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Abstract. Various asymptotic models for thin conducting sheets in computational electromagnetics
describe them as closed hyper-surfaces equipped with linear local transmission conditions for the traces
of electric and magnetic fields. The transmission conditions turn out to be singularly perturbed with
respect to limit values of parameters depending on sheet thickness and conductivity.

We consider the reformulation of the resulting transmission problems into boundary integral equa-
tions (BIE) and their Galerkin discretization by means of low-order boundary elements. We establish
stability of the BIE and provide a priori h-convergence estimates, with the dependence on model param-
eters made explicit throughout. This is achieved by a novel technique harnessing truncated asymptotic
expansions of Galerkin discretization errors.
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1. INTRODUCTION

1.1. Thin Conducting Sheets

We consider a thin conducting sheet of constant thickness d > 0 and constant relative conductivity £, which
is, for simplicity, the only conductor in otherwise non-conductive space. Its locus ;¢ can be expressed as all
points with minimal distance d/2 to its mid-line T', which is supposed to be a closed cylinder. Figure 1 displays
a cross-section.

Assume translation invariance in one direction. Then, for the transverse magnetic (TM) mode, the complex
amplitude E of the out-of-plane component of the electric field solves the partial differential equation (PDE)

~AE(z) + & (2)E(x) = F(z) inR?, (1)
where
2, J—lwpo, for x € Qi ,
g (m) B {O ) for z g Qint ) (2)

with angular frequency w > 0, permeability 1 and conductivity o (of the sheet material). The PDE (1) describes
the relation of an injected electric current Jy (out-of-plane) via the source term F(z) = —iwp(z)Jo(x) and the
induced electric field E(x). The in-plane magnetic field H can be recovered as iwpu~!(z)(VE(z))*, where we
wrote V* = (Va,—V3). The PDE (1) has to be supplemented with a decay condition at infinity.

Remark 1.1. In the electromagnetic context, (1) is an intrinsically two-dimensional model and it will be the 2D
setting for which the equations discussed in this paper have direct physical relevance. However, (1) still makes
mathematical sense in R3, whence T is a closed 2-dimensional orientable manifold. Thus, in the remainder of
this article we will treat (1) set in R™, n = 2,3.

Let vE : HL (Qext) — H 2 (I') denote the Dirichlet trace operators from outside and inside of I, respectively.
Similarly, write v : HL (A, Qeyt) — H~/?(T') for the standard Neumann traces. Their jumps and means are
denoted by

(V) + (V) - 3)

N |

eVl = (3 V) = (0 V), (V) =

1.2. Impedance Transmission Conditions

If d < diam(T"), we may model the impact of the conducting sheet on the fields through so-called impedance
transmission conditions (ITCs) connecting traces of electric and magnetic fields on both sides of T, see Section 2.
The resulting transmission problem has the general form

“AU=F,  mRMI,
Ti1[vU] + Ti2{U} + Tis{nU} = 0, on T, (4)
To1 [ U] + Toa{ U} + Toz{mU} =0 on T,

where the T;; may be mere (complex) coefficients but can also compromise (tangential) differential operators
on I'. We denote Vr the tangential gradient and Ap the Laplace-Beltrami operator on I'; which are the first
and second tangential derivative for n = 2, respectively. Also the equations (4) have to be supplemented with
suitable (decay) conditions for U at infinity, see [10, Chap. 8, p. 259].



(b) (c)

FIGURE 1. (a) Geometric setting of a thin conducting sheet in Qi of thickness d and with
mid-line I'. The exterior of the sheet Qey; = R?\Qjy, where £(z) = 0 houses source currents.
(b) Electric field (real part) of two current carrying circular wires without conducting shielding
sheet. (c) Electric field (real part) of two current carrying circular wires in presence of a thin
ellipsoidal conducting sheet.

FIGURE 2. Mesh I'j, of the mid-line I' for boundary element methods for the different impedance
transmission conditions.

1.3. Overview
In this article we are concerned with

e the derivation and analysis of boundary integral equations (BIE) equivalent to the transmission prob-
lem (4),

e a priori convergence estimates for low-order conforming boundary element (BEM) Galerkin discretiza-
tions of those.

This will be done for an array of concrete asymptotic shielding models presented in Section 2. Particular empha-
sis will be put on making explicit the dependence of stability and convergence estimates on model parameters,
because these may become small or large (in modulus), which may cause singular perturbations.

In general, the asymptotic models are justified only for sufficiently smooth mid-lines I'. On the other hand,
both the boundary integral equations and the numerical methods remain meaningful, if I' is merely Lipschitz
continuous. Thus, Lipschitz continuity will be our minimal assumption on I'. Several results will hinge on extra
smoothness of I', which will be specified precisely in each case.

A brief survey of boundary integral operators and boundary element spaces is supplied in Section 3.1. Then
transmission problems with particular structure and dependence on parameters are discussed in Sections 4
through 7. In each, we establish the stability of the derived BIE, then introduce suitable boundary element
Galerkin discretizations, followed by investigations into their convergence. Our a priori error estimates for
Galerkin BEM often rely on a novel technique for proving uniform stability of parameter dependent discrete
variational problems, which is based on asymptotic expansions. Numerical experiments for a model problem
are included to demonstrate, how the predictions of the theory manifest themselves in actual computations.
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1.4. Model problem for numerical experiments

For illustration we will study the different ITCs by numerical experiments for a simple model problem.
A thin conducting sheet of thickness d = 3mm has an ellipsoidal mid-line with the semi-axes 60 mm and
V1500 mm ~ 38.7 mm, centered around the origin. The electromagnetic fields are excited by two cylindrical
current carrying wires with radius 12.5 mm centered at positions (4 25 mm, 0) and with F' = 41 (arbitrary units),
see the schematic sketch in Fig. 1(a). For one set of computations we choose |£|~! = 6.547 mm corresponding
to a skin depth dgin, = \/§/|§| ~ 9.26 mm, about three times the sheet thickness. For copper, for which
o0 =5.91-10" A(Vm) ™1, u = po = 47-10~7 Vs(Am) !, this parameter ¢ corresponds to a frequency of 50 Hz (w =
314rad/s). We have computed reference solutions using a high order finite element discretiation with exactly
curved cells with the numerical C++ library Concepts [4,5]. Our problem is stated in the unbounded space R2,
which we model by exact Dirichlet-to-Neumann maps on the circular boundary of a bounded computational
domain. This gives a reference solution on 327680 uniform intervals on I' and error norms are computed with
the trapezoidal rule. Note, that both the reference solution and the BEM solution are affected by a modelling
error introduced by using the ITCs instead of modelling the thin conducting sheet, and we will compare the
solution of the proposed BEM for the different I'TCs with their respective reference solution.

2. SHIELDING MODELS

We present a variety of ITCs of the form (4) that have been proposed by different authors. We forgo a
discussion of their derivation, scope and performance and refer the reader to [14] or the original works cited
below.

2.1. Impedance transmission conditions of type I [8,14,15]

The impedance transmission conditions of type I are

MU] = Bi{wU} =0 onT, (5a)
[vU] =0 onTl, (5b)

where the complex coefficient 5 is of the form 8; = ¢1(£d)/d. Tt is given for the models ITC-1-0, ITC-1-1,
ITC-2-0 (see [11]) by
BITC-10 _ ¢2g BITCIL _ 24 (1 4 1e2q2) 1TC2.0 _ 2¢ sinh (£2) . (6)
6 cosh (f%) —§% sinh (§%)
The range of validity of the transmission conditions ITC-1-0, ITC-1-1 and ITC-2-0 is |¢d| € (0, 00), and 1 may
have small or large absolute values.

Lemma 2.1. For any bounded £ € (=1 + 1) R with |£] > 0 and any d > 0 it holds for the models ITC-1-0,
ITC-1-1 and ITC-2-0 that Im(5;) < 0.

Remark 2.2. The imaginary part of f{TC20 tends to zero for |¢d| — oo and d fived, whereas the real part
tends to the negative value —4/d while arg(BIT9%0) — —x 1 (see Fig. 3). Both imaginary and real part of
BITC1-1 tend to —oo for |€d| — oo and d fived while arg(BiTC11) — —m as well.

2.2. Impedance transmission conditions of type II [11]

The impedance transmission conditions of type II are

(U] = (B1 — B2Ar) {n0U} =0 onT, (7a)
[voU] =0 onT, (7h)

where the values of 81, 82 for the model NTFS (see [14]) are given by
BYTFS = 2, TS = (5)

The parameters (2 have the form 8y = po(€d)d. Note, that the ITCs of type I are of type II with 82 = 0. The
range of validity of NTFS is |£d]| € (0, 00).

1For a complex number z € C we define arg(z) € (—m, 7] as the angle enclosed by its associated vector and the positive real axis
in the complex plane.



2.3. Impedance transmission conditions of type III [19, Sec. 3.7], [9], [13]

The impedance transmission conditions of type III are

(U] = Bi{wU}=0 onTl, (9a)
[oU] = B3 {mU}=0 onTl, (9b)
where the values of 81 and B3 for the models MB and ITC-2-1 for vanishing curvature (see [14]) are given by
1'® = 2¢ tanh(£9), 310 = Ztanh(£9), (10)
2¢ sinh (£4)

ITC-2-1 2 ITC-2-1 2 d
- , — —d(1— 2 tanh(¢9)). 11
! cosh (£2) — ¢2 sinh (£4) Bs ( Zq tan (52)) (11)

Note, that the parameters 35 are of the form 83 = p3(&d)d.

Lemma 2.3. For any £ € (—1+1)RT with || > 0 and any d > 0 it holds for the models MB and ITC-2-1 that
Im(ﬁl) <0, Im(ﬂg) > 0.

Remark 2.4. The imaginary parts of BITC*1 and BiT921 tend to zero for || — oo and d fived, whereas the
real part tends to the negative values —4/d or —d, respectively, while arg(BIT¢?1) — —7 and arg(BiTC*1) —» 7
(see Fig. 3).

2.4. Impedance transmission conditions of type IV [13,16]

The impedance transmission conditions of type IV are

MU] = (B1 — B2Ar) {1U} + Bak {71U} =0 onT, (12a)
[YoU] = Ba{wU} —B3{mU}=0 onT, (12b)

where & is the signed (mean) curvature of I', which is assumed to be C2?. The signed curvature is a positive
constant for a circular mid-line in two dimensions with zp(t) = (cos(t),sin(¢))T. The values of 1, B2, B3 and
B4 for the model ITC-1-2 (see [14]) are given by

ﬁ{TC—l—? _ £2d (1 + %§2d2 o %54(14) ’ ﬂéTC—1—2 _ _%£2d3’ ﬁéTC—1—2 _ _%52(13’ ﬁiTC—l—? — i§2d37

and those for the model ITC-2-1 are given in (11) and

ITC-2-1 ITC-2-1
2 = O7 ﬁ4 =

N

(1 — 5% tanh(f%)) .

Note, that the parameters 3, are of the form 84 = p4(&d)d.

3. BOUNDARY INTEGRAL EQUATIONS

3.1. The representation formula

The solution U(z) of (4) with any transmission condition (5), (7), (9), or (12) can be represented as [12, Thm.
3.1.8], [10, Thm. 6.10]

U=-SmU]l+D[wU]+NF in R"\ T, (13)

where the single and double layer potential [12, Sec. 3.1] are defined by

(SP)(z) = | Gz —y)o(y)dy r € R™\T, (14)

r

(D) (x) == / 4G (& — v)p(y)dy reR"\T, (15)
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F1cURE 3. The phase angle and modulus of the parameters 8; and (5 for different impedance
transmission conditions in dependence of the sheet thickness to skin depth ratio d/§ = |£d|/v/2.
and the Newton potential [12, Sec. 3.2] by
(Vo)la) = [ Gla = wol)y zER™. (16)

The Green’s kernel for the operator —A is

1
—— In(]z]), ifn=2,

2m

G(z) = 1
— if n=3.
el ifn=3

See also the more general definition of S and D in [12, Def. 3.1.5].
The solution U may be discontinuous over I', which is reflected in the jump relations for the single and double
layer potential [12, Thm. 3.3.1]

[YoD Y] =1,
(1D ] = 0.

[’705 ¢] = 03
[Vls(é] = _¢7



7

The averages of single and double layer potential define the boundary integral operators with the following
continuity properties (see [10, Thm. 7.1], [12, Thm. 3.1.16])

V= {78} : H/**3() — H**5(T), K :={yD-}: H/*"(T) —» H'/*"*(I),

19
K :={mS-}: H#T5() - H/2T5(), W:=—{mD-}: H/?*(T) - H/>*3(T), 1)
for 0 < s < r+1,if T € C™b! where the latter notation means that I' coincides with the graph of a
function of smoothness C"*1:! locally, see [10, Chap. 2]. For more details on boundary integral operators
consult [12, Sec. 3.1], [10, Chap. 7].

Lemma 3.1. If n = 3, or n = 2 and the diameter of T is smaller than 1, then the boundary integral operator
V is H_I/Q(I’)-elliptic, 1. €., there exists a constant v > 0 such that

(V$, ) = v 0l512ry» Vo€ H (D). (20)

Furthermore, the boundary integral operator W is H'/?>(T')/C-elliptic, i. e., there exists a constant v > 0 such
that

(V3 7) 2 v 1illipsem . ¥ie€H?(T)/C. (21)

Proof. See [12, Theorem 3.5.3] or [18, Satz 6.6]. O

Remark 3.2. The assumption on the diameter of the interface I' is needed only in two dimensions. Note, that
this assumption can always be satisfied by appropiate coordinate scaling.

For the remainder of this article we assume that the support of the source F' is well-separated from the
mid-line or mid-surface ' of the sheet, i. e., there is a € > 0 such that dist(supp(F'),T') > . Since the Newton
potential is smooth away from supp(F') the traces of the Newton potential on I" possess higher regularity.

Lemma 3.3 (Regularity of traces of the Newton potential). Let I' € C"*4t. Then, for any s € Z, s <r+1
there exists a constant C' = C(s,e,T") such that

V0N Ell oz iy + IMNE || gre-ryz vy < CIF | @evryy -

Remark 3.4 (Computation of the Newton potential). Of practical relevance for the two-dimensional setting are
sources F € Lgomp(Q) corresponding to currents flowing out of the symmetry plane in a bounded cross-section
Qp C (R?\Qint), i. e., their support has no contact to the thin conducting sheet. In general, the integral (16)
and its derivative can be approximated by numerical quadrature. An important case are cylindrical wires with
a circular cross-section and a constant (current) amplitude F(M) (see Fig. 1(a)) for which we can use the
analytic formulas for |t — M| > R

R z—M

(NF)(z) = ~ 1o In(fa — M) F(M), VNF)(@) =~ g FOM),

(22)

where R is the radius and M are the coordinates of the mid-point of the circle. The Newton potential enters the
right hand side functional of the variational boundary integral equations. Its boundary element discretization
will entail integrating the Newton potential multiplied with a piecewise polynomial on T.

3.2. Boundary element spaces

Our boundary element approach is based on the approximation of I' by a closed polygon I';, in 2D or
polyhedron I'j, in 3D, whose vertices x;, j € Z, := {1,..., Nz}, lie on I' and whose straight line segments
K; = [zj,zj41] (xn,+1 = 1) or flat triangular cells K; we call panels. The set of panels is denoted by 7p,.
The length of the largest panel is the mesh width h, and the shape regularity measure py, is the largest ratio of
diameter and radius of an inscribed ball of any panel K € Tj,, which is 1 if n = 2.

Throughout this article I'j, will be assumed to be a member of a shape-regular and quasi-uniform infinite
family of triangulations of I" whose mesh widths accumulate at zero [12, Sect. 4.1.2]. None of the “generic
constants” in our estimates, usually denoted by C, will depend on the concrete I'y, used for discretization.
Sometimes, we are going to express this by the casual phrase “independent of h”
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Remark 3.5. The approzimation of the curved mid-line by straight line segments or curved mid-surface by flat
triangles contributes to the discretisation error, but does not affect the order of convergence of our low-order
boundary element methods (see [12, Chap. 8]). Thus, in the subsequent analysis, we will assume that we use an
exact resolution of T' (see Fig. 2).

We introduce the space of piecewise constant functions as
Syt (Ty) = {vh € L*(1) : vy € Po(K) VK € Th} (23)
and the space of piecewise linear, continuous functions as
SYTy) = {uh e L2M)NCT) : v, € P1(K) VK € n}, (24)

where P, is the space of polynomials of degree p € Ny. For the sake of simplicity we consider only lowest order
boundary element methods. An extension to higher polynomial degrees is, however, straightforward. In parts
our analysis also covers spectral Galerkin discretisation based on Fourier modes (n = 2) or spherical harmonics
(n = 3).

Let us shortly review some best-approximation estimates for these spaces [12, Sec. 4.3.4-5].

Lemma 3.6 (Best-approximation error). Let s,m € R. Then, there exist constants C = C(T',s,m, pp) such
that

inf  |lv—vp|lgey < CR" |0l gy, -1<s<1, 0<m<2 (25a)
v €SY(T'y)
inf v = vnllgsy < C A" 50| gy, -1<s<0, 0<m<1. (25Db)

vn €85 H(Th)

4. SECOND KIND BOUNDARY ELEMENT FORMULATION FOR PROBLEMS OF TYPE I

4.1. Boundary integral formulation

For the problem of type I, see (5), the representation formula (13) simplifies as the jump of the electric field
vanishes by (5b). Taking the mean trace of (13) we get

{nU} ==V U] +nNF (26)

and using (5a) we get for the new unknown ¢ = [y;U] on I' the boundary integral formulation of the second
kind

(Id+ 31V )¢ = B1oNF. (27)

Testing by ¢’ € L?(I") we get the variational formulation: Seek ¢ € L?(T") such that

ar(¢,¢') == (¢, ¢') + B1 (V§,¢') = 1 (WNF,¢') V¢' € L*(I). (28)

Here, we denote by (-, -) the bilinear duality pairing w.r.t. L?(T'), 4. e., (u,v) = (v,u) and |\u||%2(r) = (u, ).

Obviously, ¢ = 0 for f; = 0. As the parameter 8; may attain small or large absolute values we are going
to derive stability estimates which are robust for asymptotically small moduli, i.e., |51] — 0, as well as for
asymptotically large moduli, 4. e., |81] — oo.

Theorem 4.1. Let |41] > 0 and assume there exists a constant 67 € (—m,0) such that 0 > 61 := arg(31) > 05.
Furthermore, let T be Lipschitz. Then, the system (28) has a unique solution ¢ € L*(T), and there exists a
constant C'= C(07) independent of |1 such that

¢l 2@y < CIBUIEN a2 Ty (1l r-2/2py < Cmin(L, [Bi)[|F| (zr2 ey - (29)
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Proof. By assumption we have 6;/2 € [07/2,0]. The bilinear form a; is L?(T)-elliptic with ellipticity constant
cos (07/2) and H~'/?(T)-elliptic with ellipticity constant |3 | cos (% /2) since

Re (e % a1(0,9)) = cos (%) (1ol + 1521 (V6. 5)) (30)

Using the Lax-Milgram lemma and Lemma 3.3 we obtain the L?(T)-estimate and the H~"/?(T)-estimate with
a constant C'. Using the fact that ||| -1z < [[¢]lL2(r), we get the H~"/?(T)-estimate with C|f3;|, and the
estimates with both constants are valid when the minimum is attained. g

The ITCs of type I may be used for lower frequencies, where ; is small and so is the jump of the normal
derivative ¢, or for large frequencies and, thus, large £;. Assumptions that the sheet features certain smoothness,
we can show that the normal derivative ¢ remains bounded even if 81| — oo.

Lemma 4.2. Let the assumptions of Theorem 4.1 be satisfied, T € C"™t11 1 € Ny, ¢ the solution of (28) and
u:={yU} = =Vé+vNF. Then, for any 0 < s < &, there exist constants Cs independent of |B1| such that
the higher regularity estimates

H¢||Hs+1/2(r) < Cymin(1, |51|)||’YONF||H23+3/2(F)> (31a)
H“||Hs+1/2(r) < Cymin(|] ™1, 1)H'YONFHH2s+3/2(r)a (31b)

hold, where ||[NoNF| goesapy < Col|Fll (i @nryy if 2s + 1 < v+ 1. Furthermore, for any s,j such that
0 <j<s—1, there exist constants Cs independent of |B1| such that

H¢’||Hs+1/2(r) < Gy ymax(| [, |/61|)||70NFHHS+J'+3/2(F)7 (31c)
H“||Hs+1/2(r) < Cs max (|4 [*77 71, 1) ||W0NFHH5+J'+3/2(F)7 (31d)

where [|[YoNF|| grevsvzzry < CojllF |l (r@aryy f s+j+1<r+1.

Proof. As (31b) and (31d) are direct consequences of (31a) and (31c) using ¢ = S1u, we have to prove the
estimates for ¢ only. Throughout the proof we assume s € Ny, the estimates for general s follow by interpolation.
To obtain the higher regularity estimates we rewrite (27) as

¢ =B (=Vo+1NF), (32)

where we can assert in view of (19) that

1017wty < 11| (Cullolravaqry + 1PN Fl gosriagry ) - (53)
Now, using the H~"/?(T")-estimate in (29) for the right hand side we obtain for s = 0
160l sr2cey < ClBIMONF L1y,
and repeated application of (33) leads to
11l g7+1/2(my < Cs max(|B1]* (B Do N F | esaze - (34)

Thus Lemma 3.3 gives (31a) for small |8;| and (31c) in the case of j = 0 for large |3:1| as well. For large |54],
for which (27) is singularly perturbed, this estimates reflects the emergence of internal layers close to points on
I where the regularity is reduced.

Using the regularity assumption on I' we can improve this estimate for large |5;1| using an asymptotic
expansion in A7 !. For this we assume in the remainder of the proof that |3;]| > 1. We use the ansatz

¢~ o+ By pL+ B+, (35)
where ¢ is defined by

Voo =rnNF,
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and ¢, forn=1,2,... by

V¢n+1 = *¢n~

The terms ¢,, of the expansion are defined independently of 31, and for any s > 0 we have

||¢n||Hsfl/2(r) < Cn||70NF||Hs+1/2+n(F)a (36)

i. e., for given regularity of 79N F' their regularity decays with increasing index n.
Now, let for some N € N

N
Sy =¢— > Bi"¢n,

n=0

which solves
(Id+ BV)spn = —Br Non.

This equation is similar to (27) where $170/NF on the right hand side is replaced by —pg; Npn. Therefore,
using (34) and (36) we have for s > 0

H(SQSNHHHVZ(F) < Cs,le|S_N||¢N||Hs+1/2(r) < Cs,NWl|S_N||’YONF||H5+3/2+N(1")7
and, hence, if N <s

N
H¢||Hs+1/2(r) < ||§¢N||Hs+1/2(r) + Z |61‘_n”¢n”}15+1/2(r) < Cs,Nwl|S_N||'VONF||Hs+3/2+N(F)-

n=0

Assuming s+ N <r and N < s—1, using Lemma 3.3, and replacing N by j we obtain (31c) for large |3;|. For
N = s we obtain (31a) for large |51]. This finishes the proof. O

4.2. Boundary element formulation

Let V;, be a finite-dimensional subspace of L?(T), in particular Sy '(T's) or S?(I's). Then, the boundary
element formulation reads: Seek ¢; € V}, such that

Theorem 4.3. Let the assumptions of Theorem 4.1 be fulfilled and Vi, C L*(T). Then, the linear variational
equation (37) has a unique solution ¢y, € V}, that satisfies

[Pnllrz@y < Co(B1) 1F |z @m\ryy - (38)
Ifv, = So_l(Fh) and T' € C?1, then
lon — Sl L2y < C1(Br) R F || (a1 mr\1y) s (39)
and if Vi, = S9(T'1,) and T € C>1, then
lén = dllL2ry < Co(B1) B2(IF [l (1 em\ryys (40)

where for £ = 0 and Lipschitz T, £ =1 and T € C%', or £ = 2 and T' € C>', with a constant C = C(6})
independent of | 51|,

Co(B1) = CBu] ,

and for £ =0 and T € CY', ¢ =1 and T € C3', or £ =2 and T € C>1,

Cy(B1) = C min(1,|p1]) -
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Proof. We conclude well-posedness of the Galerkin discretization (37) by the same arguments as that of the
continuous variational formulation in the proof of Theorem 4.1. Thus we obtain so (38) for Lipschitz T".

The remainder of the proof is devoted to estimating the discretization error. To that end we have to strengthen
the stability estimate for the discrete solution under higher smoothness assumptions on I'. We proceed in two
steps. Firstly, we show all the bounds with Cy(3) = C|3;| for general 8;. Afterwards we prove the bounds with
Cy(B1) = C for |f1] > 1 under higher smoothness assumptions. Below we write C' for generic constants that
depend on f; only through 6.

Step (i): The L?(T')-norm of the bilinear form a; defined in (28) is bounded by C' max(1,|31]). So, with Cea’s
lemma [2] we can bound the discretisation error by the best-approximation error. This involves (39) and (40),
respectively, using the approximation error estimates of Lemma 3.6, the regularity results of Lemma 4.2 and
the fact that |31 = max(1,[B1]) min(1, |31[), because for I' € C*! by (31a) with s = 1 and Lemma 3.3

Nl ) < Cmin(L, |Bu]) [VoNF | g2y < ClBLF || (o)

and if I € C3! by (31c) with s = 3, j =

N

]l 2y < Cmin(L, |By]) Vo NF| ey < ClB1 [l @evry)y
and so we have for V;, = Sy '(T') and £ =1 or V}, = S9(T'},) and £ = 1,2 if I € C¢*11

ln — dnll2ry < ClBUR | F| (a1 ey - (41)

Step (ii): We assume |B1] > 1. Then the continuity constant of a; defined in (28) is bounded by C|3;]. To
avoid applying Cea’s lemma directly as in Step (i), which would introduce another power of |3;|, we decompose
¢ = ¢o + d¢po and ¢, = ¢o.n + 0o n. Note that ¢g = V=1(79NF) is the first term of the asymptotic expansion
in B! of ¢ (see (35) in the proof of Lemma 4.2) and ¢o.n € V3, the unique solution of

<V¢O,hv ¢Ih> = <’70NF7 d);z>v VQS;z € Vha (42)

is its discrete approximation. Due to the fact that V~' is a continuous operator H**/>(I') — H*~"/*(T) we
find for s > 0 that

||¢0||Hs—1/2(r) <C H’YONF||H5+1/2(F)~ (43)
By Cea’s lemma and Lemma 3.6 we have for Vj, = Sy *(T';) with £ = 0,1 and for V}, = S?(T';) with £ =0,1,2

160.1 = Goll 172y < C B2 G0 ey (44)

independently of |31].
In order to obtain an estimate in L?(I") we have to rely on suitable projections Qj, : L?(T') — Vj,:

o for V, =5y 1(I'y,) we choose Qy, as the discrete dual projection introduced in Appendix A,
e for V}, = SY(T'),) the simple L?(T')-orthogonal projection provides Q.

These projectors are continuous in L?(I') and can be extended to continuous mappings H~"/>(I'") — H~"/*(I),
see Lemma A.1. In addition, we employ the triangle inequality, inverse estimates for functions in V},, see [7,
eq. (5.13)], and (44):

|o.n — PollL2(r) < [(¢0,n — Qndo) — (do — Qndo)llL2(r)
< @u(¢o,n — d0)llL2ry + [P0 — @ndollL2(r)

inv. est. 1/s (44)
Ch™21Qn(bon — ¢o)l g-120y + Ch b0l ey < Chllgollmery.  (45)

Now, we observe that d¢g := ¢ — ¢ is the unique solution of

(Id+ p1V)d¢o = —do, (46)
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which agrees with (27) with 817 NF replaced by —¢o. Hence, by (31a), (43) for s > 0,
160l 41720y < CIB1I™ Mol savsvaey < C B MONF l gaesoragry (47)
Comparing (37) and (42) we observe that d¢g 5, = ¢n — o1, is the unique solution of
(00,1, @) + B1 (VIgo,n, 81) = — (Go,n: 1) s Vo), € Vi (48)
We cannot apply Cea’s lemma directly, as the right hand side of (46) and (48) are not identical. As they are

close, we can apply Strang’s first lemma [2, Sec. 3.1] and use the |3;|-uniform L?(T")-ellipticity (30) (here the
assumptions of Theorem 4.1 matter). We conclude

l6¢0,n — 0ol L2(r) < C(|51| inf |[von — 0¢o|lL2ry + [P0, — ¢0||L2(r))
PREVRL

(45)
< Ch (IBl6oll ey + lldollmecry) - (49)
Hence, in view of (49), (45), (43) and (47), we have for £ > 1

llén — dllz2ry < lldon — dollzacry + 1060.n — ddoll L2y < C B (1B1llI6G0l mreqry + lldollrecry)
<Ch' (||70NF||H21%+3/2(F) + ||70NF||H2+1(F)) < CRY|F|l (ar wemryy s (50)

if ' € C?**11 (see Lemma 3.3). Obviously, (50) provides the estimates (39) for Vj, = Sy *(T';) and £ = 1, and
(40) for V;, = SY(T',) and ¢ = 2.

To obtain an improved stability estimate for the discrete solution ¢ we set £ = 0. Then, in the same way as
above we obtain

[fn = @llL2y < CllvNFll gz ry,

and, using the triangle inequality and (31a) with s = 0, we arrive at

lonll < llon — B2y + Illz2ry < C (||70NFHH5/2(F) + HVONFHH%(P)) < C’héHl‘ﬂH(Hl(JR"\F))’ J

if I' € C?! which is (38). This completes the proof. O

4.3. Numerical experiments

We have studied the proposed boundary element method for the numerical example described in Section 1.4
examplarily for ITC-1-0 for which f; is given in (6). The convergence of the discretisation error in the mesh width
h is shown in Fig. 4(a) which confirms that the estimates of the discretisation error in h given in Theorem 4.3
are sharp. In Fig. 4(b) the relative discretisation error is plotted as a function of |8, which gives evidence of
the robustness of the discretisation error with |51 ].

5. FIRST KIND BOUNDARY ELEMENT FORMULATION FOR PROBLEMS OF TYPE II

5.1. Boundary integral formulation

Introducing the two unknowns ¢ = [y1U] and v = {yU} and using (26) we can convert (7a) into the

boundary integral equation
1% 1d 10) _ YoNF (51)
—1d ﬁl Id— ﬂg AF u 0 ’

Note that, in the limit 81, 82 — 0 the solution of (51) is ¢ =0, u = v NF.
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FIGURE 4. (a) Convergence of the discretisation error for the solution of the BEM for the
ITC-1-0 (which is of type I) for the model problem from Section 1.4 (8 = —70i). (b) The
accuracy of the discretisation is essentially independent of |31] (shown for mesh width h =
0.188).

Now, testing the first line with ¢’ and the second line with v’ we obtain the variational formulation: Seek
(¢,u) € H-/>(T') x H'(T) such that

Vo, d') +  (u.¢) = (WNF,¢'), Vo' € H(D), (52a)
— (¢, u') + By (u,u) + B2 (Vru, Vru') =0, vu' € HY(T). (52b)

Remark 5.1. The mized formulation (52) can be viewed as a saddle point problem with penalty term, see [2, § 4,
p. 138ff] for the case of purely real parameters.

In the asymptotic models the parameter By will attain only small absolute values, as it is scaled with the
sheet thickness d. Thus, we are going to derive stability estimates which are robust for asymptotically small
values, i.e., |f2] — 0. In the case of the BIE for ITCs of type II we face singular perturbations not only for
large |B1], as in the case of ITCs of type I, but also when |3s] is small. Hence, internal layers will emerge if T' is
not smooth, which leads to a blow-up of |u|g1 () for 82 — 0. Yet, as for the ITCs of type I, we obtain improved
estimates for smoother interfaces I'.

Theorem 5.2. Let |51] > 0 and assume there exists a constant 07 € (—m,0) such that 0 > 01 := arg(51) > 05.
Furthermore, let |B2] > 0 with Ref2 > 0, Im B2 < 0, and T' be Lipschitz. Then, the system (52) has a unique
solution ¢ € H=/*(T"), w € HY(T) and there exists a constant C = C(0%) independent of |B1], |Ba| such that

16l gr-172ry < C 1 Ell (b2 e\ s (53a)
lull 2y < Cmin(|B1] ™7, DIIF ||z @y s (53b)
gy <C 1Bl Il @)y (53c)

Proof of Theorem 5.2. The proof is done in two steps. Firstly, we proof ellipticity with a constant which depends
on 31 and o, then we obtain the stability estimates (53).

Step (i): By assumption on f1, 82 we have with 6 := arg(82) € [—7/2,0] and 6,,, = min(6,,62) € [-67,0)
that 0,,/2 — 01,0,,/2 — 03 € [#7/2,0). Choosing ¢’ = ¢ and «’ = % on the left side of (52) and summing (52a)
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10, /2

and the complex conjugate of (52b), multiplying by e , and taking the real part we get

Re (e 2 <<V</> @) +51||U||L2(1“ +62|U‘H1(F )>
= cos ( ) <V¢> q5> + |B1] cos (7 - 91) ||u||L2(F + |B2] cos( 2 ) |u|H1
> C(B1,82) (1012 -2y + ||u||%m). (54)

Hence, the bilinear form associated with (52) is H~/*(T") x H(T)-elliptic and a unique solution (¢, u) €
H~'*(T) x HY(T) exists.

Step (ii): Now we write C for generic constants, which may depend on 67, but not on |8;| or |f2|. As in Step
(i), choosing ¢’ = ¢ and v’ = @ in (52) and summing (52a) and the complex conjugate of (52b), multiplying by
el?m/2 and taking the real part we obtain

Ccos ( ) (Vo o) + |B] cos( 01) Hu||2Lz(F) + | B2] cos (9 02) |u|H1(F) Re( <70NF,$>) . (5h)

The H~"/?(T)-ellipticity of V, see Lemma 3.1, the Cauchy-Schwarz inequality and Lemma 3.3 lead to (53a).
Similarly, we obtain

uBrs ey < ClBal 0N Fll ooy 162y < C1Bal 0N Flm
and so (53c), as well as
ey < ClB I 0N Fll sy 9l -vsqey < CI81I N F
With the continuity of V by (19) and
lullzry < lull gy S IVl grewy + 10Nl ey < Clll g-12@y + 10Nl ey,

we get (53b). This finishes the proof. O

Lemma 5.3. Let the assumptions of Theorem 5.2 be satisfied, |B2| < C independent of |B1], and (¢,u) the
solution of (52). IfT' € C*!, then there exists a constant C independent of |81, |B2|, and F such that

Il -22(ry < CIF e ey (min(L, [B1]) + (2] 72) (56)
[all e ry < C Il ge\ryy min(| 8] 4, 1) (57)
ullmzry < CIFllmr@mryy B2l - (58)

If, furthermore, T' € C*', then with a constant C independent of |B1|, |B2|, and F,

[ull 1y < CIF |l (1 myryy min( 81|74, 1) (59)
If, in addition, T € C*1, then
ullzr2ry < CIF [l (s ey min(|B1] ™ 1)(1 + 82|71 - (60)
If, moreover, I' € C%1, then
11l -22(ry < CIF e ey (min(l, [B1]) + [B2) (61)
and, if T € C191, then
lull 20y < CIF |l @eryy (min(|B1] 1) + [Ba]) (62)

where, throughout, C stands for a constant independent of |B1|, |B2|, and F'.
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Proof. (i) To cope with the singular perturbation for |52] — 0 we use an asymptotic expansion for small 3,

¢~ do+ Bagpr + Bopa + ...,

) (63)
u~ ug + Bour + Byus + ...,
with one or two terms to obtain improved estimates, which rely on higher regularity of I'. The same idea has
successfully been employed in the proof of Lemma 4.2 earlier.
We define (¢g, ug) by

(Id+ B1V)po = BN F, (64a)
up = By g0 = —Veo +1NF (64b)
and (¢;,u;) for any j > 0 by
(Id+ pV)¢; = —Aruj-y, (65a)
Uj = ﬂfl (¢J + BQAF’Uzjfl) = —V¢j . (65b)

We point out that the structure of (64a) and (65a) is that of a boundary integral equation arising from Type
I transmission conditions, ¢f. (27). Therefore, we can apply the estimates in Theorem 4.1 and Lemma 4.2, to
obtain

H¢OHH—1/2(1") < C min(L, |B]) ||’YONFHH1/2(P)7 (66a)
Iéoll2qry  <C 1Bl 10N Fll gy (66b)
||¢0||Hs+1/2(r) < C min(1, A1) ||70NFHH2S+3/2(F)a s >0, (66¢)
||¢0||Hs+1/2(r) <C |61] ||70NF||H2S+1/2(r)a s> 1, (66d)
||UO||H5+1/2(F) < C min(|6:|7, 1)||’YONF||H25+3/2(F)7 5 >0, (66e)
||U0||Hs+1/2(r) <C ||70NF||H25+1/2(F)7 s>1, (661)
and for j > 1
||¢)j||H*1/2(F) < C min(|4:[71,1) Huj—lan/?(l")’ (67a
¢ill2@y <O llwj—1ll vy (67b

H(ijHs#/Z(r) < C min(|6:|7, 1)||Uj—1HH25+7/2(1")’ 520, (67c
H¢jHH5+1/2(r) <C ||Uj—1||H2s+5/2(r)a s=1. (67d
The terms u; for j > 1 are not defined like ug and Lemma 4.2 does not apply. However, using the continuity

properties of V given in (19) we obtain bounds for various norms of «; in terms of other norms of u;_;. Thus,
we find for j > 1

lujllgrey < Cmin(|8|7", DlvoNFl gas+2 12 py 5 (68a)
[l gos12ry < Cmin(|Ba] DInoNFl gastrciaa(py » s> 3 (68Db)
lwjll gposrory < C VN F st iz py » s> 4. (68c)

Furthermore, we define

N N
Son =0 By, Sun ==u—Y_ Buy, (69)
j=0 J=0
which solve
Vion + dun =0, (70a)

—8¢N + Brduy — BeArdun = By T Aruy . (70b)
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Writing the variational formulation of (70) with test functions §¢, and duy and summing the first and the
complex conjugate of the second equation, multiplying by e'®~/2 and taking the real part we obtain

cos (97’") <V6¢N,%N> + |B1| cos (97’” — 91) ||5UN||2L2(F) + |B2| cos (07’" — 92) ||Vp5uN||2L2(F)

i0m, .
< |B2|N+1 RG<GT <VF’LLN,VF(5’U,N>) .

The Cauchy-Schwarz inequality and the H~"/>(T)-ellipticity of V yield

bun |y < ClB2| N fun |y, (71a)
166N 1l 1721y < ClB2lN 7 Jun| oy, (71b)
1Billlsun L2y < ClBIN T fun| 21y, (71c)

and with (70a) and (19) we get
||5UN||H1/2(F) < C”(SQSNHH*I/?(F) < C|B2|N+1/2|UN‘H1(F)' (71d)
Furthermore, (70a) implies
160n |20y < Clldun|lmrry < ClB2| ™ |un|mr (1), (71e)
and (70a) with (71e) and (71c) give us

|Ardun]rzry < [BolN[Arun||zemy + 1B2) 106N Ip2ry + 82|~ Bl |dun | p2ry
< C (182N Hun ey + 182N lun | m2(r)) - (71f)

Applying (70a) once again we can assert that

166N |z ry < Clldun || a2y < C (1821 Hun |y + 1Bl Jun || 2 (ry) - (71g)

(ii) Next we aim for stronger estimates based on one term of the asymptotic expansion: Using the defini-
tion (65) of d¢y and duo, the triangle inequality, (71b), (66a) and (66e) for s = + we obtain, if I' € C%1,

&Nl zr-120y < NP0l =120y + 1660ll 1720y < M| Goll gr-1/2(ry + C|Ba] " uo| a1 ()
< (min(1, 81 + 182/ min(81 7%, 1) ) 1 Fl s ey

and (56) follows. Similarly, for u we obtain, using (71d) and (66e) for s = 1,

ull /ey < Mol gz ey + 0%l ey < lltoll ey + C|Ba|"*|uo| 1 (ry

< Cmin(|B1] ™ 1)1 + |8 ") I1F | a1 (o 1y
which is (57). Using (71a) and (66e) for s = 3 we obtain a bound for the H*(I')-seminorm of u
[ul g1ry < [uol g1y + [0uo| g1y < Cluo|grry < Cmin(|B:] 7, DI F| (e me\ry) - (72)
Now, using the first equation in (51), an elliptic shift theorem, (57) and (72), the second equation in (51) implies

lulrzey < 1Bal ™ (I19llz2cry + [Bulllullzzry) < 182l (Cllull ey + |Bulllull z2(ry)
< C|B|™ (min(|B1|71, 1) + min(L, [B1])) [1F |2 gy



17

and so (58) follows. With a bound for the L?(T')-norm of u,

(71c)
lullz2(ry = luoll L2y + [0uollLory < lluollzaqry + ClB1I ™ B2l lluoll a2y
< C (min(1B1 7 DI NFll oo ey + 1811 182l 00N F L yrssry ) < ClB 0N Fll sy,
where we used the triangle inequality, (66e) for s = 0 and for s = %, and if ' € C®! we conclude (59) using

Lemma 3.3 and (72).
From the definition of dug, the triangle inequality, and (71f) we obtain

ulz2(ry < |uolm2ry + [0uo| a2y < Cll|uoll g2y + 82|~ uolmry)

and, if I' € C*!, (60) follows, using (66e) for s = % and s = 2 and (59).

(iv) Finally we establish stronger estimates based on two terms of the asymptotic expansion. Of course, the
arguments will hinge on extra smoothness of I'. Now, using the definition (65) of d¢; and duy, the triangle
inequality, (66a), (67a) for j =1 and (68c) for j =1 and s = % we get, provided that I' € C61,

101l =121y < NPoll =172y + 1B2llld1ll gr—1720y + 1001l g1/
< Noll -z ey + 1B2llldrll 1720y + 18611l 172 py + 182l |t | 11y
< C (min(L, |B1]) + [B2) [|1F'll (e @m\ 1)y

which is (61). With definition of du;, the triangle inequality, and (71f) we obtain
[ul g2(ry < [uol 2y + |B2llut] g2(ry + [0ur| g2y < uol g2y + C(|B2l|ut] g2(ry + [walmr(ry)

and (62) follows, if I' € C1%1, using (66e) for s = 2, (68c) for j =1 and s = 2, (68b) for j = 1 and s =
and (59). This completes the proof.

av=

In view of the first equation in (51) we have as a direct consequence of Lemma 5.3 the following corollary.

Corollary 5.4. Let the assumption of Theorem 5.2 be satisfied, |B2] < C independent of |81], and (¢p,u) the
solution of (52). Then, with a constant C independent of |B1|, |B2|, and F,

8271, if T € 021,
101l () < ClIF @y - § min((Ba] =1 D) + 1271, ff T e O, (73)
min(|81|7", 1) + B, if T e 0101,

5.2. Boundary element formulation

Let V3, be a finite-dimensional subspace of H~Y*(T"), in particular Sy (') or S9(I'y,), and Xj, a finite-
dimensional subspace of H!(T), in particular S(I';). Then, the boundary element formulation reads: Seek
(¢n,Jn) € Vi x X}, such that

(Von, ¢+ (un, ) = (WNF,¢}), Vo), € Vi, (T4a)
— <¢h,u§1> + 51 <’LLh,’LL;.L> + ﬁz (Vru;“ VFU?J = O, V’U,?l S Xh. (74b)

The discretisation with Vj, = So_l(Fh) is not stable for 31, B2 — 0, see Figure 5, as the L?(I')-pairing of So_l(I‘h)
and SY(T'},) is not uniformly stable on H'/*(T') x H~"/?(T"). This choice for V}, may lead to large error in wy, if £
and [y are small. There is a simple remedy: As the solution and so ¢ are assumed to be smooth, an attractive
choice is V3, = SY(T';,), which immediately ensures a stable pairing.

Remark 5.5. Assuming standard choices of basis functions of the boundary element spaces, all blocks in the
linear system of equations arising from the Galerkin discretization of (74) are sparse, except for one. Hence,
the extra numerical effort involved in the BEM Galerkin discretization of models of type II compared to models
of type I is essentially negligible.
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FIGURE 5. The discretisation with V;, = S;*(T';) is not stable for 31,32 — 0: (a) The BEM
solutions uy for the same problem, but with d = 0, where 51 = B2 = 0, for illustration computed
with 10 intervals, (b) the comparison of the discretisation error as a function of the mesh width.

Theorem 5.6. Let the assumptions of Theorem 5.2 be fulfilled, |B2] < C independent of |S1], and V), C
H=*(T), X;, ¢ HY(T'). Then, forT' € C%', the linear system of equations (74) has a unique solution (¢, up) €
Vi X X, and there exists a constant C = C(arg(f1), arg(B2)) independent of |B1|, F, and Ty, such that

énllgr-172ry) < ClIF [l @e\ryy s
lunllzzry < Cl1BU™ 21 F |l ey (75)
lunl gy < ClB2 ™I F | (a2 oy -

If, furthermore, Vi, = X;, = SY(T') and T, belongs to a quasi-uniform family of triangulations, then

||uh||H1/2(F) <C 1 F | (z2 e\ (76a)
lunllr ey < C(min(Ba] =72, 1) + [B2] =) I F Nl ooy - (76b)

If, in addition, T € C*' then

lénll -2y < C(min(1,|B1]) + 1B2|2) 11 Fll 1 ey (77a)
lunllz2ry < C(min(|B1]~" 1) + |Ba ) | Fll 1 @1y » (77b)
lunll ey < CNF Nl @y - (77¢)

If, moreover, I' € C*! then

unll ey < C(min(|B1] ™, 1) + 182 72) |1 F |l (2 oy (78a)
l¢n = &l g-1200y < C(1B2| ™  min(|B1| 7", 1) + |81 ) B | Fll 2 @y (78b)
Jwn, —ull gy < C(min(|B:]74 1) + [B1]721B2]) (1811772 + 1B2]=72) B2~ R F || (a1 o1y (78c)

and, if T € C%', then
16n = Sll 1720y < C(L+[B1]”2[B2) P | Fll ey (79)
and, if T € C'31, then

lun — wll ey < O (min(181 74 1) + 1B2] + 181V B2 *) B | Fll ars oy (80)
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with C independent of |51], |B2|, F, and h.

Proof. Due to the H~"/2(I") x H(T)-ellipticity of the bilinear form underlying (74), see the proof of Theorem 5.2,
and the fact that Vj, x X;, ¢ H=/?(T') x HY(T'), the well-posedness of (74) is immediate, and (75) follows.

For Vj, = X}, = SY(T';,) the two spaces provide a uniformly stable L?(T)-pairing. For ¢, given, (74a) can be
regarded as an equation for uj, and so we get

lunll gz oy < CUlOnll 1200y + 10N Fl e ) < ClIFllar @nyy (81)

which is (76a). With (75) and for T € C%! (76b) follows.
For the remainder of the proof we restrict ourselves to X; = Vj, = S?(I';). Following the proof of Lemma 5.3,
in order to show stronger estimates for smoother I' we use, for N > 0, the decompositions

N

N N N
6= Bloj+oon, u=Y Bluj+oun, ¢n=> Bldin+toonn  un= D Bujn+dunn (82)
: =

Jj=0 j=0 7=0

The terms ¢;, u;, d¢n, and duy are defined by (64), (65) and (70), respectively. The boundary element

functions ¢; p,u;,n € Vi will be specified below.
(i) Estimates of ¢, and ug . The approximation ¢g ; to ¢g is solution of (37) and we have

(38

=

rec? = [do.nllr2ry < € min(1, [B1]) [|1Fl (1 vy (83)
41),(50) .
rec®! (1 [¢0,n — ¢ollr2ry < C min(L, [B1]) A [z @ovry) (84)
(40) .
I eCst = [do,n = ¢oll L2y < C min(1, |B1]) h? || Fll a1 gmry) - (85)
The function g, € Xj, is the unique solution of
(uo.n,up) = — (Voo up) + (YoNF,up) = 87 (Gon,up,),  Vuj, € X (86)

Owing to the H!(T')-stability of the L?(I")-projections onto S?(T';,) for quasi-uniform families of meshes [?], plus
the bound on ¢g 5, from (83) and Lemma 3.3, we have, if I' € C*1,

[uo,nllmr @y < Cligonllzwy + INoNF ) < CIF| (2 ®er)y - (87)
As X}, = Vi, we have ug , = B, "¢o.n and so (83) implies, if I' € C?1,
[uo,nll 2y < C min(|B1| ™4 1) [|F | e oy - (88)
As ug = B *¢o and with (85) if T € C®! we can assert that
luo,n = wollz2ry < € min(|B1|™1, 1) B2 [|F |l 1 gy - (89)
Similarly to the proof of Theorem 4.3 we have with the L?(I')-projection Qy, : L*(T') — V4, if I € C*1,

[wo,n — wollz(ry < [[(uo,n — Qnuo) — (w0 — Qnuo)||mrry < |Qn(uo,n — wo)llai(r) + [luo — Qnuol|m(r)
<cn! 1Qn (w0, — u0)||Lz(p) +Ch HUOHHQ(F) <C min(|51|_1, 1) h HFH(Hl(R”\F))’y (90)

where we used an inverse inequality, the continuity and approximation properties of @5, and a bound on

l|uo || zr2(ry by (66€) for s = 3. Finally using the triangle inequality, (90), (66e) for s = 2 and Lemma 3.3 we

observe if ' € C%!

llwo,nll ey < ol ey + l[wo,n — wollgr ey < C min(|B1| ™1 DI[F || @e\ry) - (91)
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(ii) Estimates for ¢;; and u, . The approximations ¢, € Vj, to ¢, are solutions of
(B.ns D) + BV s &) = (Vrwj—1,n, Vrdh) Vo), € Vi . (92)
We can rewrite
(fo> @) = (Vruj—1,n, Vrdy) = (Aruj—1,8}) + (Vr(uj—1n —uj-1), Vrdy) Vo), € Vi . (93)
Using an inverse estimate we conclude that
(Vr(uj—in —uj—1), Vidh) < luj—1n — w1l m @ |oh |l mey < Ch Huj—1, — wjma|lmmy|oh 2y, (94)
and so we can bound the right hand side of (92) by
I fo5ll 20y < luj—illay + Ch™Huj—1p — wja| ey, (95)
and, hence, we can bound
¢5.mll 2y < C (luj-1llmzey + b7 uj—1.0 = uj—1lar)) - (96)

For j =1 we have with (90) an estimate for the second term on the right hand side of (96) and with (66e) for
s = 3 we obtain if I' € C%!

é1.nllL2ary < Cmin(|B1]| ™, D[ F ||z revryy - (97)

To obtain estimates for ¢; 5, j > 2 we have to define u;; € Xj, for j > 1, which we do in in analogy to the
definition of ug , by

(wjnsup) = = (Vdjn,up), Yuj, € Xp. (98)

As u; solves a similar equation, but with V¢; instead of V¢, on the right hand side, we find using Strang’s
lemma, the best-approximation properties in X; = S%(T,),

nf o, — ;| gy + IV (@50 — 05) L (r))

i
v €Xp

< C(hlujllg2ry + |65.0 — &5l 2(r)) 5 (99)

llwjn — sl gy < O

and so we need to estimate |¢;n — ¢;llz2(ry for j > 1. The equation defining ¢; is (27), where Sy NF is
replaced by —Auwu;_1, and so by (50) for £ =1, (66f) we obtain

15,0 — @illL2ry < Chl|Auj 1l gy < Chlluj—1ll gy (100)
and inserted into (99),

wjn = will ey < Ch(llugll ey + lwj-1ll gre )
< Omil’l(|ﬂ1|71, 1) h(||rY0NF||H21«3+3/2(F) + ||70NF||H2J'-3+3/2(F)) (101)
< Cmin(|B1] ™4 1) B F | (1 mry (102)

if I € C?-3+1.1  Here, we have used (66e) or (68b) for s = 2 and s = 3 and Lemma 3.3. Now, inserting (102)
into (96) we find for j > 2 and if I € C(@' "' 3+1):1

165,02y < Cmin(|B1|™ DI|F || g2 ey - (103)

Immediately from (98), we find, for j > 1,

lwjnllz oy < CllgjnllLzry, (104)
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and so the bounds (97) and (103) apply to [l 1 (r) as well. Finally, applying (?7?) for £ = 2 and (66e), and
Lemma 3.3 we find if [ € 02’ 77+1).1

650 = bjllz2ry < Ch*[[Aujill grya(py < Ch2|luj-ll gassapy
< CR*min(|B1|™ DI NF | yoi+t 20y < C R min([B1] = DIIF ||y - (105)

(iii) Estimates for d¢n ; and duy . The last terms in the decomposition of ¢ and u solve (see (70)): Seek
(Ounn, 0ON ) € Xp x V)

(Voonn, dn) +  (Ounn, dr) = 0, V), € Vi, (106a)
—(8dNn, up) + B1 (Sunp, up) + B2 (Vrdunp, Vruy) = —B2 (Vrunp, Veuy),  Vuy, € Xp. (106b)

Choosing ¢) = ¢y, and uj, = dun, in (106) and summing (106a) and the complex conjugate of (106b),
multiplying by e and taking the real part we obtain

10,

COS (07’") <V5¢N7h’%N,h> + |52| COS (97"‘ — 92) |(5uN_,h|%,1(F) S Re(ﬂg € <VFUN,ha VFENJ») .

Hence, by (87) for N = 0 and I' € C?%!, (104) and (97) for N =1 and I € C%!, or (104) and (103) for N > 1
and I € C2" ' 3+1.1 ghat

lounnlairy < Clunalma) < CIF|(a@e\ry)y (107a)
16651117172y < ClB2llun pler @yl dunplm )y < ClBAIF IE g geryy - (107b)

If §¢n 1 is known equation (106a) defines duy j, and clearly

[8unnll 2y < ClIVEdNallzary < Clodn a1y < ClBal 2 I|F |l (s oy - (107¢c)

The proof for the discretisation error estimate runs parallel to that for type I, see the proof of Theorem 4.3.
The energy norm related to the bilinear form in (106) is defined by

1(60nh un w)I? = 166N 1117170y + 1BelldunnlZary + |BalldunnlFr (r)-

In this norm the bilinear form is elliptic and continuous with constants depending on ; or B2 only through 67.
Applying Strang’s lemma [2, Ch. III, Thm. 1.1] we therefore obtain,

60N, — 5¢N||H—1/2(r) + |51|1/2||5UN,h —oun|r2(r) + |52|1/2|5UN,h — dun|mi(r)

<C inf -9 - 2|op, — 6 V2||op, — &
< (wh,uhl)relvhxxh(”% ON -2y + 181 lon — Sun [l 2oy + B2 [lon — Sun || (ry)

+ C|Ba| " |un,n — un| g ()

< Ch (66| g2y + 1811 10un | vy + 82| 7 0un || 12 (ry) + ClB2]"*|un,p = wn|mr(ry-
Using (71g), (71a), (71d), (71f) we bound

I8N I /2oy + 1B 72 16un | e oy + 182l 72| 6un || a2y
< (18N Hunlmr oy + 1Bl M un a2y + 181172182V fun | oy + 1811772182V u | mr2(ry)

and so for N =0ifI" € %!
1660 gr1/2(my + 181721800 | rrv oy + 1821 I|8wo | 2y < C(182] " min(|B1] 7", 1) + [B1] ) | Fll ar vy
and for N > 1if T € 0"-3+1).1

10Nl oz (ry + 1B1]2|6un || 1y + |82l 21 6un |2y < C (18211 + 181 21BN | F |l ey -



22
Hence, using (90) we obtain if I' € %!

10¢0,n — 000l gr-1/2(ry + |B1]"2(|6u0,n — duol| L2 (ry + |B2]/2[0uo,n — Suol
< O(1B2|  min(|B] 71 1) + 181l ) B | Fll s ey (108)

and using (102) we find for N > 1if ' € C2" 3411

16650 = 0DN | 1172y + 181" Sun . — Sunl2(ry + |Bal 72 [0un h — Sun | ry
< (|82 min(|B1] 71, 1)) + BN+ 18] 2182 ™) R F | (2 oy - (109)

(iv) Estimates for ¢ and up. Now, we can use the decomposition of ¢, and the estimates (83) and (107b)
to bound the discrete solution ¢y, if I' € C?! as

6nll oy < Ionllg oy + 1601l —oy < Cmin(L, 1811) + 1213 ) I Fll s oy
which is (77a). Similarly with (88) and (107c) we get for I' € C%!
lunllz2ry < lluonllzzy + I10uonll L2y < C(min(|81] ", 1) + B2 ") [ Fll (a1 @y »
which is (77b). In the same way using (87), (107a), (107c) we get for I' € %!
lunll oy < lwonllmr @y + [10wonl ey < CIF|r@eryy

which is (77c). We obtain (78a) as (77c), while only using (91) instead of (87).
Furthermore, we can bound the discretisation error as

6 = 0l g-112(ry < llPo.n = dollr—r2(ry + 1000 = %0l y-1/2(r)

and if T € C*! the estimates (84) and (108) and the fact that min(1,|8;]) < |B1|”? result in (78b). Moreover,
the estimate (78c) is obtained in the same way using (90) and (108).

To obtain estimates for the discretisation error for ¢, which are robust even for S, — 0, we use one more
term of the expansion, which gives

lén — ¢||H*1/2(F) < li¢on — ¢0||H*1/2(1") + |B2lllp1,n — ¢1HH*1/2(1") + 110610 — 5¢1HH—1/2(1") )

and so (79) when we use (84), (100) for j = 1, (66f) for s = 3 and (109) for N = 1. To obtain an estimate
for the discretisation error of uy, which does not blow up for f2 — 0, we have to take another term in the
expansion,

lun =l ey < lluon = woll oy + 1B2lllwrn — willmrs ey + 1B lluzn — well ey + [duz,n — duzllmry
and using (90), (102) for j = 1,2 and (109) for N = 2 we obtain (80). This completes the proof. O

5.3. Numerical experiments

We have studied the proposed boundary element method for the numerical example described in Section 1.4
and the NTFS condition by Nakata et al. [1 1] for which 8; and fs are given in (8). In this example, in which £,
and 3, are not too small, we observe for V;, = S 1(I'y)) the convergence orders given by the best-approximation,
which are 1 for uy, in H*(I') and 2 for ¢, in H~/2(I), see Figure 6. For Vj, = S?(I';) the behavior of the
discretisation error as a function of the mesh width A is also shown in Figure 6. The results confirm that the
estimates of the discretisation error of uy in h given in Theorem 5.6 are sharp.

Note that the evident quadratic convergence of ¢y, is better than the predictions of our theory. We believe
that, for all b > h*(B;) for some h*(f2), which decreases with |3s|, the discretization error behaves like O(h*/?),
that is, like the corresponding best-approximation error for V;, = S{(I',). Yet, the low order polygonal boundary
approximation of I' may limit the order of convergence.

In Fig. 7 the relative discretisation error for Vj, = SY(I';) is shown as a function of |3;] for two different
values of . The data confirm that the relative discretization error enjoys the same moderate dependence on
|B1] and |B2| as the exact solution. Thus we have strong evidence of the robustness of the discretization with
respect |(1] and |B2].
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FiGURE 6. Convergence of the discretisation error for the solution of the BEM for the NTFS
model (which is of type II) for the model problem from Section 1.4 (81 = —70i, B2 = 3-1073).
The H—/? (T')-norm is computed via the single layer potential operator for the L2-projection
onto Vi s on the mesh Iy, for which each interval of I'j, has been refined four times.
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FIGURE 7. The relative discretisation errors for the solution of the BEM (Vj, = S3(T;,) with
h = 0.188) for the NTFS model (which is of type II) for the model problem from Section 1.4
as a function of the model parameter |31|, and for two different f5. The H~7/?(I')-norm is
computed via the single layer potential operator for the L2-projection onto Vij1s on the mesh
'/, where each interval of I'y, is four times refined.

6. SECOND KIND BOUNDARY ELEMENT FORMULATION FOR PROBLEMS OF TYPE III

6.1. Boundary integral formulation

In comparison to the type I problems the jump of the Dirichlet trace does not vanish for the problems of
type III. Taking the mean Dirichlet and Neumann traces of (13) we get with the relations (3) that

{0U} ==V U]+ K [voU] +7NF, (110)
(U} = =K' [nU] =W [yU] + 1 NF (111)



24

and inserting into (9a) and (9b) we obtain ¢ = [v1U], j = [vU] from the boundary integral equations

Id+pV —HhK ¢\ _ (BioNF (112)
BK'  BiBtId+BW)\j)  \BmNF)’

where we multiplied the second equation with (15 1 Note, that in the limit 8; — 0, where B1B5 1 does not
converge to zero, the solution of (112) is ¢ =j = 0.

Now, testing the first line by ¢’ and the second line by j we obtain the variational formulation: Seek
(¢,7) € L*(T") x H?>(T') such that

(6,0) + 1 (Vo,¢') — B (Kj,¢') = B1 (noNF, ¢y, V¢' € L*(T), (113a)
Bi (K¢, i)+ BBt (4, ') + B (W3, 5"y = Bi (mNF, 5y, V4’ € H/*(T). (113b)

We may assume that the parameter 83 can attain only small absolute values as it is scaled with the sheet
thickness d. The BIE for ITCs of type III are not only singularly pertubed for large |31] as those for ITCs of
type I, but they are also singularly pertubed if |f3| is small. Hence, there will be internal layers if the sheet
mid-line or mid-surface I is not smooth enough, which leads to a blow-up of |[33\*1||j||H1/2(F) for B3 — 0. For
sake of simplicity and unlike in the case of the ITCs of type I and II we are not going to derive sharper estimates
in |51] and |Bs| for smoother interfaces T

Theorem 6.1. Let 0 < |B1], 0 < |B3] < C with a constant C independent of |S1| and assume there exist
constants 0%, 05 € (0,7) such that 0 < 6y := arg(B; ") < 0% and 0 < 03 := arg(B5 ') < 05. Furthermore, let T
be Lipschitz. Then, the system (113) has a unique solution ¢ € L*(T"), j € H/*(T') and there exists a constant
C = C(67,65) of |B1l,|Bs| such that

[¢ll2ry < ClBIE N (zrmvry) s I3 22y < CUF (e gn\ry) - (114)
()
Furthermore,
18l r-172(py < € min(L, |Ba]) [[F'l| zrr oy I3l 2y < C1Bs"* |F |l (a1 @1y - (115)

Remark 6.2. For any 0 < |¢] < 0o and 0 < d < oo the assumptions of Theorem 6.1 are satisfied for the
impedance boundary conditions MB and ITC-2-1 (neglecting curvature).

Proof of Theorem 6.1. Similarly to the proof of Theorem 5.2 we first show ellipticity with a constant depending
on the parameters, here 51 and (3, and then the stability estimates.

Step (i): By assumption on 8; and B3 we can define 6 := —%max(ﬁl,ﬂg) € (=%,0), and 0; 4+ 0,05 + 0 €
(=%, %). Choosing ¢' = ¢ and j' = j in the left sides of (113), summing (113a) and the complex conjugate

of (113b), multiplying by ;' e’ and we obtain

Re (€ (B10132cry + (V6,8) + B ill3ary + (W5.7)))
= [B1]7" cos(61 + )@l T2y + cos(8) (V, @) + |Bs| ™" cos(B3 + O) ||l 72(ry + cos(8) (W, J)
> C(B1, B3) (1603 2(ry + 13120 )
where the terms with K and K’ cancel each other since (Kj',¢') = (K'¢/,j’) for all ¢/ € H-/*(I), j/ €
H'/*(T'). We also used the symmetry of W which is (Wj', ") = (Wj",j") for all j/,j" € H'>(T"). Hence,
the product bilinear form associated to (113) is L?(I') x H'/?(T)-elliptic by Lemma 3.1 and a unique solution
(¢,7) € L*(T') x H*(T") exists.

Step (ii): In analogy to the proof of Theorem 5.2 we write C' for generic constants, which may depend on 67,
0%, but not on |B4| or |53]. Applying the same steps as in Step (i) to both sides of (113) we obtain

Re (e (87 161320y + (V6, @) + B3 ill3ecry + (Wi 7)) )
= |81 cos(6y + 9)”(15”%2(1“) + cos(0) (V, ) + |Bs| " cos(63 + 9)||j||2L2(F) + cos(6) (W3, 5)
< |Re(e (voNF,$))| + ‘Re(ew(’hNF,D)‘ S CIFl(ar @m\r)y (||¢||H—1/2(r) + ||j||H1/2(F)) )
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where we used the Cauchy-Schwarz inequality. Applying Young’s inequality and Lemma 3.3 we obtain
||¢||H—1/2(F) < ClF ey

and the stability estimate for ||j[| ;12 in (114). As consequence we find the estimate for ||j||2(r) in (115).
Rewriting (113a) as equation for ¢

(0, 8") + B (Vo,¢) = b1 (yoNF + Kj, ¢y, V¢ € L*(T),

both estimates for ¢ follow (29). This completes the proof. O

In the case of higher smoothness of T' the solution (¢, j) of (112) possesses higher regularity, which we are
going to state in the following lemma, where we do not study the dependence of constants on the parameters

B1 and .

Lemma 6.3. Let the assumption of Theorem 6.1 be satisfied and let T € C™+V1, » > —1. Then for any
0 < s<r+1 there exist constants Cs = Cs(1, B3) such that

||¢HHs+1/2(r) + ||j||Hs+1/2(r) < CsHFH(Hl(R"\F))'-
Proof. In this proof we denote C' constants which may depend on |S;| or |83]. We may write (112) as

¢=p(=Vo+ Kj+yNF), (116a)
Wij=-K¢— B3+ NF. (116b)

As T is Lipschitz (116a), (19) and Theorem 6.1 imply

161l /20y < ClUF Nl ey - (117)
If ' e CH1 (116b), (117), (19) and Theorem 6.1 imply

130l g2y < CIE N (rr vy
and in view of (116a) we have

161l 3720y < ClIF e ey -

By a bootstrapping argument we find the statement of the lemma. O

6.2. Boundary element formulation

Let V;, be a finite-dimensional subspace of L?(T'), in particular Sy ' (T';,) or S?(T';), and W}, a finite-dimensional
subspace of H/?(T), in particular S?(I';). Then, the boundary element formulation reads: Seek (¢n,jn) €
Vi, x Wy, such that

(D, &) + B (Vn, @) — Br (Kjn, d1,) = B1 (WoNF, @), Yy, € Vi, (118a)
Bu (K b, i) + BiBs ™ (ny dh) + B (Wiin,h) = B (NF, i), Vi, € Wh. (118b)
Theorem 6.4. Let the assumptions of Theorem 6.1 be fulfilled and V,, C L*(T'), W), € H/*(T). Then, the linear
system of equations (118) has a unique solution (¢p,jn) € Vi X Wy, and there exists a constant C = C(B1, f3)
such that
18nllz2ry + lnll grre @y < CIF || 2 @mryy (119a)
IfT € CY' and Vi, € {Sy 1 (Th), SY(Th)}, Wi = SY(T'y), then

lén = dll2y + 7n = Jllgrery < CAIF| (2 @e\T)) - (119b)
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FiGure 8. Convergence of the discretisation error for the solution of the BEM for the MB
(which is of type III) for the model problem from Section 1.4 (8; = 1.2 — 70i, B3 = 3- 1073 +
5.2-107°i). The H'"*(T')-norm is computed for the L2-projection onto Wi/, on the mesh I'n/,
where each interval of I';, is refined twice.

IfT € C*! and Vi, = W), = SY(T'y,), then

lén = Dl 2y + lin = 31l ey < CRPIF || i@y - (119¢)

Proof. The well-posedness follows similar to the proof of Theorem 6.1. The remainder of the proof is for the
proof of the discretisation error, which can be bounded by the best-approximation error by Cea’s lemma

lén = dll2y + ln = Jllgrery < € (wmkh%g/hxwh (Wh = ¢ll2y + [kn *j”Hl/z(p)) .

We distinguish two cases for different smoothness assumption on I'.
(i) Assume that I' € C%'. Then, by Lemma 6.3 we can assert that ¢ € H'(I') and j € H”*(I') and so
Lemma 3.6 implies for both combinations of discrete spaces the estimate (119b).
(ii) Assume that T' € C*'. Then, by Lemma 6.3 we can assert that ¢ € H”*(T') and j € H?(T) and so
Lemma 3.6 implies for Vj, = W), = S?(T'},) the estimate (119c).
This finishes the proof. U

6.3. Numerical experiments

We have studied the proposed boundary element method for the numerical example described in Section 1.4
examplarily for the MB condition by Mayergoyz et al. [9, 19] for which 8 and S5 are given in (10). The
convergence of the discretisation error in the mesh width A is shown in Fig. 8 which confirms that the estimates
of the discretisation error of ¢, for V}, € So_l(Fh) and of j, for Vj, € SY(T';) in h given in Theorem 6.4 are
sharp. Note that the evident quadratic convergence order 2.0 for ¢;, € S(T',) in L?(T") and 1.5 for j;, in H/*(T")
in the case Vj, = S 1(Fh) are better than the predictions of our theory. We believe similarly to Sec. 5 that we
observe the best-approximation error due to the smallness of |33] and that the asymptotic convergence rates
will be reached for much smaller mesh widths.

7. FIRST KIND BOUNDARY ELEMENT FORMULATION FOR PROBLEMS OF TYPE IV

7.1. Boundary integral formulation

As for the type III problems the jump of the Dirichlet trace is not zero, but the extra terms do not allow for
a second kind formulation and we have to keep the unknown u = {vU?} as in the first kind formulation for the
type Il problems.
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We start by expressing {7, U} using (12b)
(MU} = B35 — B3 Paru. (120)

Taking (110), inserting (120) into (12a) and into (111) we get the mixed system

|4 -K Id ) YNF
K' W+ p;'Id — B3 Bk il =|mnNF (121)
—Id  —B3'Bar  BiId+ BBk — BeAr ) \U 0

To give a meaning to the (mean) curvature £ we need to assume I' to be C?, such that [|s|| pe )y < C.

We proceed and analyse the two (distinct) cases B2 = 0 and |B2] > 0 together in this section, where we
highlight only the differences. The natural space for u in case of 3y = 0 is H'/>(T') where for |3 > 0 we need
to search for u € HY(T'). Let us therefore define the Sobolev spaces

HJ(T) = {v e H/*(L): \/B2Vrv € L)} € L3,(D) == {v e L*(T) : \/B2Vrv € L*(T)}

with the B>-dependent norms defined by

lvll?, s = [Vl + 1Bellvli ) I0l1Z2, ry 1= 0l ey + B2l ey

(F)
Note, that the spaces H;QQ(F), L3,(T) and H'(T) are equivalent for |Gz| > 0 fixed.

Now, testing the first line by ¢’, the second line by u’, and the third by 7’ we obtain the variational formulation:
Seek (¢, j,u) € H~/*(T") x H*(T) x H}”(T) such that for all (¢/,5',u’) € H~/>(T") x H'/*(T') x H*(T)

(Vo,¢) —(Kj,¢") + (u, ¢") = (WNF,¢'),
(122a)

(K'¢,5")y = (Wi, ")+ B3 (4,5") + B3 " Ba (ku, §') = (nNF,j'),
(122b)
— (¢, ') — B3 B (Kj,u) + By (u, ') + B3 BF (KPu,u') + B2 (Vru, Veu') = 0. (122¢)

Remark 7.1. In absence of tangential derivatives, i.e., Bo = 0, which, for instance, occurs for ITC-2-1, we
may derive a system with the unknowns ¢ and j only in a similar way as (112). This would lead to

Id+ BV — By K' =B K — ByxW O\ _ (B1yoNF — By NF
B3 K' 4 BakV Id+ B3W — Buk K i) \BsnNF + ByryoNF ) *

Besides the issue of a proper evaluation or approximation of the operators KV, kK, kK’ and kW, the system
cannot be used with the space L*(T') x H'/*(T) for which the duality product (kW j,¢') is not well-defined. For
the space H'*(T') x H'*(T') the associate bilinear form is not elliptic and an answer to the question of well-
posedness is not obvious. Alternatively, one may reduce (121) by solving for ¢ using its second equation, which
gives

( Id+ BV + 33851 VK2 —K — BufB5 'V ><u)_(%NF)
BiK' + B3P ' K'k? — BBy 'k W+ B3 Id— B3B8 ' K') \j)  \mNF)"

Here, we would have to discretise the operators Vi, Vk?, K'x and K'k?. It is not straightforward to see if the
system is well-posed in H'/>(T') x H'/*(T).
We are going to derive stability estimates for I being Lipschitz and piecewise smooth and will as for the ITC

of type III for sake of simplicity not derive sharper estimates in |S1|, | 82|, | 83|, and | 84| for smoother interfaces T'.

Theorem 7.2. Let I' be Lipschitz and ||k||pry < C for some constant C. Furthermore, let 0 < [B1],0 <
|B3] < C, where C' does not depend on |1, Ref2 > 0, Im By < 0, assume there exist constants 05,0% € (0, )

such that 0 < 0y := arg(By) < 0% and 0 < 05 := arg(f3 ") < 0% and for 0 := —3max(61,03) € (—%,0) that

B4l (cos(05 + 0) + D)sl|7 (1) < 5151]]Bs] cos(0F + ) cos(05 + 0). (123)
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Then, the system (122) has a unique solution (¢,u,j) € H~/>(T) x H;/; () x H'?(T') and there exists a constant
C = C(67,63) independent of |B;], i =1,...,4 such that

1112y + 131 vz oy + lll vz oy + 1Bl [l iy < € [l zrr Re\T)) 5
I3l L2y < CBs[7? [l a1 Ry s (124)
||u||L2(p) < Cmin(wl‘_lh, 1) HFH(Hl(Rn\F))/.

Remark 7.3. For any 0 < || < 00 and 0 < d < oo the assumptions of Theorem 7.2 are satisfied for the
impedance boundary conditions ITC-1-2 and ITC-2-1 if ||k||p~(r) or d/§ is small enough. The larger d/é the
closer the angles 01, 05 approach m and so cos(01+8), cos(03+8) approach zero, which restrict the well-posedness
to small curvatures k.

Proof of Theorem 7.2. Different to the previous models the bilinear form is not elliptic in the associated space,
which is here H~"/2(T) x H;/j(r) x H'/*(T"), but only in H="/*(T") x L% (I') x H"/*(T). Therefore, we start by
proofing stability and, hence, uniqueness, and finish by observing that the associated operator is Fredholm of
index 0.

Step (i): By assumption on 3> we can define 6, = 0 if 8 = 0 and 6 := arg(B2) € [0, ] otherwise, and we have
01+06,02+6,05+6 € (—3,%). Choosing ¢' = ¢, j/ = j and v’ = ¥ in (122), summing (122a) and the complex
conjugate of (122b) and (122c), respectively, multiplying by e and taking the real part we obtain

1 e ey (100 -1vzry + 1l gz cey + 1831 721l zaey + 1Bal 2 llull 2y + 182] 7 ul )

> Re(e”((30NF, 6) + (MNF.7))) = (125)
Re(e ((V6.6) + Bulllary + Baldlir ) + B3 il3aqry + (W3.7) + B Billwul Faqr) — 265 BaRe (5. m)) )
> cos(0) (Vg, @) + |B1| cos(b + 0>||U||%2(F) + | 32| cos(62 + 9)|u|§{1(r) (126)

+ 137" cos(85 + 0)[|j 172y + cos(8) (W3, )
2
—1 2 2 1 —1 - (12
— B3| [B4] (1 + COSW?»W) [kullz2ry — 31831 cos(O3 + O)| 7l 72r
e C(H‘b”fq—lm(p) + Hj||§{1/2(1") + 18317 312y + Bulllull 22y + |B2llulFa 1))
. _ . 2
> C(H¢>||H—1/2(r) + HJ||H1/2(F) +18s] I/QHJHLZ(F) + |ﬁ1|l/2Hu”L2(F) + \52|1/2|U\H1(F)) )

with a constant C' independent of |§;|, 7 = 1,...,4. The terms with K and K’ cancelled each other since
(Kj',¢') = (K'¢',j') forall ¢/ € H=/2(T), j' € H*(T"). We also used the symmetry of W which is (W', j) =
(Wj",j") for all j,j" € H'>(T), Young’s inequality, the H~"/*(T")-ellipticity of V, the H'*(T")/C-ellipticity of
W, and assumption (123), Hence,

161 iz py + 1l vz ey + 18312113l 2oy + 18172 Nl 2y + 182l oy < ClIF Il @y~ (127)

It remains to show the bound on [[ul[ 12y, which we get in view of (122a), (127) and (19)

||“||H1/2(r) < ||'YONF||H1/2(F) + ||V¢||H1/2(F) + ||KjHH1/2(F) < ClF |l arm\ryy -

Step (ii): Let us call a the bilinear form associated to the variational formulation (122), where the complex
conjugate of the second and of third equation are added to the first. Let us furthermore denote the negative
H'?(T)-inner product as

k((¢7]7 U)Tv (¢/7jI7uI)T) = _(uaul)Hl/2(1")'

Then, H~"/*(T) x H'/*(T) x L3, (T')-ellipticity of a implies the H~"/*(T") x H"/*(T) x H;/j(r)-empticity of ag :=
a — k. Hence, the associated operator Ay is an isomorpishm. As H'/? (I") is by the Rellich-Kondrachov theorem

compactly embedded in L?(T') [1, Chap. 6] the operator K associated to k is compact. So, the operator
A = Ay + K associated to a = ag + k is Fredholm with index 0 and by the Fredholm alternative [12, Sec. 2.1.4]
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the uniqueness of a solution implies its existence. As we have shown stability, and so uniqueness, in Step (i) we
can assert the statement of the lemma. O

In case of higher smoothness of T' the solution (¢, 7,u) of (121) possesses higher regularity, which we are
going to state in the following lemma, where we do not study the dependence of constants on the parameters

Biji=1,...,4

Lemma 7.4. Let the assumption of Theorem 7.2 be satisfied and let T € C™+11, > —1. If B3 = 0, then for
any 0 < s <r—+1 there exist constants Cs = Cy(B1, B3, B4) such that

101 gro—sr2 ey + 13l =12y + 1ll gre=rizry < Csl| Fll e oy -
If |B2| > 0, then for any 0 < s < r +1 there exist constants Cs = Cs(S1, B2, B3, Ba) such that
101 gro=sr2 ey + 13l =12y + 1ll gramrizry < Csl| Fll e ey -
Proof. In this proof we denote C' generic constants which may depend on |3;], j = 1,...,4. Note, that
Sk, Vi(k?) € L®(T) for 0 < s <7 —1.

The proof divides into two cases, for S2 = 0 and |S2]| > 0, where we first show one step of an iteration in s.
Case By = 0: We may rewrite (121) as

¢ = B3 ' BuKj + Bru+ B3 ' Bircu, (128a)
Wij=—-K¢— B35+ B85 Baku+ v NF, (128b)
u=-Vo+ Kj+yNF. (128¢)

If T' € C3' then k%, Vr(x?) € L®(T) and so k?u € H/*(T). Using (19) and Theorem 7.2 the right hand side
of (128a) is in H'/?(T), which implies ¢ € H/*(T"). Using ¢ € H7*(T') we can assert that the right hand side
of (128b) is in H/?(I") as well, and we find using (19) that j € H”>(T'). Now, the right hand side of (128c) is
in H**(T") and so u € H”*(T).

Case |B2| > 0: Then, we may rewrite (121) as

BoAru = —¢ — B3 ' BaKj + Pru + B3 Bk u, (129a)
W+ KVIK)j= B3+ K'V '+ B3 aru — K'V19gNF + 4 NF, (129b)
¢p=-V 3 ut+VIKj+V1yNF (129c¢)

If T € %! then x? € L>(T). Using (19) and Theorem 7.2 the right hand side of (129a) is in H~"?(T"), which
implies u € H*(T"). If T € C*' then Ark € L>(T') and so ku € H”*(T). Hence, we can assert that the right
hand side of (129b) is in H'/?(T') as well, and we find using (19) that j € H*?*(T"). Knowing that j € HY*(T)
we find that the right hand side of (129b) is even in H¥?*(T), and so j € H”?(T'). Now, the right hand side
of (129¢) is in H/>(T) and so ¢ € H*(T'). Now, the right hand side of (129a) is in H'"*(I") which implies
u e H? (I"). For both cases we iterate in the regularity assumption, where we find the the statement of the
lemma. (]

7.2. Boundary element formulation

Let V3, be a finite-dimensional subspace of H~"*(T"), in particular Sy *(T',) or S?(T';,), W, a finite-dimensional
subspace of H'/?(T"), in particular SY(T), and X}, a finite-dimensional subspace of H;/;(I‘), in particular S9(T,).
Then, the boundary element formulation reads: Seek (¢n, jn, un) € Vi, x Wy, x X}, such that for all (¢}, jj,,u},) €
Vi x Wh x Xy,

(Von, d) — (K jn, ¢,) + (un, @) = (vWNF,é},),
<K/¢h7j;7,> - <th7j;7,> + ﬁ?:l <]h7];l> + 63?154 <"<‘./uh7j;7,> = <’YINF7J]/—L> 9
—{bn,up) — By Ba (Kjn, up,) + B (un, ug) + By B3 (KPun, upy) + B2 (Vrun, Vruy) = 0.

(130)
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FI1GURE 9. Convergence of the discretisation error for the solution of the BEM for the ITC-2-1
(which is of type IV and with S = 0) for the model problem in Section 1.4 (81 = —2.4 — 70i,
B3 =—1.1-10"645.2-107%, B4 = 5.5- 1077 — 2.6 - 10~°1), where X}, = W), = S%(I'y). The
H~'?(T")-norm is computed via the single layer potential operator for the L?-projection onto
Viji on the mesh '/, where each interval of I'y, is refined four times, and the H /2(T")-norm
via the L2-projection onto Wiy, on the mesh I'n/, where each interval of I'y, is refined twice.

The variational formulation (52) for type II degenerates for the model parameters 81, 82 — 0 to a saddle point
problem and the boundary element formulation is only stable with spaces V}, and X}, that provide a uniformly
stable L?(T')-pairing. The instability manifests itself in a blow-up of the stability constant even for ||us||r2(r
for 81,82 — 0. A similar behaviour can be observed for the variational formulation (122) for type IV, where in
difference we allow S = 0. As we are not analysing the constants in the stability and error estimates in terms
of the model parameters §;, i = 1,...,4 we will include the instable pairing V}, = Sgl(l"h), X, = SYTy) if
|B2] > 0 in the following theorem.

Theorem 7.5. Let the assumptions of Theorem 7.2 be fulfilled and Vi, ¢ H='/*(T'), W;, ¢ H'*(I"), X C

Hﬁ;(I‘). Then, the linear system of equations (130) has a unique solution (¢n, jn,un) € Vi, x Wy x Xp, and
there exists a constant C = C(f1, B2, B3, B4) such that

onll gr-vv2(0y + lnll vz oy + lunllzz @) < CIF @)y s (131a)
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If Vi, = X), = SY(T'y,), then
lunll g2y < CIF [l gevryy - (131b)
If Bo =0, Viy = Wj, = Xp, = SY(T',), and T € C*1, then
16n = llir-vqey + lin = 3l arvaqey + lun = ull vz ey < CHY2 | Fll s oy (131¢)
If |B2| >0, Vi, € {Sg ' (Th), SUTH)}, Wi = X, = SY(Th), and T € C*Y, then

16n = Ol gr—1s2(ry + lldn = Gl gy + llun — ullgr ey < CR|F| o geryy- (131d)

Proof. The stability and uniqueness of solutions follows similar to the proof of Theorem 7.2. The duality pairing
of H/*(T') and H~"/?(T) to prove the H'"?(T')-stability of u is replaced by the uniformly stable L?(I')-pairing
of the spaces Vj, and Xj,, which implies the H'?(I')-stability (131b) of uj,. As the matrix related to (130) is
quadratic and of finite size, the uniqueness implies the existence of a solution.

The remainder of the proof is for the estimates of the discretisation error, which we can bound using Cea’s
lemma [2] by the best-approximation error

6 = @llzae) + s =l mvagey + s =l

<C inf - _1 krn — 7l g1 - 1 .
<C it (1= Gy + = ey + o=l

We distinguish the two cases of 82 = 0 and |B2| > 0.

(i) Assume that 8, = 0. If I' € C*! then by Lemma 7.4 we have ¢ € HY*(T), j,u € H*?>(T) and so by
Lemma 3.6 for both combinations of discrete spaces we obtain (131c).

(ii) Assume |8 > 0. T € C*! then by Lemma 7.4 ¢ € H/*(T), j,u € H*(I") and so by Lemma 3.6 for
both combinations of discrete spaces we obtain (131d).

This finishes the proof. O

7.3. Numerical experiments

We have studied the proposed boundary element method for the numerical example described in Section 1.4
examplarily for the ITC-2-1 condition by Schmidt and Chernov [14], for which 8, and B3 are given in Sec. 2.3,
B2 =0, and B4 is given in Sec. 2.4. The convergence of the discretisation error in the mesh width h is shown in
Fig. 9 which confirms that the estimates of the discretisation error of j; and uy in h given in Theorem 7.5 for
the case B2 = 0 are sharp. Note that the evident quadratic convergence order 2.0 for ¢y, € S?(T';,) in H~"*(T) is
better than the prediction of our theory. We believe similarly to Sec. 5 that we observe the best-approximation
error due to the smallness of |f83] and that the asymptotic convergence rates will be reached for much smaller
mesh widths.
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APPENDIX A. DISCRETE DUAL PROJECTIONS

Given a triangulation T'j, of T" let SY (fh) be a space of continuous piecewise linear functions on its barycentric
refinement fh for which nodal values at the barycentres of cells of I'j, provide valid degrees of freedom. The
construction of suitable Slo(fh) on a triangulated curve is described in [6, Sect. 4.4.1], and in [3, Sect. 2] for a
triangulated surface. In each case simple local computations establish

U S
sup M > Csr ||7/1hHL2(F) V¥n € So 1(Fh) ’ (132)

oneso@anioy Ionllzar)

with a constant depending only on the shape-regularity of I',. As an immediate consequence of (132) we have
the dual inf-sup condition

| (Yn,vn) |
sup LRLACG AL
enesy manfoy 1¥allcze)

> Csr llonll ey Vou € SY(Th) - (133)
Thus we can define two projectors Q, : L?(T') — Sy ' (') and Q} : L*(T') — S9(T';) through
(@nd,on) = (dvn) Yo, € SYTH) ,  (Yn, Qhv) = (Yn,v)  Vaou € g (Tn) - (134)
Both, Qp and @;, will be L?(T')-continuous with norms bounded by CS]}. Moreover,
Q% vl ry < Cllvllgrry Vo€ HN(T), (135)
where C' > 0 may also depend on the quasi-uniformity of I',. This estimate is a consequence of the continuity

of the L2(I')-orthogonal projection onto S(I';) in H(T'). Then, interpolation between H'(T') and L2(T)
immediately yields

1Qitl sy < Cllvl sy o € HYA(T) . (136)

Next, we appeal to the definition of the norm of H'/?(T') and get

, U ) hv
1@l = sup By [0 D0
ver'2r) IWWIEY2(r)  ven'2(n) HY/2(T)
(126)(] sup 7‘<Qh¢’sz>|:C sup 7|<Qh¢’vh>|:0 sup 7|<¢’Uh>‘ (137)
N vEHY2(T) HQZ””HW(F) vR€89(Th) ||Uh||H1/2(F) vR €S9 (Th) ||Uh||H1/2(F)

< C @l g-12ry -

Thus we have established the following result.

Lemma A.1. The projection Qy, defined in (134) can be extended to a bounded operator H—*(T") — H~"/*(T").



33

We remark that with the same arguments, this result can also be established for the standard L?(T)-
orthogonal projection onto SY(T'y,).
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