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Abstract

We prove that the stationary distribution of a system of reacting species with a weakly-

reversible reaction network of zero deficiency in the sense of Feinberg admits tensor-structured

approximation of complexity which scales linearly with respect to the number of species and

logarithmically in the maximum copy numbers as well as in the desired accuracy. Our re-

sults cover the classical mass-action and also Michaelis–Menten kinetics which correspond

to two widely used classes of propensity functions, and also to arbitrary combinations of

those. New rank bounds for tensor-structured approximations of the PDF of a truncated

one-dimensional Poisson distribution are an auxiliary result of the present paper, which might

be of independent interest.

The present work complements recent results obtained by the authors jointly with M. Kham-

mash and M. Nip on the tensor-structured numerical simulation of the evolution of system

states distributions, driven by the Kolmogorov forward equation of the system, known also

as the chemical master equation, or CME for short. For the two kinetics mentioned above

we also analyze the low-rank tensor structure of the CME operator.
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1 Introduction

In recent years, there has been an increasing awareness that large classes of mathemat-
ical models which arise in the description of physical phenomena with multiple scales, with
continuum-atomistic coupling and with complex systems involve differential equations on high-
and possibly infinite-dimensional state- and parameter spaces. Accordingly, discretization meth-
ods for the efficient numerical solution of such differential equations have received increasing
attention. Among these methods, we mention only sparse grids, Smolyak interpolation and
quadrature and hyperbolic cross approximation. In computational chemistry, for several decades
now tensor structured numerical computations have been successfully used for the efficient nu-
merical approximation of high-dimensional electron structure computations.

Another class of high-dimensional problems of similarly fundamental importance in life-
and biological system sciences is the chemical master equation (CME for short). This equation
describes the statistical behaviour of species in chemical reactions. The statistical behaviour
is represented via the corresponding probability density function (PDF) which, analogous to
the electron density in quantum-mechanical descriptions of electron structure in chemistry, is a
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deterministic function of many variables; specifically, of as many variables as there are chemical
species in the system.

Due to its central significance for the modelling and the quantitative understanding of basic
processes in life-sciences (see, for instance, [1, 2]), the efficient numerical solution of the CME
has received substantial attention in recent years. Due to the high-dimensionality, stochastic
methods have been widely used (see, e.g., [3, 4]). Deterministic numerical solution approaches
which attempt the direct solution of the Kolmogorov equation have been so far limited to systems
with a moderate number of species; see, for example, [5, 6, 7, 8, 9] and the references there. One
key problem, the possibly infinite size of the state-space, has been handled with what is now
called Finite State Projection (FSP for short); see [10, 11].

Very recently, in [12, 13, 14] the use of tensor structured numerical linear algebra methods
has been proposed to avoid the excessive use of memory and the unfavourable scaling of compu-
tational complexity with respect to the number of species and maximum copy numbers, which
arises in standard numerical methods for the solution of the CME. In these references, tensor
structured solvers which rely on the adaptive low-rank representation of state vectors at each
step of the calculation were implemented for the numerical solution of the CME. In numerical ex-
periments, these methods were found in [13, 14] to perform superior to known deterministic and
stochastic approaches, in terms of CPU and memory scaling vs. accuracy. This observed good
performance of tensor-structured numerical methods in particular examples motivates further
theoretical analysis of these methods in the context of the CME.

One question of particular interest in connection with these simulations is that of exis-
tence and computation of invariant distributions of the probability density; in the numerical
experiments in [13, 14] it was observed in several benchmark examples that the time-evolution
of the probability density function of several basic systems “settles” exponentially fast, after a
transient phase where the efficient storage requires high tensor ranks for tracking the evolution
of the probability density accurately, on a stationary solution. This solution, as a rule, turns
out to admit the representation in terms of rather few parameters, even for systems with a large
number of species.

To justify this empirical observation mathematically, at least for particular classes of sys-
tems, is the purpose of the present paper. Specifically, we show here that for Chemical Reaction
Networks (CRNs for short) with deficiency zero in the sense of Feinberg [15, 16, 17] and for a
certain class of propensity functions that the stationary PDF of such systems allows for approx-
imation of accuracy ε > 0 with tensor ranks r which scale logarithmically in the accuracy as
well as in the maximum copy numbers, and which are linearly scaling in the number of chemical
species present in the system.

The outline of this paper is as follows. In Section 2 we recapitulate basic definitions and
notations from the theory of chemical reaction networks, and present in particular the basic
result of Anderson et al. [16] on the stationary distribution of the CME describing such systems.

In Section 2 we recapitulate the notion of chemical reaction networks and summarize the
deficiency zero theory of Feinberg [15, 18, 19, 20]. Also, we present the recent result of [16]
on the relation between the stochastic and deterministic models, which serves as a starting
point for our analysis. Finally, we outline the finite state projection approach of Munsky and
Khammash [10, 11] for the approximation of the dynamics of the CME to finitely many states.

In Section 3.1, we revisit briefly the basic concepts of the tensor train (TT) representation
of multidimensional arrays due to Oseledets and Tyrtyshnikov, and its extension to the so-
called quantized tensor train (QTT for short) format proposed by Oseledets in [21, 22] and by
Khoromskij in [23]. In particular, Section 3.3 collects preliminary results, some cited and new,
which underlie the main results of the present paper.

In Section 4, we give rank bounds for the QTT-structured representation of the CME
operator; we develop these bounds under the general assumption that the propensity functions
are separable and that the factors in these representations admit QTT-structured approxima-
tions with low ranks. We recapitulate the result of [14] on the structure on the corresponding
approximation of the CME operator and extend it by quantifying the associated error.
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Section 5 presents our main results. In particular, the QTT structure of the factors of
separable stationary distributions for weakly reversible chemical reaction networks of zero defi-
ciency in the sense of Feinberg. Finally, we show error bounds which are implied by those for
QTT structured approximation of the stationary distribution itself. The QTT structure of the
PDF of a truncated one-dimensional Poisson distribution (Theorem 22) is an auxiliary result of
this section.

2 Chemical reaction networks

2.1 Terminology

Consider a system of d reacting chemical species S = {S1, . . . , Sd} collected symbolically
into the vector S = (S1, S2, ..., Sd)

⊤. Define Z = Z
d
≥0 and for all νs, ν

′
s ∈ Z denote symbolically

νs
⊤S = νs1S1 + . . . + νsdSd and ν ′s

⊤S = ν ′s1S1 + . . . + ν ′sdSd. Then, if the chemical reaction

νs
⊤S → ν ′s

⊤S can occur in the system, the vectors νs and ν ′s, identified with the combinations
νs

⊤S and ν ′s
⊤S of species, represent the chemical source and product complexes consumed and

produced in the reaction, respectively. The difference ηs = ν ′s − νs ∈ Z
d indicates the change

in the copy numbers of all components caused by the reaction and is called the stoichiometry
vector of the reaction. We consider a system with R reactions indexed by s varying from 1 to
R, each reaction being given through the corresponding complexes νs, ν

′
s ∈ Z. We denote with

C = {νs, ν ′s}Rs=1 the set of all complexes; and by R = {(νs → ν ′s)}Rs=1, the set of all reactions.

Definition 1. The triple {S, C,R} is called a chemical reaction network, or CRN for short.
A CRN {S, C,R} is weakly reversible if for any reaction (ν → ν ′) ∈ R there exists a

sequence of reactions from R starting with ν ′ as a source complex and ending with ν as a product
complex, i.e. there exist complexes ν1, ..., νm ∈ C such that

(
ν ′ → ν1

)
, (ν1 → ν2) , . . . , (νm−1 → νm) , (νm → ν) ∈ R.

A CRN {S, C,R} is reversible if (ν → ν ′) ∈ R implies (ν ′ → ν) ∈ R.

To each CRN we associate in a one-to-one fashion a directed graph G = G (S, C,R) as
follows: the nodes of the graph are the complexes C. Two complexes ν, ν ′ ∈ C are connected by
a directed edge if and only if (ν → ν ′) ∈ R.

Each connected component of G is called a linkage class of G. We denote the number of
linkage classes in G by ℓ(G). A CRN is weakly reversible if and only if each linkage class of G is
weakly reversible.

Definition 2 (stoichiometric subspace and compatibility classes). The space

Σ = span {ηs}Rs=1 ⊂ Z
d

is called the stoichiometric subspace of the CRN (S, C,R). Its dimension dimΣ is called the
rank of the CRN (S, C,R).

For a vector c ∈ R
d, the affine subspace c+Σ and the set (c+Σ) ∩R

d
>0 are referred to as

stoichiometric compatibility class and positive stoichiometric compatibility classes of the CRN,
respectively.

Definition 3 ([15]). The deficiency δ of a CRN {S, C,R} with a graph G = G (S, C,R) is

δ = #C − ℓ (G)− dimΣ.

For any CRN it holds that δ ∈ Z≥0, see [18, (2.11)].
Although the aforesaid relates to chemical systems and, correspondingly, to chemical re-

action networks, the discussion and results are applicable to general systems driven by Markov
processes. We refer to [24] for examples in modelling migration, queuing networks and clustering
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processes. The general assumption made on the corresponding systems is the spatial homogene-
ity, which requires, irrespective of the dynamics, that the reactions are equally likely to occur at
every spatial point and their kinetics allows for the system to relax between reactions and remain
spatially homogeneous. This assumption justifies the use of the spatially homogeneous stochastic
model that we describe in Section 2.3. For chemical and biochemical systems, it means that the
systems are well stirred and their dynamics follow paths of thermal equilibrium. For an overview
of the models used in systems biology we refer to [25].

2.2 Dynamical models

In the mathematical modelling of biochemical processes in living organisms, two broad
classes of mathematical models for CRNs are distinguished: deterministic and stochastic. In
the small volume and low copy number regime which is of particular interest in systems biology,
stochastic mathematical models are widely used in descriptions of the dynamics of CRNs. These
models account for fluctuations in chemical reactions and in copy number counts which are
induced, for example, by thermal noise. In the large volume and large copy number regime
asymptotic analysis (see, for example, [26]) justifies the use of deterministic models to account
for the time evolution of mean concentrations of the species.

While being at the opposite extremes of scales, both types of models in certain cases
share fundamental mathematical features (depending solely on the algebraic structure of the
CRN) which entail, as we shall show in this paper, that tensor-structured approximations of the
probability density function describing the system under stochastic models converge with linear
scaling with respect to the number d of species and with logarithmic scaling with respect to the
approximation accuracy ε as well as with logarithmic scaling in terms of the maximum copy
numbers considered in a finitely truncated state space.

2.3 Stochastic model

The dynamics of a system with a CRN {S, C,R} introduced above can be modelled as
continuous time Markov chain X with state space Z = Z

d
≥0, which describes the system’s state

at time t in terms of a vector X(t) composed of the copy numbers of the species at time t.
Accordingly, X(t) is modelled as a cadlag stochastic process with discontinuous dependence on
time: if the sth reaction occurs at time t, then

X(t) = lim
τ↓0

X(t− τ) + ηs .

Denoting with Ss(t) the stochastic process counting the occurrences of the sth reaction up to
time t, we write

X(t) = X(0) +

R∑

s=1

Ss(t) ηs , (1)

where Ss(t) is a Cox counting process with rate ωs(X(t)). For 1 ≤ s ≤ R, the function ωs comes
from the model of the sth reaction and, in the case of a chemical system, is called the propensity
(function) of the reaction. For 1 ≤ s ≤ R the process Ss(t) can be represented as

Ss(t) = Zs

(∫ t

0
ωs(X(τ)) dτ

)

, (2)

{Zs}Rs=1 being independent rate-one Poisson processes. Let us for all t ≥ 0 define the transition
operator P (t) : [0, 1]Z → [0, 1]Z by setting

P ij(t) = P {X(t) = j | X(0) = i} for i, j ∈ Z.
The family of transition operators {P (t)}t≥0 is a commutative semi-group with infinitesimal
generator Q given by an infinite matrix with entries

Qij = lim
t↓0

P ij(t)− δij
t

, where i, j ∈ Z.
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Then the probability density function (PDF) p : [0,∞) → [0, 1]Z of the process X, given by
pj(t) = P {X(t) = j} for j ∈ Z and t ≥ 0, satisfies the Chapman–Kolmogorov (alternatively,
forward Kolmogorov) equation

ṗ(t) = Ap(t) , t ≥ 0, (3)

referred to as the chemical master equation (CME) in the context of chemical systems, where
A = Q⊤ is called the CME operator. For the dynamics given by (1)–(2), the calculation of the
infinitesimal generator yields for all q ∈ [0, 1]Z

(Qq) i =
R∑

s=1

ωs i · (qi+ηs − qi) , i ∈ Z, (4)

where for 1 ≤ s ≤ R with ωs ∈ R
Z
≥0 we denote the sth propensity vector given by

ωs i = ωs(i) , i ∈ Z. (5)

Therefore

Q =

R∑

s=1

(diagωs) · (S−ηs − I) , A =

R∑

s=1

(Sηs − I) · diagωs, (6)

where Sηs is the matrix of downward ηsk-position shift in the kth dimension, 1 ≤ k ≤ d, for
1 ≤ s ≤ R.

Every initial state X(0) = c ∈ Z of the Markov process X corresponds to a positive
stoichiometric compatibility class of reachable states in the sense of Definition 2. Also, we are
particularly interested in those subsets of such classes, which are closed, irreducible communicat-
ing (equivalence) classes of X.

As we see from (3), every stationary distribution

p(∞) = lim
t→∞

p(t)

of the process X belongs to the kernel of the CME operator (6). When the CRN is weakly
reversible and has zero deficiency in the sense of Feinberg, the process X, within each irreducible
communicating equivalence class, has a unique product-form stationary distribution given by
Theorem 5. Numerically this unique distribution can be obtained approximately by computing
the kernel of the CME operator or by modelling the evolution of the PDF till large times. These
methods have to be applied to a properly truncated system with a finite state space Zn ⊂ Z,
see Section 2.6 below. However, for truncations of reasonable accuracy the finite subset Zn may
be unaffordably large. In this respect, the major challenge is the curse of dimensionality, which
shows up as the exponential growth with respect to d of the cardinality of Zn and, consequently, of
the number of entries in the truncated PDF p̂ and CME operator Â. In [14, 13] this challenge was
taken up with the use of the tensor train (TT) and quantized tensor train (QTT) decompositions
of multidimensional arrays (such as p̂ and Â), or tensors. Those decompositions, introduced
briefly in Section 3.1 below, are adaptive nonlinear low-parametric approximations of tensors,
based on the separation of variables and providing a format with robust and efficient arithmetics.

This paper focuses on the QTT structure of the truncated stationary PDF and of the trun-
cated CME operator. Theorem 5, which was proved in [16], implies that the unique stationary
distribution is of the product form, which means that the analysis of the QTT structure of the
distribution reduces to that of the univariate factors of the distribution.

2.4 Admissible propensity functions

To complete the model presented in Section 2.3, we have to specify the models of the
reactions, i.e. the propensity functions {ωs : Z → R≥0}Rs=1. We assume that each is of the form

ωs(i) = κs
θ(i)

θ(i− νk)

d∏

k=1

1Xsk
(ik) , i ∈ Z, (7)
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where κs > 0 is the rate of the sth reaction and Xsk = Z≥νsk for 1 ≤ k ≤ d, so that ×d
k=1Xsk ⊂ Z

is the set of states in which there are enough copies of all species in the system for the sth reaction
to occur. Further, we assume that

θ(i) =
d∏

k=1

ik∏

jk=1

θk(jk) , i ∈ Z, (8)

where the function θk represents the interaction rate of the kth species and can be interpreted
as its “rate of association” in a broad sense. Then the propensity (7) takes the separable form

ωs(i) = κs

d∏

k=1

1Xsk
(ik) · ωsk(ik) , i ∈ Z, (9)

where, for 1 ≤ s ≤ R and 1 ≤ k ≤ d, the propensity factor ωsk reads as

ωsk(ik) =

νsk−1
∏

jk=0

θk(ik − jk) , ik ∈ Z≥0. (10)

In the present paper we consider two types of kinetics given by particular functions {θk}dk=1.
First, under the stochastic mass action kinetics for the kth species we consider

θk(ik) = ik, ik ∈ Z≥0, (11)

which leads to the propensity factors

ωsk(ik) = νsk!

(
ik
νsk

)

=
ik!

(ik − νsk)!
, ik ∈ Z≥0. (12)

Alternatively, under the stochastic Michaelis–Menten kinetics for the kth species we assume

θk(ik) =
ϑkik
υk + ik

, ik ∈ Z≥0, (13)

with a constant ϑk > 0 and an integer constant υk ≥ 0, which results in

ωsk(ik) = ϑνskk

νsk−1
∏

jk=0

ik − jk
υk + ik − jk

, ik ∈ Z≥0. (14)

The mass action kinetics law is assumed in many models, including those for chemical systems;
see [24]. The Michaelis–Menten law is a simple model for enzymatic reactions where the reac-
tion rate is limited by the amount of enzyme present and saturates to ϑk, see [27, Chapter 1]
and [24, Chapter 8.5] for details. Arbitrary combinations of the above choices (11), (13) for the
factors {θk}dk=1 may appear in mixed propensity models of the form (7)–(8). In either case, the
propensity vectors (5) take the Kronecker-product form

ωs = ωs1⊗ . . .⊗ωsd , 1 ≤ s ≤ R , (15)

where the univariate factors are vectors composed of the values of (10).

2.5 Deterministic Model

As outlined in Section 2.3, the solution of the CME describes the evolution of the system
under a stochastic model. However, when all species are present in large copy numbers, the
effect of stochasticity is less significant and the evolution of the system can be described by the
solution of a deterministic nonlinear ODE on the state space R

d
≥0. This approximation is based

on the scaling with respect to a system size parameter and boils down to modelling the evolution
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of concentrations x = (x1, . . . , xd)
⊤ ∈ R

d
≥0 of the species instead of that of the PDF with respect

to all possible copy numbers X = (X1, . . . , Xd)
⊤ ∈ Z

d
≥0. We refer to [26, 28, 29] for details.

Under such an approximation, the stochastic model with the mass-action, Michaelis–Menten or
mixed kinetics transforms to the corresponding deterministic system given by

x(t) = x(0) +
R∑

s=1

ηs

∫ t

0
fs(x(τ)) dτ, or ẋ(t) =

R∑

s=1

ηsfs(x(t)) , (16)

for all t > 0. The rate functions are given for 1 ≤ s ≤ R by

fs(x) = κs

d∏

k=1

xνskk , x ∈ R
d
≥0 . (17)

Definition 4. A vector c ∈ R
d
≥0 satisfying

∑

1≤s≤R:
νs=ξ

fs(c) =
∑

1≤s≤R:
ν′s=ξ

fs(c) for all ξ ∈ C, (18)

is called a complex-balanced equilibrium of the deterministic system (16)–(17).

The condition (18) means that in every complex-balanced equilibrium state c the complex
formation is zero for all complexes. In particular, the right-hand side of (16) becomes zero,
therefore c is a steady state of (16)–(17). Complex-balanced equilibria are admitted for arbitrary
positive rate constants {κs}Rs=1 by a system of zero deficiency only if the corresponding CRN is
weakly reversible, see [15, Remark 5.2]. When it is, such a system allows, within every positive
stoichiometric compatibility class, precisely one steady state [15, Corollary 5.4]. This steady
state is a complex-balanced equilibrium of the system, asymptotically stable with respect to its
stoichiometric compatibility class [15, Remark 5.4]. These statements constitute a substantial
part of Feinberg’s deficiency zero theorem, see [15, Theorem 5.1] or [18, Theorem 6.1.1] and are
the foundation of the analysis of the relation between the stochastic and deterministic models.
The existence of a complex-balanced equilibrium is assumed in [16, Theorem 6.1] stated below.
This result is the starting point of the analysis in the present paper.

Theorem 5 (Theorem 6.1 in [16]). Suppose that the deterministic model (16)–(17), correspond-
ing to the stochastic model given by (1)–(2) and (7)–(8), admits a complex-balanced equilibrium
c ∈ R

d
>0. Then

(a) the stochastic model admits the stationary distribution p given by

pi =M

d∏

k=1

cikk
∏ik
jk=1 θk(jk)

, (19)

where M > 0 is a normalization constant, for i ∈ Z, provided that p is summable; if Z is
an irreducible communicating class of X, then p is a unique stationary distribution;

(b) for every closed, irreducible communicating class G ⊂ Z of X the stochastic model admits the
stationary distribution p given by (19) for i ∈ G with an appropriate normalization constant
M > 0 and zero outside G, provided that p is summable.

For the mixed mass-action and Michaelis–Menten kinetics given by (11) and (13) respec-
tively, Theorem 5 suggests a stationary distribution of the form

p =M · p1⊗ . . .⊗pd, (20)

where each factor is given for all ik ∈ Z≥0 by either

pk ik
=
cikk
ik!

or pk ik
=

(
ck
ϑk

)ik (υk + ik)!

υk! ik!
, (21)

depending on the kinetics of the kth species.
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2.6 Finite state projection

The CME (3) is posed on the (countably) infinite set of states Z = Z
d
≥0. In order to be able

to address general systems computationally, Munsky and Khammash proposed the Finite State
Projection Algorithm (FSP) [10, 11] which seeks to truncate the countably infinite dimensional
space Z of states of the process to a finite subset over which the dynamics are close to those of
the original system.

With a multi-index n = (n1, n2, ..., nd) ∈ N
d we associate the finite set Zn of states, defined

as follows:
Zn = {i ∈ Z : 0 ≤ ik < nk for 1 ≤ k ≤ d} ⊂ Z . (22)

Theorem 6 (FSP, Theorem 2.2 in [11]). Consider a Markov process with state space Z = Z
d
≥0,

the PDF of which evolves on [0,∞) according to (3) and satisfies the initial condition p(0) = p0

for some p0 ∈ [0, 1]Z supported in Zn. Let Â ∈ R
Zn×Zn denote the restriction of A to Zn.

Denote by t 7→ p̂(t) ∈ [0, 1]Zn the solution of the FSP truncated system with dynamics given by
the linear autonomous ODE

d

dt
p̂(t) = Âp̂(t) , t ≥ 0, (23)

satisfying the initial condition p̂(0) = p0|Zn . Then, if for some ǫ > 0 and t ≥ 0

∑

i∈Zn

p̂j(t) ≥ 1− ǫ, (24)

then p̂i(t) ≤ pi(t) ≤ p̂i(t) + ǫ for every i ∈ Zn and
∥
∥
∥p̂(t)− p(t) |Zn

∥
∥
∥
1
≤ ǫ. (25)

Assuming that a FSP has been performed, we henceforth treat p as a d-dimensional n1 ×
. . . × nd-vector, i.e. as an array, or tensor, indexed by i = (i1, . . . , id) ∈ Zn. Each dimension
k (alternatively referred to as a mode or level) has a corresponding mode size nk, which is the
number of values which the index for that dimension can take. Clearly, nk − 1 is the maximum
copy number of the kth species, considered within the FSP.

For a truncation satisfying (24), the estimate (25) gives an explicit certificate of the ac-
curacy of the approximate solution. In practice, the truncation required to satisfy a given error
tolerance may still require a very large number of states: the number of entries in the trun-
cated PDF p̂ equals #Zn =

∏d
k=1 nk, which renders the direct numerical simulation of even

the projected CME (23) or of the corresponding steady-state problem infeasible in many cases.
In [14] a novel approach for the numerical solution of such FSP truncated systems that retain
large numbers of states was proposed, one of the key ideas being the use of the QTT format for
representing p̂ and Â in terms of much fewer than #Zn parameters.

For notational convenience, we drop the superscripts n and the hat from p̂ indicating the
FSP since we will only consider systems which have already been truncated. Similarly, we deal
with restricted propensity vectors (5), their univariate components in (15), and shift operators
in (6) without change of notation.

The remainder of the present paper is a brief outline of the TT and QTT formats and the
rank-accuracy analysis of the QTT structure, first, of the truncated CME operator (6) for the
mass-action, Michaelis–Menten or mixed kinetics (which extends the results of [14]) and, second,
of the truncated stationary distribution (20) of the corresponding system, which it has under the
assumptions of Theorem 5.

3 TT and QTT decompositions

3.1 Tensor train representation

By tensors we mean multidimensional arrays, vectors and matrices being notable examples.
To compute stationary solutions of the CME (3) under accurate FSP truncations and for large

8



d efficiently, we propose to use the tensor train (TT for short) decomposition, a non-linear
low-parametric representation of multidimensional arrays based on the separation of variables,
developed by Oseledets and Tyrtyshnikov [30, 31].

First, let us consider a d-dimensional n1× . . .×nd-vector p. If two- and three-dimensional
arrays U1, U2, . . . , Ud satisfy the equation

pj1,...,jd =

r1∑

α1=1

. . .

rd−1∑

αd−1=1

U1(j1, α1)

· U2(α1, j2, α2) · . . . · Ud−1(αd−2, jd−1, αd−1) · Ud(αd−1, jd) (26)

for 0 ≤ jk ≤ nk − 1, where 1 ≤ k ≤ d, then p is said to be represented in the TT decomposition
in terms of the core tensors U1, U2, . . . , Ud. The summation indices α1, . . . , αd−1 and limits
r1, . . . , rd−1 on the right-hand side of (26) are called, respectively, rank indices and ranks of the
representation. A TT decomposition, exact or approximate, can be constructed via the low-
rank representation of a sequence of single matrices; for example, with the help of the SVD. In
particular, for every k = 1, . . . , d − 1 the representation (26) implies a rank-rk factorization of
an unfolding matrix U (k) with the entries

U (k)
j1,...,jk; jk+1,...,jd

= pj1,...,jk,jk+1,...,jd .

Conversely, if the vector p is such that the unfolding matrices U (1), . . . ,U (d−1) are of ranks
r1, . . . , rd−1 respectively, then the cores U1, U2, . . . , Ud satisfying (26) do exist; see Theorem 2.1
in [31]. The ranks of the unfolding matrices are the lowest possible ranks of a TT decomposition
of the vector. They are hence referred to as TT ranks of the vector.

Another, fundamental, property of the TT representation is that if the unfolding matrices
can be approximated with ranks r1, . . . , rd−1 and accuracies ε1, . . . , εd−1 in the Frobenius norm,
then the vector itself can be approximated in the TT format with ranks r1, . . . , rd−1 and accuracy
√
∑d−1

k=1 ε
2
k in the ℓ2-norm. This underlies a robust and efficient algorithm for the low-rank TT

approximation of vectors given in full format or in the TT format with higher ranks. For
details see Theorem 2.2 with corollaries and Algorithms 1 and 2 in [31]. In practice it may be
essential that the TT representation relies on a certain ordering of the dimensions and reordering
dimensions may affect the numerical values of the TT ranks significantly.

The multiplication of a vector given in the TT decomposition (26) by a d-dimensional
(m1 × . . .×md) × (n1 × . . .× nd)-matrix A can be performed efficiently if the matrix is repre-
sented as follows:

Ai1,...,idj1,...,jd = ai1,j1,...,id,jd =

r1∑

α1=1

. . .

rd−1∑

αd−1=1

V1(i1, j1, α1)

· V2(α1, i2, j2, α2) · . . . · Vd−1(αd−2, id−1, jd−1, αd−1) · Vd(αd−1, id, jd) , . (27)

The decomposition (27) is called a TT representation of the matrix A, the TT cores V1, . . . , Vd
are now three- and four-dimensional arrays. The discussion of the efficiency and robustness of
the TT decomposition of vectors also applies to the matrix case. Indeed, (27) can be interpreted
as a TT decomposition of a vectorization of A, in which the corresponding row and column
indices are merged to obtain a d-dimensional m1 · n1 × . . .×md · nd-vector.

Basic operations of linear algebra with vectors and matrices in the TT format, such as
addition, Hadamard and dot products, multi-dimensional contraction, matrix-vector multiplica-
tion, etc. are considered in detail in [31]. The use of tensor-structured approximations aims
primarily at reducing the complexity of computations and avoiding the curse of dimensionality.
The TT format potentially achieves this with the storage cost and complexity of basic operations
of the TT arithmetics, applied to the representation of the form (26), being bounded by dnrα

with α ∈ {2, 3}, where n ≥ n1, . . . , nd and r ≥ r1, . . . , rd−1. This estimate is formally linear in
d; however, the TT ranks r1, . . . , rd−1 in (26) may depend on d and n.
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So far there has been increasing, mostly experimental, evidence that in many applications
the TT and QTT ranks are moderate, e.g. are either constant or grow linearly with respect
to d and are either constant or grow logarithmically with respect to n, which is crucial for the
applicability of TT- and QTT-structured methods. For examples see the papers [32, 33, 34, 35,
36, 13, 14] and the extensive survey [37].

3.2 Quantized tensor train representation

With the aim of further reduction of the complexity, the TT format can be applied to a
quantized tensor, which leads to the Quantized Tensor Train (QTT) format [21, 23, 22]. The
idea of quantization consists in “folding” the vector (matrix) by introducing lk “virtual” dimen-
sions (levels) corresponding to the k-th “physical” dimension [38], provided that the correspond-
ing mode size nk can be factorized as nk = nk,1 · nk,2 · . . . · nk,lk in terms of integral factors
nk,1, . . . , nk,lk ≥ 2, for 1 ≤ k ≤ d. This transformation can be viewed as reshaping the k-th mode
of size nk into lk modes of sizes nk1, . . . , nk,lk .

Under quantization applied to all dimensions, a d-dimensional n1× . . .×nd-vector indexed
by j1 = j1,1, . . . , j1,l1 , . . . , jd = jd,1, . . . , jd,ld is transformed into an l1 + . . . + ld-dimensional
n1,1× . . .×n1,l1 × . . . . . . ×nd,1× . . .×nd,ld-vector indexed by j1,1, . . . , j1,l1 , . . . . . ., jd,1, . . . , jd,ld .

With the overscore we denote vectorized multi-indices: jk,1, . . . , jk,lk =
∑lk

m=1 ik,m
∏lk
ℓ=k+1 nk,ℓ

for 1 ≤ k ≤ d. By a QTT decomposition of a vector and the QTT ranks of the decomposition we
mean a TT decomposition of its quantization and the ranks of that TT decomposition.

Example 7 (Proposition 1.1 in [23]). To demonstrate how the quantization reduces complexity

of structured data, let us consider the one-dimensional vector p =
(

1, q, . . . , q2
l−1
)⊤

. This

vector has a single “physical” dimension, and its elementwise representation requires storing 2l

parameters. However, if we apply the quantization transformation as described above to split the
single dimension into l virtual levels, p is transformed into an l-dimensional vector that exhibits
a low-parametric structure. Indeed, in terms of the “virtual” indices it is a rank-one Kronecker
product of l vectors with 2 components each:

p =

(
1

q2
l−1

)

⊗
(

1

q2
l−2

)

⊗ . . .⊗
(
1
q

)

,

which implies a QTT decomposition of p with ranks 1, . . . , 1. Other explicit low-rank examples
can be found in [39, 40, 41, 42].

When the natural ordering

j1,1, . . . , j1,l1
︸ ︷︷ ︸

1st dimension

, j2,1, . . . , j2,l2
︸ ︷︷ ︸

2nd dimension

, . . . . . . , jd,1, . . . , jd,ld
︸ ︷︷ ︸

dth dimension

(28)

of the “virtual” indices is used for representing the quantized vector in the TT format, the ranks
of the QTT decomposition can be enumerated as follows:

r1,1, . . . , r1,l1−1
︸ ︷︷ ︸

1st dimension

, r̂1, r2,1, . . . , r2,l2−1
︸ ︷︷ ︸

2nd dimension

, r̂2, . . . . . . , r̂d−1, rd,1, . . . , rd,ld−1
︸ ︷︷ ︸

dth dimension

,

where r̂1, . . . , r̂d−1 are the TT ranks of the original tensor, i.e. the ranks of the separation of
“physical” dimensions. That is, the TT ranks of a tensor are some of the QTT ranks of the same
tensor.

In this sense (26) and (27), with d being replaced with l, also present QTT representations
of ranks r1, . . . , rl−1 of a one-dimensional vector p̃ and of a one-dimensional matrix Ã with entries
p̃j1,...,jl = pj1,...,jl and Ãi1,...,ilj1,...,jl

= Ai1,...,ilj1,...,jl respectively. Since a QTT decomposition is a
TT representation of an appropriately quantized tensor, the structure of basic operation in the TT
format and related algorithms, referred to in Section 3.1, when applied to QTT decompositions,
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naturally provide the same in the QTT format. Compared to the TT representation, the QTT
format is seeks to resolve more structure in the data by splitting additionally the “virtual”
dimensions introduced by quantization. To exploit this as much as possible, we use and consider
in the rest of the paper as fine a quantization (i.e. with small nk,mk

) as possible. This choice
maximizes the number of virtual modes. From now on, for each mode size nk we assume that
nk = 2lk for 1 ≤ k ≤ d and consider the ultimate binary quantization with nk,mk

= 2 for all

mk and k, so that jk = jk,1, . . . , jk,lk =
∑lk

mk=1 2
lk−mkjk,mk

, where the indices j1, . . . , jl take the
values 0 and 1.

The storage cost and complexity of basic QTT-structured operations are bounded from
above by

d l rα (29)

with α ∈ {2, 3}, where l ≥ l1, . . . , ld and r is an upper bound on all QTT ranks of the decompo-
sition in question. Note that this estimate may be, depending on r, logarithmic in n = 2l and
also in nd = 2dl, which is an upper bound on the number of entries.

Note that the Hierarchical Tensor Representation [43, 44] itself and combined with ten-
sorization [45], a comprehensive exposition of which is given in [46], are closely related counter-
parts of the TT and QTT formats respectively. Also, the TT representation, in fact, is known
as Matrix Product States (MPS) and has been exploited by physicists to describe quantum spin
systems theoretically and numerically for at least two decades now, see [47, 48, 49].

3.3 Preliminaries for the QTT-structured approximation

Proposition 8 (Sections 4.1 and 4.2 in [31]). Assume that p and q are d-dimensional tensors
of equal mode sizes, given in TT representations of ranks p1, . . . , pd and q1, . . . , qd respectively.
Then for all α, β ∈ R the linear combination αp + βq has a TT decomposition of ranks p1 +
q1, . . . , pd + qd. On the other hand, the Hadamard product p⊙ q can be represented in the TT
format with ranks p1q1, . . . , pd−1qd−1.

Proposition 9. If a vector p is given in the TT format with certain ranks, then its diagonaliza-
tion diag p can be represented in the TT format with the same ranks.

Proof. It is enough to note that under the diagonalization of a vector each TT core is diagonalized
with respect to the corresponding mode index.

Proposition 10 (Section 4.3 in [31]). If matrices A and B have TT representations of ranks
p1, . . . , pd−1 and q1, . . . , qd−1 respectively, their product AB, when it is defined, has a TT repre-
sentation of ranks p1q1, . . . , pd−1qd−1.

Proposition 11 (Section 3.1 in [31]). Consider vectors p and q given in TT decompositions of
ranks p1, . . . , pd−1 and q1, . . . , ql−1 respectively. The tensor product p⊗ q can be represented in
the TT format with ranks p1, . . . , pd−1, 1, q1, . . . , ql−1.

Lemma 12. Let l, J ∈ N, ν = {νj}Jj=0 ⊂ Z : 0 = ν0 < ν1 < . . . < νJ = 2l and a = {aj}Jj=1 ⊂ C.

Then the 2l-component vector σ given by

σi = aj , νj−1 ≤ i < νj ,

for 1 ≤ j ≤ J has a QTT representation of ranks bounded by J .

Proof. For 1 ≤ k ≤ l − 1 let U (k) be the kth unfolding matrix of σ:

U (k)
il,...,ik+1ik,...,i1

= σil,...,i1 for im ∈ {0, 1} , 1 ≤ m ≤ l.

This matrix may have at most J − 1 rows consisting of at least two different values of a. Every
other row is filled with only one element of {aj}Jj=1. Therefore there are at most J linearly

independent rows in the matrix. Thus, rankU (k) ≤ J . This bound, which is valid for 1 ≤ k ≤
l − 1, proves the claim, as rankU (1), . . . , rankU (l−1) are exactly the minimal possible ranks of
an exact QTT decomposition of σ.
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In Appendix we give a constructive proof of Lemma 12 for J = 2, which illustrates the TT
approximation algorithm as the sequential low-rank approximation of matrices and results in an
explicit low-rank QTT representation of σ.

Let a function g be Lipschitz continuous on [−1, 1]. Consider its Chebyshev projection gp:

gp =

p
∑

k=0

αkTk, (30)

where Tk, k ∈ Z≥0, are Chebyshev polynomials of the first kind and

α0 =
1

π

∫ 1

−1

f(x)T0(x)√
1− x2

dx, αk =
2

π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx

for k ∈ N. By our assumptions, the representation g = limp→∞ gp is unique and absolutely and
uniformly convergent. The following proposition relates the decay of the Chebyshev coefficients
αk to the analyticity of g. To formulate it, we denote the open Bernstein ellipse with the
parameter ρ > 1 by Eρ:

Eρ =
{

ζ ∈ C :
(ℜζ)2
A2

+
(ℑζ)2
B2

< 1

}

,

where A = 1
2

(
ρ+ ρ−1

)
and B = 1

2

(
ρ− ρ−1

)
.

Proposition 13. Let the function g be analytic in [−1, 1] and admit a holomorphic extension
to the open Bernstein ellipse Eρ such that |g(z)| ≤ M for all z ∈ Eρ. Then for each polynomial
degree p ∈ Z≥0 the Chebyshev projections gp in (30) satisfy

‖g − gp‖C[−1,1] ≤
2M

ρ− 1
ρ−p .

Proof. See, e.g., Theorem 3.8 in [50] or Theorem 8.2 in [51].

In the QTT approximation of polynomials (in particular, of Chebyshev projections) we
rely on the following result owing to either of [45, Corollary 13] and [39, Theorem 6].

Proposition 14 (QTT structure of polynomials). Let l ∈ N. Assume that a 2l-component vector
p is given by

pj = P(j) for 0 ≤ j ≤ 2l − 1,

where P is a univariate polynomial of degree p ∈ N. Then p has a representation in the QTT
format with ranks bounded from above by p+ 1.

Proposition 15 (Error bound for a tensor product). Assume p ∈ [1,∞]. Let ‖·‖ denote the
norms of ℓp (Ik), 1 ≤ k ≤ d, and of ℓp (I1 × . . .× Id), where #Ik = nk for 1 ≤ k ≤ d. For
1 ≤ k ≤ d, consider vectors pk and p̃k of size nk, such that

‖p̃k − pk‖ ≤ δk ‖pk‖
for 1 ≤ k ≤ d. Then for p = p1⊗ . . .⊗pd and p̃ = p̃1⊗ . . .⊗ p̃d with δ =

∑d
k=1 δk there holds

the estimate
‖p̃− p‖ ≤ δeδ ‖p‖ =

(
δ +O

(
δ2
))

‖p‖ , δ → 0 .

For the proof we refer to the Appendix.

Proposition 16 (Error bound for a matrix of the CME operator type). Let d,R ∈ N, n1, . . . , nd ∈
N and η1, . . . ηs ∈ Z

d \ {0}. Consider n1 × . . .× nd-vectors ω1, . . . ,ωR ∈ R
n1·...·nd

≥0 , ω̃1, . . . , ω̃R ∈
R
n1·...·nd and the matrices

A =

R∑

s=1

(Sηs − I) · diagωs, Ã =

R∑

s=1

(Sηs − I) · diag ω̃s,

where for every ξ ∈ Z
d we denote with Sξ = S1ξ1 ⊗ . . .⊗Sdξd the matrix of a downward ξ-position

shift, each factor Skξk being the nk × nk-matrix of a downward ξk-position shift for 1 ≤ k ≤ d.
Consider the following cases:
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(a) if ‖·‖ = ‖·‖l2 and ‖·‖2 = ‖·‖F is the Frobenius norm, we denote C =
√
R;

(b) if ‖·‖ = ‖·‖l∞ and if ‖·‖2 = ‖·‖ℓp is an induced operator norm for p ∈ [1,∞), we denote
C = 1 and assume additionally that

∥
∥
∥
∥
∥

R∑

s=1

ωs

∥
∥
∥
∥
∥
=

R∑

s=1

‖ωs‖ . (31)

Then the estimate

‖ω̃s − ωs‖ ≤ δ ‖ωs‖
holding for 1 ≤ s ≤ R results in the bound

∥
∥
∥Ã−A

∥
∥
∥
2

≤ 2Cδ ‖A‖2 .

For the proof see Appendix.

The extra assumption (31) of the case (b) of Proposition 16 is satisfied for the propen-
sity vectors corresponding to (11) and (13), since the propensity functions are monotonously
increasing.

4 QTT approximation of the CME operator

In the following we consider the FSP of the CME, introduced in Section 2.6, with nk = 2lk

for 1 ≤ k ≤ d. We consider the operator A given by (6) and truncated to a matrix, in the QTT
representation outlined in Section 3.2. In this section we give an upper bound on the QTT ranks
of A, based on the QTT structure of shift matrices [41, Lemma 3.1], under certain assumptions
on the propensity vectors {ωs}Rs=1 defined by (5).

4.1 A general bound

In this section we extend [14, Theorem 2.4] to quantify the error introduced in the CME
operator by the approximation of propensity vectors.

Theorem 17. Under the FSP onto Zn (22), consider the CME operator A defined by (6) . As-
sume that for every s = 1, . . . , R and k = 1, . . . , d the propensity factor ωsk (15) is approximated
in the QTT format by ω̃sk with relative accuracy δ

d
√
R

and with ranks bounded by rsk, where

νsk = ν ′sk = 0 implies rsk = 1. Then the CME operator Ã constructed from the approximate
factors of the propensity vectors approximates A with relative accuracy δ in the Frobenius norm
and has a QTT decomposition of ranks

q1, . . . , q1, q̂1, q2, . . . , q2, q̂2, . . . , . . . , q̂d−1, qd, . . . , qd

with q̂k = R for 1 ≤ k ≤ d− 1 and

qk =
∑

s=1,...,R:
νsk=ν

′
sk

=0

2 +
∑

s=1,...,R:
νsk+ν

′
sk

6=0

3 rsk

for 1 ≤ mk ≤ lk − 1 and 1 ≤ k ≤ d.

Proof. The proof follows that of [14, Theorem 2.4] in constructing the CME operator according
to formula (6) and using the structure of the Kronecker product, diagonalization, addition and
matrix-matrix multiplication in the TT format, presented in Propositions 8–11. The error bounds
follow from Propositions 15–16.
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In the theorem above we use the fact that νsk = ν ′sk = 0 implies that the kth species is
not involved in the sth reaction, therefore the one-dimensional factor ωsk is a vector of ones and
rsk = 1 is achieved trivially.

The crude upper bound 3Rr on the QTT ranks of the CME operator, following from
Theorem 17 in terms of r = maxs,k rsk, is favourable. Indeed, it ensures the estimate O

(
d lR2r2

)

for the number of parameters, where l1, . . . , ld ≤ l, instead of O
(
22ld
)

or O
(
2ld
)

for the full or
sparse elementwise representation respectively.

4.2 QTT approximation of the propensity factors

Next we investigate the QTT structure of the propensity factors {ωsk} (15) corresponding
to (9),(10) under the models (12) and (14). In particular, we establish bounds rsk on the QTT
ranks of the propensity factors assumed to hold in Theorem 17.

Lemma 18. Let l ∈ N, ν ∈ Z : 1 ≤ ν < 2l−1. Then the 2l-component vector u with the entries

ui =

{

0, 0 ≤ i < ν
i!

(i−ν)! , ν ≤ i ≤ 2l − 1,

can be represented in the QTT format with ranks bounded by 2(ν + 1).

Proof. Define vi = (i− ν + 1) · (i− ν + 2) · . . . i for 0 ≤ i ≤ 2l − 1. Then u can be represented
through the Hadamard product as follows: u = v⊙σ, the second factor being considered
in Lemma 12 and having a QTT decomposition of ranks bounded by 2. The first factor is
composed of the values of a polynomial of degree ν taken on an equidistant mesh. According to
Proposition 14, it can be represented in the QTT format with ranks bounded by ν+1. Therefore,
by Proposition 8, we obtain the claim.

Lemma 19. Let υ, ν ∈ N. Assume that τ, µ ∈ R are such that τ ≥ 1 and µ > 1. Consider the
function g : [ν − 1 + τ, ν − 1 + µτ ] → R given by

g(x) =

ν−1∏

j=0

x− j

υ + x− j
for x ∈ [ν − 1 + τ, ν − 1 + µτ ] . (32)

Then for every p ∈ N there exists a polynomial P of degree p such that

‖P − λ‖C[ν−1+τ,ν−1+µτ ] ≤ Cρ−p,

where ρ = µ+
√
2µ−1

µ−1 and C = 2 1
ρ−1 = 2 µ−1√

2µ−1+1
.

Proof. Let us extend the function g to C using the definition (32) for z ∈ C. The zeros of the
nominators on the right-hand side of (32) are simple and located at N1 = {0, . . . , ν − 1}; of the
denominators, are simple as well and located at N2 = {−υ, . . . ,−υ + ν − 1}. Hence for x ≥ ν−1
we have 0 ≤ x−j

υ+x−j < 1, where 0 ≤ j ≤ ν − 1, and therefore |g(x)| ≤ 1. If additionally y ∈ R,
then ∣

∣
∣
∣

x+ iy − j

x+ iy − (j − υ)

∣
∣
∣
∣
≤ 1,

and for ℜz ≥ ν − 1 we have the bound |g(z)| ≤ 1.
Let us define m = ν − 1+ µτ+τ

2 = ν − 1+ τ µ+1
2 and f = µτ−τ

2 = τ µ−1
2 . Then g is analytic

in the ellipse

E =

{

z ∈ C :
(ℜz −m)2

a2
+

(ℑz)2
b2

< 1

}

,

where a = f + τ = τ µ2 and b =
√

a2 − f2 = τ
√
2µ−1
2 , with the foci m − f = ν − 1 + τ and

m+ f = ν − 1 + µτ .
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Consider the affine mapping ϕ : C → C given by ϕ(ζ) = m + f · ζ for ζ ∈ C, so that
ϕ [−1, 1] = [ν − 1 + τ, ν − 1 + µτ ] and ϕ−1(z) = −1−2ν−1+τ−z

(µ−1)τ for all z ∈ C. Then the function
G = g ◦ ϕ : C → C is analytic and satisfies

|G(ζ)| = |g(x+ iy)| ≤ 1

at every point ζ of the open Bernstein ellipse Eρ = ϕ−1E with ρ = 2 a+b
(µ−1)τ = µ+

√
2µ−1

µ−1 , where

we denote x = ℜϕ(ζ) and y = ℑϕ(ζ). By Proposition 13, for Gp chosen as the pth Chebyshev
projection of G we have the estimate ‖G−Gp‖C[−1,1] ≤ 2

ρ−1ρ
−p = Cρ−p. Then for P = Gp◦ϕ−1,

which is a polynomial of degree p, we have ‖g − P‖C[ν−1+τ,ν−1+µτ ] = ‖G−Gp‖C[−1,1].

Theorem 20. Let υ, ν, l ∈ N : 1 ≤ υ, ν < 2l − 1. Consider the 2l-component vector u given by

ui =

{

0, 0 ≤ i < ν,

g(i) , ν ≤ i < 2l,

generated by a function g defined by

g(x) =

ν−1∏

j=0

x− j

υ + x− j
for x ∈

[

ν, ν + 2l − 1
]

.

Then for any real p ≥ 1 there exists a 2l-component vector v which can be exactly repre-
sented in the QTT format with ranks bounded by

r = 3 l (p+ 2) + 3
(l − 1) l

log2 ρ
,

and such that
‖v − u‖ℓ2 ≤

√
2Cρ−p,

where ρ = 2 +
√
3 and C = 2

1+
√
3
.

Proof. Let us define τk = ν − 1 + 2k for 0 ≤ k ≤ l and pk = ⌈p+ β (k − 1)⌉ for 1 ≤ k ≤ l, where
β > 0 is to be specified below. By Lemma 19, for 1 ≤ k ≤ l there exists a polynomial Pk of
degree pk such that

‖Pk − g‖C[τk−1,τk]
≤ Cρ−pk .

For 1 ≤ k ≤ l we define 2l-component vectors σk and vk as follows:

σki =







0, 0 ≤ i < τk−1,

1, τk−1 ≤ i < τk,

0, τk ≤ i < 2l

and
vki = Pk(i) , 0 ≤ i < 2l. (33)

Then the error of the approximation of u =
∑l

k=1 u⊙σk by v =
∑l

k=1 vk⊙σk satisfies

‖v − u‖2ℓ2 =
l∑

k=1

‖(vk − u)⊙σk‖2ℓ2 ≤
l∑

k=1

2k−1 ‖Pk − g‖2C[τk−1,τk]

≤ C2
l∑

k=1

2k−1ρ−2pk ≤ C2ρ−2p
l−1∑

k=0

2kρ−2βk ≤ 2C2ρ−2p,

where we defined β = log−1
2 ρ.
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By Proposition 14, for 1 ≤ k ≤ l the vector vk defined by (33) can be exactly represented
in the QTT format with ranks bounded by pk +1 uniformly in l. On the other hand, Lemma 12
bounds the QTT ranks of σk by 3. Therefore, by [31, Section 4], we obtain the upper bound r
on the ranks of an exact QTT representation of v:

l∑

k=1

3pk = 3

l−1∑

k=0

(⌈p+ βk⌉+ 1) ≤ 3l (p+ 2) + 3β (l − 1) l = r,

which completes the proof.

4.3 Rank bound for the particular kinetics

The preceding Theorem 20 shows that under the Michaelis–Menten kinetics the kth factor
of the propensity vector (15) corresponding to the sth reaction can be approximated in the QTT
format with accuracy εsk in the ℓ2-norm and with QTT ranks

rsk = O
(

log
1

εsk
· log nk

)

+O
(
log2 nk

)
,

where nk = 2lk is the bound on the copy number in the Finite State Projection for the kth
species. As the propensity function tends to 1 for large arguments, the norm of the kth factor

of the propensity vector (15) can be estimated as ‖ωsk‖ℓ2 = O
(

n
1/2
k

)

, nk → ∞. For example,

note that ωsk ik
≥ 1

2 for ik ≥ (νsk − 1) + υk (2νsk − 1). Given δ > 0, we set

εsk =
δ

2d
√
R

‖ωsk‖ , (34)

so that, by Theorem 20, for 1 ≤ k ≤ d and 1 ≤ s ≤ R there exists a QTT approximation of the
propensity factor ωsk with accuracy εsk in the ℓ2-norm and with QTT ranks bounded by

r = O
((

log
1

δ
+ log d+ logR+ log n

)

log n

)

,

where n ≥ n1, . . . , nd. Then, by Theorem 17, the truncated CME operator Ã constructed from
such approximations, in turn, approximates with relative accuracy δ in the Frobenius norm the
truncated CME operator A constructed from exact propensity factors. The approximation is
constructed in the QTT format with ranks bounded by

3Rr = O
(

R

(

log
1

δ
+ log d+ logR+ log n

)

log n

)

. (35)

If the kth species reacts under the mass-action kinetics, by Lemma (18), we obtain the bound

3Rr = 3R (ν + 1) (36)

on the corresponding lk−1 QTT ranks, where ν ≥ νsk, 1 ≤ s ≤ R. The bound (36) is independent
of n, d and of the accuracy δ. In principle, the factor d in (34)–(35) can be reduced then.

The estimate (35) is almost linear in R (up to a logarithmic factor), logarithmic in n, d
and δ. In view of (29), the bound (35) implies that the CME operator for the Michaelis–Menten
kinetics, considered under the FSP outlined in Section 2.6, can be approximated in the QTT
format with relative accuracy δ in the Frobenius norm with the storage cost being almost linear in
d (up to a logarithmic factor), almost quadratic in R (up to a logarithmic factor) and logarithmic
in n and δ. In the case of the mass-action kinetics, the estimate is linear in d, logarithmic in n and
quadratic in the upper bound on {νk}. For mixed kinetics the maximum of the two asymptotics
should be considered. Analogous conclusions follow from (35)–(36) for the complexity of basic
linear algebra operations with the CME operator in the QTT format.
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5 QTT approximation of stationary distributions of CRNs

We now turn to the QTT approximation of FSP truncations of the invariant distribution
given by Theorem 5. The distribution is separable, i.e. of TT ranks 1, . . . , 1. As a result, QTT
approximations of the full PDF (5) can be constructed as the Kronecker product of QTT ap-
proximations of the factors. Since the factors are evaluations of analytic functions on equidistant
grids in the spaces of copy numbers, bounds on the QTT ranks of approximations, logarithmic in
the accuracy parameter ε, can be expected. In the present section, we aim at obtaining bounds
which reveal also the dependence of the QTT ranks on the propensity parameters of the kinetics
models and of the maximal copy numbers allowed by the FSP truncation.

5.1 QTT approximation of propensity factors

Lemma 21. Let λ > 0 and consider the function g given by

g(x) =
λx

Γ(x+ 1)
for all real x > 0.

For µ > 1 denote

α = π

(√
µ

2µ+ 1
− 1

2

)

.

Then for every τ ∈ R: τ ≥ 1 and τ ≥ 2eαλ and for every p ∈ N there exists a polynomial P of
degree p such that

‖P − g‖C[τ,µτ ] ≤
2MC

ρ− 1
ρ−p,

where the constants are explicitly given by

C =
eα√

1− e−3π
√
π

(
µ

2µ+ 1

) 1
4

, M =
e(α+1+log λ)τ

τ τ+
1
2

, ρ =
µ+

√
2µ− 1

µ− 1
.

Proof. The function g extended to the whole complex plane by

g(z) =
λz

Γ(z + 1)
, z ∈ C,

is entire, since the exponential and reciprocal Gamma functions are so. Let us define δ = τ
2 ,

m = µτ+τ
2 = τ µ+1

2 and f = µτ−τ
2 = τ µ−1

2 . Then the Bernstein ellipse

E =

{

z ∈ C :
(ℜz −m)2

a2
+

(ℑz)2
b2

< 1

}

,

where a = f + δ = τ µ2 and b =
√

a2 − f2 = τ
√
2µ−1
2 , has foci m − f = τ and m + f = µτ .

Moreover, E is enclosed between the two tangents to its boundary that are given by ℑz = ±φℜz
with φ = b√

m2−a2 =
√

2µ−1
2µ+1 .

By [52, 6.1.25], for all ξ > 0 and y ∈ R we have

∣
∣
∣
∣

Γ(ξ)

Γ(ξ + iy)

∣
∣
∣
∣

2

=

∞∏

n=0

(

1 +
y2

(ξ + n)2

)

We may bound this infinite product as follows:

∣
∣
∣
∣

Γ(ξ)

Γ(ξ + iy)

∣
∣
∣
∣

2

≤
(

1 +
y2

ξ2

) ∞∏

n=1

(

1 +
y2

ξ2 + n2

)

.
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The infinite product written in the right-hand side reads

∞∏

n=1

(

1 +
y2

ξ2 + n2

)

=
∞∏

n=1

ξ2 + n2 + y2

ξ2 + n2
=

∞∏

n=1

ξ2 + n2 + y2

n2
n2

ξ2 + n2

=

∏∞
n=1

(

1 + ξ2+y2

n2

)

∏∞
n=1

(

1 + ξ2

n2

) =

1

π
√
ξ2+y2

sinhπ
√

ξ2 + y2

1
πξ sinhπξ

,

where at the last step we used the Weierstraß factorization [52, 4.5.68] for z 7→ sinh z
z . Therefore,

provided that |y| ≤ ψ ξ with some ψ > 0, we have

∣
∣
∣
∣

Γ(ξ)

Γ(ξ + iy)

∣
∣
∣
∣

2

≤
√

1 + ψ2
1

1− e−2πξ
e
πξ

(√
1+ψ2−1

)

. (37)

On the other hand, by [52, 6.1.38], for all x > 0 it holds that

Γ(x+ 1) ≥
√
2π xx+

1
2 e−x. (38)

For every point x + iy ∈ E, where x, y ∈ R, the bounds x ≥ m − a = 1
2τ and |y| ≤ φx are

satisfied, therefore x+1 ≥ 1+ 1
2τ ≥ 3

2 and |y| ≤ φ (x+ 1). Then the bounds (37) and (38) yield
the estimate

|g(x+ iy)| ≤ C
e(α+1+log λ)x

xx+
1
2

≤ CM,

where α = π
2

(√

1 + φ2 − 1
)

= π
(√

µ
2µ+1 − 1

2

)

and C =
(1+φ2)

1
4

√
1−e−3π

√
2π
eα =

(
4µ

2µ+1

) 1
4 eα√

1−e−3π
√
2π

,

and the last step uses that, by assumption, x ≥ τ
2 ≥ eαλ and hence the bound monotonically

decreases with respect to x.

Consider the affine mapping ϕ : C → C given by ϕ(ζ) = m + f · ζ for ζ ∈ C, so that
ϕ [−1, 1] = [τ, µτ ] and ϕ−1(z) = −1−2 τ−z

(µ−1)τ for all z ∈ C. Then the function G = g◦ϕ : C → C

is entire and satisfies

|G(ζ)| = |g(x+ iy)| ≤ CM

at every point ζ of the open Bernstein ellipse Eρ = ϕ−1E with ρ = 2 a+b
(µ−1)τ = µ+

√
2µ−1

µ−1 , where

we denote x = ℜϕ(ζ) and y = ℑϕ(ζ). By Proposition 13, for Gp chosen as the pth Chebyshev
projection of G and for P = Gp ◦ ϕ−1, which is also a polynomial of degree p, we obtain

‖g − P‖C[τ,µτ ] = ‖G−Gp‖C[−1,1] ≤
2CM

ρ− 1
ρ−p.

Theorem 22. Assume λ > 0 and l ∈ N are such that 1 ≤ 2eαλ < 2l−1, where α = π
(√

2
5 − 1

2

)

.

Consider the 2l-component vector u given by

ui = g(i) for 0 ≤ i < 2l,

generated by the function g(x) = λx/Γ(x+ 1) for 0 < x ∈ R. Suppose ε > 0 and K∞ ∈ N are
such that

K∞ ≥ log2 2eλ, (39)

K∞ ≥ log2

(

2 log2
1

ε
+ 1− log2 π

)

− 1, (40)

and set Kl = min {K∞, l}.
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Then there exists a 2l-component vector v which satisfies ‖v − u‖ℓ2 ≤ ε and can be exactly
represented in the QTT format with ranks bounded from above by

r = r0 + 3 (Kl − k0)

(

2 + logρ
2C1

ε

)

+
3

4β
(Kl − k0 − 1) (Kl − k0) ,

where r0 = 2
√
eα+1λ, k0 =

⌈
log2 e

α+1λ
⌉

and the constants are given explicitly by

C1 =
2C

ρ− 1
, C =

eα√
1− e−3π

√
π

(
2

5

) 1
4

, β = log2 ρ, ρ = 2 +
√
3 .

Proof. First we note that 2k0 ≥ eα+1λ. For k0 ≤ k ≤ l we define τk = 2k and for k0 + 1 ≤ k ≤ l
introduce a 2l-component vector σk as follows:

σki =







0, 0 ≤ i < τk−1,

1, τk−1 ≤ i < τk,

0, τk ≤ i < 2l.

Using the estimate (38), for K∞ < k ≤ l we obtain

‖u⊙σk‖2ℓ2 ≤ 2k−1 ‖g‖2C[τk−1,τk]
≤ 2k−1 1

2π

e2τk−1λ2τk−1

τ
2τk−1+1
k−1

=
1

2π
e2

k(1+log λ−(k−1) log 2) =
1

2π
22

k(γ−k),

where we denote γ = 1 + log2 e+ log2 λ. Then

l∑

k=Kl+1

‖u⊙σk‖2ℓ2 ≤
∞∑

k=K∞+1

‖u⊙σk‖2ℓ2 ≤ 1

2π

∞∑

k=K∞+1

2−2K∞+1(k−γ)

≤ 1

2π
2−2K∞+1(K∞+1−γ) 1

1− 2−4
≤ 1

π
2−2K∞+1(K∞+1−γ) ≤ 1

π
2−2K∞+1

,

where for the last step we refer to (39). By taking into account the condition (40), we conclude
that

l∑

k=Kl+1

‖u⊙σk‖2ℓ2 ≤ ε2

2
. (41)

Let us now assume k0+1 ≤ k ≤ Kl. By Lemma 21, for k0+1 ≤ k ≤ Kl there exists a polynomial
Pk of degree

pk =

⌈
1

β

(

log2
2C1

ε
+
k − k0 − 1

2

)⌉

, (42)

such that
‖Pk − g‖C[τk−1,τk]

≤ C1Mk ρ
−pk ,

where Mk = e(α+1)τk−1λτk−1

τ
τk−1+

1
2

k−1

= e(α+1+log λ)2k−1

2
(k−1)(2k−1+1

2)
. Let us evaluate Pk at the integer points of

[
0, 2l − 1

]
: to this end, we define a 2l-component vector vk with entries

(vk) i = λi · Pk(i) , 0 ≤ i < 2l . (43)

Having done that for k0 + 1 ≤ k ≤ Kl, let us denote u0 = u−∑l
k=k0+1 u⊙σk. Then the error

v − u of the approximation of u = u0 +
∑l

k=k0+1 u⊙σk by

v = u0 +

Kl∑

k=k0+1

vk⊙σk (44)
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satisfies the bound

‖(v − u)⊙σk‖2ℓ2 ≤ 2k−1 ‖Pk − g‖2C[τk−1,τk]

≤ 2k−1C2
1ρ

−2pk
e(α+1+log λ)2k

2(k−1)(2k+1)
= C2

1ρ
−2pk 2−2βpk+2k(γ′−k) ≤ 2−2βpk , (45)

where γ′ = γ + α log2 e = 1 + (1 + α) log2 e + log2 λ ≤ k0 + 1 ≤ k + 1, for k0 + 1 ≤ k ≤ Kl.
Consequently, for the error of the approximation on [τk0 , τKl

] we obtain the bound

Kl∑

k=k0+1

‖(v − u)⊙σk‖2ℓ2 ≤ ε2

4

∞∑

k=0

2−k =
ε2

2
,

which together with (41) yields ‖v − u‖ℓ2 ≤ ε.
Finally, due to the structure of the addition and Hadamard multiplication in the TT format,

presented in Proposition 8, the upper bound r on the ranks of an exact QTT representation of
v can be obtained as follows: the first term u0 in the right-hand side of (44) is nonzero only
in the leading 2k0-component subvector. Therefore the rank of each of its unfolding matrices is
bounded by

2

⌈

k0−1
2

⌉

≤ 2
k0+1

2 ≤ 2
√
eα+1λ = r0,

and u0 can be represented in the QTT format with ranks bounded by r0. By Proposition 14,
for k0+1 ≤ k ≤ Kl the vector vk defined by (43) can be exactly represented in the QTT format
with ranks bounded by pk + 1. On the other hand, Lemma 12 bounds the QTT ranks of σk by
3. Thus, we estimate the QTT ranks of v from above by

r0 +

Kl∑

k=k0+1

3 (pk + 1) ≤ r0 + 3 (Kl − k0)

(

2 + logρ
2C1

ε

)

+
3

4β
(Kl − k0 − 1) (Kl − k0) = r,

which concludes the proof.

Remark 23. Due to the rapid decay with respect to k of the function considered in Lemma 21
and of the approximation error, both being considered on the kth interval, the polynomial degree
of the approximant does not need to grow linearly with respect to k, as we require in (42). Indeed,
the last step of (45) for the sake of simplicity neglects a very rapidly decaying factor and therefore
could be replaced with a sharper estimate. As a result, for large l and small ε the rank bound of
Theorem 22 could be refined from quadratic to linear with respect to Kl − k0.

Lemma 24. Let ϑ, λ > 0 and υ, l ∈ N. Then the 2l-component vector u with the entries

ui =
λi

∏i
j=1 θ(j)

, 0 ≤ i < 2l,

where

θ(x) =
ϑx

υ + x
for all x > 0,

can be represented in the QTT format with ranks bounded by υ + 1.

Proof. For all i we have

ui =
λi

∏i
j=1 θ(j)

=

(
λ

ϑ

)i
∏i
j=1 (υ + j)
∏i
j=1 j

=

(
λ

ϑ

)i 1

υ!

(υ + i)!

i!

=

(
λ

ϑ

)i 1

υ!
(i+ 1) · (i+ 2) · . . . · (i+ υ) ,
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that is u = w⊙v, where wi =
(
λ
ϑ

)i
and vi =

1
υ! (i+ 1) · (i+ 2) · . . . · (i+ υ) for 0 ≤ i < 2l.

By Proposition 14, the vector v which consists of the values of a polynomial of degree at most
υ evaluated on an equidistant mesh can be exactly represented in the QTT format with ranks
bounded by υ + 1. The first factor has an exact rank-one representation, see Example 7. Then
the claim follows due to Proposition 8.

5.2 Approximation of distributions

It follows from Theorem 22 that under the mass-action kinetics the kth factor pk (21)
of the stationary distribution p (20) upon the FSP can be approximated with a given absolute
accuracy εk in the ℓ2-norm in the QTT format with ranks bounded by

rk = O
(

c
1
2
k

)

+O
(

log
1

εk
· log nk

)

+O
(
log2 nk

)
, (46)

and, for large nk, by

rk = O
(

c
1
2
k

)

+O
((

log
1

εk

)

· log log 1

εk

)

, (47)

where nk = 2lk is the bound on the copy number in the FSP for the kth species and λk is
the parameter of the corresponding Poisson distribution. As for the Michaelis–Menten kinetics,
Lemma 24 gives the bound υk+1 on the ranks of an exact QTT representation of the kth factor
given by (21). Given ε > 0, we may set the accuracy

εk =
ε

d

‖p‖ℓ2
‖pk‖ℓ2

=
ε

d

∏

k′ 6=k
‖pk′‖ℓ2 (48)

for the approximation of the kth factor, 1 ≤ k ≤ d. This, by Proposition 15, ensures that the
tensor product of such approximations, in turn, approximates the distribution with accuracy ε
in the ℓ2-norm. Since for all reasonably large FSP truncations the norms ‖pk‖, 1 ≤ k ≤ d, are
close to the upper bounds they take when no FSP is employed, for a particular distribution the
QTT ranks of the resulting approximation are bounded from above by

r = O
(

c
1
2

)

+O
(

log
d

ε
· log n

)

+O
(
log2 n

)
, (49)

where n ≥ n1, . . . , nd and c ≥ c1, . . . , cd, and, for large n, by

r = O
(

c
1
2

)

+O
((

log
d

ε

)

· log log d
ε

)

. (50)

If the kth species reacts under the Michaelis–Menten kinetics, we have the bound on the corre-
sponding lk − 1 QTT ranks that reads instead as

rk = υk + 1 (51)

independently of the accuracy ε and, in principle, the factor d in (48)–(50) can be reduced.
In view of the estimate (29), the bounds (49)–(51) imply that the stationary distribution

given by (20)-(21) for the mass-action kinetics, considered under the FSP outlined in Section 2.6,
can be approximated in the QTT format with accuracy ε with the storage cost being almost linear
in d (up to a logarithmic factor) and logarithmic in ε. For moderate n it is also logarithmic in n
and, for large n, it is independent of n. In the case of the Michaelis–Menten kinetics, our rank
bound is linear in d, logarithmic in n and quadratic in the upper bound on the corresponding
parameters {υk}. For mixed kinetics the maximum of the two asymptotics should be considered.
Similar conclusions result from (49)–(51) for the complexity of basic linear algebra operations
with the the stationary distributions in the QTT format.

Remark 25. The result of Theorem 22 can be refined for large λ: indeed, in the proof a piecewise-
polynomial approximation, similar to what we use on [2k0 , 2Kl ], could be constructed and repre-
sented in the QTT format on [0, 2k0 ], where we currently decompose the distribution in the QTT
representation without any compression. This would allow to relax the dependence on λ in The-
orem 22; and on ck and c, in the consequent bounds (46)–(50).

21



6 Conclusion

In the case of mass-action, Michaelis–Menten or mixed kinetics, we presented a rank-
accuracy analysis for the QTT-formatted representation of the CME operator (Section 4.3). We
showed that for a desired relative accuracy ε in the Frobenius norm that one can construct a QTT
representation of the CME operator with the number of parameters logarithmic with respect to
the maximum copy number and the accuracy, quadratic with respect to the number of reactions
and almost linear (up to a logarithmic factor) with respect to the number of reacting species.
When all species follow the mass-action kinetics law, the propensities are polynomial, and for
any accuracy the operator can be represented exactly with uniformly low ranks.

Also, we considered a stationary distribution for a stochastic model with a weakly re-
versible reaction network and zero deficiency in the sense of Feinberg, given by Theorem 5 [16,
Theorem 6.1]. We showed for the two kinetics models mentioned above that the stationary distri-
bution can be approximated in the QTT format with any prescribed accuracy in the ℓ2-norm and
with low ranks. The bound on the number of parameters involved is almost linear in the num-
ber of reacting species (up to a logarithmic factor) and logarithmic in both the maximum copy
number and accuracy. When all species obey the Michaelis–Menten kinetics law, the estimate is
independent of the accuracy.

The problems for the CME that may require tensor approximations are so large that even
under the FSP the norms, which are equivalent theoretically, may differ significantly in practice.
In the present paper we use the ℓ2- and Frobenius norms for the approximation of distributions
and of the CME operator respectively. This choice is conditioned by the current state of the
art of efficient and robust algorithms for the approximation and truncation in the TT and QTT
formats, which are presently available only for the mentioned norms. The results of this paper
justify the low-rank structure observed with the use of such algorithms, see [14]. However, we
would like to emphasize that the natural choice of the norms would be different due to the
probabilistic sense of the data involved in the problem, and the theoretical analysis of this paper
can be adapted to other norms. In particular, the approximations constructed in Theorems 20
and 22 can be easily modified to satisfy analogous error bounds in the ℓ1- or ℓ∞-norms.
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Appendix

Proofs of Propositions 15 and 16

Proof of Proposition 15. By the triangle inequality,

‖p̃− p‖ ≤
d∑

k=1

∥
∥p̃1⊗ . . .⊗ p̃k−1⊗ (p̃k − pk)⊗pk+1⊗ . . .⊗pd

∥
∥ ,

≤ ‖p‖
d∑

k=1

δk
‖p̃1‖
‖p1‖

· · ·
∥
∥p̃k−1

∥
∥

∥
∥pk−1

∥
∥
≤ ‖p‖

d∑

k=1

δk (1 + δ1) · · · (1 + δk−1)

≤ ‖p‖
d∑

k=1

δk exp

(
d∑

k=1

δk

)

.

Proof of Proposition 16. By the triangle inequality we obtain

∥
∥
∥Ã−A

∥
∥
∥
2

≤
R∑

s=1

‖(Sηs − I) · diag (ω̃s − ωs)‖2

≤
R∑

s=1

‖Sηs diag (ω̃s − ωs)‖2 +

R∑

s=1

‖diag (ω̃s − ωs)‖2

≤ 2

R∑

s=1

‖diag (ω̃s − ωs)‖2 = 2

R∑

s=1

‖ω̃s − ωs‖ ≤ 2δ

R∑

s=1

‖ωs‖ ,

where the last line take into account that Sηs is the matrix of a downward ηs-position shift for
every s. On the other hand, all nonzero entries of Sηs are off-diagonal, as long as ηs 6= 0 for all
s, therefore

‖A‖ ≥
∥
∥
∥
∥
∥

R∑

s=1

I · diagωs
∥
∥
∥
∥
∥
2

=

∥
∥
∥
∥
∥
diag

R∑

s=1

ωs

∥
∥
∥
∥
∥
2

=

∥
∥
∥
∥
∥

R∑

s=1

ωs

∥
∥
∥
∥
∥
≥ 1

C

R∑

s=1

‖ωs‖ .

In the last inequality we use the nonnegativity of ωs, 1 ≤ s ≤ R, as well (31) for the case (b)
and the concavity of t 7→

√
t on (0,∞) for the case (a).

Constructive proof of Lemma 12

To illustrate how the QTT representation is related to the low-rank decomposition of
matrices and can be calculated explicitly, we give also a constructive proof of Lemma 12 below.
First, we recapitulate the following notation of [40, 41].

By a TT core of rank rk−1 × rk and mode size mk × nk we denote an array of numbers,
which has size rk−1×mk×nk×rk. The first and the last indices of a core are called (respectively,
left and right) rank indices, while the others are referred to as mode indices. Subarrays of a core,
corresponding to particular values of rank indices, have size mk × nk and are called TT blocks.
We may consider the core Vk as an rk−1 × rk-matrix with TT blocks as elements:

Vk =






G11 · · · G1rk
...

...
...

Grk−11 · · · Grk−1rk




 =

[
Gαk−1αk

]

αk−1=1,...,rk−1
αk=1,...,rk

, (52)

where Gαk−1αk
, αk−1 = 1, . . . , rk−1, αk = 1, . . . , rk are TT blocks of Vk, i.e. Vk(αk−1, ik, jk, αk) =(

Gαk−1αk

)

ikjk
for all values of rank indices αk−1, αk and mode indices ik, jk. We refer to this

matrix as core matrix of Vk.
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To avoid confusion, we use parentheses for ordinary matrices, whose entries are numbers
and which are multiplied as usual, and square brackets for cores (core matrices), whose entries
are blocks and which are multiplied by means of the strong Kronecker product “1” defined below.
Addition of cores is meant elementwise.

To ease notation, we omit in TT decompositions like (26), (27) the mode indices with
the help of the strong Kronecker product [53]. We denote this operation by “1”, as in [40,
Definition 2.1], where it was introduced as follows, specifically for connecting cores into “tensor
trains”.

Definition 26 (Strong Kronecker product 1 of TT cores). Consider cores V1 and V2 of ranks

r0×r1 and r1×r2 and of mode sizes m1×n1 and m2×n2 respectively, composed of blocks G
(1)
α0α1

and G
(2)
α1α2 , 1 ≤ αk ≤ rk for 0 ≤ k ≤ 2. Then the strong Kronecker product V1 1V2 of V1 and

V2 is defined as core of rank r0 × r2 and mode size m1m2 × n1n2, consisting of blocks

Gα0α2 =

r1∑

α1=1

G(1)
α0α1

⊗G(2)
α1α2

, 1 ≤ α0 ≤ r0, 1 ≤ α2 ≤ r2.

In other words, we define V1 1V2 as a usual matrix product of the corresponding core
matrices, their entries (blocks) being multiplied by means of the Kronecker (tensor) product.
For example,

[
G11 G12

G21 G22

]

1

[
H11 H12

H21 H22

]

=

[
G11⊗H11 +G12⊗H21 G11⊗H12 +G12⊗H22

G21⊗H11 +G22⊗H21 G21⊗H12 +G22⊗H22

]

.

Equation (27) can be written then as

A = V1 1V2 1 . . .1Vd−1 1Vd.

In the particular case when the second mode length is 1 in each core, the strong Kronecker product
of them is a vector and the second mode indices can be omitted. For example, equation (27)
reads

p = U1 1U2 1 . . .1Ud−1 1Ud.

Constructive proof of Lemma 12 for J = 2. For λ ∈ N and µ ∈ Z : 0 ≤ µ < 2λ we introduce the

vector σ
(λ)
µ as follows:

σ(λ)
µ i =

{

a1, 0 ≤ i < µ,

a2, µ ≤ i < 2λ,

so that σ = σ
(l)
ν1 . Let us also denote by e(λ) the 2λ-component vector of ones. For all λ ∈ N and

µ = µλ, . . . , µ1, where µk ∈ {0, 1} for 1 ≤ k ≤ λ, the following recursive relation holds:

σ
(λ)
µλ,...,µ1

=

{

e1⊗σ
(λ−1)
µλ−1,...,µ1

+ e2⊗ a2e
(λ−1), µλ = 0,

e1⊗ a1e
(λ−1) + e2⊗σ

(λ−1)
µλ−1,...,µ1

, µλ = 1,

where

e1 =

(
1
0

)

and e2 =

(
0
1

)

,

which implies a rank-2 representation of the corresponding QTT unfolding matrix and can be
recast as [

σ
(λ)
µλ,...,µ1

e(λ)

]

=W2(µλ)1

[

σ
(λ−1)
µλ−1,...,µ1

e(λ−1)

]

with

W2(0) =

[
e1 a2e2

e1 + e2

]

and W2(1) =

[
e2 a1e1

e1 + e2

]

.
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By unfolding the recursion and selecting the first row corresponding to the vector of interest, we
obtain its QTT representation of ranks 2, . . . , 2: for ν1 = ν1,l, . . . , ν1,1 we have

σ(l)
ν1 = U2(ν1,l)1W2(ν1,l−1)1 . . .1W2(ν1,2)1V2(ν1,1) ,

where
U2(0) =

[
e1 a2e2

]
and U2(1) =

[
e2 a1e1

]
,

which are the first rows of W2(0) and W2(1) respectively, and

V2(0) =

[
a2e1 + a2e2
e1 + e2

]

and V2(1) =

[
a1e1 + a2e2
e1 + e2

]

.

For J > 2, a similar explicit QTT representation of ranks J, . . . , J can be obtained by
induction in J .

29



Recent Research Reports

Nr. Authors/Title

2013-08 R. Hiptmair and C. Jerez-Hanckes and J. Lee and Z. Peng
Domain Decomposition for Boundary Integral Equations via Local Multi-Trace
Formulations

2013-09 C. Gittelson and R. Andreev and Ch. Schwab
Optimality of Adaptive Galerkin methods for random parabolic partial differential
equations

2013-10 M. Hansen and C. Schillings and Ch. Schwab
Sparse Approximation Algorithms for High Dimensional Parametric Initial Value
Problems

2013-11 F. Mueller and Ch. Schwab
Finite Elements with mesh refinement for wave equations in polygons

2013-12 R. Kornhuber and Ch. Schwab and M. Wolf
Multi-Level Monte-Carlo Finite Element Methods for stochastic elliptic variational
inequalities

2013-13 X. Claeys and R. Hiptmair and E. Spindler
A Second-Kind Galerkin Boundary Element Method for Scattering at Composite
Objects

2013-14 I.G. Graham and F.Y. Kuo and J.A. Nichols and R. Scheichl and Ch. Schwab and I.H.
Sloan
Quasi-Monte Carlo finite element methods for elliptic PDEs with log-normal random
coefficient

2013-15 A. Lang and Ch. Schwab
Isotropic Gaussian random fields on the sphere: regularity, fast simulation, and
stochastic partial differential equations

2013-16 P. Grohs and H. Hardering and O. Sander
Optimal A Priori Discretization Error Bounds for Geodesic Finite Elements

2013-17 Cl. Schillings and Ch. Schwab
Sparsity in Bayesian Inversion of Parametric Operator Equations


	Introduction
	Chemical reaction networks
	Terminology
	Dynamical models
	Stochastic model
	Admissible propensity functions
	Deterministic Model
	Finite state projection

	TT and QTT decompositions
	Tensor train representation
	Quantized tensor train representation
	Preliminaries for the QTT-structured approximation

	QTT approximation of the CME operator
	A general bound
	QTT approximation of the propensity factors
	Rank bound for the particular kinetics

	QTT approximation of stationary distributions of CRNs
	QTT approximation of propensity factors
	Approximation of distributions

	Conclusion

