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Abstract

We revisit the wavelet tensor train (WTT) transform, an algebraic orthonormal wavelet-

type transform based on the successive separation of variables in multidimensional arrays,

or tensors, underlying the tensor train (TT) representation of such arrays. The TT de-

composition was proposed for representing and manipulating data in terms of relatively

few parameters chosen adaptively, and the corresponding low-rank approximation proce-

dure may be seen as the construction of orthonormal bases in certain spaces associated to

the data. Using these bases, which are extracted adaptively from a reference vector, to

represent other vectors is the idea underlying the WTT transform. When the TT decom-

position is coupled with the quantization of “physical” dimensions, it seeks to separate not

only the “physical” indices, but all “virtual” indices corresponding to the virtual levels, or

scales, of those. This approach and the related construction of the WTT transform are

closely connected to hierarchic multiscale bases and to the framework of multiresolution
analysis.

In the present paper we analyze the tensor structure of the WTT transform. First, we

derive an explicit TT decomposition of its matrix in terms of that of the reference vector.

In particular, we establish a relation between the ranks of the two representations, which

govern the numbers of parameters involved. Also, for a vector given in the TT format we

construct an explicit TT representation of its WTT image and bound the TT ranks of the

representation. Finally, we analyze the sparsity of the WTT basis functions at every level

and show the exponential reduction of their supports, from the coarsest level to the finest

level, with respect to the level number.

Keywords: wavelet, low rank, tensor, tensor train, multiresolution analysis, virtual levels,

quantized tensor train, quantization, tensorization, binarization.
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1 Introduction

Discrete wavelet transforms (DWTs), due to their optimality properties [1], play an im-
portant role in the efficient representation of vectors of various nature in the signal and image
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processing, statistical estimation, data compression and denoising, and also in the numerical
solution of PDEs. The generalizations of the Haar hierarchic orthogonal basis to smoother
bases, orthogonal and biorthogonal (see, e.g., [2] and [3]), are examples of wavelet transforms
customized to take into account the regularity of the data. In some cases this can be achieved
by a more explicit construction of the lifting scheme [4, 5]. The latter consists in adjusting the
wavelet function to design a multiresolution analysis [6, 7] with desired regularity properties.
In particular, the generalization to the second generation wavelets [8] is notable for us, since
that approach gives up the translation and dilation and, thus, the Fourier transform as the con-
struction and analysis tool. In the context of PDEs, wavelets tailored to match the solutions
in regularity and to achieve the optimal approximation rate were proposed and analyzed in a
variety of papers; see, e.g., [9], [10, 11] and [12, 13, 14, 15].

However, a “class of data” may mean more than a certain regularity. Indeed, even within
the variety of functions of prescribed regularity, one may be interested in the efficient represen-
tation of only those sharing more particular features. Constructing so finely customized wavelet
bases and implementing the corresponding DWTs efficiently is a further challenge. A possible
way to address it is the wavelet tensor train (WTT) transform, proposed recently in [16] and
analyzed further in the present paper.

For a given reference vector (possibly multidimensional), a particular iteration through
the virtual levels, or scales, of the vector (corresponding to each dimension) is performed. At
each such step the image space of a certain matrix, which is associated to the reference vector
and corresponds to the current level, is approximated by a subspace of smaller dimension. Such
a step seeks to extract the most essential part of the data contained in the reference vector
at the current level and to construct an orthogonal basis representing this part efficiently.
The resulting orthogonal transform can be applied then at the same level of a dual recursive
procedure to the counterpart matrix associated to another vector.

The dimension iteration mentioned above being a reinterpretation of the tensor train (TT)
decomposition [17, 18], the whole procedure results in the WTT transform. This orthogonal
algebraic transform projects the vector being transformed onto a basis adapted to the reference
vector. As an algebraic transform, it may be constructed from and applied to consecutively
refined discretizations of functions. Then the affinity of the reference and transformed vectors,
resulting in the basis adapted to the former being well-suited for the latter, appears to be
essentially different from the the matter of regularity of the underlying functions.

The TT decomposition is a non-linear low-parametric representation of multidimensional
vectors, based on the separation of variables. The approximation of a multidimensional vector in
the TT format can be performed by iterating through the dimensions of the vector successively
and constructing an orthogonal low-rank factorization of a matrix related to the vector at each
step. Currently the low-rank factorizations are constructed through SVD, although techniques
of compressed sensing may be employed as well. To separate not only the “physical” dimensions
of the vector, but all the virtual levels (scales), prior to the approximation procedure one
subjects the vector to quantization, i.e. replaces each mode index with a multi-index the
components of which are treated thenceforth as independent indices. This gives rise to the
quantized tensor train (QTT) decomposition [19, 20, 21].

In one dimension the QTT approximation can be viewed simply as a non-stationary subdi-
vision scheme for discontinuous piecewise-constant interpolation with weights chosen adaptively
through the low-rank approximation of matrices. When the WTT transform is constructed with
the use of quantization, so that it reinterprets the QTT decomposition, the resulting orthogo-
nal basis adapted to the given reference vector is structured with respect to the virtual levels
(scales) of the data.
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In the present paper, first, we recapitulate the TT and QTT decompositions with related
notation in section 2 and reintroduce the WTT transform in section 3. In section 4 we recast
the WTT transform in a recursive form and obtain a recursive structure of the matrix. We also
show the self-filtration property: if the transform is constructed so as to extract completely the
tensor structure from the reference vector, the image of the reference vector contains at most
one nonzero entry. In sections 5 and 6 we investigate the tensor structure of the matrix of the
transform and of the images of tensor-structured vectors. We construct explicit QTT represen-
tations of those, which allows for efficient storage of the WTT basis and implementation of the
transform of QTT-structured vectors. Finally, in section 7 we use the explicit representation
of the WTT matrix derived in section 5 to analyze its sparsity. The result can be interpreted
as the exponential reduction of the supports of the WTT basis vectors, from the coarsest level
to the finest level, with respect to the level number.

2 TT and QTT decompositions

2.1 Tensors. Indexing

By a d-dimensional vector of size N = n1 · . . . ·nd we mean a multidimensional array with
d indices, the kth index taking values in the kth index set Ik = {1, . . . , nk}. The entries of such
a vector can be indexed by a multi-index (j1, . . . , jd) taking values in ×d

k=1 Ik, as well as by a
“long” scalar index j = j1, . . . , jd taking values in I = {1, . . . , N}. Throughout the paper we
use the isomorphism between the spaces of vectors indexed by the two index sets, given by the
index transformation

j − 1 =
d∑

k=1

(jk − 1) ·
k−1∏

κ=1

nκ. (1)

This corresponds to the column-major ordering of subindices, used in Fortran and MATLAB.
For the notation convenience we identify the index sets ×d

k=1 Ik and I, as well as the isomorphic
spaces of vectors indexed by these sets. In this sense, we identify the indices (j1, . . . , jd) and
j = j1, . . . , jd and the vectors with entries xj1,...,jd and xj = xj1,...,jd

.

When a multidimensional array needs to be considered as a matrix (for example, for the
low-rank factorization), we separate the row and column sizes by “×”: in the pseudocode using
the operation analogous to the MATLAB’s reshape,

X = reshape(x, n1 · . . . · nk × nk+1 · . . . · nd) (2)

is a matrix of size n1 · . . . ·nk×nk+1 · . . . ·nd with the row index j′ = (j1, . . . , jk) and the column
index j′′ = (jk+1, . . . , jd) understood in the sense of (1), the entries being

X(k)
j′

j′′
= X(k)

j1,...,jk
jk+1,...,jd

= xj1,...,jk,jk+1,...,jd = xj′,j′′ , (3)

i.e. the same as in x.

Vectors and matrices with multiple indices are examples of multidimensional arrays, or
tensors. Many tensor decompositions have been proposed to reduce the complexity of com-
putations with tensors and to overcome the “curse of dimensionality” [22]: a broad review of
related methods can be found in [23]. For a comprehensive survey of the tensor decompositions
used for the representation of functions and numerical solution of operator equations, see [24].
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2.2 TT decomposition

The TT decomposition of an array with a few indices represents it in terms of arrays with
fewer indices, called cores of the decomposition. Among their indices we distinguish two rank
indices and call the rest mode indices. We denote the entries of a core U with U(α; j; β), where
α ∈ {1, . . . , p} is the left rank index, β ∈ {1, . . . , q} is the right rank index and j ∈ {1, . . . , n}
is the mode index, the three being separated by semicolons. A notation convention analogous
to (1) applies to the latter when it represents a few subindices. The core U is then said to be
of mode size n and of rank p × q. If p or q is equal to one, we omit the corresponding index
while referring to an entry of the core.

Consider a d-dimensional vector x of size n1 · . . . · nd and cores Uk of mode size nk and of
rank rk−1 × rk, where 1 ≤ k ≤ d and r0 = 1 = rd. If it holds for (j1, . . . , jd) ∈ I that

xj1,...,jd =

r1∑

α1=1

. . .

rd−1∑

αd−1=1

U1(j1; α1)

· U2(α1; j2; α2) · . . . · Ud−1(αd−2; jd−1; αd−1) · Ud(αd−1; jd) , (4)

then x is said to be represented in the TT format [17, 18] with ranks r1, . . . , rd−1 in terms of
the cores U1, . . . , Ud. Similarly, a d-dimensional matrix W of size n1 · . . . · nd × n1 · . . . · nd may
have a TT representation of ranks r1, . . . , rd−1 in terms of cores V1, . . . , Vd, given by

W i1,...,id
j1,...,jd

=

r1∑

α1=1

. . .

rd−1∑

αd−1=1

V1(i1, j1; α1)

· V2(α1; i2, j2; α2) · . . . · Vd−1(αd−2; id−1, jd−1; αd−1) · Vd(αd−1; id, jd) (5)

for all (i1, . . . , id) , (j1, . . . , jd) ∈ I. This particular definition of a TT representation of a matrix
reflects the idea of the separation of variables in the matrix-vector multiplication.

Note that if the TT ranks are equal to one, the TT representation (5) reduces to a
Kronecker product:

W = V1⊗V2⊗ . . .⊗Vd−1⊗Vd,

where the cores are of rank 1 × 1 and are considered as usual matrices. In this sense, (5) is a
generalization of the standard low-rank approximation of high-dimensional operators [25, 26].

A TT decomposition, exact or approximate, can be constructed through the low-rank fac-
torization of a sequence of single matrices; for example, with the use of the SVD. In particular,
for 1 ≤ k < d equality (4) implies a rank-rk factorization of an unfolding matrix X(k) given
by (3). On the other hand, once x is such a vector that the unfolding matrices X(1), . . . , X(d−1)

are of ranks r1, . . . , rd−1 respectively, then the cores U1, . . . , Ud satisfying (4) exist; see The-
orem 2.1 in [18]. The ranks of the unfolding matrices are the lowest possible ranks of a TT
decomposition of the vector. They are hence referred to as the TT ranks of the vector.

For the matter of approximation it is crucial that if the unfolding matrices can be ap-
proximated with ranks r1, . . . , rd−1 and accuracies ε1, . . . , εd−1 in the Frobenius norm, then
the vector itself can be approximated in the TT format with ranks r1, . . . , rd−1 and accuracy√∑d−1

k=1 ε
2
k in the ℓ2-norm. This underlies a robust and efficient algorithm for the low-rank TT

approximation of vectors given in full format or in the TT format with higher ranks. For details
see Theorem 2.2 with corollaries and Algorithms 1 and 2 in [18]. A similar remark applies to
matrices, provided that their approximation accuracy is measured in the Frobenius norm.

Note that the TT representation essentially relies on a certain ordering of the dimensions
and reordering indices may affect the values of the TT ranks significantly.
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2.3 Quantization. Dimensions and virtual levels. QTT decomposition

In section 2.1 we discussed the transformation of a multi-index into a “long” scalar index
and back. These operations arise routinely when multidimensional vectors are manipulated or
even just stored in memory, but by the subindices of multi-indices one typically means indices
related to the “physical” dimensions of the problem. However, if the kth mode size nk can be
factorized as nk = nk1·. . .·nklk in terms of lk integral factors nk1, . . . , nklk ≥ 2, then the kth mode
index jk varying in Ik can be replaced with a multi-index (jk1, . . . , jklk), each “virtual” index
jkκ taking values in Ikκ = {1, . . . , nkκ}. Under the notation convention of (1), the virtual levels
(dimensions) represent the scales in data, so that among the “virtual” indices corresponding
to the same “physical” dimension the outmost left represents the finest scale and the outmost
right, the coarsest scale. A tensor with its virtual levels being considered as distinct indices is
called a quantization of the original tensor.

The idea of separating virtual levels with the use of tensor decompositions came up
in [27]. Having been applied to the TT decomposition, it resulted in the quantized tensor train
representation proposed for matrices in [19, 20] and further elaborated in the vector case in [21].
In this sense (4) and (5) also present QTT representations of ranks r1, . . . , rd−1 of a vector and
matrix, provided that j1, . . . , jd and i1, . . . , id are the “virtual” indices corresponding to a single
or a few “physical” dimensions. By a QTT decomposition of a tensor and the QTT ranks of
the decomposition we mean a TT decomposition of its quantization and the ranks of that TT
decomposition. By treating the tensor being approximated as a higher-dimensional object, the
QTT decomposition seeks to separate more indices and extract more structure.

When the natural ordering

j1,1, . . . , j1,l1︸ ︷︷ ︸
1st dimension

, j2,1, . . . , j2,l2︸ ︷︷ ︸
2nd dimension

, . . . . . . , jd,1, . . . , jd,ld︸ ︷︷ ︸
dth dimension

(6)

of the “virtual” indices is used for representing the quantized vector in the TT format, the ranks
of the QTT decomposition can be enumerated as follows:

r1,1, . . . , r1,l1−1︸ ︷︷ ︸
1st dimension

, r1, r2,1, . . . , r2,l2−1︸ ︷︷ ︸
2nd dimension

, r2, . . . . . . , rd−1, rd,1, . . . , rd,ld−1︸ ︷︷ ︸
dth dimension

,

where r1, . . . , rd−1 are the TT ranks of the original tensor, i.e. the ranks of the separation of
“physical” dimensions.

In the present paper we work mostly in the general framework of the TT format and
make no difference whether the indices being separated correspond to “physical” dimensions or
virtual levels. In the rest of the paper we consider d abstract indices and, as opposed to (6),
number them from 1 to d. Our results are valid for the TT representation and the related WTT
transform constructed with the use of any quantization or no quantization. To interpret the
result on the sparsity of the WTT matrix, given at the end of section 7, one may consider the
particular case of the ultimate binary quantization with all nk,κ = 2.

2.4 Core product and MPS notation

The scheme of separation of variables, given in 4, has been known as Matrix Product
States (MPS) and exploited by physicists to describe quantum spin systems for two decades
(see [28, 29], cf. [30]). The MPS notation suggests an interpretation of the right-hand side

of (4) as the matrix product U
(i1)
1 · U (i2)

2 · . . . · U (id−1)
d−1 · U (id)

d of a row, d − 2 matrices and a
column indexed by rank indices α1, . . . , αd−1 and depending also on the mode indices i1, . . . , id
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as parameters. Similarly, the notation of Matrix Product Operators [31] reads the right-hand
side of (5) as a product of a row, d − 2 matrices and a column depending on mode indices
i1, j1, . . . , id, jd as parameters.

In the present paper we omit the mode indices with the use of the core notation presented
below in order to analyze the rank structure of the WTT matrix and images. Our calculations
make use of the notions of core matrices and the product introduced in [32, 33] as the rank core
product. When a core is considered as a two-level matrix with rank and mode levels, the rank
core product coincides with the strong Kronecker product proposed in [34] for block matrices.

In this section we consider cores with two mode indices. When the second mode size
equals 1, the second mode index can be omitted. This corresponds to the cases of (4) and (5)
respectively.

Consider a TT core U of rank p× q and mode size m× n. Assume that m× n-matrices
Aαβ, α = 1, . . . , p, β = 1, . . . , q are TT blocks of the core U , i. e. U(α; i, j; β) = (Aαβ)ij for
all values of rank indices α, β and mode indices i, j. Then the core U can be considered as the
matrix 


A11 · · · A1q
...

...
...

Ap1 · · · Apq


 , (7)

which we refer to as the core matrix of U . In order to avoid confusion we use parentheses for
ordinary matrices, which consist of numbers and are multiplied as usual, and square brackets
for cores (core matrices), which consist of blocks and are multiplied by means of the rank core
product “⋊⋉” defined below. Addition of cores is meant elementwise. Also, we may think of Aαβ

or any submatrix of the core matrix in (7) as subcores of U .

Definition 1 (strong Kronecker product). Consider cores U1 and U2 of ranks r0×r1 and r1×r2,
composed of blocks A

(1)
α0α1 and A

(2)
α1α2, 1 ≤ αk ≤ rk for 0 ≤ k ≤ 2, of mode sizes m1 × n1 and

m2 × n2 respectively. Let us define the strong Kronecker product U1 ⋊⋉U2 of U1 and U2 as a
core of rank r0 × r2, consisting of blocks

Aα0α2
=

r1∑

α1=1

A(1)
α0α1
⊗A(2)

α1α2
, 1 ≤ α0 ≤ r0, 1 ≤ α2 ≤ r2,

of mode size m1m2 × n1n2.

In other words, we define U1 ⋊⋉U2 as a usual matrix product of the two corresponding core
matrices, their elements (blocks) being multiplied by means of the Kronecker (tensor) product.
For example,

[
A11 A12

A21 A22

]
⋊⋉

[
B11 B12

B21 B22

]
=

[
A11⊗B11 + A12⊗B21 A11⊗B12 + A12⊗B22

A21⊗B11 + A22⊗B21 A21⊗B12 + A22⊗B22

]
.

The representation (5) may be recast with the use of the rank core product in the fol-
lowing way: W = V1 ⋊⋉V2 ⋊⋉ . . .⋊⋉Vd−1 ⋊⋉Vd. The transpose W⊤ of W is equal to the rank
core product of the same cores, their blocks being transposed. If we consider another matrix
W ′ = V ′

1 ⋊⋉ . . .⋊⋉V ′

d of the same mode size, then a linear combination of W and W ′ can be
written in the following way:

αW + βW ′ =
[
V1 V ′

1

]
⋊⋉

[
V2

V ′

2

]
⋊⋉ . . .⋊⋉

[
Vd−1

V ′

d−1

]
⋊⋉

[
αVd

βV ′

d

]
;
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and the tensor product of W and W ′, as W⊗W ′ = V1 ⋊⋉ . . .⋊⋉Vd ⋊⋉V ′

1 ⋊⋉ . . .⋊⋉V ′

d .
Also, every matrixW may be regarded as a core of rank 1× 1, and the rank core product

then coincides with the Kronecker (tensor) product when applied to such cores.

3 WTT transform

Let us demonstrate the basic idea behind the WTT transform, introduced in [16] in the
case of a single dimension and of the ultimate binary quantization described in section 2.3. We
consider a one-dimensional vector a of size N = 2d. To separate its d “virtual” indices, the
quantization of a can be approximated by the TT representation of the form (4) with the use
of the TT-SVD algorithm [18, Algorithm 1]. At the first step of the approximation procedure,
the first unfolding A1 of a ≡ a1 has to be considered. It is a 2× 2d−1 matrix with elements

A1 =

(
a1 a3 . . . aN−1

a2 a4 . . . aN

)
. (8)

The SVD factorizes A1 as follows:
A1 = U1S1V1.

The diagonal matrix S1 contains the singular values of A1. The second singular value can be
small if the two rows of A1 are almost collinear. Then we conclude that the vector admits a
QTT representation with the first rank equal to 1.

In any case, the exact or truncated SVD of a rank r1 chosen to ensure the desired accuracy
is used to proceed to the second step with the vectorization of Ã1 = U1

⊤A1 as the input. The
latter is of size r1 · 2d−1. The QTT approximation algorithm continues in a similar way with
reshaping it to a matrix A2 of size r1 · 2 × 2d−2 and approximating it by a matrix of rank r2
with the use of the SVD, and so on.

However, the construction of the WTT filters follows a different course. Instead of choos-
ing rk depending on the singular values comprising Sk, we may use a prescribed value. The
singular values of Ak with numbers greater than rk+1 may still be large, but nevertheless omit-
ted in the transition to the next step. Then the columns of the truncated factor Uk are used
as the basis for the kth level of a dual procedure of transforming another vector.

For example, when a vector of ones is taken for a reference vector, the filters constructed
with ranks r1 = . . . = rd−1 = 1 are

Uk =
1√
2

(
1 1
1 −1

)
,

and the WTT basis coincides with the Haar hierarchic orthogonal basis.
It should be mentioned that the class of WTT transforms does not include many important

discrete wavelet transforms; for example, the Daubechies wavelet transforms. On the other
hand, the WTT transform allows for a very flexible adaptivity, which is still to be studied.

Let us give a brief numerical illustration of applying the WTT transform to the same
vector it is adapted to. We consider two functions: f (x) =

√
x, x ∈ [0, 1], and f (x) = sin 500x2,

x ∈ [0, 1]. We discretize them by sampling on a uniform grid with 1024 points. Both the
functions do not have exact low-rank representations and produce vectors of relatively large
QTT ranks. In particular, QTT approximations of the corresponding vectors with ranks equal
to r = 2, r = 3, or r = 4 are very coarse. The WTT filters are computed with ranks
r0 = 1, r1 = . . . = rd−1 = r for r = 2, r = 3, and r = 4. These examples do not satisfy
Theorem 4 given below, and the filters carry only a part of information contained in the
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Figure 1: f (x) =
√
x, x ∈ [0, 1]. Top: the first three WTT basis functions for r = 2. Bottom:

Decay of the absolute values of the wavelet coefficients for different r.

reference vector. The first discrete basis functions obtained through the procedure are presented
in Figures 1 and 2. We also plot the decay of the absolute values of the wavelet coefficients
sorted by the absolute value.

4 Recursive structure of the WTT transform

In Algorithm 1 we describe in a recursive way the construction of the WTT filters adapted
to a given vector [16, Algorithm 2]. Once the filters are available, the WTT transform can be
formally applied to any other vector of appropriate size [16, Algorithm 3]. We present the
recursive computation of the WTT transform with given filters in Algorithm 2.

It is reasonable to choose the filter ranks r1, . . . , rd−1 so that rk−1nk ≤ nk+1 . . . nd for
1 ≤ k ≤ d−1. This ensures that each but last of the filters constructed at line 2 of Algorithm 1
as the left SVD factors of the corresponding unfolding matrices Ak contain only the vectors
from the column spaces of the corresponding matrices.

The linear transform defined by Algorithm 2 orthogonal [16, Lemma 3.1], therefore it can
be associated with a matrix W . For the chosen truncation ranks r1, . . . , rd−1 the matrix is
uniquely defined by the tensor a ≡ a1 from which it is constructed in Algorithm 1.

Lemma 2. For 1 ≤ k < d consider the kth recursion level of Algorithm 2. Let us define the
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Figure 2: f (x) = sin 500x2, x ∈ [0, 1]. Top: three first WTT basis functions for r = 2. Bottom:
Decay of the absolute values of the wavelet coefficients for different r

matrix

Ek =

(
I
0

)

of size rk−1 · nk × rk, so that Ek
⊤ selects the first rk entries of a vector of size rk−1 · nk. Then

the following recursive relation holds true for the matrix of the WTT transform:

Wk = (Ek⊗ Ik)Wk+1

(
Rk

⊤⊗ Ik
)
+ Pk

⊤⊗ Ik,

where Pk = Uk

(
I − EkEk

⊤
)

is a square matrix of order rk−1 · nk, Rk = UkEk is a matrix of
size rk−1 · nk × rk and Ik is the identity matrix of order nk+1 · nk+2 · . . . · nd.

Proof. The lines 5–6 and 10 of Algorithm 2 imply X̂k+1 = Ek
⊤X̃k = Rk

⊤Xk and

Yk = EkŶk+1 +
(
I − EkEk

⊤
)
X̃k = EkŶk+1 + Pk

⊤Xk, (9)

where Ŷk+1 is a matricization of the WTT image yk+1 of xk+1, the entries of which are given by

yk+1 αk,ik+1,...,id
=

rk∑

βk=1

∑

jk+1,...,jd

Wk+1 αk,ik+1,...,id
βk,jk+1,...,jd

xk+1 βk,jk+1,...,jd
.
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Algorithm 1 Construction of WTT filters
(Uk, . . . , Ud) = Fk (ak; nk, . . . , nd; rk−1, . . . , rd−1)

Require: recursion level k: 1 ≤ k ≤ d
Require: mode sizes nk, . . . , nd and filter ranks rk−1, . . . , rd−1

Require: rk′ ≤ rk′−1nk′ for k ≤ k′ < d
Require: a vector ak of size rk−1 · nk · . . . · nd

Ensure: WTT filters Uk, . . . , Ud of mode sizes nk, . . . , nd and ranks rk−1, . . . , rd−1 respectively,
adapted to the vector ak

1: Ak = reshape(ak, rk−1 · nk × nk+1 · . . . · nd)
2: Ak = UkSkVk {SVD}
3: {Uk, as the left SVD factor of Ak, is a square unitary matrix of order rk−1 · nk}
4: if k < d then

5: Ãk = Uk
⊤Ak = SkVk

6: Âk+1 = Ãk(1 : rk , :)

7: ak+1 = reshape(Âk+1, rk · nk+1 · . . . · nd)
8: (Uk+1, . . . , Ud) = Fk+1 (ak+1; nk+1, . . . , nd; rk, . . . , rd−1)
9: end if

Therefore the two terms of Yk in (9) can be written elementwise as follows:

(
EkŶk+1

)
αk−1,ik
ik+1,...,id

=

rk∑

αk=1

Ek αk−1,ik
αk

yk+1 αk,ik+1,...,id
=

rk∑

αk=1

Ek αk−1,ik
αk

·
rk∑

βk=1

∑

jk+1,...,jd

Wk+1 αk,ik+1,...,id
βk,jk+1,...,jd

rk−1∑

βk−1=1

nk∑

jk=1

Rk βk−1,jk
βk

xk βk−1,jk,jk+1,...,jd
(10)

and
(
Pk

⊤Xk

)
αk−1,ik
ik+1,...,id

=

nk∑

jk=1

Pk βk−1,jk
αk−1,ik

xk βk−1,jk,ik+1,...,id
, (11)

which completes the proof, as the output vector yk is the vectorization of Yk.

Corollary 3. Let us consider the matrices introduced in Lemma 2 and, assuming Pd = Ud,
define also a square matrix P k = Pk⊗ Ik of order rk−1 · nk · . . . · nd and matrices

Ek = I · (E1⊗ I1) · (E2⊗ I2) · (Ek−1⊗ Ik−1)

Rk = I · (R1⊗ I1) · (R2⊗ I2) · (Rk−1⊗ Ik−1)

of size r0 · n1 · . . . · nd× rk−1 · nk · . . . · nd for 1 ≤ k ≤ d. Then the matrix W ≡W1 of the WTT
transform reads

W =
d∑

k=1

Wk,

where Wk = EkP k

⊤

Rk

⊤

for 1 ≤ k ≤ d.

Proof. The proof follows from Lemma 2 by the recursive application of its statement for k =
1, . . . , d− 1.
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Algorithm 2 Computation of the WTT image
yk =Wk (xk; Uk, . . . , Ud; nk, . . . , nd; rk−1, . . . , rd−1)

Require: recursion level k: 1 ≤ k ≤ d
Require: WTT filters Uk, . . . , Ud of mode sizes nk, . . . , nd and ranks rk−1, . . . , rd−1 respectively
Require: rk′ ≤ rk′−1nk′ for k ≤ k′ < d
Require: a vector xk of size rk−1 · nk · nk+1 · . . . · nd

Ensure: the WTT image vector yk of the same size
1: if k = d then

2: yd =Wd (xd; Ud; nd; rd−1) = Ud
⊤xd

3: else

4: Xk = reshape(xk, rk−1 · nk × nk+1 · . . . · nd)

5: X̃k = Uk
⊤Xk

6: X̂k+1 = X̃k(1 : rk , :), Zk+1 = X̃k(rk + 1 : rk−1nk , :)

7: xk+1 = reshape(X̂k+1, rk · nk+1 · . . . · nd × 1)
8: yk+1 =Wk+1 (xk+1; nk+1, . . . , nd; rk, . . . , rd−1)

9: Ŷk+1 = reshape(yk+1, rk × nk+1 · . . . · nd)

10: Yk =

(
Ŷk+1

Zk+1

)

11: yk = reshape(Yk, rk−1 · nk · . . . · nd)
12: end if

Theorem 4. Assume that a d-dimensional vector a of size n1 · n2 · . . . · nd and TT ranks
ρ1, . . . , ρd−1 is given. Consider the WTT transform W defined by the filters U1, . . . , Ud of ranks
r0 = 1, r1 ≥ ρ1, . . . , rd ≥ ρd, adapted to a as described in Algorithm 1. Then only the first entry
of the image y =Wa can be nonzero.

Proof. For 1 ≤ k < d let us consider the kth step of Algorithm 1. Let us assume that the input
vector ak indexed by d − k + 1 indices αk−1, ik, ik+1, . . . , id is of TT ranks ρk, . . . , ρd−1. This
means that for k ≤ s < d its unfolding with row indices αk−1, ik, . . . , is and column indices
is+1, . . . , id is of matrix rank ρs. As the matrix Uk is unitary, the multiplication by Uk

⊤ at the
line 5 does not change the ranks of the unfoldings. Since Ak is the first unfolding of ak, we
have rankAk = ρk and the diagonal matrix Sk contains only ρk ≤ rk nonzero entries. Therefore
excluding zero rows at the line 6 does not change the ranks of the unfoldings either, and the
vector ak+1 indexed by d− k+1 indices αk, ik+1, ik+2, . . . , id, which is input at the k+1st step,
is of TT ranks ρk+1, . . . , ρd−1.

Due to ρk ≤ rk, in particular, we have Ãk = EkÂk and Ak = UkEkÂk = RkÂk with Ek

and Rk as defined in Lemma 2. This can be recast in the vectorized form as

ak αk−1,ik,...,id
=

rk∑

αk=1

Rk αk−1,ik
αk

ak+1 αk,ik+1,...,id
, (12)

which holds true for 1 ≤ k < d by induction, as for a ≡ a1 it is given by assumption. At the
d-th step no zero rows of Ãd are excluded, and we have

ad αd−1,id
=

rd−1∑

β=1

nd∑

j=1

Ud αd−1,id
β,j

c
β,j
, (13)

where c = Ãd is a column in which only the first entry can be nonzero, since rankAd = 1.
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Let us consider the kth step of Algorithm 2 applied to the vector xk = ak with the filters
U1, . . . , Ud. For 1 ≤ k < d we obtain from (12) that

X̃k αk−1,ik
ik+1,...,id

=

rk∑

αk=1

Ek αk−1,ik
αk

ak+1 αk,ik+1,...,id
,

therefore xk+1 = ak+1 and Zk+1 = 0. Then at the dth step xd = ad and, by (13), we conclude
that yd = c. Consequently, for k = d− 1, . . . , 1 only the first entry of yk can be nonzero.

Lemma 4 shows that if a vector can be represented in the TT format with certain ranks
and the WTT transform of greater or equal ranks is adapted to it as a reference vector, then
the first vector of the WTT basis is exactly the reference vector. As a result, the image contains
at most one non-zero.

5 Tensor structure of the WTT matrix

Lemma 5. Assume that WTT filters U1, . . . , Ud of mode sizes n1, . . . , nd and ranks r0 =
1, r1, . . . , rd−1 respectively are given. Then the matrix W ≡ W1 of the WTT transform, de-
fined by Algorithm 2, admits the TT representation

W =
[
F1 G1

]
⋊⋉

[
F2 G2

I

]
⋊⋉ . . .⋊⋉

[
Fd−1 Gd−1

I

]
⋊⋉

[
Gd

I

]
(14)

of ranks r21 + 1, r22 + 1, . . . , r2d−2 + 1, r2d−1 + 1, where the TT cores Fk and Gk of ranks r2k−1 × r2k
and r2k−1 × 1 respectively and mode size nk × nk are defined for 1 ≤ k < d as follows:

Fk (αk−1, βk−1; ik, jk; αk, βk) = Ek αk−1,ik
αk

Rk βk−1,jk
βk

and

Gk (αk−1, βk−1; ik, jk) = Pk αk−1,ik
βk−1,jk

elementwise; and the TT core Gd of rank r2d−1 × 1 and mode size nd × nd is given by

Gd (αd−1, βd−1; id, jd) = Ud αd−1,id
βd−1,jd

elementwise.

Proof. For 1 ≤ k ≤ d let us define a TT core
←−
F k of rank r2k−1 × 1 and mode size nk · . . . · nd ×

nk · . . . · nd by setting

←−
F k (αk−1, βk−1; ik, jk, . . . , id, jd) =Wk αk−1,ik,...,id

βk−1,jk,...,jd

for 1 ≤ αk−1, βk−1 ≤ rk−1 and 1 ≤ ik, jk ≤ nk, . . . , 1 ≤ id, jd ≤ nd. In particular, as r0 = 1, the
core ←−

F 1 =W1 =W (15)
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is the matrix of the WTT transform defined by the filters U1, . . . , Ud. Let us rewrite elementwise
the recursive relation given by Lemma 2: for 1 ≤ k < d we have

Wk αk−1,ik,ik+1,...,id
βk−1,jk,jk+1,...,jd

=

rk∑

αk=1

rk∑

βk=1

Ek αk−1,ik
αk

Rk βk−1,jk
βk

Wk+1 αk,ik+1,...,id
βk,jk+1,...,jd

+Pk βk−1,jk
αk−1,ik

δ
ik+1,...,id
jk+1,...,jd

(16)

for all possible values of the free indices, cf. (10)–(11). Next, we rewrite (16) as

←−
F k = Fk ⋊⋉

←−
F k+1 +Gk ⋊⋉ I =

[
Fk Gk

]
⋊⋉

[←−
F k+1

I

]

to obtain [←−
F k

I

]
=

[
Fk Gk

I

]
⋊⋉

[←−
F k+1

I

]
= Wk ⋊⋉

[←−
F k+1

I

]

for 1 ≤ k < d. Together with (15), this relation, being applied recursively, yields the claim.

6 Tensor structure of the WTT image

Lemma 6. Assume that WTT filters U1, . . . , Ud of mode sizes n1, . . . , nd and ranks r0 =
1, r1, . . . , rd−1 respectively are given. Consider a vector x of size n1 · n2 · . . . · nd and its image
y =Wx under the WTT transform defined by the filters U1, . . . , Ud in Algorithm 2.

Assume that x is given in a TT representation

x = X1 ⋊⋉X2 ⋊⋉ . . .⋊⋉Xd−1 ⋊⋉Xd

of ranks p1, . . . , pd−1. Then y can be represented in the TT decomposition

y =
[
V1 Z1

]
⋊⋉

[
V2 Z2

X2

]
⋊⋉ . . .⋊⋉

[
Vd−1 Zd−1

Xd−1

]
⋊⋉

[
Zd

Xd

]

of ranks r1 + p1, . . . , rd−1 + pd−1, where for 1 ≤ k < d the core Vk of rank rk−1 × rk and mode
size nk is defined as follows:

Vk (αk−1; ik; αk) = Ek αk−1,ik
αk

elementwise; and for 1 ≤ k ≤ d the core Zk of rank rk−1 × pk and mode size nk is given by

Zk (αk−1; ik; γk) =
∑

j1,...,jk
β1,...,βk−1

R1 1,j1
β1

·R2 β1,j2
β2

· . . . ·Rk−1 βk−2,jk−1

βk−1

· Pk βk−1,jk
αk−1,ik

·
r1∑

γ1=1

. . .

rk−1∑

γk−1=1

X1 (j1; γ1)X2 (γ1; j2; γ2) · . . . ·Xk (γk−1, jk; γk)

elementwise. Here, we let r0 = pd = 1, so that α0 = 1 and γd = 1 are void indices.

Proof. We rewrite the entries of the matrices Ek and Rk, 1 ≤ k ≤ d, defined in Corollary 3, as
follows:

Ek 1,i1,...,id
αk−1,jk,...,jd

=
∑

α1,...,αk−2

E1 1,i1
α1

· E2 α1,i2
α2

· . . . · Ek−1 αk−2,ik−1
αk−1

· δik
jk

· . . . · δid
jd

,

Rk 1,i1,...,id
αk−1,jk,...,jd

=
∑

α1,...,αk−2

R1 1,i1
α1

·R2 α1,i2
α2

· . . . ·Rk−1 αk−2,ik−1
αk−1

· δik
jk

· . . . · δid
jd

.
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Let us now define −→
X k = X1 ⋊⋉X2 ⋊⋉ . . .⋊⋉Xk−2 ⋊⋉Xk

and ←−
X k = Xk ⋊⋉Xk+1 ⋊⋉ . . .⋊⋉Xd−1 ⋊⋉Xd

for 1 ≤ k ≤ d and set
−→
X d+1 =

[
1
]
, so that x =

−→
X k ⋊⋉

←−
X k+1 for 1 ≤ k ≤ d. Then we obtain

(
Rk

⊤

x
)

βk−1,jk,ik+1,...,id =

pk∑

γk=1

∑

j1,...,jk−1

β1,...,βk−2

R1 1,j1
β1

·R2 β1,j2
β2

· . . .

·Rk−1 βk−2,jk−1

βk−1

· −→X k (j1, . . . , jk−1, jk; γk) ·
←−
X k+1 (γk; ik+1, . . . , id)

and

(
P k

⊤

Rk

⊤

x
)

αk−1,ik,ik+1,...,id =

pk∑

γk=1

∑

j1,...,jk−1,jk
β1,...,βk−2,βk−1

R1 1,j1
β1

·R2 β1,j2
β2

· . . .

· Rk−1 βk−2,jk−1

βk−1

· Pk βk−1,jk
αk−1,ik

· −→X k (j1, . . . , jk−1, jk; γk) ·
←−
X k+1 (γk; ik+1, . . . , id) .

Consequently, the entries of the image yk = W k x of x under the kth term of the decomposition
given by Corollary 3 take the form

yk 1,i1,...,id
=

rk−1∑

αk−1=1

pk∑

γk=1

∑

α1,...,αk−2

E1 1,i1
α1

· E2 α1,i2
α2

· . . . · Ek−1 αk−2,ik−1
αk−1

·
∑

j1,...,jk
β1,...,βk−1

R1 1,j1
β1

·R2 β1,j2
β2

· . . . ·Rk−1 βk−2,jk−1

βk−1

· Pk βk−1,jk
αk−1,ik

· −→X k (j1, . . . , jk−1, jk; γk) ·
←−
X k+1 (γk; ik+1, . . . , id) ,

which implies that the kth term of the matrix affects only the first k cores of the input vector.
Namely, the image reads as

yk = V1 ⋊⋉V2 ⋊⋉ . . .⋊⋉Vk−1 ⋊⋉Zk ⋊⋉Xk+1 ⋊⋉Xk+2 ⋊⋉ . . .⋊⋉Xd.

By [32, Lemma 5.5], for the complete image y ≡ y1 =Wx1 =
∑d

k=1 yk we obtain

y =
[
V1 Z1

]
⋊⋉

[
V2 Z2

X2

]
⋊⋉ . . .⋊⋉

[
Vd−1 Zd−1

Xd−1

]
⋊⋉

[
Zd−1

Xd−1

]
,

which concludes the proof.

7 Localization of the WTT basis vectors

Theorem 7. Consider the matrix W of the WTT transform defined by d recursive steps of
Algorithm 2 for WTT filters U1, . . . , Ud. Let 1 ≤ k0 ≤ d − 2 and assume for k0 ≤ k < d
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that rk ≤ νk rk−1 with 1 ≤ νk < nk. Then there exist disjoint sets of row indices RL ⊂ I,
k0 ≤ L < d, such that for every L the set RL consists of

#RL =

(
k0−1∏

k=1

nk

)
·
(

L−1∏

k=k0

νk

)
· (nL − νL) ·

(
d∏

k=L+1

nk

)
(17)

row indices, and for every row index i ∈ RL the ith row ofW contains at most
∏L

k=1 nk nonzero
entries. The whole matrix W contains at most

[
k0−1∏

k=1

n2
k

]
·
[(

d−1∏

k=k0

νknk

)
n2
d +

d−1∑

L=k0

(
L−1∏

k=k0

νknk

)
(nL − νL)nL

(
d∏

k=L+1

nk

)]

nonzero entries.

Proof. Consider the entry of the matrix W with a row index (i1, . . . , id) and a column index
(j1, . . . , jd) . According to Lemma 5, it can be written as follows:

W i1,...,id
j1,...,jd

= W1 ·W2 · · ·Wd−1 ·Wd, (18)

where for 1 ≤ k ≤ d the matrix Wk indexed by rank indices is obtained from the core of the
right-hand side of (14) by restricting it to the values ik and jk of the mode indices. In particular,
for 1 < k < d we obtain Wk as a matrix of size r2k−1 + 1× r2k + 1 given by

Wk =

(
Fk(· ; ik, jk; ·) Gk(· ; ik, jk; ·)

0 δ(ik, jk)

)
=




∗ · · · ∗ ∗
... · · · ...

...
∗ · · · ∗ ∗

∗


 , (19)

and, similarly, W1 and Wd are matrices of size 1× r21 + 1 and r2d−1 + 1× 1 respectively.
First, assume that νLiL ≤ nL for some L ∈ {k0, . . . , d− 1}. Then the corresponding

submatrix of EL defined in Lemma 2 is zero: for 1 ≤ αL−1, αL ≤ r we have EL αL−1,iL
αL

= 0 and,

consequently,
FL (αL−1, βL−1; iL, jL; αL, βL) = 0,

where FL is defined in Lemma 5. Then the matrix WL takes the form

WL =




0 · · · 0 ∗
... · · · ...

...
0 · · · 0 ∗

∗


 (20)

if 1 < L < d, and similar with only the first row being present if L = 1.
Second, assume that iL′ 6= jL′ for some L′ ∈ {k0 + 1, . . . , d}. Then, due to the identity

block, the matrix WL′ becomes

WL′ =




∗ · · · ∗ ∗
... · · · ...

...
∗ · · · ∗ ∗

0


 (21)
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if 1 < L′ < d, and only the last column is present for L′ = d.

Note that as soon as L < L′, the combination of (19), (20), (21) results in

WL ·WL+1 · · ·WL′−1 ·WL′ = 0,

so that, due to (18), for the entry under consideration we obtain W i1,...,id
j1,...,jd

= 0.

Let us now count the entries which may still be nonzero. For k0 ≤ L < d we define the
set of row indices

RL = {(i1, . . . , id) ∈ I : ik ≤ νk for k0 ≤ k < L and iL > νL} , (22)

so that (17) holds true and every row (i1, . . . , id) ∈ RL may contain at most
∏L

k=1 nk nonzero
entries, which satisfy

jL+1 = iL+1, . . . , jd = id. (23)

Here, RL, k0 ≤ L < d, are disjoint by construction.

As for the rest of the rows, I \⋃d−1
L=k0
RL consists of

(
k0−1∏

k=1

nk

)
·
(

d−1∏

k=k0

νk

)
· nd

indices. We do not analyze the sparsity of the corresponding rows and allow that they are full.
Thus, the total number of nonzero entries in W is bounded by

(
k0−1∏

k=1

nk

)
·
(

d−1∏

k=k0

νk

)
· nd ·

(
d∏

k=1

nk

)

+
d−1∑

L=k0

(
k0−1∏

k=1

nk

)
·
(

L−1∏

k=k0

νk

)
· (nL − νL) ·

(
d∏

k=L+1

nk

)
·
(

L∏

k=1

nk

)
.

Theorem 7 describes the structure of the WTT basis with respect to the virtual levels
(scales) of “physical” dimensions, L denoting the level number. The result admits a clear
interpretation in the case of a single dimension, when the quantization with base n is used
to construct and apply the WTT transform. In this case, L numbers the scales of the only
dimension, from the finest to the coarsest, and the supports of the basis functions reduce
exponentially as L descreases.

Corollary 8. In the setting of Theorem 7, assume that the quantization with n1 = . . . = nd = n
is used and that k0 = 2 and νk = 1 for 2 ≤ k < d. Then there exist disjoint sets of row indices
RL ⊂ I, 2 ≤ L < d, such that for 1 < L < d the set RL consists of #RL = (n− 1)nd−L+1

row indices, and for all i ∈ RL the ith row of W contains at most nL nonzero entries. For
1 < L < d, all rows indexed in RL contribute at most nd+1 (n− 1) nonzero entries to W. The
rest n2 rows contribute up to nd+2 nonzero entries. The whole matrix W contains at most
nd+1 (dn− n− d+ 2) = O

(
dnd+2

)
nonzero entries.
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8 Conclusion

We showed that WTT transforms, adaptive discrete wavelet transforms constructed with
the use of the tensor train decomposition of multidimensional arrays, exhibit low-rank structure
in the same format. We derived explicit and exact representations of the matrix of such a
transform in terms of the reference vector generating it, and also that of the image in terms of
the reference vector and the vector transformed.

These representations and the rank bounds following from them may be helpful in the
efficient implementation of the WTT transforms of data with low-rank TT structure, as well
as in understanding the hierarchical multiscale structure of the WTT basis. We also showed
that this basis is sparse and gave bounds on the amount of nonzeros with respect to the level
number.

In a broader sense, the results of the present paper can be viewed as a parametrization of
a class of matrices possessing at the same time the properties of orthogonality, low-rank tensor
structure and sparse structure.

The exact relation of the WTT transform to the classical discrete wavelet transforms and
the tensor structure of the latter is a topic of ongoing research.
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