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Abstract

The numerical approximation of parametric partial differential equations D(u,y) = 0 is a computa-
tional challenge when the dimension d of of the parameter vector y is large, due to the so-called curse
of dimensionality. It was recently shown in [5] [6] that, for a certain class of elliptic PDEs with diffusion
coefficients depending on the parameters in an affine manner, there exist polynomial approximations to
the solution map y — wu(y) with an algebraic convergence rate that is independent of the parametric
dimension d. The analysis in [5] [6] used, however, the affine parameter dependence of the operator. The
present paper proposes a strategy for establishing similar results for some classes parametric PDEs that
do not necessarily fall in this category. Our approach is based on building an analytic extension z — u(z)
of the solution map on certain tensor product of ellipses in the complex domain, and using this extension
to estimate the Legendre coefficients of u. The varying radii of the ellipses in each coordinate z; reflect
the anisotropy of the solution map with respect to the corresponding parametric variables y;. This allows
us to derive algebraic convergence rates for tensorized Legendre expansions in the case d = co. We also
show that such rates are preserved when using certain interpolation procedures, which is an instance
of a non-intrusive method. As examples of parametric PDE’s that are covered by this approach, we
consider (i) elliptic diffusion equations with coefficients that depend on the parameter vector y in a not
necessarily affine manner, (ii) parabolic diffusion equations with similar dependence of the coefficient on
y, (iii) nonlinear, monotone parametric elliptic PDE’s, and (iv) elliptic equations set on a domain that is
parametrized by the vector y. We give general strategies that allows us to derive the analytic extension
in a unified abstract way for all these examples, in particular based on the holomorphic version of the
implicit function theorem in Banach spaces, generalizing recent results in [13] [15]. We expect that this
approach can be applied to a large variety of parametric PDEs, showing that the curse of dimensionality
can be overcome under mild assumptions.

1 Introduction

1.1 High dimensional parametric PDE’s

This paper is concerned with the numerical approximation of parametric partial differential equations of the
general form
D(u,y) =0 (1.1)
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where u — D(u,y) is a partial differential linear or nonlinear operator that depends on a parameter vector
y = (y1,...,y4) € RY and therefore so does the solution u(y). We assume that the y; vary in finite intervals.
Up to a change of variable, we may assume for simplicity that all these intervals are [—1, 1] and therefore y
ranges in the hypercube

U=[-1,1¢cR, (1.2)

Assuming that for any y € U, the above problem is well posed in a certain Banach space X, we may introduce
the solution map
yelUm—uy) e X. (1.3)

Such PDEs occur in both contexts of deterministic and stochastic modelling. In the first case, the
parameter sequence y is known or controlled by the user, and a typical goal is to optimize an output of the
equation with respect to y. In the second case, the parameters y; are random variables which take upon
rescaling, values in [—1, 1]. This reflects the uncertainty in the model, and the goal is the resulting statistical
properties of the solution wu.

In both settings, a typical challenge is to simultaneously approximate solutions to the entire family of
equations up to some prescribed accuracy, at reasonable computational cost. This may be viewed as building
a cheaply computable numerical approximation u to the solution map u, for example based on the knowledge
of only a few instances of solutions associated to particular choices of y. This task is difficult, since, in contrast
to the standard problem of approximating a real-valued function v : R — R, the solution map u

(i) takes its value in an infinite dimensional space X, or in a finite dimensional subspace X}, C X when

using a given numerical solver.

(ii) is defined on a multidimensional domain U C R? where the parametric dimension d can be large, or
even infinite.

The second item refers to the exponential blow up of complexity occuring in discretization methods, as
the number d of variables grows, often refered to as the curse of dimensionality. Another expression of this
phenomenon is the deterioration of approximation rates as d grows, for functions of a given smoothness: for
example the accuracy in the L*° (or uniform) metric of reconstructing an arbitrary function with continuous
derivatives up to order m by piecewise polynomials from h-spaced grid samples is at best of order h™ and

therefore, in terms of the number of degrees of freedom n, equal to n="/4

, which is a very poor convergence
rate when d is large. A deeper investigation in terms of nonlinear width theory [IT] [I8] reveals that this
poor convergence rate cannot be improved by any other discretization method.

A typical setting for high dimensional parametric PDEs occurs for problems with are parametrized by a

function h varying over a certain class, according to
P(u,h) =0. (1.4)

The function h may for example describe (i) a spatially variable diffusion coefficient, (ii) a source term, or
(ili) the shape of the physical domain. Using a given basis (¢;);>1 for expanding h into

h=h(y) = yv;, (1.5)

Jj=1

results in the parametric model (1), where

D(u, y) = P, h(y) = P (> w505), (1.6)

Jj=1



and where the number of variables is now countably infinite, that is d = oo, or very large if the above
expansion has been truncated with high accuracy. This situation is for example typical in the case of
diffusion equations with ramdom coefficients expanded in the Karhunen-Loeve basis.

In view of the above mentionned obstructions, numerical approximation of the resulting solution map
requires non-standard discretization tools and a description of the smoothness of this map which differs from
the classical description in terms of C™ spaces. A key idea is to introduce more subtle models which reflect
the anisotropy of this map in the sense that it has a weaker or smoother dependence on certain variables than
others. Intuitively this is due the fact that the convergence of the series ([LH]) for all y € U should typically
be reflected by a certain form of decay in the size of 1; as j — 400, resulting into weaker dependence in the
corresponding variables y;. As a consequence the discretization tools should also reflect this anisotropy.

1.2 Sparse polynomial approximation

The effectiveness of the previously described paradigm was demonstrated in [5l [6], using sparse polynomials
approzimations in the parametric variables. The considered problem was the elliptic diffusion equation

—div(aVu) = f, (1.7)

set on a physical domain D C R™ with homogeneous Dirichlet boundary conditions and right-hand side
f € H~Y(D), with the diffusion coefficient function a depending on a parameter vector in an affine manner

CL:a(I,y):C_L(.I)+Zyj1/)j($), zeD, yeU, (18)
i1
with U = [-1,1]". The functions @ and (¢j);>1 belong to L°>°(D) and one assumes that the ellipticity
assumption
0<r<a(zr,y) <R < oo, (1.9)

holds for all z € D and y € U, so that the solution map is well-defined and bounded from U to X := H}(D).
The approach consists in studying the summability properties of the formal Taylor expansion

uly) = > ty", (1.10)

veF
where N 1
y :zjl;llyj ) t,:ma u(0) e X, ! :zjl;[ll/j!, (1.11)
and where F is the set of all finitely supported sequences v = (vq,va,...,0,0,...) € NJ. The main result,

Theorem 1.2 in [6], is the following.

Theorem 1.1 If (||[¢j]|r~(py)j>1 € P(N) for some 0 < p < 1 and if (LI) holds, then the sequence
(Itu || x )ver belongs to £P(F), and one has

u(y) = >ty (1.12)

veF

in the sense of unconditional convergence in L (U, X).

This result has some important consequences regarding the convergence of approximations u,, of u ob-
tained by restriction of its Taylor series to the indices corresponding to the n largest ||t,||x. Generally



speaking, to any sequence (a,),er of real numbers indexed by F and any n > 1, we associate the sets
A, = Ap((ay)ver) of indices v corresponding to the n largest |a,| (with an arbitrary choice in case of
non-uniqueness). Then, an elementary observation is that if (a,),cx € ¢P(F) and ¢ > p, one has

(3 1aul) " < Na s (n+ 1)+, (113

vEA,

This is proved by introducing the decreasing rearrangement (a);o of the sequence (|a,|),er and by com-
bining the two observations

(3 1al)) " = (Z@p?) " < (Sl @) " < e @) 22, (1.14)

veEA, i>n j>n

and
(n+D(aq ) < Y (@) < (a)llfz)- (1.15)
j<n+1
Working under the assumptions of the above theorem, and denoting by A,, C F the set of indices v € F
corresponding to the n largest ||t || x, we thus have

v s 1
sup [|u(y) — Yoty lx < D tllx <Nl e +1)7° s=—~1. (1.16)

ye veA, vEA, p

The polynomials t,y" therefore provide approximations to the solution map w which converge in

veh,
L (U, X) with rate n~*° despite the fact that d = oco. This shows that one can in principle overcome the
curse of dimensionality in the approximation of u(y) by a proper choice of sparse polynomial spaces.

The proof of Theorem [[1l is based on the analysis of the anisotropic smoothness of the solution map,
in the sense of extending it to the complex domain and making a fine study of its region of holomorphy in
several complex variables. Unfortunately this latter aspect is heavily tied to the affine dependence of the
coefficients with respect to the parameters in (L)) and to the linear nature of the equation (7).

Many practically relevant parametric PDEs are nonlinear and depend on the parameters y in a non-
affine manner. The objective of the present paper is to propose a general strategy in order to derive similar
polynomial approximation results for such PDEs. Here are a few examples, among many others, that can

be treated by our approach:

(i) Operator equations such as (7)), with non-affine, yet holomorphic, dependence in y of the diffusion
coefficients and such that the problem is well posed uniformly in y € U. Typical instances are

a(z,y) == a+ (Zijj)z, (1.17)

Jjz1

with @ a strictly positive function which satisfies a(x) > r > 0 for any « € D, or

a(z,y) = exp(z ijj), yeu (1.18)

Jj=1
so that the solution u(y) of (L) is uniquely defined in X = Hg (D).

(ii) Linear parabolic evolution equations with spatial operators as in (i). Specifically, for a coefficient a as
in (i), we consider in the Gel’fand evolution triple V.C H ~ H* C V* the parabolic problem

O —div(aVu) — f=0 in (0,7)x D, (1.19)



where f € L%(0,7T;V*), with initial and boundary conditions
ulpp =0 for 0<t<T, and wulimo=up€ H, for yeU. (1.20)
Here V = H3(D) and H = L?(D). A solution space (see [9]) is
X :=L*0,T; V)N H'Y(0,T;V*). (1.21)
Other boundary conditions can be accomodated with other choices of the space V.

(iii) Nonlinear operator equations, with analytic dependence of D on w and on y, and such that the problem
is uniformly well posed in y € U. One typical instance is the monotone, elliptic problem

w?t — div(aVu) — f =0, (1.22)

which is set on a physical domain D C R™ of dimension m > 2 and with homogeneous Dirichlet
boundary conditions on @D and right-hand side f € H~!(D), where a depends on y as in (L8], and
where ¢ > 0 is an integer such that ¢<—"5. These conditions ensure existence and uniqueness of the
solution u(y) in X = H}(D), for every y € U, by the theory of monotone operators (see Chapter 6 of

[16])-

(iv) Operator equations on domains whose shape depends on a parameter sequence y. As a simple example,
consider the Laplace equation
—Av = f, (1.23)

with homogeneous Dirichlet boundary conditions set on a physical domain D(y) C R? that depends
on y in the following manner

D(y) :={(z1,22) : 0< 21 <1, 0< 20 < P(21,9)}, (1.24)

where ¢(t,y) == ¢ + > j>1Y¥;(t) satisfies a condition of the same type as (LJ) ensuring that the
boundary of D(y) is not self-intersecting. Using the map ®(y)(z1,22) = (21,z2¢(x1)) one can
transport back the solution v(y) € H'(D(y)) into the reference domain D = [0, 1]? according to
u(y) :=v(y) o ®(y) € H*(D). The functions u(y) are now solutions to an elliptic PDE set on D with
diffusion coeflicients and source term that both depend on the parameter sequence y in an holomor-
phical, but non-affine manner.

The strategy developed in [B [6] for proving Theorem [[1] for the model equation (7)) with coefficients
given by (L8) does not carry over for the above problems. In fact, this theorem will generally fail to hold,
in the sense that (||¢;[|L~(py);>1 € £P(N) for some p < 1 and yet the Taylor series of u does not converge in
L°°(U, X). This is due to the fact that, for the above models, the solution map does not generally admit an
holomorphic extension in a neighbourhood of the whole unit polydisc

U= Q|2 <1} (1.25)

j>1

As a simple example, consider model (i) or (ii) with a(z,y) = 1 + by?, as a particular case of (ILIT7) where b
is a constant strictly larger than 1. Then holomorphy in the first variable on an open disc {|z1| < p1} may
hold only if p; < b7'/2 < 1. A more elaborate inspection of models (iii) and (iv) reveals similar problems.
A different approach is therefore needed for the construction and convergence analysis of sparse polynomial
approximation.



2 Main results and outline

2.1 Sparse Legendre series

In this paper, we consider sparse approximations constructed by truncation of the tensorized Legendre series

u(y) = > _ P (y), (2.1)

veF

where P, (y) := [[;5, P, (y;), with P, denoting the univariate Legendre polynomial of degree n for the
interval [—1, 1] normalized according to || Py || (j-1,1)) = |Pn(1)| = 1. This series may be rewritten into

u() = 3 0 Lu(y). (2.2)

veF
where L, (y) := [[;5, Ly, (y;), with L, denoting the version of P, normalized in L2([-1,1], %) so that
1/2
j>1
If the solution map is uniformly bounded in U in the sense that

[uy)lx < Co, yeU, (2.4)

then the convergence of the above series is ensured in the space L?(U, X) of square integrable, X-valued
map with respect to the uniform product probability measure

d = % . 2.5
) =@ (25)
The use of Legendre series in place of Taylor series allows us to obtain similar sparse approximation results
under weaker assumptions on the domains of holomorphic extension of the solution map, which turn out to
be valid for models such as (i), (ii) and (iii).
To be more specific, for s > 1, we introduce the Bernstein ellipse in the complex plane

-1
Es = {% Hw| < s}, (2.6)

s—s !

3 and denote

which has semi axes of length % and

& =Q)E,,. (2.7)

j=1

the tensorized poly-ellipse when p := (p;);>1 is a sequence. Our analysis of the sparsity of Legendre
coefficients relies on holomorphic extensions of u over domains of this type. Note that when s is close to 1,
the ellipse £, concentrates near the real interval [~1, 1] and does not contain the unit disc if s < s* = 14+/5/2.
Therefore the polydisc ¢/ is not contained in &, if p; < s* for at least one value of j. As it will be established,
models (i), (ii), (iii) and (iv) are particular instances where the following general assumption holds for the

operator D in (LI)).

Definition 2.1 Fore > 0 and 0 < p < 1, we say that D satisfies the (p, e)-holomorphy assumption HA (p, )
if and only if



(i) For each y € U, there exists a unique solution u(y) € X of the problem (1)) and the map y — u(y)
from U to X is uniformly bounded, i.e.

sup [lu(y)|lx < Co, (2.8)
yeU

for some finite constant Cy > 0.

(i1) There exists a positive sequence (b;)j>1 € (P(N) and a constant C. > 0 such that for any sequence
p = (pj)j>1 of numbers strictly larger than 1 that satisfies

o0

> oy —1b; <e, (2.9)
j=1
the map u admits a complex extension z — u(z) that is holomorphic with respect to each variable z; on
a set of the form O, = ®j21 Op;, Op; C Cis an open set containing £,,. This extension is bounded
on & = Q> Ep;, according to
sup |Ju(z)|x < C-.. (2.10)
z€E,
Our first result is that such assumptions ensure ¢ summability of the Legendre coefficients. For the purpose
of further numerical implementation we do actually establish a stronger result. To any sequence ¢ := (¢, ), er,
we associate its monotone envelope ¢ := (c,),ecr defined by

c,:=suple,|, veF, (2.11)
p>v

where p > v means that p; > v; for all j. We also say that a set A C F is monotone if and only if
veA and p<v=peA. (2.12)

For p > 0, we introduce the space €2 (F) of sequences that have their monotone envelope in ¢7(F).

Theorem 2.2 If the differential operator D is such that HA(p, ) holds for some 0 < p <1 and ¢ > 0, then
the sequences (||uy||x)ver and (||vy||x)ver belong to (2, (F), and

uy) =Y u P =Y vl (2.13)

veF veF

holds in the sense of unconditional convergence in L (U, X).

Using (LI3]), we can translate the conclusion of the above theorem in terms of convergence rates for sparse
Legendre approximations: if AT ¢ F and AL C F are the sets of indices v € F corresponding respectively to
the n largest terms in the monotone envelopes u = (u,),cr and v = (v, ),er of the sequences (|uy||v)ver
and (||v,||v)ver, then

—s 1
|lu — Z uy Py || Lo xy < Z w, < [[ulpFn+1)7°% s:=-—1, (2.14)
veEAE vgAEP p
and )
3 . 11
=3 vl xan = (2 v2)" < Ivlemmt )™ =g (2.15)

veAL vEAL



In consequence, the n-term truncated Legendre series provide approximations to the solution map u in
L>(U, X) with similar convergence rates as the Taylor series and provide approximations with better decay
rate in the least square sense. The interest of using the monotone envelope is that the sets ALY C F and
AL c F can be chosen to be monotone in the sense of (ZIZ), a property that appears to be useful for
numerical computation [4, [7]. In the present paper, we shall make use of this property to show that the
convergence rate n~° in (2.I4) can be preserved when the Legendre projections are replaced by properly
defined polynomial interpolations of u at certain points.

2.2 Establishing assumptions HA(p, ¢)

In the case of models (i), (ii) and (iii), we verify HA(p,¢) using b; := |[¢);||=(p), under the assumption
that (||vj]| o(p)y);j>1 belongs to £P(N). In the case of model (iv), we establish the validity of HA(p, €) using
bj = [Vl LDy + ¥}l L (D), and therefore under the additional assumption that (|[¢}]|z(p));>1 belongs
to ((N). Here, we propose two general frameworks that allow us to establish HA (p, e) for such models, as
well as for many other potential models of parametric PDEs.

The first framework is when the parametric PDE has the general variational form

ueX: Bu,vy)=F,y), vey, (2.16)

where X, Y are Hilbert spaces over C and where, for every fixed y € U, the maps (u,v) — B(u,v,y) and
v — F(v,y) are continuous sesquilinear and antilinear forms on X x Y respectively on Y. In this setting,
the operator D of () is defined from X x U into the antidual Y* of Y, according to

D(u,y) = B(u,"y) — F(-,y) . (2.17)

In many practical instances, the two spaces X and Y coincide, however X # Y is relevant for the treatment
of parabolic evolution problems. We use the same notations B and F to denote the corresponding maps
from U into the spaces of sesquilinear and antilinear continuous forms on X x Y and on Y, respectively,
defined by

B(y)(v,w) := B(v,w,y) and F(y)(w):=F(w,y), veX, weY, yelU. (2.18)

The following result shows that the validity of HA(p,e) expressing the analytic behaviour of the solution
map y — u(y) follows from a similar analytic behaviour of the maps B and F.

Theorem 2.3 Fore > 0 and 0 < p < 1, assume that there exists a positive sequence (bj);j>1 € (P(N), and
two constants 0 < r < R < 0o and a constant M < co such that the following holds:

(i) For any sequence p := (p;);>1 of numbers strictly greater than 1 that satisfies

(o]
(pj —1)b; <e, (2.19)
j=1
the maps B and F admit extensions that are holomorphic with respect to every variable on a set of the
form O, = ®j>1 O,,, where O,, C C is an open set containing &,, .

1) These extensions satisfy for all z € O, the uniform continuity conditions
Y P )

F B
sup [Flw2)l M, sup Blo,w, )| R, (2.20)
weY\{0} wlly veX\{0},weY\{0} vl x [|lwlly



and the uniform inf-sup conditions: there exists v > 0 such that

B B
inf sup [Blo,w, 2)] >r and inf sup [Blv,w, 2)) > 7. (2.21)
veX\{0} wev\ (o} [lvllx[lwlly weY\{0} e x\{o} [Vl x[[wlly

Then, D satisfies the assumptions in HA(p,e) with the same p and € and with the same sequence b.

Our second framework is concerned with parametric PDEs of the form (L4), where P is a linear or
nonlinear operator defined from the product of two Banach spaces X and L over C into a third Banach
space W over C. The parameter function h is expanded in terms of the parameter sequence y € U according
to (I3)), where the ¢; are functions in L and we assume that the expansion in (D)) converges in L for all
y € U. In the particular case of (ILT7), we have X = H}(D) , L = L>°(D) and W = H~1(D). We introduce
the set

hU)=A{h(y) : yeU}CL. (2.22)
The following theorem shows that the validity of HA(p, €) is ensured provided that (||¢;||z);>1 € ¢*(N) and

that P satisfies certain smoothness properties, in addition to the well-posedness of the problem (4] over
h(U).

Theorem 2.4 Assume that:

e One has (J4;l);21 € /(N) for some 0 <p < 1.

e The problem (LAl is well-posed in X for all h € h(U).

e The map (u,h) — P(u,h) is continuously differentiable from X x L into W.

e For every h € h(U), the partial differential ‘g—f(u(h), h) is an isomorphism from X onto W.
Then there exists an € > 0, for which D satisfies the assumptions HA(p, ).

The rest of this paper is organized as follows. In §3, we prove Theorem by deriving upper bounds
for the X-norms of Legendre coefficients ||u,| x and showing the ¢F(F) summability of the corresponding
sequences of coefficient bounds. Our approach may be viewed as a variant of the technique developped
in [6] in a special case. In §4 we show in addition that under the assumptions of Theorem ([2.2]), similar
convergence rates O(n~*%) with s = % — 1 in L*®(U, X) can be obtained by certain interpolation processes
introduced in [4], despite the possible growth of the Lebesgue constant. The proofs of Theorems and 2.4]
are given in §5. Finally, we discuss in §6 the application of the two frameworks to models (i) to (iv). We
show that (iv) and (iii) can be treated in the framework of Theorem 23] and Theorem [24] respectively, and
that both frameworks may be used to treat (i) and (ii).

3 Sparse Legendre expansions

In this section, we prove a slightly stronger version of Theorem [2.2] as explained further. Note that
l[uv||x
1/2°
(Hng (1+ 2”;’))

so that it suffices to prove the ¢ (F) summability of the sequence (||uy| x)ver. We first give upper estimates

ol x = (3.1)

for the |luy||x. These estimates are a generalization of those established in [0 Lemma 4.2] for the particular
problem (7)) with coefficients given by (IL8)). Since the proof is very similar, we only sketch it.



Lemma 3.1 Let p := (pj)j>1 be any sequence of numbers strictly larger than 1, such that that w has an
extension that is holomorphic in each variable on a domain of the form O, = ®j> O,,;, where O, C C is

an open neighbourhood of &,., with uniform bound

sup JJu(2)|lv < C. (3.2)
2€E,
Then, the Legendre coefficients satisfy
luwlx <C ] @v+Délei)e; ", (3.3)
j>1:w; #0

where ¢(t) := Q(tﬂ—fl) fort > 1, with in the case v = (0,0, ...) the convention that the empty product equals 1.

Proof: For v € F, the coefficient u, is given by
w, =TT+ 1) [ )P )duto) (3.4)
i>1 7
The estimate for v = (0,0, ...) is trivial since du is a probability measure. We now prove, for v € F\{0},

H/U(y)Pu(y)du(y)H <c I ¢eie;” (3.5)
U

X j>1:w#0

To this end, we use induction on J, := #(supp(v)), the (finite) number of non-zero coordinates in v. Let
J € N and assume that (3.3) holds for any p € F such that J, < J. Let v € F with J, = J + 1. Without
loss of generality, we suppose that 14 # 0. We introduce the notation § := (y2,ys,...) and 0 := (v2,v3,...).
Let us note that © € F and J; = J. Now, we have

1

/ u(y) P (y)duly) = / / (s, 9) P, () Po () L2 () = / w() P> (§)du(d), (3.6)
U

U -1U

where

1
w@) = [ o, 9)Po o) (37)
Z1

The induction hypothesis applied to w on the poly-ellipse £; with p = (p2, p3, . ..) implies

H/U(y)Pu(y)du(y)HX < S lw@llx ] épi)e; ™ (3.8)
U

z€ §>2:0;#0

It remains to show that there exists a constant C' > 0 such that for any 2 € &,

|w(2)l|x < Colpr)pr ™ . (3.9)

For any 2 € &; fixed, the map z1 — u(z1, 2) is holomorphic on an open neighborhood O,, of the ellipse &,,.
Therefore, Cauchy’s integral formula applied with respect to z; yields

u(y1,2) = ! /(Wﬁdzl, (3.10)

2im z21— Y1)

Pl

10



for any y1 € [—1, 1], hence

w(?) = — / u(zl,é’)Mdzl, (3.11)

2
&5,

where @, is the function of a single complex variable ¢ ¢ [—1, 1] defined by

Qult) = / Pals) g (3.12)

With C as in [B2)) it follows that

lw(z)llx < C2 max |Qu, (21)] (3.13)

2 zeég,

where we have used the fact that the ellipse £, has perimeter of length less than 2wp;. We conclude by
using the estimate

t—”l
max |Qn ()] < T (3.14)
established at the bottom of page 313 in [§]. |

We now turn to the proof of Theorem The previous lemma shows that if HA(p, ¢) holds, then for
any sequence p := (p;);>1 of real numbers strictly larger than 1 such that Z;’;l(pj —1)b; < &, we have

lullx <Co [ @vi+Dép)e; ™, veF—{0,0,..)} (3.15)
j>1w; #0

where (b;);>1 and C: are as in Definition[2Z.J] We use this estimate in order to establish the ¢ (F) summability
of the monotone envelope u of (|luy||x)ver. To this end, we use a specific design of the sequence p that
depends on the index v, in a similar spirit as in §4.3 of [6].

Let B > 0 be arbitrary but fixed, and J > 1 be an integer such that > . ;|b;| < ;5. We introduce
F:={jeN : j>J} and define vp := (Vj41,Vj42,...) for any v € F. We introduce the sequence
p(v) == (pj)j>1 that depends on v according to

L N (3.16)

) |
for <J and p;i =1+ ——+ B+ ——
! Pi Afblle ) 210, T+ v

T+
pj =

’ 4/[bl] 2 ()
where |vp| =", ;v;. It is easily checked that 3~ (p; —1)[b;| < €, so that the estimate (B.15) holds with
p = p(v). We introduce the notation k =1 + m and Cy, = ¢(k) > 1. Since ¢ is a decreasing function

and p; > k for any 7 > 1, then ) < C, for any 7 > 1. Consequently, for v # 0,
Pj yJ Py Y J q Y.

lullx <Cc [] Cuuj+1)s [ Cul2v+1)p;" . (3.17)
j<J:w;#0 j>J:w;#0

Using the crude estimates (2n + 1)k™™ < ¢, 2 for some constant ¢,, > 1 and C,(2n +1) < (3C,)" for any
n > 1, we have

ulx < @ = CeBr(V)Br(v), v#0 (3.18)
where
Be(v) == (csCk)”’ H k7Y% and  Bp(v) = H(?)CN)”fp;Vj. (3.19)
j<J i>J

11



We denote Fp the multi-indices in F supported in F := {j < J} and Fr the multi-indices in F supported
in F', with convention that v = 0 belongs to both sets. Observe that the estimate ([B.I8]) remains valid for
v = 0. The separable form of this estimate implies that

S lwllP <> qh=ClAgAp where Ap:= Y Be(v)’ and Ap:= Y  Br(v)’. (3.20)
veF veF veEFE veFp

Now, on the one hand, we have

Ap = (¢.Cy) Z Hn Pvi/2 = (¢,C)P! 87 where S := Zli P/2 < foo. (3.21)
vEFE j<J n=0
On the other hand, defining d; := === for j > J and using the inequality p; > 557 75757, We obtain
14 |VF| vi (14 |yp|)lvrl v,
<H( ) -1l 4 (3.22)
J>J F J>J

Using the bounds (1 + n)" < nle"*! and nle™ < max{1,e/n}n™ which holds for any n > 1, it follows that

lvr|!

I/F.

Br(v) < e——-d"", (3.23)

where d defined by Jj = ed; for j > J. Therefore

Ap<er Y ('”F| d”F> - Z(%cﬁ)p (3.24)

14
veFF B veF

where d := (dj1,ds42,...). Up to possibly choosing a larger value of .J, we may assume that

- 60
b= Z|bj| <L

i>J i>J

ldljer =

We then invoke [5] Theorem 7.2] which says that the sequence ( %J”)Ue 7 belongs to ¢P(F) if and only if

d € (P(N) and ||d||;» < 1. This shows that Ap < +00. As a result (¢,),er and (|Juy||v)yer belongs to £7(F).
Finally, denoting by

e; = (0,...,0,1,0,...), (3.25)

the Kronecker sequence with 1 at position j, we observe that (¢,),cr satisfies

QV-i—ej 1 .
——, veF, j<J, 3.26
qv \/E ( )

and for any j > J,

e 1 v+te;
i _ 3C, and Jvbe; _ 3C,

do e 1 qv vi+1
(ﬁ+_B_+2wﬂ2) (”4‘B‘+2w|2+pﬂ)

1 VA0, (3.27)

+ej

If B is chosen large enough, the quot1ent is smaller than 1 for any v € F and any j > 1. Therefore

the sequence (¢, ) er is monotone decreasmg in the sense that
p<v=q <gqu. (3.28)
This implies that (¢, )yer coincides with its monotone envelope. As a result (q,),er € ¢2,(F). Therefore

(luvllx)ver € €2,(F), which concludes the proof of Theorem 22

12



4 Sparse high dimensional interpolation

The conclusion of Theorem [2.2] shows that, under its assumptions, there exists a sequence of nested monotone
sets (Ap)n>1, with #(A,,) = n, such that

inf - oo <C 1)~° =—-—1 4.1
Ué%ﬂ”“ vllpewx) <Cn+1)7%, s it (4.1)

where we have used for any finite set A C F the notation

Xp = span{z vyY vy, € X} . (4.2)

veA

We remark that X := Py ® X, where
Py :=span{y” : v € A}. (4.3)

One way to compute an approximation of the solution map y +— wu(y) in the polynomial spaces X, is
by interpolation. Polynomial interpolation processes on the spaces X for arbitrary monotone sets A have
been introduced and studied in []. Given z := (z;),;>1, a sequence of pairwise distinct points of [—1,1], we
associate with any finite subset A C F the following finite set of points in U,

Fa:={z, :ve A} where z, :=(2,,);>1. (4.4)

It is shown in [4] that if A C F is monotone, then the set 'y is unisolvent for Py, i.e. for any function g
defined in I'y and taking values in C, there exists a unique polynomial I5g in P, that coincides with g on
I's. The interpolant can be expressed and computed in a simple manner: if we write A := {v!,---, v~} such
that for any k= 1---, N, the set A, := {v!,--- ¥} is monotone, then

N

IAg = ngiHuia (45)
=1

where the polynomials (H,),eca are a hierarchical basis of P5 given by

k-1
t— 2z,

H,(y) := H hy,(y;) where ho(t) =1 and hy(t) = H P ;—’ k>1, (4.6)

j=>1 7=0

and where the coeflicients g,« are recursively defined by
k
g1t ‘= g(ZO)v Gykt1 1= g(ZV"+1) - IAkg(ZV"+1) - g(zuk+1) - ZguiHui (Zuk+1) . (47)
i=1

A standard vectorization technique yields that I'y is also unisolvent for X 5. The interpolation operator, that
here maps functions defined from U to X into X can also be computed by the recursion (&3] where the co-
efficient g, now belongs to the Banach space X. We use the same notation I, for this interpolation operator.

One way to relate the accuracy of the interpolation operator Iy to the error of best polynomial approxi-
mation is via the Lebesgue constant, which is defined by

1Al o0

Lp =
geB) lgllL=()

, (4.8)
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where B(U) is the set of bounded functions g on U which are defined everywhere on U. We indeed have the
classical inequality

o= Inglimn < (1+1a) inf flg =l (4.9)
€Pa

from which it follows that
lu = Inullpee @) < (1 +La) i0f [lu =z, x), (4.10)

for a function u defined from U taking values in X.

In [4], algebraic bounds have been derived for Ly given that algebraic bounds are available for the
Lebesgue constants A\; of the interpolation on the set of k 4+ 1 points {zo,...,2,}. Namely, if there exists
6 > 0 such that A\, < (k + 1)?, for any k > 0, then for any finite monotone set A,

La < (#(A))"*. (4.11)

Let us stress that this bound is independent of the shape of the monotone set A, it only depends on its
cardinality. Sequences z = (zj);>0 for which it can be proved that A\, < (k + 1)?, are available in the
literature, see [3], with 2 < 6 < 3.

Using such sequences and the same monotone sets (A,),>1 that give the estimate (£Il), under the
assumptions of Theorem [22] it follows from (L.10) and (ZI1]) that a first estimate for the interpolation error
is of the form

lu— Ia,ull g o) < Clnt 1)=H0FL 5= % 1. (4.12)
The following result recovers the best n-term approximation rate O(n~*) for the interpolation based on
a different choice of monotone sets. A similar analysis was developed in [4] in the particular case of the
solution map wu of (7)) and under the assumptions of Theorem [[Tl Tt is based on the fact that the algebraic
growth of the univariate Lebesgue constants A; can be absorbed inside the estimates obtained for Legendre
coefficients based on analyticity.

Theorem 4.1 Under the assumptions of Theorem[23, there exists a constant C' > 0 and a nested sequence
of monotone sets (A, )n>1 with #(\y,) = n for which
s 1
o= In ) € Ot )7 5= =1, (4.13)

Proof: The unconditional convergence in L>°(U, X) of the Legendre series yields: for any finite monotone

set A,
Tau = IA(Z ul,PU) =S wInP, =Y usInPo+ Y wIaP, .

veF veF veA vEA

The univariate Legendre polynomial Py is of degree k, therefore for any v € F, the polynomial P, belongs
to Pg, where R, := {u € F : u < v}. The monotonicity of A implies then that P, € Py, hence Ip\P, = P,,
for any v € A. From the recursive expression (LA of the interpolation operator, it is also easily checked
that for any given v € F and monotone set A,

Pe PRV = I\P = IAQRVP .
The two previous observations imply

(I —Ip)u= Z uy (I — Ixnr, )Py,
vgA
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where I denotes the identity operator. Therefore

I — In)ull =) < S luwllx (1 + Lang P ooy < 23 [l xLans, -
vEA vEA

If the univariate sequence is such that Ay < (k4 1)Y for some @ > 0, then we have

0+1
Lok, < #ANR)T < #(R)™ = (T[0+0) = polw),
j=>1
so that

1T = In)ull ey <2 lunllxpo(v) -
vEZA

In order to prove ([@I3)), it is thus sufficient to prove that the sequence w = (w,),cr with w, := pe(v)||u || x
belongs to (2 (F). Indeed, the nested sequence of monotone sets A,, of indices v € F corresponding to the
n largest terms in the monotone envelope w of w then provide the estimate

1

lu—Ix, ullpeew,x) < 2[Wllewr)(n+1)7%, s= ' L. (4.14)
Since we work under the assumptions of Theorem 22 we have by (B17)
w, <Ce [ Culvi + D)@+ D™ [ Culyy + )P Q20+ 1)p; ™, (4.15)

j<J:w;#0 j>J:w;#0

where J, k, C) are defined in the proof of Theorem given in the previous section. Using the crude
estimates, (n+1)?T1(2n+1)k™" < ¢g .k~ 2 for some constant cg . > 1 and Cy(n+ 1)1 (2n+1) < (MmC,,)"
for some m > 1, we infer

w, < q,:=CPRW)Brv), v#0 (4.16)
where
BB W) = (co.xCx)” [[ /% and BEw):= [[(mCe)"p; ™. (4.17)
i<J i>J

These estimates are of similar type as those given in ([B.I9) for the sequence (||luy|/x)ver, and the €& (F)
summability of w may thus be derived by the exact same arguments as those given at the end of the previous
section. a

5 Holomorphic extension on poly-ellipses

In this section, we provide the proofs of Theorem and Theorem 2.4]

5.1 Proof of Theorem

Let p, €, b, p := (pj)j>1 and O, be as in the assumptions of Theorem [Z3] First, using the continuity and
inf-sup conditions (220) and (221]), a standard functional analytic argument similar to the proof of the
Lax-Milgram lemma, shows that for any z € O, the parametric, variational problem

D(u,z) :=B(2)(u,-) = L(z)(-)=0 in Y~ (5.1)
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is well posed in X, uniformly with respect to z. Accordingly, the solution map z € O, — u(z)e X is
well-defined and uniformly bounded in O, in the sense that

M
sup [lu(z)llx < —, (5.2)
z€0, r

where r and M are given in the condition (220). To complete the proof of Theorem 23] we only need to
prove that u is holomorphic in O, with respect to each variable. We first observe that u is continuous on
O,: indeed, for z,z € O,, we have from the equations D(u(z),z) = 0 and D(u(Z),Z) = 0 in Y* that

B(Z) (u(z) —u(z), v) - —(B(Z) - B(z)) (u(z),v) + (F(é) - F(z)) (v), veEY. (5.3)

Therefore, taking v = u(Z) — u(z) and using the continuity and inf-sup conditions [220) and (2Z21), we
obtain

rllu(z) —u()lx < 1B(2) = B() | cixxv.olu(2)llx|u(z) —u(2)llx + 1 F(Z) = F(2)lly-[u(Z) —u(z) ] x, (5.4)

which combined with ([&2]) implies

[u(z) ~ u(2lix <+ (1BG) ~ BE) | cooro e+ 1FE) - FGlv-). (5:5)

so that the holomorphy of B and F' implies the continuity of u. Now let z € O,, 7 > 1 and § € C such

that z + de; € O,, where ¢; is the j-th Kronecker sequence in CN and introduce ws = +(u(z + de;) — u(2)).

Taking Z = z + de; in (53]), we obtain, for every v € Y
B(z + dej) — B(z)

B(z)(ws,v) = — 5 (u(z + dej),v) +

F(z +d¢;) — F(2)
)

(v), veY. (5.6)

By the holomorphic dependence of B and L on z,

B(z+de;) —B(z) 0B
1) 62]-

(2)

(2) =o05(1), (5.7)

HF(z—I—(Sej)—F(z) OF
L(XXY,C)

; ~ 9

=o0s5(1) and H

Y *

where we use the generic notation os(1) for a positive quantity that tends to 0 as C 5 § — 0. Hence for any

ver oF 0B
B ws.0) — S0+ Gl +6).0)

B = ||vllyos(1), (5.8)

where we have used (5.2) to get the bound [lu(z + de;)||x < & for any § such that z + de; € O,. This,

combined with the continuous dependence of u on z, implies

oF 0B
B s = FE@0+ G2 .| =ostr) (5.9
Finally, if wy € X is the unique solution of the variational problem
oF 0B
B(z)(wp,v) = 6—%(2')(1)) — 6—%(z)(u(z),v), veY, (5.10)
then
|1B(2)(ws — wo, )|ly+ = 0s(1) . (5.11)
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Using again the inf-sup condition in ([Z21]), we deduce that |Jws — wp||x — 0. This shows that the map

z +— u(z) from C to X admits a partial complex derivative % (z) € X with respect to the complex extension
J

z; of each coordinate variable y;. In addition, this derivative is the unique solution of the variational problem

0 oF 0B
B, (2):0) = - ()0) = G- ()u(z) o) vey. (5.12)
The proof of the holomorphy of u with respect to every variable on O, is then complete. o

Remark 5.1 Inspection of the proof of Theorem reveals that it remains valid verbatim when X and Y
are reflexive Banach spaces.

5.2 Proof of Theorem 2.4

We recall that the framework for Theorem 2.4 is as follows: the operator D depends on the parameter y € U
through the functions h(y) = >_ i>1 y;%; where the 1; belong to some Banach space L over C, according to

D(u,y) = 7’(% h(y)), (5.13)

where P is a linear or nonlinear operator from X x L into a Banach space W over C. We set b := (b;);>1
with b; := ||¢;||1, and propose to use this sequence to show that D satisfies the assumptions HA(p,¢) of
Defintion 211 It is already assumed that b € (P(N) for some p < 1. Therefore, in order to prove the theorem,
we only need to show the existence of some e > 0 for which the point (ii) in Definition 2] is satisfied.

Before proving Theorem 2.4] we give two simple, yet useful observations. The first observation is that
we can use a simple open neighbourhood O for the complex ellipse &.

Lemma 5.2 Let s > 1 and introduce the open set in C

Oci= |J {€eCile—t<s—1}={£eC : dist(¢,[-1,1]) < s—1}. (5.14)

te[—1,1]

Then Oy is an open neighborhood of Es.

Proof: It is sufficient to prove that 0&; C O,. Since the ellipse 0&s has half-axes S+§71 and 57571 and foci
+1, for any £ € 0, we have

(i) Tf R(€) € [~1,1], then since [I(€)] < £=5— < s — 1, we have |€ — R(€)| < s — 1.

(i) If R(¢) > 1 then |€+ 1| > 2, but since [ — 1|+ [E+ 1] =s+s !, wehave [ —1| <s+s 1 -2<s—1.
(iii) If R(¢) < —1, then by symmetry with (ii), we have | + 1] < s — 1.

This shows that in the three cases [ —t| < s — 1 for some ¢ € [—1,1] and completes the proof. O

Our second observation is concerned with the topology of the set h(U) := {h(y) : y € U} C L intro-

duced in (222).

Lemma 5.3 Assume that the the sequence (||1;||1)j>1 belongs to ¢*(N). Then h(U) is compact in L.
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Proof: Let (hy),>1 be a sequence in h(U). Since (||¢;)j>1 € £1(N), the sequence (hy,),>1 is bounded in
L. Each h,, is of the form h,, = i>1 Yn,j¥j. Using a Cantor diagonal argument, we infer that there exists
y = (yj)j>1 € U such that

LM Yoy = Y5, J =1 (5.15)
where (0(n)),>1 is a monotone sequence of positive integers. Defining h := > ., y;9; € h(U), we may
write for any k > 1,

k
Ao — Rl < Z(yj ~ Yo(n).j)¥illL +2 Z lvillL (5.16)
j=1 F>kA1
It follows that h,(,) converges towards h in L and therefore h(U) is compact. a

We now consider an arbitrary y € U and the corresponding h(y) € h(U). The assumptions of Theorem
24 say that P is continuously differentiable as a mapping from X x L into W, that P(u(y),h(y)) = 0 in
W and that the partial differential g—z(u(y), h(y)) is an isomorphism from X onto W. Therefore, by the
holomorphic version of the implicit function theorem on complex Banach spaces, see [12, Theorem 10.2.1],
there exists an & > 0, and a mapping G from B(h(y), ) the open ball of L with center h(y) and radius & into
X such that G(h(y)) = u(y) and P(G(h), h) = 0 for any h in B(h(y), ). In addition, the map G is uniformly
bounded and holomorphic on B(h(y), ) with

dG(h) = —((Z—Z(G(h), h))_l o g—Z(G(h), ), heBh(y),e). (5.17)

Let us note that € = e(y) depends actually on y. We claim that € can be made independent of y € U. Since

Uyer B(h(y), E(Qy)) is an infinite open covering of h(U) and since h(U) is compact in L, there exists a a finite
subcover, ie. a finite number M and !, ---,%™ in U such that

Mo e(y)
cU B(h(yﬂ), g ) . (5.18)
j=1

. Let y € U and h € L such that |[|[h — h(y)||r < e. According to (.IJ),
), therefore, for j =1,..., M,

We introduce € := m1n1<7<M

o
h(y) belongs to some B(h(y?), (

5= b )ls < 0= h)ls + ) — hi) e < e+ Z00 < SO0 L 0D

This shows that B(h(y),e) C B(h(y?),e(y7)) and it implies that

= |J B(h U B(h y)) . (5.19)

yeU

In particular the map G is well defined and is continuously differentiable as a mapping from h®(U) into the
complex Banach space X.

To conclude the proof of Theorem [2.4] we verify assumption HA(p, ). Let p := (p;);>1 a sequence of
numbers strictly greater than 1 such that >, (p; —1)b; < e and O, == Q);5, O, where for s > 1, O; is
the open domain in C defined in (G.I4). For any z := (z;);>1 € (’)p, we define h(z) := > ,5, 29 € L. If
y = (y;)j>1 € U satisfies |z; — y;| < p;j — 1, for every j > 1, we then have

>z =y

Jj=1

17(2) = h(y)llz = < Dotz = willlslle <D (s = 1)y <, (5.20)

7j>1 j>1

18



therefore h(z) € h*(U) and G(h(z)) is well defined. We extend the solution map u on the domain O, by
u(z) := G(h(z)). By holomorphy of G on h*(U) and affine dependence of h(z) on z, it follows that

z = h(z) = u(z) = G(h(2)),

is holomorphic with respect to every variable on O,. Moreover

sup ||lu(z)|[x = sup [|G(h(2))llx < sup ||G( Jix < max — sup 1G(h)[[x <oo.  (5.21)
2€0, 2€0, hehs(U T heB(h(y?).e(y?))
This completes the proof of Theorem 2.4 ]

Remark 5.4 Inspection of the above proof reveals that we can weaken the assumption in the sense that
holomorphy of the map P is required only over a set of the form X x hy(U) for some n > 0 instead of X x L,
where h,(U) :={h € L : disty(h,h(U)) < n}.

6 Applications

In this section, we show that the models (i)-(ii)-(iii)-(iv) discussed in the introduction are covered by at
least one of the two frameworks of Theorem or Theorem 2.4l Specifically, we check the assumptions of
Theorem [Z3] for models (i)-(ii)-(iv) and of Theorem 24 for models (i)-(ii)-(iii).

6.1 Models (i) and (ii): Linear elliptic and parabolic PDEs with parametric
coefficients

We recall that model (i) is the parametric elliptic diffusion equation (7)) with the typical instances of the
diffusion coefficient a

a(z,y) = a(x (Z Y (x ) or a(z,y)= exp(z yjz/Jj), xeD, yel. (6.1)
j>1 j>1
In both examples, we assume that the sequence b := (||1);| 1= (p));j>1 belongs to (P(N) for some p < 1,
and for z = (2;);>1 € CY we define a(z, z) by replacing y; by z; in the above expressions. We shall use
the domains O, := ®;>10,, given in (B.I4) to verify the assumptions of Theorem (Z3). Here, the inf-sup
condition ([Z21)) is implied by the usual coercivity condition.

We begin with the first example, assuming that @ is in L>°(D) and is uniformly bounded from below
by some 79 > 0. This implies that a satisfies a uniform ellipticity assumption of type (9) with r¢ and
Ry = ||a|| oDy + HbH?I(N) and establishes the well-posedness of (IL7) in X = H(D) for any y € U. Now
given € = /2 and p := (p;);>1 a sequence satisfying p; > 1 for every j and > i>1(pj —1)bj < €, we have
for € O, and x € D

Rla(r,2) = a(e) + (S M) — (Syor S (@)
> Tro— (2321 |s(2j)|bj)2 N (ng1(ﬂj - 1)bj)2 2,

with 7 := 22 > 0, where we have used that for s > 1 the domain O, is contained in the strip {t € C : [J()| <
s — 1}. We also have the upper bound

(w2 <a(e) + (X laslls@) < Rot (X oibs) < Bo+2(Xlos - 0ts) +2(Xb) <R,

i>1 i>1 i>1 i>1

(6.2)
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with R := Ro + 22 + 2||b||?,. Using in addition the fact that z — a(z) is holomorphic in each variable in
O,, we conclude that the sesquilinear and antilinear form

B(u,v,z) = /a(m, 2)Vu(z)Vo(z)dr and F(v,z) /f (6.3)
D
satisfy the assumptions of Theorem 23 with X =Y = H}(D), p, €, v, R and M = || f||z—1
For the second example, the uniform ellipticity assumption is satisfied with ro := exp(—||b|| 41) > (0 and

Ry = 1/r9. Now given an 0 < ¢ < 7 and a sequence p with the usual assumption, we have for z € O, and
reD,

%(exp (Z zjwj)) = exp(z %(zj)z/}j) cos (Z %(zj)wj) > exp(— Z |8‘%(zj)|bj) cos(e) > r (6.4)

Jj=1 j=1 Jj=1 Jj=1

where r = exp (—a - ||b||g1) cos(e) > 0 and the upper bound

exp(z Zj'(/]j) ’ = exp(z %(zj)wj) < R:=exp(e+|bla) - (6.5)

Similar to the first example, Theorem applies for this second model.

For the parabolic equation (LI9) in model (ii), again with the spatial differential operator as in (7))
with coefficient a as in (E1]), and with the choice of spaces X = L2?(0,7; H(D)) N H*(0,T; H=Y(D)) and
Y = L?(0,T; Hi(D)) x L?(D), the sesquilinear and antilinear forms corresponding to the parabolic problem
(CI9) read for v € X and w = (w1, w2) €Y as

T
B(v,w, z) = // (Btv(x,t)m—l—a(x,z)vwv(x,t)W) dwdt—l—/v(m,O)wg(a@)dw, (6.6)
0D D
and .
[z, t)wy (x, t)dzdt + o(z)wa(z)dx (6.7)
= [ [

with all integrals to be understood as the corresponding duality pairings. The boundedness (2:20) of these
forms is readily verified with the above choices of spaces. The verification of the inf-sup conditions (221])
for the parametric coefficients (I.8) or (G.I), on the parameter domain O, follows from the fact that

0<r<R(a(z,2) <la(z,2)] <R, €D, z€O,, (6.8)

and using the general arguments given in [I7, Appendix].

The application of the previous arguments is tied to the simple formula of the diffusion coefficient a and
may be tedious when applied to diffusion coefficients with complicated formulas. One can overcome this
difficulty using the second framework, that is, Theorem 2.4l Let us consider a diffusion coefficient a that
depends on y according to

a(y) = A(h(y)), hly) =Y y0;(x), (6.9)
Jj=1

where A is a map from L>°(D) into itself such that

0<r<A)<R < oo, (6.10)
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for all h € h(U), and such that A is continuously differentiable over L>°(D) viewed as a Banach space over
C. We also assume that (||| re)j>1 € #P(N) for some 0 < p < 1. The two examples (6.1]) correspond to
A(h) = a+ h? and A(t) = exp(h). To cast model (i) into the second framework, we introduce the operator

P(u,h) = — div (A(h)Vu) — f, (6.11)
This operator is well defined and continuously differentiable from X x L into W where
(X, L, W) := (Hy (D), L>*(D), H~}(D)), (6.12)

viewed as complex Banach spaces. For any u € X and h € L,

Z—Z(u, h)(v) = — div (A(h)Vo), (6.13)

and therefore the uniform ellipticity assumption ([GEI0) implies that g—ﬁ(u(h(y)),h(y)) is an isomorphism
from X onto W, for all y € U. Therefore, all the assumptions of Theorem 2.4] hold.
Similar arguments apply for the parabolic problem of model (ii) with

P(u,h) = (Opu — div (A(h)Vu) — f,u(-,0)), (6.14)
with the choices X := L2(0,T; V)NH(0,T;V*), L := L*°(D) and W := L*(0,T; V*)x H, where V = H}(D)
and H = L2(D).
6.2 Model (iii): non linear, elliptic PDE
The nonlinear equation (L22) is associated to the operator,
D(u,y) = u**™ — div(a(y)Vu) — f, (6.15)

where f € H™1(D) is a given, real-valued function, D is a bounded Lipschitz subdomain of R™. Here a(y)
is as in (L8) and satisfies (LJ), and ¢ > 0 is an integer such that ¢g<-"5 so that u?¢*1 € H=1(D). Thus

m—2

X = H}(D) and D maps X x U into X* = H~1(D). More generally, we consider equations ([LT]) associated
with an operator of the form
D(u,y) := g(u) — div(A(h(y))Vu) - f, (6.16)

where f € X* and h(y) and A are as in the previous section §6.11 and with (||¢j]|z~);>1 € ¢P(N) for some
0 < p < 1. In addition, we assume that g is a function defined on C, such that

1) g is holomorphic on C.
2) g(0) =0 and, for t € R, ¢'(t) > 0.

3) g maps continuously X into X*.

4) For any u € X, the sesquilinear form v, w /g’(u)vw is continuous over X x X.
D

These assumptions are in particular fulfilled by the polynomial nonlinearity g : ¢ — 2971 when ¢ < s

Let us now verify the assumptions of Theorem [Z4]
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First, we establish for every y € U, the well posedness of the nonlinear problem on X understood as a
Banach space over R. It follows from the above items 2) and 3) that, for any fixed y € U, the nonlinear
operator

T(y): u— g(u) — div(A(h(y))Vu), (6.17)

is continuous, strongly monotone and coercive from X into X*. By the theory of monotone operators on
Banach spaces X over the coefficient field R, see for example Theorem 1 in Chapter 6 of [I6], for every y € U,
the problem (II)) admits a unique (real-valued) solution u(y) € X.

We next view the spaces (X, L, W) defined as in (6I2]) as Banach spaces over C and observe that the
map

(v,h) = P(v,h) :=g(v) — div (A(h)Vv) — f, (6.18)

is continuously differentiable over X x L, thanks to the assumptions on g and A. For every (v,h) € X x L,
the first partial differential is given by

(?9—7:(1), h)(w) = g¢'(v)w — div (A(h)Vw) € W . (6.19)

In particular, for any h € h(U), we have

Z—Z(u(h), h)(w) = ¢'(u(h))w — div (A(h)Vw) . (6.20)

This operator is associated to the sesquilinear form
b(v,w) = /g/(u(h))mf)—i-/A(h)Vv -Vuw. (6.21)
D D

which is continuous by the upper inequality in (GI0) and item 4). In addition it satisfies the coercivity
condition
b(v,v) > 7ol veX, (6.22)

by the lower inequality in ([6.I0) and item 2). Therefore, by Lax-Milgram theory, it is an isomorphism from
X onto W. All the assumptions in Theorem [Z4] are thus fullfilled.

Remark 6.1 In the case of the nonlinear equation (L22), a possible way to extend the solution for complex
valued parameter z would be to rather consider the equation

|u?%u — div(a(z)Vu) = f. (6.23)

It is easily seen that monotone operator theory applied to the equation verified by the vector (v, w) where
u=v+iw allows us to uniquely define the solution u(z) of the above equation under the ellipticity condition
0 <r <R(a(z)) < l|a(z)] < R. However the presence of the modulus |u| in the equation obstructs holomorphic
dependence on the z; variable. In our approach, we maintain the original equation [(L22). In this case the
existence and holomorphy of the solution u(z) for the complex argument z does not follow from monotone

operator theory, but rather from the implicit function theorem argument used in Theorem 4.2.

6.3 Model (iv): Parametrized domain

As a simple example of PDE set on a parametrized domain, we consider the Laplace equation

—Av=f (6.24)
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with homogeneous Dirichlet boundary condition set on a physical domain D(y) C R? that depends on y € U

in the following manner

D(y) :={(z1,22) : 0< 21 <1, 0< 23 < P(x1,y)}, (6.25)
with
B(t,y) == B(t) + > yi(D), (6.26)
Jj=1

where the functions ¢ and 1; belong to W1°°([0, 1]), that is, are Lipschitz continuous on [0, 1]. We assume
that ¢ satisfies a condition of the same type as (LJ), namely

0<r<g(t)+ > yjhi(t) SR < oo, te(0,1], yel. (6.27)

j>1
The lower inequality ensures that the boundary of D(y) is not self-intersecting. We also assume that the
above series converges in W°°([0, 1]), uniformly in y € U, that is

6= |10+ 3 1)
j=1

< o0 (6.28)
L==([0,1])

In the above model, the source term f is fixed independently of y and should therefore be defined on the
union of all domains D(y) for y € U. For simplicity, we assume that f is defined over D := [0, 1] x [0, R] and
that f € L2(D). It follows that f € L*(D(y)), with [|f|lL2(py)) < £ ]l 25, for all y € U.

Our strategy for treating this model is the following. We use the bijective map

D(y): x:= (z1,22) = P(x,y) := (1, x20(x1,Y)), (6.29)

to transport back the solution v(y) € H(D(y)) into the reference domain D := [0,1]? according to

u(y) = v(y) o 2(y), (6.30)

meaning that u(z,y) = v(®(z,y),y) for all z € D. We then study the linear elliptic PDE satisfied by u(y)
on D. This PDE has matricial diffusion coefficients and source term that depends on y. We then show that
under certain conditions on the functions 1, one can establish the HA (p, ¢) for the solution map y — u(y),
using the framework of Theorem 2.3

6.3.1 A change of variables

Having fixed a parameter y € U, we use in what follows the simpler notation u, v and ® for u(y), v(y) and
®(y). The transformation ® maps the domain D into D(y) and the boundary 0D into dD(y). The function
v € HE(D(y)) is the unique solution of the variational problem:

/V’L)'Vw: / fw, w e Hi(D(y)). (6.31)
D(y) D(y)

The function v = v o @ is defined on D, and we have
Vu(z) = (Do (@) Vo(®(x)), (6.32)

where, for = (x1,22) € D,

Dg(x) = , (6.33)
$2¢I($17 y) d)(:clv y)
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where the derivative in ¢’ is meant with respect to the variable z;. Since ® is Lipschitz continuous on D, it
follows that u € X := H}(D). Pulling back the variational formula ([6.31) to the reference domain D using
the bijective map ®, one obtains that u is the unique solution to the variational problem

/((D;l)fvu) : ((D;l)wa) Jp = /(fo B wly, wev, (6.34)
D D

where Jg is the Jacobian of the transformation ® which is given by Jg(z) = ¢(z1,y) for any z € D. We
introduce the maps A and ¢ defined on D x U by

é(x1,y) —x2¢ (x1,y)

A(z,y) = ¢(21,y)(Dg ) (Dg)' = I (6.35)
—r2¢'(21,y) -1+($£(¢;1(11;))y))
and
9(@.) == d(w1,y)(f 0 ©)(x) = (x1,9)f (w1, x26(a1.9) (6.36)
and the sesquilinear and antilinear forms B(y) and F(y) defined on X by
B(y)(wr,ws) = /(A(x,y)le (:v)) - Vws (z)dx (6.37)
D

and
F(y)(w) := /g(x,y)w(:z:)d:z:. (6.38)
D
To be consistent with our previous notations, we use the notations B(ws,ws,y) instead of B(y)(w1,ws) and
F(w,y) instead of F(y)(w). From (@34]), we deduce that u(y) € X is the unique solution to the variational
problem
B(u(y),w,y) = F(w,y), weX. (6.39)

This is a linear elliptic PDE with parametric matricial diffusion coefficients and parametric source terms.
Our next goal is to discuss under which circumstances the assumptions of Theorem 2.3] are satisfied for this
problem, with X =Y = H{(D). We introduce the sequence b := (b;);>1, with

bj = il Lo (o.1) + %5l 2= p0.17) (6.40)
and assume that b € ¢?(N) for some p < 1. We propose to use this sequence for the verification of the
assumptions of Theorem 2.3
6.3.2  Analyticity of the map F

We first study the antilinear forms w — F(w,y). The assumption that f € L?(D) ensures a uniform bound
of the form
|F(w,y)| < Cllwlly, weY,yel (6.41)

where
C:=Cp sup lgW)llr2py < CPRI|fll 125 (6.42)
ye

with Cp the Poincaré constant for D. More assumptions on f are needed in order to define an holomorphic
extension of F' in a neighbourhood of U. One sufficient assumption is that the map

w2 = f( 32), (6.43)
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from [0, R] to L?([0,1]) is analytic on [0, R]. Note that this assumption imposes smooth dependence of f
on the second variable. It holds of course if f is analytic in both variables, for example if f is a constant.
Since [0, R] is compact, there exists £1 > 0 such that the previous map has an holomorphic and uniformly
bounded extension on the domain

C., = {g €C: dist(¢[0,R]) < 51}. (6.44)

Let now p := (p;);>1 a sequence of numbers strictly greater than 1 satisfying

o0

> (pj = 1)b; < e (6.45)

Jj=1

We consider the domain O, = ®;>10,, where the definition of the open complex domains O; is given in
(GI4). For z € O, and y € U such that |z; — y;| < p; — 1 for any j > 1, one has for any ¢ € [0, 1]

9(t,2) = 6(t )| = | D (25 = )i (0] < Dy = by < ex. (6.46)

i>1 i>1

Since by ([6.21), ¢(t,y) € [0, R], then one has ¢(t, z) € Ce,. It follows that the map y — ¢(y) defined from U
into L?(D) admits an holomorphic extension z — g(z) on the domain O,, defined by

g(I,Z) = ¢(x1az)f(xlax2¢(xlaz)>' (647)

Consequently, the map y — F(y) from U to Y* admits a uniformly bounded holomorphic extension on the
domain O, defined by

F(z)(w) :== /g(x,z)@dm. (6.48)

6.3.3 Analyticity of the map B

The map y — A(y) defined by (635)) is a rational function of the components y; of y € U taking values in
the space of 2 x 2 symmetric matrices. Let 0 < ¢ < £ where r is the lower bound in (627) and where
p = (pj)j>1 is a sequence of numbers strictly greater than 1 satisfying

oo

> (i — b <. (6.49)

Jj=1

For z € O, and y € U such that |z; —y;| < p; —1 for every j > 1, one has by (€46) that |¢(t, z) — o(t,y)| < e
for any ¢ € [0, 1], therefore

3‘%((;5(15, z)) >oty)—e>r—e>L, telo1]. (6.50)

l\DIﬁ

In addition, we have for all x € D,

L <o, >|—\ e+ 3 — s (en)| < Rt e (6.51)
j>1
and
16 (@, >|—\ (1) + 3 (e — wo(en)| <5+, (6.52)

Jjz1
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It follows that the map y — A(y) admits a uniformly bounded holomorphic extension z — A(z) on O,
defined by
P(x1,2)  —m2¢/(71,2)
Az, z) = , xeD. (6.53)

’ 2
—x2¢’ (21, 2) 71+($£&(i1)’z))

As a consequence, the map y — B(y) from U to B(X x X), the space of continuous sesquilinear forms over
X, admits a uniformly bounded holomorphic extension on O,, defined by

B(wy,ws, z) = /(A(I,Z)le) Vws, wi,wy € X. (6.54)
D
Note that the uniform bound is independent of the choice of p that satisfies (6:49).

Concerning the uniform inf-sup condition, we establish the stronger property that the sesquilinear forms
B(z) are uniformly coercive on the domains O,, up to restricting the range of € to a smaller interval than
10,7/2].

We introduce the notation y := R(z) and s := $(z). Using ([G50), (651) and ([652), we have for any
t € [0,1] and any z € O, that

oty) = R6(,2) 2 5 and [o(ty)| < [o(2)| SR+ 5 and [¢/(ty)] <|¢/(62) <5+5.  (6.55)

The symmetric real matrices A(z,y) have determinants equal to 1 and, from the above inequalities, their
traces are positive and bounded by

— Ryl 2 T2
o ._R+2+T(1+(6+2)). (6.56)

Therefore these matrices are positive definite with coercivity constant 7 := 1/C;. This implies in particular
that
|B(w,w,y)| > 7w|%, weX,y=R(z),z€0,. (6.57)

To prove the uniform coercivity of the bilinear forms B(z) on O,, it is therefore sufficient to prove that the
parametric sesquilinear forms B(z) — B(y) have norms strictly smaller than 7/2, uniformly on O,. To verify
this, we note that the three entries in the symmetric matrices (A(x, z) — A(x,y)) are ¢(x1,s), —x2¢ (21, 5)

and
L (@29 (21,2))* 14 (224 (21,9))
S 2) = d(z1,2) ¢(z1,y) ' (6:58)

Since O, is contained in the tensorized strip ®;>1{|(z;)| < p; — 1}, the condition ([6.49) readily implies

that the two first entries are bounded by . Concerning the third entry, we have

o / 2 1 1 2(E3¢I($17y)¢/($178) _¢I(xl7s)2
(o) = (14 6ot 000)) (G0~ sm) S 2) (65
Therefore, combining the previous inequalities, we obtain
r £ 2(R+ %)e +¢?
E@2) < (14 6+ 2)?) ot e (6.60)

We conclude that the norms of the matrices (A(t, z) — A(t,y)) are uniformly bounded by Cse for some
constant Cy depending on R, r and é. Up to choosing £ small enough, we have Cye < g, in which case, we
have for any w € V

|B(w,w, z) — B(w,w,y)| < /’((A(x,z) —A(:v,y))Vw) W} < g/|vw|2, (6.61)
D D
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Therefore, with this value of r > 0, for any z € O, and for any w € X holds

7’2.'
|B(w, w, z)| > gllwl\gg : (6.62)

This uniform coercivity implies both inf-sup conditions [221) with X =Y = H}(D). To complete the
verification of the assumptions of Theorem 23] we only need to possibly reduce the value of € so that e < ey

where £; was used in the proof of the analyticity of the antilinear form F(z). o
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