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ABSTRACT

The novel framework of parabolic molecules provides for the first time a unifying framework for (sparse)
approximation properties of directional representation systems by, in particular, including curvelets and
shearlets. However, the considered common bracket is parabolic scaling, which excludes systems such
as ridgelets and wavelets. In this paper, we therefore provide a generalization of this framework, which
we coin α-molecules, by introducing an additional parameter α, which specifies the extent of anisotropy
in the scaling. We show that, for instance, both ridgelets and wavelets are in fact α-molecules. As an
application of the concept, we then analyze the sparse approximation behavior of α-molecules. Utilizing
the idea of sparsity equivalence, it is possible to identify large classes of α-molecules providing the same
sparse approximation behavior.

Keywords: Ridgelets, Wavelets, Curvelets, Nonlinear Approximation, Anisotropic Scaling, Shearlets,
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1. INTRODUCTION

In recent years, starting from the classical system of wavelets, various novel representation systems
have been introduced to efficiently represent multivariate data. The considered model situation are
functions with singularities along lower dimensional embedded manifolds such as edges or rays in imaging
applications, with the goal to provide optimally sparse approximations of these objects. Some of the most
well-known nowadays termed directional representation systems are ridgelets, curvelets, and shearlets.
With the introduction of such a variety of systems the appeal has grown to extract the underlying
principles of these new constructions and build an abstract common framework, which can unite many of
these systems under one roof. The framework should be general enough to include as many constructions
as possible, while on the other hand also specific enough to still capture their main features and properties.
Such a framework would help to gain deeper insights into the properties of such systems. Moreover, it
bears an obvious economical advantage. Up to now the properties of each new system, e.g. approximation
rates, have been proven more or less from scratch, although the proofs often resemble one another in many
ways. From the higher level viewpoint provided by such a framework, it becomes possible to give proofs,
which build upon abstract properties and are therefore independent of the specific constructions. Thus,
results can be established for many systems simultaneously.

The introduction of parabolic molecules in 2011 by two of the authors [1] was a first step in this
direction. A system of parabolic molecules can be regarded as being generated from a set of functions
via parabolic dilations, rotations and translations. Each element in a system of parabolic molecules is
therefore naturally associated with a certain scale, orientation and spatial location. The central conceptual
idea is now to allow the generators to vary, as long as they obey a prescribed time-frequency localization.
At the heart of this is the fundamental observation that it is foremost the time-frequency localizations
of the functions in a system, which determine its properties and performance. This concept of variable
generators, where in the extreme case every element is allowed to have its own individual generator, is a
key feature of the framework and gives it a great amount of flexibility. Additional flexibility is achieved by
parametrizations to allow generic indexing of the elements. Another fruitful idea is the relaxation of the
rigid vanishing moment conditions imposed on the generators of most classical constructions by requiring
the moments to only vanish asymptotically at high scales without changing the asymptotic behavior of
the approximation.
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It was shown in [1] that the concept of parabolic molecules can unify shear-based and rotation-based
constructions under one roof. In particular, it enables to treat the classical shearlets and curvelets
simultaneously, although these specific constructions are based on different construction principles: For
curvelets the scaling is done by a dilation with respect to polar coordinates and the orientation is enforced
by rotations. Shearlets on the other hand are based on affine scaling of a single generator and the
directionality is generated by the action of shear matrices. As an application, it was proven that these
systems feature a similar approximation behavior.

However, in the parabolic molecule framework the degree of anisotropic scaling is confined to parabolic
scaling, excluding, for instance, ridgelets, wavelets as well as newer hybrid constructions. The aim of
this paper is therefore to further extend the framework by allowing more general ‘α-scaling’, where the
parameter α ∈ [0, 1] specifies the degree of anisotropy in the scaling. This conceptional idea ensures that
the aforementioned systems can be included.

After establishing the basic concept in Section 2, accompanied by some examples, we prove as one
main result of this paper that the cross-Gramian of two systems of α-molecules exhibits a strong off-
diagonal decay. This property will become essential in Section 3, where the approximation behavior of
α-molecules is studied. In fact, we can essentially prove that any two systems of α-molecules, which are
consistent and have sufficiently high order, exhibit the same approximation behavior. This, in particular,
provides a systematic way to prove results on sparse approximation of cartoon images. For further details
such as for the proofs of the presented results, we refer the reader to [2].

2. α-MOLECULES

It this section we introduce the concept of α-molecules, give some examples and finally show the cru-
cial property that under certain conditions the cross-Gramian of two systems of α-molecules is almost
orthogonal. Not surprisingly, the exposition follows the same lines as [1] for parabolic molecules.

Throughout the paper the notation a . b shall indicate that the entities a, b, possibly depending on
some context dependent parameters, satisfy a ≤ C · b for a positive constant C > 0, which is independent
of the parameters. If both a . b and b . a we denote this by a ≍ b. For x ∈ R we use 〈x〉 to abbreviate

(1 + x2)
1

2 .

2.1 Definition of α-Molecules

We start by defining the parameter space

P := R+ × T× R
2,

where R+ = (0,∞) and T = [−π
2 ,

π
2 ] denotes the torus, where the endpoints are identified. A point

p = (s, θ, x) ∈ P describes a scale s ∈ R+, an orientation θ ∈ P, and a location x ∈ R2.

α-molecules are defined as systems of functions (mλ)λ∈Λ, where each mλ ∈ L2(R
2) has to satisfy some

additional properties. In particular, each function mλ will be associated with a unique point in P, which
is done via a parametrization as defined below.

Definition 2.1. A parametrization consists of a pair (Λ,ΦΛ) where Λ is an index set and ΦΛ is a
mapping

ΦΛ :

{
Λ → P,

λ ∈ Λ 7→ (sλ, θλ, xλ) .

which associates with each λ ∈ Λ a scale sλ, a direction θλ and a location xλ.

Let Rθ :=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
denote the rotation matrix by an angle θ ∈ R and Da := diag(a, aα)

the anisotropic dilation matrix associated with a > 0 and α ∈ [0, 1]. Now we have collected all necessary
ingredients for defining α-molecules.

Definition 2.2. Let (Λ,ΦΛ) be a parametrization. A family (mλ)λ∈Λ is called a family of α-molecules
with respect to the parametrization (Λ,ΦΛ) of order (R,M,N1, N2), if it can be written as

mλ(x) = s
(1+α)/2
λ a(λ) (DsλRθλ (x− xλ))

such that ∣∣∣∂βâ(λ)(ξ)
∣∣∣ . min

(
1, s−1

λ + |ξ1|+ s
−(1−α)
λ |ξ2|

)M

〈|ξ|〉−N1 〈ξ2〉−N2



for all |β| ≤ R. The implicit constants are uniform over λ ∈ Λ.

Remark 2.3. We comment on a minor notational difference between the present work and [1]. In [1]
the parameter sλ corresponds to the logarithm of the scale, i.e. the scale sλ in the present paper should
be understood as 2sλ from [1].

According to the definition above an α-molecule essentially has frequency support in a pair of opposite
wedges associated to a certain orientation, and essential spatial support in a rectangle, whose side lengths
depend on the scale.

As in [1] our definition poses conditions on the Fourier transform of mλ which can however be inter-
preted also in terms of spatial localization properties: The number R describes the spatial localization,M
the number of directional (almost) vanishing moments and N1, N2 describe the smoothness of an element
mλ. We refer to Figure 1 for an illustration of the approximate frequency support of an α-molecule in
the case α = 1

2 .

Figure 1. Left: The weight function min
(

1, s−1

λ + |ξ1|+ s
−1/2
λ |ξ2|

)M

〈|ξ|〉−N1 〈ξ2〉
−N2 for sλ = 8, M = 3, N1 =

N2 = 2. Right: Approximate frequency support of a corresponding 1

2
-molecule m̂λ with θλ = π/4.

We proceed to specify two important subclasses of α-molecules. The classification is performed via
the choice of certain parametrizations.

2.1.1 α-Curvelet Molecules

In [3] the authors introduced the notion of curvelet molecules, a notion closely related to curvelets (see
Section 2.2.3). We generalize their definition and specify the class of curvelet parametrizations.

Definition 2.4. Let α ∈ [0, 1] and τ > 0, g > 1 be some fixed parameters. Further, let (ωj)j∈N0
be a

sequence of positive real numbers with ωj ≍ g−j(1−α), i.e. there are constants C, c > 0 independent of
j ∈ N0 such that cg−j(1−α) ≤ ωj ≤ Cg−j(1−α). An α-curvelet parametrization is given by an index set
of the form

Λc :=
{
(j, ℓ, k) : j ∈ N0, ℓ ∈ Z with |ℓ| ≤ Lj for some Lj ∈ N0 ∪ {∞}, k ∈ Z

2
}
,

and a mapping Φc, which assigns to each index λ = (j, l, k) a point (sλ, θλ, xλ) in the parameter space P

via sλ := gj, θλ := ℓ · ωj and xλ := τ ·R−θλD
−1
sλ
k.

The parameters g > 1 and τ > 0 are sampling constants, which determine the fineness of the sampling
grid, g for the scale parameters and τ for the space parameters. The numbers (ωj)j∈N0

prescribe the step
size of the angular sampling at each scale j ∈ N0.

Using curvelet parametrizations we can give a concise definition of α-curvelet molecules.

Definition 2.5. Let α ∈ [0, 1]. A family of α-curvelet molecules is a family of α-molecules with respect
to an α-curvelet parametrization.



2.1.2 α-Shearlet Molecules

The concept of shearlet molecules first appeared in [4] and was later generalized in [1]. We extend the
concept even further and introduce systems of α-shearlet molecules, which resemble cone-adapted shearlet
systems (see Section 2.2.4).

Let α ∈ [0, 1] and fix constants g > 1 and τ > 0. Further, let (ηj)j∈N0
be a sequence of positive real

numbers which obey ηj ≍ g−j(1−α) for j ∈ N0. Consider the discrete index set

Λs := Λs
0 ∪

{
(ε, j, ℓ, k) : ε ∈ {0, 1}, j ∈ N, ℓ ∈ Z with |ℓ| ≤ Lj and Lj . gj(1−α), k ∈ Z

2
}
, (1)

where Λs
0 :=

{
(0, 0, 0, k) : k ∈ Z2

}
. We define the shearlet system

Σ :=
{
σλ : λ ∈ Λs

}
, (2)

with
σ(ε,j,ℓ,k)(·) := g(1+α)j/2ψε

j,ℓ,k

(
Dε

gjSε
ℓ,j · −τk

)
,

where D0
a := Da, D

1
a := diag(aα, a), S0

ℓ,j :=

(
1 ℓηj
0 1

)
, S1

ℓ,j :=
(
S0
ℓ,j

)T

, and ψε
j,ℓ,k ∈ L2(R2).

Under certain assumptions on the generators ψε
j,ℓ,k the system Σ constitutes a system of α-shearlet

molecules.

Definition 2.6. We call Σ a system of α-shearlet molecules of order (R,M,N1, N2) if the generating
functions ψ0

j,ℓ,k and ψ1
j,ℓ,k satisfy for every β ∈ N2

0 with |β| ≤ R the estimate

|∂βψ̂ε
j,ℓ,k(ξ1, ξ2)| . min

(
1, g−j + |ξ1+ε|+ g−j(1−α)|ξ2−ε|

)M

〈|ξ|〉−N1〈ξ2−ε〉−N2

with an implicit constant independent of the indices (ε, j, ℓ, k) ∈ Λs.

Next we show the crucial fact that α-shearlet molecules are instances of α-molecules associated with
a specific shearlet parametrization Φs.

Definition 2.7. Let Λs be the α-shearlet index set defined in (1). For each shearlet index (ε, j, ℓ, k) =
λ ∈ Λs, the associated α-shearlet parametrization (Λs,Φs) is given by

Φs(λ) = (sλ, θλ, xλ) :=
(
gj, επ/2 + arctan(−ℓηj),

(
Sε
ℓ,j

)−1
Dε

g−jk
)
.

Although their construction is based on shears instead of rotations, we can give a characterization of α-
shearlet molecules as α-molecules in the same fashion as for α-curvelet molecules, compare Definition 2.5.

Proposition 2.8 ([2]). Let Λs be the α-shearlet index set defined in (1). A family Σ = (σλ)λ∈Λs

defined as in (2) constitutes a system of α-shearlet molecules of order (R,M,N1, N2) if and only if Σ
constitutes a system of α-molecules of the same order with respect to the associated α-shearlet parametriza-
tion.

2.2 Examples of α-Molecules

Many representation systems which exist in the literature fall into the framework of α-molecules.

2.2.1 Wavelets

As a first example, we prove that the classical wavelet systems in L2(R2), obtained by the following tensor
product construction, see e.g. [5] for details, are instances of α-molecules.

Starting with a given multi-resolution analysis of L2(R) with scaling function φ0 ∈ L2(R) and wavelet
φ1 ∈ L2(R), the functions ψe ∈ L2(R2) are defined for every index e = (e1, e2) ∈ E, where E = {0, 1}2,
as the tensor products

ψe = φe1 ⊗ φe2 .

These functions serve as the generators for the wavelet system defined below.

Definition 2.9. Let φ0, φ1 ∈ L2(R) and ψe ∈ L2(R2), e ∈ E, be defined as above. Further, let g > 1,
τ > 0 be fixed sampling parameters. We define the wavelet system

W
(
φ0, φ1; g, τ

)
=

{
ψ(0,0)(· − τk) : k ∈ Z

2
}
∪
{
gjψe(gj · −τk) : e ∈ E\{(0, 0)}, j ∈ N0, k ∈ Z

2
}
.



The associated index set is given by

Λw =
{
((0, 0), 0, k) : k ∈ Z

2
}
∪
{
(e, j, k) : e ∈ E\{(0, 0)}, j ∈ N0, k ∈ Z

2
}
.

For simplicity, we restrict our further investigations to bandlimited systems with infinitely many vanishing
moments. For this, we assume that φ̂0, φ̂1 ∈ CR(R) for some R ∈ N0 ∪ {∞}, and that there are 0 < a
and 0 < b < c such that

supp φ̂0 ⊂ [−a, a] and supp φ̂1 ⊂ [−c, c]\[−b, b].

These conditions are fulfilled e.g. if φ0, φ1 ∈ L2(R) are the generators of a Lemarie-Meyer wavelet system.
We have the following result.

Proposition 2.10 ([2]). Let g > 1, τ > 0 be fixed, and assume that the functions φ0, φ1 satisfy the
assumptions above. Then the wavelet system W (φ0, φ1; g, τ) constitutes a system of 1-molecules of order
(R,∞,∞,∞) with respect to the parametrization

Λw → P, (e, j, k) 7→ (gj , 0, τg−jk).

Finally, we remark that also more general wavelet systems, among them systems of compactly supported
wavelets, fall into the framework of α-molecules.

2.2.2 Ridgelets

The observation that wavelets have a suboptimal approximation rate for images with anisotropic features
led to the quest for new better suited representation systems. One approach, even predating curvelets,
is the idea of ridgelets, which are designed to optimally approximate data with straight line singularities.
Since up to now there does not exist a uniform definition in the literature, we shortly review their historical
evolution and try to extract the main conceptual ideas. This will then motivate the definition of ridgelet
molecules as suggested in [6].

The earliest version of the ridgelet transform was introduced by Candès [7] in 1998. It uses a univariate
wavelet ψ to map a function f ∈ L2(Rd) to its transform coefficients

〈f,
√
aψ(as · x− t)〉, s ∈ S

d−1, t ∈ R, a ∈ R+,

where · denotes the Euclidean inner product in Rd. The function x 7→ √
aψ(as ·x− t)〉 is a ridge function

(hence the name ridgelet) which only varies in the direction s. Unfortunately, since this function is not in
L2(Rd), the definition, as it stands, does not make sense for every f ∈ L2(Rd). Similar to the continuous
Fourier transform, however, the continuous version of this transform can be well-defined.

In order to avoid the problems associated with the lack of integrability of ridge functions, Donoho [8]
relaxed the definition of a ridgelet a little, allowing them a slow decay in the other directions. In the
spirit of this more general approach, as pointed out by Grohs [6], one might define a ridgelet system as
a system of functions of the form

√
aρ(DaRsx− t) (3)

utilizing some generator ρ ∈ L2(Rd), which needs to be oscillatory in one coordinate direction. Note that
here Da = diag(a, 1, . . . , 1) ∈ Rd×d and Rs denotes rotation by s ∈ Sd−1.

A yet more general viewpoint, also adopted in [6], is to characterize ridgelets by their localization
properties in space and frequency, without enforcing the rigid condition of being exactly of the form (3).
This leads to the notion of ridgelet molecules, which in the language of α-molecules can easily be defined
for d = 2.

Definition 2.11. A system of 0-curvelet molecules is called a system of ridgelet molecules.

We see that ridgelet molecules readily fall into the more general concept of α-curvelet molecules, which
we already have at hand. They are just the special case for α = 0.

In [6] bandlimited tight ridgelet frames were constructed. In the following section we will adapt this
construction process to obtain bandlimited tight α-curvelet frames for every α ∈ [0, 1]. In particular, we
will obtain a tight frame of ridgelet molecules. The following statement is included in Proposition 2.13.

Proposition 2.12 ([2]). The tight ridgelet frame C0(W
(0),W (1), V ) constructed in (4) is a system

of ridgelet molecules of order (∞,∞,∞,∞) with parameters g = 2 and τ = 1.



2.2.3 Curvelets and Hybrid Curvelets

In 2002 Candès and Donoho [9] introduced the second generation of curvelets, which we nowadays simply
refer to as curvelets. Their construction involves a parabolic scaling law, which as pointed out in the orig-
inal paper has many unique properties. Parabolic scaling can be viewed as a natural compromise between
isotropic scaling, as utilized for wavelets, and 0-scaling, i.e. scaling in only one coordinate direction, as
utilized for ridgelets.

Allowing more general α-scaling for α ∈ [0, 1] yields, what we will call, α-curvelets or hybrid curvelets.
Thus, we obtain a whole scale of representation systems, which interpolates between wavelets for α = 1
on the one end and ridgelets for α = 0 on the other end. In this sense, curvelets can be viewed as lying
in between ridgelets and wavelets.

Following the construction principle of the tight ridgelet frames in [6] we now construct bandlimited
tight frames of α-curvelets for every α ∈ [0, 1]. This construction can also be seen as a variation of
the classical second generation curvelet frame from [9]. As in [6, 9] we separate the radial and angular
components to simplify the construction.

Let us begin with the construction of the radial functions W (j) for j ∈ N0. We first define the
C∞-functions W̃ (0) : R+ → [0, 1] and W̃ : R+ → [0, 1] with the following properties:

supp W̃ (0) ⊂ [0, 2), W̃ (0)(r) = 1 for all r ∈ [0, 32 ],

supp W̃ ⊂ (12 , 2), W̃ (r) = 1 for all r ∈ [ 34 ,
3
2 ].

Then we put for j ∈ N and r ∈ R+

W̃ (j)(r) := W̃ (2−jr).

In a final step we rescale for every j ∈ N0 (to obtain an integer grid later)

W (j)(r) := W̃ (j)(8πr) , r ∈ R+.

Next, we define the angular functions V (j,ℓ) : S1 → [0, 1], where S1 ⊂ R2 denotes the unit circle, j ∈ N

and the index ℓ runs through 0, . . . , Lj − 1 with

Lj = 2⌊j(1−α)⌋, j ∈ N.

We start with a C∞-function V : R → [0, 1], living on the whole of R, satisfying

supp V ⊂ [− 3
4π,

3
4π] and V (t) = 1 for all t ∈ [−π

2 ,
π
2 ].

For every j ∈ N we let Ṽ (j,0) : S1 → [0, 1] be the restriction of the scaled version V (2⌊j(1−α)⌋·) of the
function V to the interval [−π, π]. Since [−π, π] can be identified via ϕ : t 7→ eit with S1, this yields a

function Ṽ (j,0) on S1. Notice, that in our case this is a C∞-function.

In order to obtain real-valued curvelets, we put in a symmetrization step and define

V (j,0)(ξ) := Ṽ (j,0)(ξ) + Ṽ (j,0)(−ξ) for ξ ∈ S
1.

We define the angles ωj = π2−⌊j(1−α)⌋ for j ∈ N and let for ℓ = 0, 1, . . . , Lj − 1

Rj,ℓ =

(
cos(ℓωj) − sin(ℓωj)
sin(ℓωj) cos(ℓωj)

)

be the rotation matrix by the angle ℓωj . By rotating V (j,0) we finally get V (j,ℓ) : S1 → [0, 1],

V (j,ℓ)(ξ) := V (j,0)(Rj,ℓξ) for ξ ∈ S
1.

In order to secure the tightness of the frame we need the function

Φ(ξ) :=W (0)(|ξ|)2 +
∑

j,ℓ

W (j)(|ξ|)2V (j,ℓ)
( ξ

|ξ|
)2

.

Now we can define the functions ψ0 and ψj,ℓ on the Fourier domain by

ψ̂0(ξ) :=
W (0)(|ξ|))√

Φ(ξ)
and ψ̂j,ℓ(ξ) =

W (j)(|ξ|)V (j,ℓ)
(

ξ
|ξ|

)

√
Φ(ξ)

.



It is obvious that ψ̂0, ψ̂j,ℓ ∈ C∞(R2). Moreover, these functions are compactly supported.

The final frame is obtained by taking translates in the time domain of the above functions. For
y ∈ R2 let Ty denote the translation operator, given by Tyf(x) = f(x − y) for x ∈ R2. Further, let
Ds = diag(s, sα) for s ∈ R+ be the α-scaling operator. We define the collection of functions

ψ0,k := Tkψ0 and ψj,ℓ,k := 2−j(1+α)/2 · Txj,ℓ,k
ψj,ℓ,

where j ∈ N, ℓ = 0, 1, . . . , Lj − 1, k ∈ Z2 and xj,ℓ,k = R−1
j,ℓD

−1
2j k. We will use the following notation for

this system,

Cα(W
(0),W (1), V ) =

{
ψ0,k : k ∈ Z

2
}
∪
{
ψj,ℓ,k : j ∈ N, k ∈ Z

2, ℓ ∈ {0, 1, . . . , Lj − 1}
}
. (4)

Proposition 2.13 ([2]). Let α ∈ [0, 1]. The α-curvelet system Cα(W
(0),W (1), V ) constructed

above constitutes a tight frame for L2(R2). Moreover, it is a system of α-curvelet molecules of order
(∞,∞,∞,∞) with parameters g = 2 and τ = 1.

2.2.4 Shearlets and Hybrid Shearlets

Shearlets were introduced in 2005 by Kutyniok, Labate, Lim and Weiss [10]. A shearlet system is
generated by a function by changing its scale, spatial positions and orientations. Like curvelets it uses
parabolic scaling for the scale change. The main difference to curvelets is that in order to change their
orientation shears are employed instead of rotations. This makes shearlets more adapted to a digital grid,
which is favorable in a discrete setting.

To avoid large shears and still cover all orientations, usually two generators with orthogonal orien-
tations are used. Moreover, a distinct generator is utilized for the coarse-scale elements. Such shearlet
systems are called cone-adapted, since one can picture the frequency plane as divided into a horizontal
and a vertical cone, as well as a coarse-scale box, associated with the respective generators.

Similar to hybrid curvelets, the notion of a shearlet can be generalized to comprise α-scaling. These
hybrid shearlets or α-shearlets have been defined and examined in [11], at least for the range α ∈ [ 12 , 1).

Before we recall their definition, we remark that the anisotropy of the scaling is parametrized by a
different parameter in [11], for which we will use the notation β to distinguish it from the α utilized here.
The parameter β ranges in (1,∞), which corresponds to α ∈ (0, 1) in our setup, since they are related by
α = β−1. For j ∈ N0 the scaling matrices A2j = diag(2jβ/2, 2j/2) and Ã2j = diag(2j/2, 2jβ/2) are defined,
and for s ∈ R the shear matrix

Ss =

(
1 s
0 1

)
.

Following [11] the cone-adapted discrete shearlet system is then defined as follows.

Definition 2.14. For parameters c ∈ R+ and β ∈ (1,∞) the cone-adapted discrete shearlet system
SH

(
φ, ψ, ψ̃; c, β

)
generated by φ, ψ, ψ̃ ∈ L2(R2) is defined by

SH
(
φ, ψ, ψ̃; c, β

)
= Φ(φ; c, β) ∪Ψ(ψ; c, β) ∪ Ψ̃(ψ̃; c, β),

where

Φ(φ; c, β) = {φk = φ(· − k) : k ∈ cZ2},
Ψ(ψ; c, β) =

{
ψj,ℓ,k = 2j(β+1)/4ψ(SℓA2j · −k) : j ≥ 0, |ℓ| ≤ ⌈2j(β−1)/2⌉, k ∈ cZ2

}
,

Ψ̃(ψ̃; c, β) =
{
ψ̃j,ℓ,k = 2j(β+1)/4ψ̃(ST

ℓ Ã2j · −k) : j ≥ 0, |ℓ| ≤ ⌈2j(β−1)/2⌉, k ∈ cZ2
}
.

In the following we want to analyze compactly supported systems. For simplicity we assume the separa-
bility of the generator ψ ∈ L2(R2), i.e. ψ(x1, x2) = ψ1(x1)ψ2(x2), and let ψ̃ be the rotation of ψ by π/2.
We make the following assumptions,

ψ1 ∈ CN1

0 (R) and ψ2 ∈ CN1+N2

0 (R).

Moreover, for ψ1 we assume M ∈ N0 vanishing moments.

Proposition 2.15 ([2]). If the generators φ, ψ, ψ̃ ∈ L2(R2) satisfy the assumptions above, the
cone-adapted shearlet system SH(φ, ψ, ψ̃; c, β) is a system of α-shearlet molecules for α = β−1 of order
(R,M − R,N1, N2), where R ∈ {0, . . . ,M}. The parameters of the α-shearlet parametrization are given
by τ = c, g = 2β/2, ηj = g−j(1−α) and Lj = ⌈gj(1−α)⌉.

These results show that the α-molecule concept indeed has the ability to unite many representation
systems under one roof. In the next section we will see what we gain by this.



2.3 Index Distance and Decay of the Cross-Gramian

An essential ingredient for the theory is the fact that the parameter space P can be equipped with
a natural (pseudo-)metric. In [12] Hart-Smith introduced a distance on P, which was used in [1] for
parabolic molecules, and which can be seen as a predecessor to this metric.

We should mention that this metric is not a distance in the strict sense. As we will see later, it
measures the correlation of a pair of α-molecules, associated to the corresponding points in P.

Definition 2.16. For two indices λ ∈ Λ and µ ∈M we define the index distance

ω (λ, µ) := max
(sλ
sµ
,
sµ
sλ

)
(1 + d (λ, µ)) ,

and

d (λ, µ) := s
2(1−α)
0 |θλ − θµ|2 + s2α0 |xλ − xµ|2 +

s20

1 + s
2(1−α)
0 |θλ − θµ|2

|〈eλ, xλ − xµ〉|2,

where s0 = min(sλ, sµ) and eλ = (cos(θλ),− sin(θλ))
⊤
= R−θλe1 is the co-direction.

Note, that in essence this definition provides a notion of distance on the parameter space P. In order
not to overload the notation, we did not explicitly specify the parametrizations used to transfer this
distance to the generic index sets Λ and M .

The following theorem expresses the relation between the index distance on P and the correlation of
α-molecules. It states, that a high distance of two indices can be interpreted as a low cross correlation of
the associated α-molecules. The proof is quite technical and we refer to [2] for the details.

Theorem 2.17 ([2]). Let α ∈ [0, 1] and (mλ)λ∈Λ, (pµ)µ∈M be systems of α-molecules of order
(R,M,N1, N2), such that sλ, sµ ≥ c > 0 for all λ ∈ Λ and µ ∈M . Further assume, that for some N ∈ N

it holds

R ≥ 2N, M > 3N − 3− α

2
, N1 ≥ N +

1 + α

2
, N2 ≥ 2N.

Then
|〈mλ, pµ〉| . ω ((sλ, θλ, xλ), (sµ, θµ, xµ))

−N
.

Put in yet another way, this result shows that the Gramian matrix between two systems of α-molecules of
high order satisfies a strong off-diagonal decay property and is in that sense very close to a diagonal matrix.
As we shall see in the next section this has a number of immediate consequences for the approximation
properties of α-molecules.

3. SPARSE APPROXIMATION WITH α-MOLECULES

In this section we analyze the approximation properties of α-molecules. The main result will be that
any two systems of alpha molecules, which are consistent in a yet to be defined sense and which have
sufficiently high order, exhibit the same approximation behavior.

Prior to this investigation, we briefly discuss some aspects of approximation theory. From a practical
standpoint, a function f ∈ L2(R2) is a rather intractable object. In order to handle f , one usually
represents it with respect to some representation system (mλ)λ∈Λ ⊂ L2(R2),

f =
∑

λ∈Λ

cλmλ,

since the coefficients cλ ∈ R of this expansion are much handier. In practice, since we have to account for
noise, it is also necessary to ensure the robustness of such a representation. Here the notion of a frame
comes into play, see e.g. [13].

Frames ensure stable measurement and stable reconstruction. Moreover, the coefficients can be calcu-
lated by 〈f, m̃λ〉 using a dual frame (m̃λ)λ. It is important to note, that a representation with respect to a
frame need not be unique. However, using the canonical dual frame for the computation of the coefficients
yields a special sequence, which is customarily referred to as the sequence of frame coefficients.

When trying to represent f with respect to a frame system (mλ)λ ⊆ L2(R
2), we are confronted with

yet another problem. Since in the real world it is not possible to store infinitely many coefficients, we
have to approximate f utilizing only a finite subset of this system. If the subset is restricted to contain
at most N elements, we obtain what is called an N -term approximation for f with respect to (mλ)λ.



The best N -term approximation, which is the best we can do if we only have storage capacity for N
coefficients, is denoted by fN and defined by

fN = argmin‖f −
∑

λ∈ΛN

cλmλ‖22 s.t. #ΛN ≤ N.

It is clear, that for efficient encoding it is necessary that the error ‖f−fN‖2 of best N -term approximation
decays quickly with growing N . Since the computation of the best N -term approximation is far from
being understood, usually instead the error of the N -term approximation, obtained by keeping the N
largest coefficients (〈f, m̃λ〉)λ∈Λ, is considered. This error certainly also provides a bound for the error
of best N -term approximation.

There is a close relationship between the N -term approximation rate, achieved by a frame, and the
decay rate of the corresponding frame coefficients. The decay of the frame coefficients can be measured
in terms of the ℓp-(quasi)-norms for p > 0. The following lemma shows that membership of the coefficient
sequence in an ℓp-space for small p implies good N -term approximation rates, see also [14, 15].

Lemma 3.1. Let f =
∑
cλmλ be an expansion of f ∈ L2(R2) with respect to a frame (mλ)λ∈Λ. Further,

assume that the coefficients satisfy (cλ)λ ∈ ℓ2/(2k+1) for some k > 0. Then the best N -term approximation
rate is at least of order N−k, i.e.

‖f − fN‖ . N−k.

3.1 Sparsity Equivalence and Consistency of Parametrizations

As discussed above, two frames have similar approximation properties, if the corresponding coefficient
sequences exhibit the same sparsity. The notion of sparsity equivalence from [1] is a useful tool to compare
such sparsity.

Definition 3.2. Let (mλ)λ∈Λ and (pµ)µ∈M be systems of α-molecules and let 0 < p ≤ 1. Then (mλ)λ∈Λ

and (pµ)µ∈M are called sparsity equivalent in ℓp, if

∥∥∥(〈mλ, pµ〉)λ∈Λ,µ∈M

∥∥∥
ℓp→ℓp

<∞.

Our next goal is to find conditions which ensure that two systems of α-molecules are sparsity equivalent.
Here the consistency of parametrizations comes into play.

Definition 3.3. Two parametrizations (Λ,ΦΛ) and (Γ,ΦΓ) are called k-consistent for k > 0 if

sup
λ∈Λ

∑

γ∈Γ

ω (λ, γ)
−k

<∞ and sup
γ∈Γ

∑

λ∈Λ

ω (λ, γ)
−k

<∞.

In combination with Theorem 2.17 the consistency is the essential tool to decide whether two frames of
α-molecules are sparsity equivalent.

Theorem 3.4 ([2]). Two frames (mλ)λ∈Λ and (pµ)µ∈Γ of α-molecules of order (R,M,N1, N2) with
k-consistent parametrizations for some k > 0, are sparsity equivalent in ℓp, 0 < p ≤ 1, if

R ≥ 2
k

p
, M > 3

k

p
− 3− α

2
, N1 ≥ k

p
+

1 + α

2
, and N2 ≥ 2

k

p
.

We see that, as long as the parametrizations are consistent, the sparsity equivalence can be controlled
by the order of the molecules. The proof relies on a well-known result concerning operator norms.

Lemma 3.5. Let I, J be two discrete index sets, p > 0 and r = min(1, p). Further, let A : ℓp(I) → ℓp(J)
be a linear mapping defined by its matrix representation A = (Ai,j)i∈I, j∈J . Then we have the bound

‖A‖ℓp(I)→ℓp(J) ≤ max


sup

i

∑

j

|Ai,j |r, sup
j

∑

i

|Ai,j |r



1/r

.



3.1.1 Consistency of Curvelet and Shearlet Parametrizations

It is a central result that curvelet and shearlet parametrizations are consistent.

Proposition 3.6 ([2]). Let α ∈ [0, 1] and (Λ,ΦΛ) and (Γ,ΦΓ) be either α-curvelet or α-shearlet
parametrizations. Then (Λ,ΦΛ) and (Γ,ΦΓ) are k-consistent for k > 2.

The proof relies on the following lemma.

Lemma 3.7 ([2]). Let (Λ,ΦΛ) be an α-curvelet or α-shearlet parametrization and let µ = (sµ, θµ, xµ)
be an arbitrary fixed point of the parameter space P. For N > 2 it holds

∑

λ∈Λ
sλ fixed

(1 + d(λ, µ))−N ≤ C ·max
(sλ
sµ
, 1
)2

,

where the constant C > 0 is independent of µ and sλ.

3.2 Sparse Image Approximation

A customarily employed model for image data is the class Eβ(R2) of cartoon images defined by

Eβ(R2) = {f ∈ L2(R2) : f = f0 + f1 · χB},

where β ∈ R, B ⊂ [0, 1]2 with ∂B being a closed Cβ -curve, and f0, f1 ∈ Cβ
0 ([0, 1]

2).

It was shown [11,16] that for β ∈ (1, 2] the optimally achievable decay rate of the approximation error
for the class Eβ(R2), under the natural assumption of polynomial depth search, is

‖f − fN‖22 ≍ N−β, as N → ∞.

Furthermore, in [9,11,14,17] rotation-based as well as shear-based systems were constructed, which attain
this rate up to a log-factor. The similar approximation behavior of these systems should not come as a
surprise, since these systems are instances of α-molecules with consistent parametrizations.

For convenience, we fix the construction (4) as a reference system and make the following definition.

Definition 3.8. We call a parametrization (Λ,ΦΛ) k-admissible for k > 0, if it is k-consistent with the
α-curvelet parametrization of the frame of α-molecules Cα(W

(0),W (1), V ) constructed in Section 2.2.3.

Now we can formulate our final result.

Theorem 3.9 ([2]). Let α ∈ [ 12 , 1) and β = α−1. Assume that (mλ)λ∈Λ is a frame of α-molecules of
order (R,M,N1, N2) with respect to the parametrization (Λ,ΦΛ) such that

(i) (Λ,ΦΛ) is k-admissible for every k > 2,

(ii) it holds that R ≥ 2 +
2

α
, M >

3

2
+

3

α
+
α

2
, N1 ≥ 3

2
+

1

α
+
α

2
, and N2 ≥ 2 +

2

α
.

Then the frame (mλ)λ∈Λ possesses an almost best N -term approximation rate of order N− β
2
+ε, ε > 0

arbitrary, for the cartoon image class Eβ(R2).

We remark that condition (i) holds in particular for the curvelet and shearlet parametrizations. Hence
this result allows a simple derivation of the results in [9, 11, 14, 17]. In fact, Theorem 3.9 provides a
systematic way to prove results on sparse approximation of cartoon images.
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