
Adaptive load balancing for massively
parallel multi-level Monte Carlo solvers

J. Sukys

Research Report No. 2013-21
July 2013

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

__
Funding: This work is performed under ETH interdisciplinary research grant CH1-03 10-1 and CSCS production project grant ID
S366.

Adaptive load balancing
for massively parallel

multi-level Monte Carlo solvers

Jonas Šukys

ETH Zürich, Switzerland,
jonas.sukys@sam.math.ethz.ch.

Abstract. The Multi-Level Monte Carlo (MLMC) algorithm was shown
to be a robust and fast solver for uncertainty quantification in the so-
lutions of multi-dimensional systems of stochastic conservation laws. A
novel static load balancing procedure is already developed to ensure scal-
ability of the MLMC algorithm on massively parallel hardware up to 40
000 cores. However, for random fluxes or random initial data with large
variances, the time step of the explicit time stepping scheme becomes
also random due to the random CFL stability restriction. Such sample
path dependent complexity of the underlying deterministic solver renders
the aforementioned static load balancing very inefficient. We introduce
an improved, adaptive load balancing procedure which is based on two
key ingredients: 1) pre-computation of the time step size for each realiza-
tion, 2) distribution of the obtained loads using the greedy algorithm to
workers (core groups) with non-identical speed of execution. Numerical
experiments in multi-dimensions showing strong scaling of our imple-
mentation are presented.

Keywords: uncertainty quantification, conservation laws, multi-level
Monte Carlo, FVM, load balancing, greedy algorithms, linear scaling.

Acknowledgments. This work is performed under ETH interdisciplinary
research grant CH1-03 10-1 and CSCS production project grant ID S366.

1 Introduction

A number of problems in physics and engineering are modeled in terms of systems
of conservation laws:{

Ut(x, t) + div(F(U)) = S(x,U),
U(x, 0) = U0(x),

∀(x, t) ∈ Rd × R+. (1)

Here, U : Rd → Rm denotes the vector of conserved variables, F : Rm × Rm →
Rm×d is the collection of directional flux vectors and S : Rd × Rm → Rm is the
source term. The partial differential equation is augmented with initial data U0.

2

Examples for conservation laws include the shallow water equations of
oceanography, the Euler equations of gas dynamics, the Magnetohydrodynamics
(MHD) equations of plasma physics, the wave equation and others.

As the equations are non-linear, analytic solution formulas are only available
in very special situations. Consequently, numerical schemes such as finite volume
methods [4] are required for the study of systems of conservation laws.

Existing numerical methods for approximating (1) require initial data U0,
source S and flux function F as input. However, in most practical situations,
it is not possible to measure these inputs precisely. Such uncertainty in inputs
propagates to the solution, leading to the stochastic system of conservation laws:{

U(x, t, ω)t + div(F(U, ω)) = S(x, ω),
U(x, 0, ω) = U0(x, ω),

x ∈ Rd, t > 0, ∀ω ∈ Ω. (2)

where (Ω,F ,P) is a complete probability space, the initial data U0 and the
source term S are random fields [5,6], and the flux F is a Ω-uniformly Lipschitz
random function [5]. The solution is also realized as a random field; its statistical
moments (e.g. expectation E[U] and variance V[U]) are the quantities of interest.
An estimate of the expectation can be obtained by the Monte Carlo finite volume
method (MC-FVM) [5], i.e. by computing the sample mean (ensemble average)
of M solutions Ui,n

T , each of them approximated using FVM method [4] on a
mesh T with mesh width ∆x:

EM [Un
T] :=

1
M

M∑
i=1

Ui,n
T , M ∈ N. (3)

MC-FVM estimate EM [Un
T] withM = O(∆x−s/2) was proven [6,5,7] to converge

to the E[U], where s denotes the convergence rate of the FVM solver. The error
of MC-FVM was shown to scale asymptotically as (Work)−s/(d+1+2s), making
MC-FVM method computationally not feasible when high accuracy is needed.

The multi-level Monte Carlo finite volume method (MLMC-FVM) was re-
cently proposed in [6,5]. The key idea behind MLMC-FVM is to simultaneously
draw MC samples on a hierarchy of nested grids. There are four main steps:

1. Nested meshes: Consider nested triangulations {T`}∞`=0 of the spatial do-
main with corresponding mesh widths ∆x` that satisfy ∆x` = O(2−`∆x0),
where ∆x0 - mesh width of the coarsest resolution at the lowest level ` = 0.
An example of such hierarchy with the first 3 levels is provided in Figure 1.

2. Sample: For each level of resolution ` ∈ N0, we draw M` independent iden-
tically distributed (i.i.d) samples {Ui

0,`,S
i
`,F

i
`} with i = 1, 2, . . . ,M` from

the random fields U0,S,F and approximate Ui
0,` and Si

` by cell averages.
3. Solve: For each resolution level ` and each realization {Ui

0,`,S
i
0,`,F

i
`}, the

underlying balance law (1) is solved by the finite volume method [4] with
mesh width ∆x`; denote solutions by Ui,n

T`
at the time tn and mesh level `.

3

4. Estimate solution statistics: Fix the highest level L ∈ N0. We estimate
the expectation of the solution (random field) with the following estimator:

EL[U(·, tn)] :=
L∑

`=0

EM`
[Un
T`
−Un

T`−1
], (4)

with EM`
being the MC estimator defined in (3) for the level `. Higher

statistical moments can be approximated analogously (see, e.g., [6,5]).

Level Number of samples

1

0

2

Mesh

Fig. 1. Example of the first three levels (L = 2) of the hierarchy of nested grids for the
two dimensional case. Example for the number of samples M` is provided according to
(5) for s = 1/2 with the number of samples on the finest mesh level set to ML = 2.

In order to equilibrate statistical and spatio-temporal discretization errors in
(4), the following number of samples on each mesh level ` is needed [6,7]:

M` = ML22(L−`)s, ML ∈ N. (5)

Notice that most of MC samples are computed on the coarsest mesh level ` = 0,
and only a small fixed number ML of samples is needed on the finest mesh ` = L,
see Figure 1. The error vs. work estimate for MLMC-FVM is given by [5,6],

error . (Work)−s/(d+1) log(Work). (6)

The above estimate shows that MLMC-FVM is superior to MC-FVM. In particu-
lar, at the relative error level of 1%, MLMC-FVM was shown to be approximately
two orders of magnitude faster than MC-FVM [6,7,5].

MLMC-FVM is non-intrusive as any standard FVM solver can be used in
step 3. Furthermore, MLMC-FVM is amenable to efficient parallelization, which

4

is the main topic of this paper. In Sect. 2 static load balancing is reviewed
and its limits are discussed as a motivation for a novel adaptive load balancing,
which is introduced in Sect. 4 and whose parallel scaling and efficiency analysis
is provided in Sect. 5. Finally, discussion for improvements is given in Sect. 6.

2 Scalable parallel implementation of MLMC-FVM

We use 3 levels of parallelization: across mesh levels, across MC samples and
using domain decomposition (DDM) for FVM solver, see example in Figure 2.

level = 5 level = 4 level = 3

cores

workers

sample count

domain
decomposition

distribution
of samples

1 1 1 1 2 2 2 2 8 8

?

2

32

1 & 0

64 & 128

multiple levels
per core

Fig. 2. Parallelization over mesh levels, MC samples and using domain decomposition.

In [8] all required ingredients for parallelization were introduced and ana-
lyzed: parallel robust pseudo random number generation (WELL512a RNG was
used), numerically stable parallel “online” variance computation algorithms, do-
main decomposition method within each FVM solver and load balancing, which
distributes computational work of multiple concurrent solve steps evenly among
the available cores. All of the aforementioned algorithms, except for the load bal-
ancing, are general and can be applied to any stochastic system of conservation
laws (2).

The goal of this paper is to investigate the limits of the static (compile-time)
load balancing introduced in [8] and to design a novel adaptive (run-time) load
balancing which would be efficient for a much broader range of stochastic systems
of conservation laws (2), for instance, where the flux function F is random.

In what follows, we assume a homogeneous computing environment meaning
that all cores are assumed to have identical CPUs and RAM per node, and equal
bandwidth and latency to all other cores.

3 Static load balancing

Static load balancing as presented in [8] distributes samples among all cores
at compile-time using the a-priori estimates on the computational work of any

5

sample on a given mesh resolution T and time horizon T . Such load balancing
appeared to be very efficient for stochastic systems of conservation laws (2) with
deterministic fluxes F and stochastic initial data U0 with small variance V[U0],
i.e. V[U0] is much smaller than the mean value E[U0] of the field.

In particular, we have verified strong scaling (fixed discretization and sam-
pling parameters while increasing #cores) of our implementation of static load
balancing in the parallel (using MPI [9]) code ALSVID-UQ [1] up to 40 000 cores
at high efficiency, see Figure 3. Labels “MLMC” and “MLMC2” indicate s = 1/2
and s = 1 in (5), respectively. The runtime of all simulations is measured by the
wall clock time, accessible by MPI Wtime() routine [9]. We define efficiency by

efficiency := 1− (total clock time of all MPI routines and idling)
(#cores)× (wall clock time)

. (7)

Simulations were executed on Cray XE6 (see [10]) with 1496 AMD Interlagos
2 x 16-core 64-bit CPUs (2.1 GHz), 32 GB DDR3 memory per node, 10.4 GB/s
Gemini 3D torus interconnect with a theoretical peak performance of 402 TFlops.

101 102 103 104 105

cores
100

101

102

103

104

w
al

lc
lo

ck
 ru

nt
im

e 1/1

Strong scaling

MLMC
MLMC2

101 102 103 104 105

cores
0.0

0.2

0.4

0.6

0.8

1.0

ef
fic

ie
nc

y

MPI efficiency

MLMC
MLMC2

Fig. 3. Strong scaling of static load balancing up to 40 000 cores.

3.1 Estimates for the computational work of the FVM solver

Static load balancing as presented in [8] is explicitly based on two (not very
strictly defined) properties of the computational work WorkT required to solve
(1) for a given realization of random input data on a given mesh T :

1. accurate relative (w.r.t. another mesh T ′) estimates for WorkT are available
2. for a fixed mesh T , estimate WorkT is almost the same for all realizations

Accurate estimates were derived in [8]. For a given mesh T with mesh width ∆x
and total number of cells N = #T , the required computational work for one
time step (numerical flux approximations) of one sample was computed to be

Workstep
T = Workstep(∆x) = O(N) = K∆x−d, (8)

6

where constant K depends on FVM that is used, but does not depend on mesh
width ∆x. In most explicit FVM schemes [4], lower order terms O(∆x−d+1) in
(8) are negligible, even on a very coarse mesh. To ensure the stability of the FVM
scheme, a CFL condition [4] is imposed on the time step size ∆t := tn+1 − tn,

∆t =
CCFL

λ
∆x, 0 < CCFL ≤ 1, λ > 0, (9)

where the so-called CFL number CCFL does not depend on ∆x and λ is the
absolute value of the maximal wave speed [4]. Hence, the computational work
Workdet

T for one complete deterministic solve using the FVM method on the
triangulation T with mesh width ∆x is given by multiplying the work for one
step (8) by the total number of time steps ∆t−1 for the time horizon T > 0,

Workdet
T = Workstep

T · T
∆t

= K∆x−dλ
T

CCFL∆x
=

KT

CCFL
λ∆x−(d+1). (10)

3.2 Limits of the static load balancing

For deterministic fluxes F and stochastic initial data U0 with small variance
V[U0], the maximum wave speed λ does not vary significantly among all MC
samples and hence the second property in subsection 3.1 holds. However, if, for
instance, the flux F is random, the maximum wave speed λ can strongly depend
on the particular realization of F. As an example, we consider wave equation in
the random spatially inhomogeneous d-dimensional domain D ⊂ Rd, which can
be written in a form of a linear system of d+ 1 first order conservation laws [7],{

pt(x, t, ω)−∇ · (c(x, ω)u(x, t, ω)) = 0,
ut(x, ω)−∇p(x, ω) = 0,

x ∈ D, t > 0, ω ∈ Ω, (11)

with deterministic initial data p(x, 0) ∈ C∞(D), u0(x, 0) ∈ (C∞(D))d and
random coefficient c ∈ L0(Ω,L∞(D)) with P[c(x, ω) > 0,∀x ∈ D] = 1.

As the system (11) is linear and random coefficient c is independent of t, the
maximum wave speed λ does not depend on t, but explicitly depends [7] on c,

λ(ω) = max
x∈D

√
c(x, ω). (12)

Depending on c, the variance of λ(ω) can be very large. As an example, consider
domain D = [0, 3]2 and the wave speed c given by its Karhunen-Loève expansion,

log c(x, ω) = log c̄(x) +
∞∑

m∈N2
0\{0}

√
αmΨm(x)Ym(ω), (13)

with eigenvalues αm, eigenfunctions Ψm(x), and the mean field c̄(x) set to

αm = |m1 + m2|−2.5, Ψm(x) = sin(m1πx2) sin(m2πx1), c̄(x) ≡ 0.1,

7

and with independent standard normal random variables Ym ∼ N [0, 1].
Then, c, c−1 /∈ L∞(Ω,L∞(D)), i.e. there is positive probability such that

λ(ω) attains any arbitrary large or arbitrary small value.
As the system (11) is linear, λ(ω) does not depend on the initial condition

p0,u0. However, for the sake of completeness, we provide our choices:

p0 = exp
(
−12.5

∥∥x− (1.5, 1.5)>
∥∥2

2

)
, u0 ≡ 0.

We would like to note, that according to Proposition 1 and Theorems 2 and
5 in [7], solutions to (11) with (13) are well-defined, and have finite mean and
variance, which are well approximated by the MLMC-FVM method.

For such class of problems, the work estimates (10) are no longer valid; more
precisely, the computational work required for one sample (realization) on a
given mesh T is a random variable, directly proportional to λ(ω),

Workrand
T (ω) =

KT

CCFL
λ(ω)∆x−(d+1). (14)

Proceeding with our analysis, we consider the expected computational work,

E[WorkT] = E[Workrand
T (ω)] =

KT

CCFL
E[λ(ω)]∆x−(d+1), (15)

which is finite, as long as the expected value of maximal wave speed λ is finite.
The direct consequence of this is that the static load balancing from [8], at least
on average, is expected to scale. Furthermore, in [7], MLMC-FVM algorithm is
analyzed in the case of (14) and the resulting complexity of error vs. expected
amount of computational work is proven to be analogous to (6),

error . (E[Work])−s/(d+1) log(E[Work]). (16)

However, due to non-uniform sizes of samples, the efficiency of the balancing
is expected to drop significantly for each individual run of the MLMC-FVM
algorithm. This can be clearly seen in Figure 4, where the scaling analysis of
static load balancing in MLMC-FVM for the wave equation (11) with material
coefficient given by (13) is performed. As expected, the algorithm scales linearly
with the number of cores, but the efficiency is consistently low.

The example above is not the only case where λ is random with large rela-
tive variance V[λ]/E[λ]. All systems (linear and nonlinear) of conservation laws
exhibit analogous phenomenon if the flux function F is random with large vari-
ance, see [5] for more examples. Another class of problems is with non-linear
fluxes, where λ depends not only on F but also on U (hence also on U0) and
potentially has large variance if U0 has large variance.

To improve the inefficiency of load balancing, samples need to be redistributed
among cores, taking into account sample-dependent estimates (14) for the com-
putational work. This, however, can not be done statically at the time of compi-
lation, since Workrand

T (ω) depends on the particular realization. To this end, we
introduce an adaptive load balancing, where samples are distributed during run-
time, i.e. after computing λ(ω) for each required realization, but before actually
starting the FVM time stepping of any sample (hence, not dynamic balancing).

8

100 101 102 103 104

cores
100

101

102

103

104

w
al

lc
lo

ck
 ru

nt
im

e 1/1

Strong scaling

MLMC
MLMC2

100 101 102 103 104

cores
0.0

0.2

0.4

0.6

0.8

1.0

ef
fic

ie
nc

y

MPI efficiency

MLMC
MLMC2

Fig. 4. Inefficient strong scaling of static load balancing in case of random maximum
wave speeds λ(ω) with large relative variance V[λ]/E[λ] resulting from (13).

4 Adaptive load balancing

We assume to have a “pool” G of cores (processing units), consisting of groups
Gm (of arbitrary size) of cores indexed by “multi level” m = L,L−1, . . . ,m0 ≥ 0,
which are themselves divided into equal groups Gs

m of cores indexed by “sampler”
s = 1, . . . , Pm. The number of cores in a given sampler Gs

m is independent on
s and denoted by Dm. An example of such pool with L = 5, m0 = 1, {Pm} =
{1, 1, 2, 4, 8}, {Dm} = {1, 1, 1, 1, 2} is depicted in Figure 2. We assume, that any
of the MC samples from any mesh level ` can be efficiently computed on any
sampler Gs

m in the pool, in serial or by using domain decomposition if Dm > 1.
By efficient computation we assume strong scaling of the domain decomposition.

4.1 Computation and distribution of loads

Define Loadi
` to be the normalized (constants are neglected) required computa-

tion time for the i-th difference of samples between mesh levels ` and `− 1,

Loadi
` = λi

`

(
∆x
−(d+1)
` +∆x

−(d+1)
`−1

)
, ` = 0, . . . , L, i = 1, . . . ,M`, (17)

where all λi
` need to be computed, possibly in parallel. Since computations of

λi
` are much cheaper compared to the full FVM, they are performed on a single

largest sampler G1
L consisting of DL cores, and then broadcast to every core, i.e.

every core has values for all λi
`. The resulting amount of data to be communicated

is minuscule compared with the amount of data of the needed for the FVM solver.
The goal of the load balancing is to distribute all samples with required com-

putational time Loadi
` to samplers Gs

m. Greedy algorithm for identical samplers
has been analyzed in [3] and was proven to be a 4/3-approximation, i.e. the
makespan (maximum run-time among all workers) is at most 4/3 times larger
than the optimal (minimal) makespan. If loads are not ordered, then greedy
algorithm is only a 2-approximation [3]. Here we present a generalization of the
greedy algorithm for samplers with non-identical speed of execution. The main

9

idea of the algorithm is the recursive assignment of the largest available Loadi
`

to the sampler Gs
m for which the total run-time Rs

m including Loadi
` is mini-

mized. The pseudo code of the adaptive load balancing is provided as Algorithm
1, where the notation Loadi

` ∈ Gs
m means that i-th difference of samples between

mesh resolution levels ` and `− 1 is assigned to be computed on sampler Gs
m.

Algorithm 1 Greedy load balancing (with non-identical speeds of execution)
L = {Loadi

` : ` = 0, . . . , L, i = 1, . . . ,M`}
while L 6= ∅ do

Loadi
` = maxL

Gs
m = arg min

Gs
m

“
R(Gs

m) + Loadi
`/Dm

”
, R(Gs

m) =
X

{Load/Dm : Load ∈ Gs
m}

Gs
m = Gs

m ∪ Loadi
`

L = L\Loadi
`

end while

Note, that if samplers have identical speeds of execution, i.e. Dm are all
equal, then the above algorithm 1 reduces to the standard greedy algorithm.

If loads are not ordered (replace “maxL” by “any load from L”), then al-
gorithm 1 is only a (1 +Dmax/Dmin)-approximation (analogous proof as in [3]).
Hence, if samplers Gs

m have very heterogeneous speeds of execution 1/Dm, algo-
rithm 1 may provide a much longer makespan, compared to the optimal. How-
ever, if we assume that loads are ordered and are as heterogeneous as samplers,

Loadmax

Loadmin
:=

max`,i Loadi
`

min`,i Loadi
`

≥ Dmax

Dmin
, (18)

then algorithm 1 is a 2-approximation. We present this result as a theorem.

Theorem 1. If (18) holds and the last load of the bottle-neck sampler is bounded
by (Dmin/Dmax) · Loadmax, then algorithm 1 is a 2-approximation.

Proof. Let R(G∗) be the run-time of the bottle-neck sampler G∗ and Load∗ be
the last sample assigned to G∗. Then, according to distribution procedure,

R(G∗) ≤ R(Gs
m) + Load∗/Dm, ∀m = m0, . . . , L, s = 1, . . . , Pm.

Summing the above inequality over all samplers Gs
m, we obtain a bound

R(G∗)− 1
#{Gs

m}
∑
m,s

Load∗

Dm
≤ 1

#{Gs
m}
∑
m,s

R(Gs
m) ≤ Ro,

whereRo is the optimal timespan, which is certainly not smaller than the average
of all runtimes R(Gs

m). Next, we use (18) and Load∗ ≤ LoadmaxDmin/Dmax,

1
#{Gs

m}
∑
m,s

Load∗

Dm
≤ 1

#{Gs
m}
∑
m,s

Dmin

Dmax

Loadmax

Dmin
≤ Loadmax

Dmax
≤ Ro.

Combining both bounds, the desired inequality R(G∗) ≤ 2Ro is obtained. ut

10

In case of MLMC-FVM, the assumption (18) is often satisfied, since loads Loadi
`

scale asymptotically as WorkT`
= O(2(d+1)`) due to (14), and the speeds of

executionDm using domain decomposition scale only as #Tm, i.e.Dm = O(2dm).

4.2 Implementation remarks

Once the loads have been distributed to samplers Gs
m, the parallel execution

of FVM solves and the final assembly of the MLMC-FVM estimator remained
analogous as in [8], i.e. Message Passing Interface (MPI) was chosen, making
heavy use of the appropriate local MPI inter-communicators [9]. The new part
for the adaptive balancing is the parallel computation (and broadcast) of the
maximum wave speeds λi

`, which is problem-specific. For the wave equation (11),
λi

` were computed by computing random coefficients ci` and then using (12).

5 Efficiency and linear scaling in numerical simulations

To ensure a fair comparison, the adaptive load balancing algorithm was tested
on the same problem as the static load balancing, see (11) in subsection 3.2.

In Figure 5 we verify strong scaling of our implementation. We observed
the scaling to be maintained for up to almost 10 000 cores at high efficiency.
Simulations were executed on the same Cray XE6 (see [10]) architecture as in
subsection 3.2. We believe that our parallelization algorithm will scale linearly
for a much larger number of cores if the problem size is increased.

101 102 103 104 105

cores

101

102

103

104

105

w
a
llc

lo
ck

 r
u
n
ti

m
e 1/1

Strong scaling

MLMC

MLMC2

101 102 103 104 105

cores

0.0

0.2

0.4

0.6

0.8

1.0

e
ff

ic
ie

n
cy

MPI efficiency

MLMC

MLMC2

Fig. 5. Strong scaling of adaptive load balancing up to 10 00 cores. The efficiency is
nearly optimal and is much better if compared to the static load balancing in Figure 4.

6 Discussion for improvements

Our implementation of the adaptive load balancing could, of course, be further
improved. For instance, the pre-computation of λi

` could be parallelized more
efficiently, i.e. the remaining cores could also be incorporated, if needed.

11

For non-linear fluxes with random initial condition with large variance, λ(ω)
also attains large variance, but only the initial data U0(·, ω) can be used to
estimate λ(ω). As U0(·, t, ω) evolves to time t > 0, λ(ω) changes, hence the
work estimates (14) are no longer valid due to assumption of equal time steps,
violating the first property in subsection 3.1. In such cases the performances of
the adaptive load balancing might be sub-optimal. In such cases, dynamic load
balancing could be used, which might introduce significant additional overhead
and deteriorate parallel scaling, see [2] and references therein.

7 Conclusion

MLMC-FVM algorithm is superior to standard MC algorithms for uncertainty
quantification in hyperbolic conservation laws, and yet, as most sampling algo-
rithms, it still scales linearly w.r.t. number of uncertainty sources. Due to its
non-intrusiveness, MLMC-FVM was efficiently parallelized for multi-core archi-
tectures. For systems with deterministic fluxes, static load balancing was already
available [8], which was shown to scale strongly and weakly on the high perfor-
mance cluster [10] in multiple space dimensions. For linear systems with random
fluxes, adaptive load balancing was introduced, which maintains the same scaling
properties, but, by design, is applicable to a much wider class of problems.

References

1. ALSVID-UQ, v3.0. Available from http://www.sam.math.ethz.ch/alsvid-uq.
2. Sivarama P. Dandamudi. Sensitivity evaluation of dynamic load sharing in dis-

tributed systems. IEEE Concurrency, 6(3):62–72 1998.
3. R. L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal on

Applied Mathematics, 17(2):416–429, 1969.
4. R.A. LeVeque. Numerical Solution of Hyperbolic Conservation Laws. Cambridge

Univ. Press 2005.
5. S. Mishra, Ch. Schwab, and J. Šukys. Multi-level Monte Carlo finite volume

methods for uncertainty quantification in nonlinear systems of balance laws. Von
Karman Institute Lecture Notes UQLNCSE6, 2013 (to appear). Available from:
http://www.sam.math.ethz.ch/reports/2012/08.

6. S. Mishra and Ch. Schwab. Sparse tensor multi-level Monte Carlo finite volume
methods for hyperbolic conservation laws with random initial data. Math. Comp.
280(81):1979–2018, 2012.

7. J. Šukys, Ch. Schwab and S. Mishra. Multi-Level Monte Carlo Finite Difference
and Finite Volume methods for stochastic linear hyperbolic systems. MCQMC 2012
(in review). Available from: http://www.sam.math.ethz.ch/reports/2012/19.

8. J. Šukys, S. Mishra, and Ch. Schwab. Static load balancing for multi-level Monte
Carlo finite volume solvers. PPAM 2011, Part I, LNCS 7203:245–254. Springer,
Heidelberg (2012).

9. MPI: A Message-Passing Interface Standard. Version 2.2, 2009. Available from:
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf.

10. Rosa, Swiss National Supercomputing Center (CSCS), Lugano, www.cscs.ch.

http://www.sam.math.ethz.ch/alsvid-uq
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
www.cscs.ch

Recent Research Reports

Nr. Authors/Title

2013-11 F. Mueller and Ch. Schwab
Finite Elements with mesh refinement for wave equations in polygons

2013-12 R. Kornhuber and Ch. Schwab and M. Wolf
Multi-Level Monte-Carlo Finite Element Methods for stochastic elliptic variational
inequalities

2013-13 X. Claeys and R. Hiptmair and E. Spindler
A Second-Kind Galerkin Boundary Element Method for Scattering at Composite
Objects

2013-14 I.G. Graham and F.Y. Kuo and J.A. Nichols and R. Scheichl and Ch. Schwab and I.H.
Sloan
Quasi-Monte Carlo finite element methods for elliptic PDEs with log-normal random
coefficient

2013-15 A. Lang and Ch. Schwab
Isotropic Gaussian random fields on the sphere: regularity, fast simulation, and
stochastic partial differential equations

2013-16 P. Grohs and H. Hardering and O. Sander
Optimal A Priori Discretization Error Bounds for Geodesic Finite Elements

2013-17 Cl. Schillings and Ch. Schwab
Sparsity in Bayesian Inversion of Parametric Operator Equations

2013-18 V. Kazeev and Ch. Schwab
Tensor approximation of stationary distributions of chemical reaction networks

2013-19 K. Schmidt and R. Hiptmair
Asymptotic Boundary Element Methods for Thin Conducting Sheets

2013-20 R. Kruse
Consistency and Stability of a Milstein-Galerkin Finite Element Scheme for
Semilinear SPDE

	Adaptive load balancing for massively parallel multi-level Monte Carlo solvers

