean-square error bound.

Theorem 6.2. If, for Φ ∈ C fulfilling Equation (6.1) and L ∈ N0, the fully-discrete Monte
Carlo estimator EM`

µt (Φ`) for the generalized moment of the statistical solution fulfills As-
sumption 5.2, for all ` = 0, . . . , L with s ∈ [0, 1) or σ > 0 and h` ' ∆`t, then the variance of
the estimator admits, for t ∈ ΘL, the bound

‖Eµt(Φ)− ELµt(ΦL)‖L2(H;R) ≤ ‖Φ− ΦL‖L2(H;R) +
L∑
`=0

1√
M`

(
Varµt(Φ` − Φ`−1)

)1/2
≤ C

(
ρ(hL) +

1√
M0

(
1 + ρ(h0)

)
+

L∑
`=1

1√
M`

(
ρ(h`) + ρ(h`−1)

))
,

where Φ−1 ≡ 0 and ρ(z) = zs for d = 1 and ρ(z) = zσ

ν for d ≥ 2 and z ∈ [0, 1].

Proof. We can bound the mean-square error of the multilevel Monte Carlo error by

‖Eµt(Φ)− ELµt(ΦL)‖L2(H;R) ≤ ‖Eµt(Φ)− Eµt(ΦL)‖L2(H;R) + ‖Eµt(ΦL)− ELµt(ΦL)‖L2(H;R)

≤ ‖Φ− ΦL‖L2(H;R) + ‖Eµt(ΦL)− ELµt(ΦL)‖L2(H;R).

The first term satisfies (as in the proof of Theorem 6.1)

‖Φ− ΦL‖L2(H;R) ≤ C
(
ρ(hL) + ρ(∆Lt)

)
.
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The second term is bounded, with the convention that Φ−1 ≡ 0, by

‖Eµt(ΦL)− ELµt(ΦL)‖L2(H;R) ≤ ‖
L∑
`=0

(
Eµt(Φ` − Φ`−1)− EM`

µt (Φ` − Φ`−1)
)
‖L2(H;R)

≤
L∑
`=0

‖Eµt(Φ` − Φ`−1)− EM`
µt (Φ` − Φ`−1)‖L2(H;R)

≤
L∑
`=0

1√
M`

(
Varµt(Φ` − Φ`−1)

)1/2
.

Further, we have, for ` = 1, . . . , L, with Equation (6.1) and Assumption 5.2,

1√
M`

(
Varµt(Φ` − Φ`−1)

)1/2 ≤ 1√
M`
‖Φ` − Φ`−1‖L2(H;R)

≤ 1√
M`

(
‖Φ− Φ`‖L2(H;R) + ‖Φ− Φ`−1‖L2(H;R)

)
≤ C 1√

M`

(
ρ(h`) + ρ(∆`t) + ρ(h`−1) + ρ(∆`−1t)

)
.

For ` = 0 we can bound the term as follows
1√
M0

(
Varµt(Φ0)

)1/2 ≤ 1√
M0

(
‖Φ0 − Φ‖L2(H;R) + ‖Φ‖L2(H;R)

)
≤ C 1√

M0

(
ρ(h0) + ρ(∆0t)

)
+

1√
M0

( ∫
H
|Φ(v)|2 dµt(v)

)1/2
≤ C 1√

M0

(
ρ(h0) + ρ(∆0t) + 1

)
.

With the assumption h` ' ∆`t, this proves the assertion. �

By adjustment of the constant, we get from Theorem 6.2 the following proposition

Proposition 6.3. Assume the setting of Theorem 6.2 and that, for all ` = 1, . . . , L, it holds
h` ' ∆`t and that h`−1 ≤ %h`, with some reduction factor 0 < % < 1 independent of `. Then,
there exists C(%) > 0 independent of L, such that there holds the error bound

‖Eµt(Φ)− ELµt(ΦL)‖L2(H;R) ≤ ‖Φ− ΦL‖L2(H;R) +
L∑
`=0

1√
M`

(
Varµt(Φ` − Φ`−1)

)1/2
≤ C(%)

(
ρ(hL) +

1√
M0

+
L∑
`=0

1√
M`

ρ(h`)
)
.

This leads again to the question of the sample numbers (M`, ` = 1, . . . , L) that would yield
a given (mean kinetic energy) error threshold ε. We require

‖Φ− ΦL‖L2(H;R) +
L∑
`=0

1√
M`

(
Varµt(Φ` − Φ`−1)

)1/2 ≤ ε,
which leads, if we assume that ηL ∈ (0, 1), to the requirement

‖Φ− ΦL‖L2(H;R) ≤ (1− ηL) ε,
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and to
L∑
`=0

1√
M`

(
Varµt(Φ` − Φ`−1)

)1/2 ≤ ηL ε.
If we have that for some α > 0, (

Varµt(Φ` − Φ`−1)
)1/2 ≤ hα` ,

then, to equilibrate the error for each level ` = 1, . . . , L, we need to chose

M` = h2α
` L

2 1

(ηLε)2

as the number of samples. If the convergence requirement is not fulfilled, then ηL will be close
to zero and therefore, depending on the confidence level ε, we have to sample accordingly.

We proceed to determine the numbers M` of Monte Carlo samples. To this end, we continue
to work under Assumption 5.2. We determine the required number M` of Monte Carlo
samples on each discretization level ` based on equilibration of the errors arising from each
term Varµt(Φ`−Φ`−1) such that the total mean-square error from Proposition 6.3 is bounded
by the prescribed tolerance ε > 0. We start our derivation with the case d ≥ 2 and in the
case that at least on the finest level the convergence requirement is fulfilled, i.e., hσL < ν. We
consider the case where the convergence requirement is not fulfilled for all levels up to level
`∗(ν). In this case, for 0 ≤ `∗(ν) < L (meaning hσ`∗(ν) ≥ ν and hσ`∗(ν)+1 < ν), we choose on

the first level the sample number

M0 = O

(( ν
hσL

)2
)

to equilibrate the statistical and the discretization error contributions. Here, and in what
follows, all constants implied in the Landau symbols O(·) are independent of ν. According to
this convergence analysis, the multilevel Monte Carlo sample numbers M`, for discretization
levels ` = 1, . . . , `∗(ν), . . . , L should be chosen according to

M` = O

((hσ`
hσL

)2
`2(1+η)

)
,

for η > 0.
For d = 1 we obtain optimal sample numbers, if we choose

M0 = O

(( 1

hsL

)2
)

and

M` = O

(( hs`
hsL

)2
`2(1+η)

)
,

for ` = 1, . . . , L and η > 0.
We remark that the Lipschitz condition (see Equation (6.1)) could be substituted by a

so-called Hölder condition: there exists a constant C > 0 and some 0 < α ≤ 1 such that

∀u, v ∈ H : |Φ(u)− Φ(v)| ≤ C‖u− v‖αH .
While the convergence analysis stays verbatim the same, the convergence rate and the depen-
dence of the sample numbers on the discretization parameters in Theorem 6.1, Theorem 6.2
and Proposition 6.3 would include the additional parameter α.
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7. Discretization of the initial distribution µ0

For the numerical simulation of a statistical solution we have to be able to sample from a
measure defined on a possibly infinite dimensional space. In this section we give a convergence
result for a finite dimensional approximation of the initial measure. We follow here closely
the approach in [5].

The initial distribution µ0 is defined on a probability space (Ω,F ,P) and is assumed to be
given as an image measure under an H-valued random variable with distribution µ0. This
random variable is defined as a mapping from the measurable space (Ω,F) into the measurable
space (H,B(H)) such that µ0 = X ◦ P. We assume throughout the numerical experiments
that µ0 is a Gaussian measure supported on H or on a subspace of H (see, e.g., [10, Sec. 5]
for a detailed discussion of this case).

Gaussian measures are completely characterized by the mean m ∈ H and covariance oper-
ator Q defined on H. Then the Gaussian random variable X is given by its Karhunen–Loève
expansion

X = m+
∑
i∈N

√
λiβiwi,

where ((λi, wi), i ∈ N) is a complete orthonormal system in H and consists of eigenvalues and
eigenfunctions of Q. The sequence (βi, i ∈ N) consists of real-valued, independent, (standard)
normal-distributed random variables. With the truncated expansion we define a sequence of
random variables (Xκ, κ ∈ N) given by

Xκ = m+

κ∑
i=1

√
λiβiwi ,

with mean m ∈ H and covariance operator Qκ. The sequence truncated sums Xκ converge
P-a.s. to X for κ → +∞. We control the L2(Ω;H)-error of this truncation by the decay of
the eigenvalues. To this end, we write

‖X −Xκ‖L2(Ω;H) = ‖
∞∑

i=κ+1

√
λiβiwi‖L2(Ω;H) .

The squared right hand side is bounded by

‖
∞∑

i=κ+1

√
λiβiwi‖2L2(Ω;H) = E

(
‖
∞∑

i=κ+1

√
λiβiwi‖2H

)
=

∞∑
i=κ+1

λiE(β2
i )‖wi‖2H

=

∞∑
i=κ+1

λi .

If we assume the eigenvalues have a decay of λi ≤ C i−γ , for some fixed γ > 1, then we have
that the last expression is bounded by

∞∑
i=κ+1

λi ≤ C
∞∑

i=κ+1

i−γ = C
∞∑
i=1

(i+ κ)−γ ≤ C 1

γ − 1
κ−γ+1 .

Therefore, we proved the following lemma.
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Lemma 7.1. If the eigenvalues (λi, i ∈ N) of the covariance operator Q of the Gaussian
random variable X on H have a rate of decay of λi ≤ C i−γ, then the sequence (Xκ, κ ∈ N)
converges to X in L2(Ω;H) and the error is bounded by

‖X −Xκ‖L2(Ω;H) ≤ C
1√
γ − 1

κ−
γ−1
2 .

7.1. Eigenfunctions of the Stokes operator. A key issue in the numerical approximation
of statistical solutions is the discretization of the initial condition. To this end, we expand data
and solutions in terms of eigenfunctions of the Stokes operator A defined in Equation (3.4).
The Stokes operator A is a closed, unbounded, self-adjoint operator on its domain D(A).
By the spectral theorem, A has for either set of boundary conditions a discrete spectrum
Σ ⊂ R+, which consists of real eigenvalues λj ∈ Σ which accumulate only at infinity, and
which admits a countable sequence of eigenfunctions (wj , j ∈ N) which are dense in H and in
V . We assume that the sequence (wj , j ∈ N) constitutes an orthonormal basis of H. Then,
for every v ∈ H we may write

v =
∑
j∈N

vjwj , vj = (v, wj)H

and ‖v‖2H =
∑

λ∈Σ |vλ|2. Domains of fractional powers Aa for any a ∈ R can be characterized
in terms of the Fourier coefficients vλ:

v ∈ D(Aa)⇐⇒
∑
j∈N

λaj |vj |2 <∞ .

Naturally, the (vλ, λ ∈ Σ) depend on the boundary conditions and on the domain D. The
Stokes operator being a second order, strongly elliptic differential operator, classical results on
spectral asymptotics (see, e.g., [11, Eqn. (II.6.25)]) imply that for any boundary conditions the
eigenvalues λ ∈ Σ, enumerated in increasing magnitude and repeated according to multiplicity
by λj , grow asymptotically as

λj ∼ λ1j
2/d as j →∞. (7.1)

In the particular case of periodic boundary conditions, as given in Equation (1.3), and for the
domain D = (0, I)d, fully explicit expressions are available (see, e.g. [31, Chap. I.2.2] or [11,
Eqns. (II.6.16) - (II.6.18)]): denoting by A the Stokes operator in Equation (3.4), we have

Awk,α = λkwk,α , wk,α ∈ D(A), α = 1, ..., d,

where

wk,α =

(
eα −

kαk

|k|2

)
exp(2iπk · x/I) , λk = 4π2|k|2I−2. (7.2)

Here, we set k = (k1, ..., kd) ∈ Zd, α = 1, 2, ..., d, and eα denotes the unit vector on coordinate
axis α in Rd. It is easily verified that Equation (7.2) is consistent with Equation (7.1).

7.2. Gaussian measure on L2(0, 1) with periodic boundary conditions. As in the
beginning of this section we have a Gaussian distribution on H = L2

per(D), where D = (0, 1)

(with periodic boundary conditions). In the univariate case, a basis of L2
per(D) is given by

(wi, i ∈ N), where we have wi(x) = sin(2iπx). Then the covariance operator Q is with
Mercer’s theorem defined, for φ ∈ L2

per(D), as

Qφ(x) =

∫
D
q(x, y)φ(y)dy
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where the kernel q is

q(x, y) =
∑
i∈N

λiwi(x)wi(y) =
∑
i∈N

λi sin(2iπx) sin(2iπy).

Now, we can choose any series (λi, i ∈ N) with
∑

i∈N λi <∞ to define a covariance operator
Q on H which is trace class. One possible choice would be λi ' i−α, for α ≥ 3.

More generally, in any space dimension d ≥ 2, we can parameterize a Gaussian measure
on the divergence-free initial velocity fields, i.e. on H = {v ∈ L2(D)d : div v = 0}, by
prescribing a divergence-free mean velocity field 〈u0〉 = Eµ0(H) and the Gaussian covariance
operator Q on H. We shall choose

Q = A−δ (7.3)

where 2/d δ = α and A denotes the Stokes operator defined in Equation (3.4). Then draws
of the random initial velocity u0 with law µ0 can be obtained from the Karhunen–Loève
expansion

u0(x, ω) = 〈u0〉+
∑
i∈N

√
µiξi(ω)wi(x)

where wi ∈ V denote the eigenfunctions of the Stokes operator A, where ξi ∼ N (0, 1) are
independent standard normal random variables taking values in R and where µi are the
Karhunen–Loève eigenvalues.

For the “Stokes“-covariances Aa in Equation (7.3), the spectral mapping theorem implies

µi = λ−δi

with the asymptotic behavior of λi as i→∞ given by Equation (7.1).

8. Numerics

We describe numerical experiments for the one dimensional case of the Navier–Stokes equa-
tions with stochastic initial data. As described in the introduction, the Navier–Stokes equation
in one space dimension reduces to the, so called, viscous Burgers’ equation (see Equation (1.4))
with viscosity ν > 0. As emphasized in Section 5.1, in the case d = 1, i.e. for scalar problems
in one spatial dimension, the bound in Equation (5.2) in Assumption 5.1 holds with s = 1/2
and with a constant C > 0 independent of ν (see [21]). If the mesh used for the space dis-
cretization is sufficiently fine, then the first order Finite Volume method converges with rate
s = 1 in L1(D) due to the high spatial regularity of the solution u, albeit with constants which
blow up as the viscosity ν → 0. Convergence bounds with constants that are independent
of the viscosity (such as those stipulated in Assumption 5.1) seem to be presently available
only in one space dimension. Specifically, we consider periodic boundary conditions and the
physical domain D = [0, 1] ⊂ R. Then, the viscous Navier-Stokes equations simplify to the
scalar, viscous Burgers’ equation

∂

∂t
u+

1

2

∂

∂x
(u2) = ν

∂2

∂x2
u+ f, ∀x ∈ D, t ∈ [0, T ], ω ∈ Ω, (8.1)

which is completed with the random initial condition u(0) = u0 ∈ L2(Ω, L1(D) ∩ L∞(D)),
inducing a square-integrable initial measure µ0 with values in L1(D) ∩ L∞(D).

The stochastic initial data u0 is assumed to be given by its Karhunen–Loève expansion,

u0(x, ω) = 〈u(x)〉+

∞∑
m=1

√
λmwm(x)Ym(ω), (8.2)
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with eigenvalues (λm,m ∈ N) ∈ `
1
2 (N), eigenfunctions wm ∈ L2(D), ‖wm‖L2(D) = 1, mean

field 〈u〉 ∈ L2(D), and independent, identically distributed random variables Ym ∈ L2(Ω)
with zero mean and finite variance.

8.1. Karhunen–Loève expansion with normally distributed (Ym,m ∈ N). In par-
ticular, we fix the domain D = [0, 1] and choose normally distributed random variables
Ym ∼ N (0, 1), i.e. with zero mean and unit variance, eigenvalues λm = m−2.5 for m ≤ 8 and
zero otherwise, eigenfunctions wm(x) = sin(2πmx), and the mean field 〈u(x)〉 ≡ 0, i.e.

u0(x, ω) =

8∑
m=1

1

m5/4
sin(2πmx)Ym(ω). (8.3)

The kinematic viscosity is chosen to be ν = 10−3.
All simulations reported below were performed on Cray XE6 in CSCS [2] with the recently

developed massively parallel code ALSVID-UQ [1, 30, 26].
The initial data in Equation (8.3) and the reference solution uref at time t = 2 are depicted

in Figure 1. The solid line represents the mean Eµt(uref) and the dashed lines represent the

mean plus/minus the standard deviation
√

Varµt(uref) of the (random) solution uref at every
point x ∈ D .

The solution is computed with a standard first-order Finite Volume scheme using the
Rusanov HLL solver on a spatial grid in D of size 32768 cells and the explicit forward Euler
time stepping (see [23]) with the CFL number set to 0.9. The number of levels of refinement is
9 (the coarsest level has 64 cells). The number of samples is chosen according to the analysis
in Section 6 with s = 1, i.e.

M` = ML22(L−`), ` = 0, . . . , L,

where the number of samples on the finest mesh set to ML = 4 (this leads to M0 = 262144).
The simulation took 50 minutes (wall-clock time) on 256 cores.
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Figure 1. Reference solution computed using a multilevel Monte Carlo Finite
Volume method with kinematic viscosity ν = 10−3 and random initial data u0

with normally distributed Ym.
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Numerical error convergence analysis in the fully resolved case. Next, following Definition 3.2,
for k = 1, φ(x) = x and a given kernel g1 ∈ L∞(D), we define a continuous, linear functional
Φ on L1(D) ∩ L∞(D) by

Φ(u)(t, ω) =

∫
D
u(x, t, ω)g1(x)dx, ∀t ∈ [0, T ] ω ∈ Ω. (8.4)

Note, that the non-compact support of φ does not play any role for one-dimensional problems
(d = 1), since the values of the inner product can be bounded (using the results from [23])
for every t and ω by

|(u(·, t, ω), g1)H | ≤ ‖u(·, t, ω)‖L2(D)‖g1‖L2(D) ≤ ‖u0(·, ω)‖L2(D)‖g1‖L2(D).

In the following numerical experiment, the function g1 in Equation (8.4) is g1(x) = (x−0.5)3.
Using multilevel Monte Carlo Finite Volume approximations for the mean Eµt(Φref) and the

variance Varµt(Φref) from Figure 1 as a reference solution, we compute approximate solutions
u` using Monte Carlo Finite Volume and multilevel Monte Carlo Finite Volume methods on
a family of meshes with spatial resolutions ranging from n0 = 64 cells up to nL = 2048 cells.
We monitor the convergence of the errors in ELµt(ΦL) and VarLµt(ΦL),

εEL =
∣∣Eµt(Φref)− ELµt(ΦL)

∣∣ , εVL =
∣∣Varµt(Φref)−VarLµt(ΦL)

∣∣ .
The number of samples on the finest mesh is set to ML = 4. The number of levels for the
multilevel Monte Carlo Finite Volume method is chosen so that the coarsest level contains 64
cells. Since 1/64 ≈ 0.015 <

√
ν = 10−1.5 ≈ 0.03, the viscous shock profile of the solution u`

is resolved on every mesh resolution level ` = 0, . . . , L.

Error estimator. Since the solution is a random field, the discretization error ε` is a random
quantity as well. For error convergence analysis we, therefore, compute a statistical estimator
by averaging estimated discretization errors from several independent runs. We compute the
error in Proposition 6.3 by approximating the L2(H,R)-norm by Monte Carlo sampling. Let

Φref denote the reference solution and (Φ
(k)
L , k = 1, . . . ,K) be a sequence of independent ap-

proximate solutions obtained by running the Monte Carlo Finite Volume or multilevel Monte
Carlo Finite Volume solver K times corresponding to K independent, identically distributed
realizations of the initial velocity, drawn from µ0 . Then the L2(H,R)-based relative error
estimator is defined to be

RεEL = 100×

√√√√ 1

K

K∑
k=1

(
ε
E,(k)
L

|Eµt(Φref)|

)2

, RεVL = 100×

√√√√ 1

K

K∑
k=1

(
ε
V,(k)
L

|Varµt(Φref)|

)2

.

In order to obtain an accurate estimate of RεL, the number K must be large enough to
ensure a sufficiently small (< 0.1) relative variance σ2(Rεn), which can be estimated by

σ2(RεL) ≈ σ2
K(RεL) =

1

K − 1

EKµt
(
Rε2

L − EKµt(RεL)2
)

EKµt(RεL)
.

We found K = 30 to be sufficient for our numerical experiments. Next, we analyze the error
convergence plots of mean and variance.

In Figure 2, we plot the error εEL against the number of cells on discretization level L in
the left subplot and versus the computational work (runtime) in the right subplot. Both
multilevel Monte Carlo and Monte Carlo methods give similar errors for the same spatial
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resolution. However, there is a significant difference in the runtime: multilevel Monte Carlo
methods are two orders of magnitude faster than plain Monte Carlo methods.
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Figure 2. Convergence of the error εEL of the mean Eµt(Φ) of the viscous
Burgers’ equation (8.1) with kinematic viscosity ν = 10−3 and random initial
data u0 with normally distributed Ym.

The lower dashed line in the top-right corner of each plot in Figure 2 (and all subsequent
figures) indicates the expected convergence rate of the multilevel Monte Carlo method obtained
in Proposition 6.3. These expected convergence rates coincide with the observations in the
numerical experimental data.

In Figure 3, we plot the error εVL versus the number of cells on discretization level L in the
left subplot and versus the computational work (runtime) in the right subplot. Analogously as
in the plots for the expectation, both multilevel Monte Carlo and Monte Carlo methods give
similar errors for the same spatial resolution. However, in terms of the required computational
work for the same specified accuracy, multilevel Monte Carlo methods are two orders of
magnitude faster than plain Monte Carlo methods.
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Figure 3. Convergence of the error εVL of the variance Vµt(Φ) of the viscous
Burgers’ equation (8.1) with kinematic viscosity ν = 10−3 and random initial
data u0 with normally distributed Ym.
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Numerical error convergence analysis in the under-resolved case. Next, we repeat the error
convergence analysis for Burgers’ equation, but this time with much fewer cells on the coarsest
mesh resolution in the multilevel Monte Carlo Finite Volume estimator. In particular, instead
of taking 64 cells on the coarsest mesh resolution, we will take only 8 cells by adding three
more levels of mesh refinement. Since in this case 1/8 >

√
ν = 10−1.5 ≈ 0.03, the viscous

shock profile of the solution un is not resolved on every mesh resolution level, in particular,
it is resolved only on the mesh resolution levels ` = 3, . . . , L, and it is under-resolved on
` = 0, 1, 2. Notice, that the number of cells on the finer mesh resolutions stays the same, i.e.
for n3 = 64, . . . , nL = 2048.
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Figure 4. Convergence of the error εEL of the mean Eµt(Φ) of the viscous
Burgers’ equation (8.1) with kinematic viscosity ν = 10−3 and random initial
data u0 with normally distributed Ym.
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Figure 5. Convergence of the error εVn of the variance Vµt(Φ) of the viscous
Burgers’ equation (8.1) with kinematic viscosity ν = 10−3 and random initial
data u0 with normally distributed Ym.

In Figure 4, we plot the error εEL against the number of cells nL in the left subplot and
versus computational work (runtime) in the right subplot for case of 8 cells on the coarsest
resolution. Even in the presence of multiple under-resolved levels, the error convergence of the
multilevel Monte Carlo Finite Volume method is faster than the previous setup (compared to
Figure 2). In Figure 5, we plot the error εVL versus the number of cells nL in the left subplot
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and versus the computational work (runtime) in the right subplot for case of 8 cells on the
coarsest resolution. Again, even in the presence of multiple under-resolved levels, the error
convergence of the multilevel Monte Carlo Finite Volume method is faster than the previous
setup (compared to Figure 3).

8.2. Karhunen–Loève expansion with uniformly distributed (Ym,m ∈ N). In this
section, we perform the same set of numerical experiments as in Section 8.1, but this time with
uniformly distributed random variables (Ym,m ∈ N) in Equation (8.2), i.e. Ym ∼ U([−1, 1]).
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Figure 6. Reference solution computed using a multilevel Monte Carlo Finite
Volume method with kinematic viscosity ν = 10−3 and random initial data u0

with uniformly distributed Ym.

The reference solution is depicted in Figure 6 and error convergence analysis in Figure 7 -
8. The setup is equivalent to the previous section. The reference solution is computed with
a standard first-order Finite Volume scheme using the Rusanov HLL solver on a spatial grid
in D of size 16384 cells and the explicit Forward Euler time stepping with CFL number set
to 0.9. The number of levels of refinement is 8 (the coarsest level has 64 cells). The number
of samples on the finest mesh is ML = 4 and on the coarsest mesh is M0 = 65536.

9. Conclusions

In this paper, we have presented a novel computational approach for the Navier–Stokes
equations, governing the evolution of viscous, incompressible flow. The approach consists
in a multilevel Monte Carlo sampling strategy for the efficient numerical approximation of
ensemble averages and of bulk properties of the statistical solution of these equations. The
proposed approach is based on the computational approximation of generalized moments of
the statistical solution to the Navier–Stokes equation by sampling, combined with the use of
standard space and time discretization methods (and flow codes) for each sample.

Under the (physically meaningful) assumption of a statistical solution with finite mean
kinetic energy, a convergence rate of 1/2 in L∞((0, T );L2(D)), and in quadratic mean over
the ensemble of all velocity fields is proved. The constants in the error bound only depend
on the mean kinetic energy of the velocity ensemble constituting the statistical solution, but
are independent of the kinematic viscosity. For general space and time discretizations, our
analysis delineates precise conditions to be satisfied by turbulence models in numerical flow
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Figure 7. Convergence of the error εEL of the mean Eµt(Φ) of the viscous
Burgers’ equation (8.1) with kinematic viscosity ν = 10−3 and random initial
data u0 with uniformly distributed Ym.

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
log10(cells) in x-direction

0.5

0.0

0.5

1.0

1.5

2.0

lo
g
1

0
( 
L

2
(Ω
,
L

1
(D

))
-e

rr
o
r 

)  1/2
 1/1

Rel. L2 (L1 )-error of the variance of u (K=30)

MC (σ 2
K =0.34)

MLMC (σ 2
K =0.04)

2 1 0 1 2 3 4
log10(seconds)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
lo

g
1

0
( 
L

2
(Ω
,
L

1
(D

))
-e

rr
o
r 

)

 1/6

 1/3

Rel. L2 (L1 )-error of the variance of u (K=30)

MC

MLMC

Figure 8. Convergence of the error εVL of the variance Vµt(Φ) of the viscous
Burgers’ equation (8.1) with kinematic viscosity ν = 10−3 and random initial
data u0 with uniformly distributed Ym.

solvers that are employed in the sampling for the numerical approximation of individual
(Leray–Hopf) solutions in order to ensure robust simulations. In model situations (one and
two spatial dimensions, periodic boundary conditions in the spatial domain) the present
convergence analysis indicates that physical underresolution of space and time discretization
(in particular, not resolving the viscous cut-off with the solvers used to approximate the
individual solutions in the multilevel Monte Carlo simulations) can be compensated to some
extent by statistical oversampling, at least in mean square with respect to the mean kinetic
energy of the initial velocity ensemble.

Irrespective of the numerical analysis issues of approximating the statistical solution (µt, t ∈
J) by Monte Carlo sampling and by multilevel Monte Carlo discretization, the presently pro-
posed multilevel Monte Carlo approximation for generalized moments of statistical solutions
offers the perspective of increased computational stability in capturing ensemble averages and
so-called bulk properties of viscous, incompressible flows at high Reynolds number. The rather
large number M` of Monte-Carlo samples on coarse space and time grids naturally allows for
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massively parallel computation strategies and, moreover, has some degree of robustness to-
wards hardware failure, i.e. of ‘fault tolerance’, built in. We refer to [27] for details on fault
tolerance of multilevel Monte Carlo algorithms. The mathematical analysis of using turbu-
lence models in the multilevel Monte Carlo sampling for simulations of individual solutions
on underresolved space and time discretization levels is the topic of ongoing research. For
some indications on this, we refer to [3] where the combination of (numerical upscaling) with
multilevel Monte Carlo simulations for random elliptic homogenization problems is analyzed.
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Appl. (4), 111 (1976), pp. 307–330.
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