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Annika Lang

(joint work with Christoph Schwab)

Sample regularity and fast simulation of isotropic Gaussian random fields on
the sphere are for example of interest for the numerical analysis of stochastic
partial differential equations and for the simulation of ice crystals or Saharan
dust particles as lognormal random fields. In what follows we recall the results
from [2], which include the approximation of isotropic Gaussian random fields
with convergence rates as well as the regularity of the samples in relation to the
smoothness of the covariance expressed in terms of the decay of the angular power
spectrum. As example we construct isotropic Q-Wiener processes out of isotropic
Gaussian random fields and discretize the stochastic heat equation with spectral
methods.

Before we state the results, we start with a short review of the basics. There-
fore, let (Ω,A, (Ft), P ) be a filtered probability space and denote by S

2 ⊂ R
3

the unit sphere. A A⊗ B(S2)-measurable mapping T : Ω × S
2 → R is called an

isotropic Gaussian random field if, for all k ∈ N, x1, . . . , xk ∈ S
2, a1, . . . , ak ∈ R,

the real-valued random variable
∑k

i=1 aiT (xi) is Gaussian and the distribution
of (T (x1), . . . , T (xk)) is invariant under rotations. By [3], the isotropic Gaussian

random field T admits a Karhunen–Loève expansion T =
∑

∞

ℓ=0

∑ℓ
m=−ℓ aℓmYℓm,

where (Yℓm, ℓ ∈ N0,m = −ℓ, . . . , ℓ) denotes the sequence of spherical harmonic
functions and (aℓm, ℓ ∈ N0,m = −ℓ, . . . , ℓ) is a sequence of normally distributed
random variables, whose properties are characterized by the angular power spec-
trum (Aℓ, ℓ ∈ N0). For ℓ ∈ N, m = 1, . . . , ℓ, and ϑ ∈ [0, π], let

Lℓm(ϑ) :=

√

2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pℓm(cosϑ)

be a weighted version of the associate Legendre polynomials (Pℓm, ℓ ∈ N0,m =
0, . . . , ℓ). Then the random field generated by

∞
∑

ℓ=0

(

√

AℓX
1
ℓ0Lℓ0(ϑ) +

√

2Aℓ

ℓ
∑

m=1

Lℓm(ϑ)(X
1
ℓm cos(mϕ) +X2

ℓm sin(mϕ))
)

+ E(T )

is equal in law to T , where ((X1
ℓm, X

2
ℓm), ℓ ∈ N0,m = 0, . . . , ℓ) is a sequence of

independent standard normally distributed random variables with X2
ℓ0 = 0 for all

ℓ ∈ N0. A truncation of the series expansion leads to the following convergence
results which rely on the decay of the angular power spectrum.

Theorem 1. Assume that Aℓ ≤ C · ℓ−α for some α > 2 and C > 0. Then for all

0 < p < +∞ there exists Ĉp > 0 such that

‖T − T κ‖Lp(Ω;L2(S2)) ≤ Ĉp · κ
−(α−2)/2,

where the truncated series expansion T κ is given by

κ
∑

ℓ=0

(

√

AℓX
1
ℓ0Lℓ0(ϑ) +

√

2Aℓ

ℓ
∑

m=1

Lℓm(ϑ)(X
1
ℓm cos(mϕ) +X2

ℓm sin(mϕ))
)

+ E(T ).

Furthermore, for all β < (α− 2)/2 it holds asymptotically ‖T − T κ‖L2(S2) ≤ κ−β,

P -a. s..
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(a) α = 5 (b) α = 5 (c) α = 3 (d) α = 3

Figure 1. Samples of isotropic Gaussian and the corresponding
lognormal random fields as radius of the deformed sphere with Aℓ =
(ℓ+ 1)−α.

The decay of the angular power spectrum is linked to the regularity of the
covariance kernel in the following proposition and can be extended to non-integers
with fractional weighted Sobolev spaces.

Proposition 2. For every n ∈ N0, it holds that the sequence (ℓn+1/2Aℓ, ℓ ≥ n) is
in ℓ2(N0) if and only if the covariance kernel (1− µ2)n/2 ∂n

∂µn

∑

∞

ℓ=0 Aℓ
2ℓ+1
4π

Pℓ(µ) is

in L2(−1, 1), where (Pℓ, ℓ ∈ N0) denotes the sequence of Legendre polynomials.

Furthermore, the decay of the angular power spectrum determines the sample
regularity of the random field.

Theorem 3. Assume that
∑

∞

ℓ=0 Aℓℓ
1+β < +∞ for some β > 0. Then there exists

a continuous modification of T which is Hölder continuous with exponent γ for all

γ < min{β/2, 1}. Furthermore, the modification is k-times continuously differ-

entiable for all k < β/2 − 1. The corresponding lognormal random field exp(T )
has the same regularity properties.

The Hölder continuity in the previous theorem is proven using the following
lemma and a version of the Kolmogorov–Chentsov theorem, which we state for
completeness, while the differentiability is a direct consequence of Sobolev em-
beddings. The same regularity of the lognormal random field results from the
properties of the exponential function. Samples of Gaussian and the correspond-
ing lognormal random fields are shown in Figure 1.

Lemma 4. Assume that
∑

∞

ℓ=0 Aℓℓ
1+β < +∞ for some β ∈ [0, 2]. Then the

corresponding kernel function k(r) =
∑

∞

ℓ=0 Aℓ
2ℓ+1
4π

Pℓ(cos r) satisfies that

|k(0)− k(r)| ≤ Cβr
β

for some Cβ > 0, which implies that for all 0 < p < +∞ there exists Cβ,p > 0
such that

E(|T (x)− T (y)|2p) ≤ Cβ,p d(x, y)
βp.

The second step in the proof is the Kolmogorov–Chentsov theorem for random
fields on S

2 which is proven by applying a version of the theorem for domains
on six charts and patching the resulting random fields together with a partition
of unity. This is extended to general manifolds and from Hölder continuity to
Hölder differentiability in [1].

Theorem 5 (Kolmogorov–Chentsov theorem). Let T be a random field on S
2

that satisfies

E(|T (x)− T (y)|p) ≤ Cd(x, y)2+ǫp
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for some p > 0, C > 0, and some ǫ ∈ (0, 1]. Then there exists a continuous

modification of T that is locally Hölder continuous with exponent γ for all γ ∈
(0, ǫ).

Besides the already mentioned application to lognormal random fields, isotropic
Gaussian random fields can also be used to define a Q-Wiener process W taking
values in L2(S2) by the Karhunen–Loève expansion

∞
∑

ℓ=0

√

Aℓβ
1
ℓ0(t)Lℓ0(ϑ) +

√

2Aℓ

ℓ
∑

m=1

Lℓm(ϑ)(β
1
ℓm(t) cos(mϕ) + β2

ℓm(t) sin(mϕ)),

where ((β1
ℓm, β

2
ℓm), ℓ ∈ N0,m = 0, . . . , ℓ) is a sequence of independent Brownian

motions and β2
ℓ0 = 0 for ℓ ∈ N0. Here, the covariance operator Q is characterized

by QYℓm = AℓYℓm. Let us observe that the Laplace–Beltrami operator ∆S2 on S
2

satisfies that ∆S2Yℓm = −ℓ(ℓ + 1)Yℓm. We want to simulate the stochastic heat
equation on S

2 driven by additive Q-Wiener noise on some finite time interval

dX(t) = ∆S2X(t) dt+ dW (t)

with initial condition X(0) = X0 ∈ L2(Ω;L2(S2)), i. e., in mild form

X(t) = X0 +

∫ t

0

∆S2X(s) ds+

∫ t

0

dW (s) = X0 +

∫ t

0

∆S2X(s) ds+W (t).

This equation can be expanded with respect to the spherical harmonic functions
and leads to the stochastic differential equations

(X(t), Yℓm)L2(S2) = (X0, Yℓm)L2(S2) − ℓ(ℓ+ 1)

∫ t

0

(X(s), Yℓm)L2(S2) ds+ aℓm(t)

with scaled Brownian motions aℓm, which can be solved with the variations of
constants formula. We are able to simulate the solution with the observation that
the stochastic convolutions

∫ t

0
e−ℓ(ℓ+1)(t−s) dβℓm(s) are by the Itô formula normally

distributed with mean zero and variance (2ℓ(ℓ + 1))−1(1 − e−2ℓ(ℓ+1)t). In what
follows, we obtain convergence results under weaker assumptions on (Aℓ, ℓ ∈ N0)
than in Theorem 1 due to the smoothing of the heat kernel.

Theorem 6. Assume that Aℓ ≤ C · ℓ−α for some α > 0 and C > 0. Then, for

all 0 < p < +∞, t < +∞, and κ ∈ N,

‖X(t)−Xκ(t)‖Lp(Ω;L2(S2)) ≤ Ĉp · κ
−α/2

with Ĉp > 0 independent of the time discretization, where Xκ denotes the trun-

cated Karhunen–Loève expansion of the solution of the stochastic heat equation.

Furthermore, for all β < α/2 it holds asymptotically ‖X(t)−Xκ(t)‖L2(S2) ≤ κ−β,

P -a. s..
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