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Abstract

In this paper we analyze the numerical approximation of diffusion problems over polyhedral
domains in R

d (d = 1, 2, 3), with diffusion coefficient a(x, ω) given as a lognormal random
field, i.e., a(x, ω) = exp(Z(x, ω)) where x is the spatial variable and Z(x, ·) is a Gaussian
random field. The analysis presents particular challenges since the corresponding bilinear
form is not uniformly bounded away from 0 or ∞ over all possible realizations of a. Fo-
cusing on the problem of computing the expected value of linear functionals of the solution
of the diffusion problem, we give a rigorous error analysis for methods constructed from (i)
standard continuous and piecewise linear finite element approximation in physical space; (ii)
truncated Karhunen-Loéve expansion for computing realizations of a (leading to a possi-
bly high-dimensional parametrized deterministic diffusion problem); and (iii) lattice-based
Quasi-Monte Carlo (QMC) quadrature rules for computing integrals over parameter space
which define the expected values. The paper contains novel error analysis which accounts for
the effect of all three types of approximation. The QMC analysis is based on a recent result
on randomly shifted lattice rules for high-dimensional integrals over the unbounded domain
of Euclidean space, which shows that (under suitable conditions) the quadrature error decays
with O(n−1+δ) with respect to the number of quadrature points n, where δ > 0 is arbitrarily
small and where the implied constant in the asymptotic error bound is independent of the
dimension of the domain of integration.

1 Introduction

In this paper we propose and analyze a class of numerical methods for the diffusion problem
with random coefficient:

−∇ · (a(x, ω)∇u(x, ω)) = f(x) , for almost all ω ∈ Ω and x ∈ D, (1.1)

subject to the homogeneous Dirichlet condition u = 0 on ∂D. Here, D is a bounded (spatial)
domain in R

d and (Ω,A,P) is a probability space (clarified below). We focus on the lognormal
case, assuming that

a(x, ω) = a∗(x) + a0(x) exp(Z(x, ω)) , (1.2)

where Z is a zero-mean Gaussian random field, and a∗, a0 are given functions that are continuous
on D with a∗ non-negative and a0 strictly positive on D. This is (slightly) more general than
the classical lognormal case where a∗ ≡ 0. The latter is commonly used in many applications,
for example in hydrology (see, e.g., [24, 25] and the references there). Models where realizations
of a are not smooth (e.g. Hölder continuous, almost surely) are regularly of interest. Thus we
need to study problem (1.1) in its weak form: Seek u(·, ω) ∈ H1

0 (D) such that

A (ω;u, v) = 〈f, v〉 , for all v ∈ H1
0 (D) and for almost all ω ∈ Ω , (1.3)

1



where 〈·, ·〉 denotes the duality pairing between Hs(D) and (Hs(D))′, and

A (ω;w, v) :=

∫

D
a(x, ω)∇w(x) · ∇v(x) dx , w, v ∈ H1(D) ,

and we assume that f ∈ (H1
0 (D))′.

For each x ∈ D, Z(x, ·) is a Gaussian random variable, and thus 0 < a(x, ω) < ∞ for
any ω ∈ Ω. However, for any ε > 0 we have P[a(x, ·) > ε−1] > 0 so that problem (1.3) is
not uniformly bounded over all possible realizations of a. If a∗(x) = 0, then we also have
P[a(x, ·) < ε] > 0 so that (1.3) is not uniformly elliptic either. This loss of ellipticity and
boundedness is one of the main difficulties in the (numerical) analysis of (1.3).

Motivated by applications in uncertainty quantification, we will be interested in expected
values of linear functionals of the solution of (1.3). That is, if G ∈ (H1

0 (D))′, we will be
interested in the expected value E[G(u)] of the random variable G(u(·, ω)). We will use sampling
methods for the computation of E[G(u)]. That is, we will compute realizations of a(x, ω),
which yield realizations of u(x, ω), via the solution of the elliptic problem (1.3), and from
these we shall compute an approximation of E[G(u)] by an appropriate averaging. However,
in contrast to standard Monte Carlo (MC) methods, we will sample a(x, ω) using quasi-Monte
Carlo (QMC) methods. One principal aim of the paper is to prove mathematically that, under
suitable assumptions, QMC methods are faster than MC methods for this class of problems.
This fact has already been demonstrated computationally in [14] for a closely related method,
but a convergence analysis was missing in that paper. (In [14] we used a different type of QMC
points as well as different methods to sample from a and to discretize (1.1).)

In this work we assume that the Gaussian random field Z which appears in (1.2) is given in
terms of a Karhunen-Loéve expansion

Z(x, ω) =
∞∑

j=1

√
µj ξj(x)Yj(ω) , x ∈ D . (1.4)

Here, the set {Yj}j≥1 denotes the sequence of i.i.d. N (0, 1) distributed random variables Yj ,

given by Yj(ω) = µ
−1/2
j

∫
D Z(x, ω)ξj(x) dx, and the sequence {(µj , ξj)}j≥1 denotes the real

eigenvalues and eigenfunctions of the covariance integral operator

(Cv)(x) :=

∫

D
c(x,x′) v(x′) dx′ , x ∈ D . (1.5)

The kernel function c(·, ·) is assumed to be continuous on D ×D. It represents the covariance
function of Z, i.e., c(x,x′) = E[Z(x, ·)Z(x′, ·)] for x,x′ ∈ D, and thus c(x,x′) = c(x′,x). These
facts imply that the covariance operator is a compact and self-adjoint operator from L2(D) to
L2(D). Throughout, we shall assume that the covariance operator of Z is non-degenerate so
that the sum in (1.4) is infinite, and that the eigenfunctions are orthonormal in L2(D), i.e.,∫
D ξi(x)ξj(x) dx = δij . Consequently, {µj}j≥1 ∈ ℓ1(N) and the eigenvalues µj are real and
positive. We assume that µj are enumerated in non-increasing magnitude.

Our methods approximate E[G(u)] in a three-stage process: The first stage comprises the
approximation of (1.3) with fixed ω via the finite element method. Let Vh ⊂ H1

0 (D) denote the
space of piecewise linear functions on a family of conforming shape regular triangulations of D
(parametrized by maximum mesh diameter h). As usual, the standard finite element solution
of problem (1.3) is denoted uh(x, ω). In the second stage, to sample the random field a, the
infinite sum in (1.4) is truncated to s terms. The resulting approximation to Z is substituted
into (1.2) to obtain an approximate field as and the resulting finite element solution to (1.3)
(with a replaced by as) is then denoted ush(x, ω). The corresponding approximation of E[G(u)]
is then taken to be the expected value of the random variable G(ush(·, ω)), written E[G(ush)].
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In fact, since ush is a random field derived from Z and thus from the s i.i.d. N (0, 1) random
variables Y1, . . . , Ys, we have the concrete formula

E[G(ush)] =

∫

Rs

G(ush(·,y))
s∏

j=1

φ(yj) dy , (1.6)

where φ(y) = exp(−y2/2)/
√
2π is the Gaussian normal probability density.

The computation of the (possibly high dimensional) integral (1.6) by suitable quadrature
rules leads us to the third stage of the approximation process. By introducing a change of
variables y = Φ−1

s (v), where Φ−1
s (v) denotes the inverse cumulative normal applied to each

entry of v ∈ R
s, and writing F (y) = G(ush(·,y)), we obtain

E[G(ush)] = E[F ] =

∫

(0,1)s
F (Φ−1

s (v)) dv. (1.7)

We will use “randomly shifted lattice rules” for (1.7), leading to approximations of the form

Qs,h,n(∆) :=
1

n

n∑

i=1

F

(
Φ−1
s

(
frac

(
i z

n
+∆

)))
, i = 1, . . . , n , (1.8)

where z ∈ N
s is a generating vector, ∆ ∈ [0, 1]s is a random shift which is uniformly distributed

over [0, 1]s and “frac” denotes the fractional part function, applied componentwise. A key point
here is that a suitable generating vector z can be very efficiently computed via the “component-
by-component” procedure. We give a discussion of this in §4 - further details are in [17],
[19, Section 4], [27], and the references therein. Applying this approximation to (1.7) yields
a computable approximation to E[G(u)] which depends on s, h and n and also on the random
shift ∆, and is here denoted Qs,h,n(∆).

The principal result of this paper is a bound for the root-mean-square error

es,h,n :=

√
E∆
[
(E[G(u)]−Qs,h,n(∆))2

]
, (1.9)

where E
∆ denotes expectation with respect to the random shift ∆. Our main result is Theo-

rem 22, where estimates from §2 and §4 are collected to obtain the overall bound

es,h,n ≤ C
(
h2τ + s−χ + n−r

)
. (1.10)

(Here and throughout the paper C denotes a generic, positive constant independent of s, h
and n.) The parameter τ depends on the regularity of (realizations of) a and on the smoothness of
D, while the parameters χ and r depend on the asymptotics of the Karhunen–Loève eigenvalues
and eigenvectors. Broadly speaking, faster decay yields stronger bounds in (1.10). (For example
when the kernel c is analytic on D × D, we have τ = 1 and χ and r can be taken arbitrarily
close to ∞ and 1, respectively.) The key novel result of this paper is that for a range of
covariance functions, convergence for the QMC quadrature rule of order arbitrarily close to
O(n−1) is attained with an asymptotic constant independent of the truncation dimension s in
(1.6) of the Gaussian random field Z in (1.4). This should be compared with the O(n−1/2)
rate which is attained by standard MC methods and cannot be improved in general. To our
knowledge, MC and QMC are currently the only quadrature rules which afford asymptotic error
bounds with constants that are independent of dimension. Since, due to the slow convergence of
Karhunen–Loève expansions, high truncation dimensions s are often encountered in applications
in hydrology, the results have considerable practical significance, as outlined in [14].
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The starting point for our analysis is the observation that since the random diffusion coeffi-
cient a(x, ω) in (1.1) and the random shift ∆ in the QMC rule are statistically independent, we
can write

e2s,h,n =
(
E[G(u)− G(ush)]

)2
+ E

∆
[
(E[G(ush)]−Qs,h,n(·))2

]
. (1.11)

This expression will form the basis for our error analysis. The first term on the right hand
side of (1.11) can be bounded using the results in [3, 5, 6, 35, 30, 13, 16] and we will outline
this in §2. The second term on the right hand side of (1.11) is the QMC quadrature error;
this is estimated in §4 and there particular emphasis is put on obtaining a rate of convergence
which is close to O(n−1), with an asymptotic constant which is independent of dimension s. To
apply QMC quadrature rules and to analyze them uniformly in the truncation dimension s, it
is necessary to reformulate the random problem (1.3) as a parametric, deterministic problem on
an infinite-dimensional parameter space and to study both (i) the effect of dimension truncation
to finite QMC integration dimension s and (ii) the regularity of the solution with respect to
the parameters. This is the subject of §3. There we prove the well-posedness of these para-
metric problems (pointwise in a set of full Gaussian measure) and establish measurability and
integrability of the parametric, deterministic solution.

For the QMC analysis we will in part follow the recent paper [18]. There, QMC integration
was applied to a simplified PDE problem, in which the coefficient a(x,y) in (1.1) was assumed
to be a linear function of y, with y a uniform random vector from the bounded domain [−1

2 ,
1
2 ]

N.
Here, as in [18], we introduce weight parameters (γu)u⊂N,|u|<∞ to control the relative importance
of various subsets of the variables y

u
= {yj : j ∈ u}. In [18] the PDE solutions as functions of y

were, after truncation to s dimensions, continuous functions on [−1
2 ,

1
2 ]

s with square integrable
mixed first derivatives, a standard setting for QMC analysis. However, in the present work the
function space setting we need is non-standard since, in general, the integrand F ◦Φ−1

s in (1.7)
may not have square integrable mixed first derivatives. This is due to the presence of the inverse
cumulative distribution function Φ−1

s , which is unbounded near the boundary of the unit cube.
We will therefore consider a function space setting which uses a sequence of weight functions ψj

to counteract the growth of the mixed first derivatives of F (y) = G(ush(·,y)) as the components
of y go to ±∞, and we will make use of the corresponding error analysis for randomly shifted
lattice rules from [20, 27].

The precise details on randomly shifted lattice rules and on the function space setting are
given in §4. Note that the weight functions ψj and weight parameters γu appear in the definition
of the norm - see (4.3), and they are initially free. A crucial step in the analysis is to establish
bounds on some spatial norm (in x) of the mixed first derivatives of ush(x,y) with respect to the
parametric variables in y; this is done in §3.2. Based on these bounds, we are then able to choose
suitable weight functions ψj that allow F (y) = G(ush(·,y)) to be in the function space. Then,
with appropriately chosen weight parameters γu, the QMC convergence rate can be arbitrarily
close to order n−1, with a constant that is independent of the truncation dimension s. In our
analysis, as in [18], we choose the weight parameters γu so as to minimize a certain upper bound
on the QMC quadrature error (i.e., the second term in (1.11)), and then show that the constant
is indeed independent of the dimension s. Moreover, the resulting weight parameters γu, again as
in [18], are of a special form called POD weights (which stands for “product and order dependent
weights”). This POD structure of the weight parameters γu allows in turn for a fast algorithm to
construct lattice rules that are tailored to our problem (for details see [27]). In the penultimate
section we summarize the overall error. In the final section we present numerical results.

2 Discretization and dimension truncation

The main purpose of this section is to summarise results on approximating solutions of (1.3)
by the finite element method and on the effect of truncating the Karhunen–Loève expansion in
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(1.4) to s terms. As described in §1, the two approximations, with and without truncation, are
denoted ush and uh, and we are concerned in this section with estimating the first term in (1.11).
We give mainly a summary here, and we make reference to proofs in [3, 5, 6, 35, 30, 13, 16],
and the references therein, giving details only where necessary. However, a crucial difference
between the present treatment and these references is that here, to estimate the first term in
(1.11), we write

G(u)− G(ush) = (G(u)− G(uh)) + (G(uh)− G(ush)) (2.1)

and estimate the expectation for each of these two terms separately. The final result is in
Corollary 11. We remark that previous analyses introduced G(us) and estimated G(u) − G(us)
and G(us)− G(ush) instead. As we will see, the analysis here allows for a weaker assumption on
the Karhunen–Loève eigenvalues and eigenfunctions than that made in [3, 6, 35]. Let us start
with some notation.

We denote the usual scale of Sobolev spaces by Hs(D), s ≥ 0. Then H1
0 (D) denotes, as

usual, the subspace of functions in H1(D) with vanishing trace on ∂D. The space of continuous
functions in D is denoted C0(D). The Hölder space C0,t(D), with 0 < t ≤ 1, is the space of all
functions v ∈ C0(D) for which ‖v‖C0,t(D) := ‖v‖C0(D) + |v|C0,t(D) <∞, with seminorm

|w|C0,t(D) := sup
x,x′∈D:x 6=x′

|w(x)− w(x′)|
|x− x′|t ,

where |x| denotes the Euclidean norm in R
d. If t = 0, we adopt the conventionC0,0(D) = C0(D).

We will also require spaces of Bochner integrable functions, that is, for any Banach space
X with norm ‖ · ‖X and for 1 ≤ q < ∞, we denote by Lq(Ω,P;X) the space of all strongly P–
measurable mappings v from (Ω,A) to (X,B(X)) (where B(X) denotes the Borel sigma algebra
over X), for which the Bochner integral

‖v‖Lq(Ω,P;X) =

{(∫
Ω ‖v‖qX dP

)1/q
, for 1 ≤ q <∞,

esssupω∈Ω‖v‖X , for q = ∞,

is finite. When there is no ambiguity about the measure, we shall denote this space by Lq(Ω;X).
In the particular case X = R, we shall simply write Lq(Ω) in place of Lq(Ω;R).

2.1 Spatial regularity

It is a classical result (see, e.g. [1]) that the regularity of the coefficient a(x, ω) in (1.2), when
considered as a function of x ∈ D, depends on the spectrum of the covariance operator C in (1.5).
We now specify several assumptions on the covariance of the Gaussian field Z in (1.2) which will
be used in the paper. Firstly, we assume that the Gaussian process Z(·, ω) is stationary, i.e., the
covariance function c(x,x′) in (1.5) depends only on the single argument x−x′. In addition to
stationarity, we assume for most of the paper that the random field Z (1.2) is isotropic, i.e.,

c(x,x′) = ρ(|x− x′|) , x,x′ ∈ D (2.2)

for some continuous function ρ : [0,∞) → [0,∞). Recall that c(·, ·) was also assumed to
be continuous on D × D. Thirdly we assume that there exist constants C, β > 0 such that
E[(Z(x, ·)− Z(x′, ·))2] ≤ C|x− x′|2β , or equivalently that

|ρ(|x− x′|)− ρ(0)| ≤ C|x− x′|2β , for all x,x′ ∈ D . (2.3)

From these assumptions it follows – e.g. from [1, §3.3] – that the Karhunen–Loève expansion
(1.4) exists and converges almost surely.

For stationary, lognormal fields (1.2) with isotropic covariance function of the form (2.2),
the following result (which is referred to sometimes as Kolmogorov’s theorem) gives sufficient
conditions for the almost sure Hölder regularity of realizations of this field.
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Proposition 1 Assume that the Gaussian random field Z in (1.4) satisfies conditions (2.2) and
(2.3) for some β ∈ (0, 1]. Then realizations of Z(·, ω) are in C0,t(D), P-almost surely, for any

0 ≤ t < β ≤ 1. If in addition a∗ , a0 ∈ C0,t(D), then a(x, ω) defined by (1.2) also satisfies

a(·, ω) ∈ C0,t(D) P-almost surely.

Proof. A proof for Z is given in [1, Theorem 8.3.2]. The result for a(x, ω) follows from the
assumptions on a∗ and a0 and the smoothness of exp(·). ✷

In §2.2 we will use Proposition 1 to infer Hölder regularity of realizations for a particular
example which, in turn, will entail P-almost sure Hölder regularity of solutions u(·, ω) of (1.1)
and thereby P-almost sure rates of convergence of finite element discretizations of (1.1).

Consider the weak form of (1.1) as defined in (1.3). To prove well-posedness of this variational
problem, we define, for P-almost every ω ∈ Ω,

ǎ(ω) := min
x∈D

a(x, ω) and â(ω) := max
x∈D

a(x, ω). (2.4)

Under the assumptions of Proposition 1, for almost all ω ∈ Ω, Z(·, ω) is a continuous function
on D and hence attains its (finite) maximum on D. Thus the quantities ǎ and â defined in (2.4)
are P-measurable and, hence, random variables which satisfy ǎ(ω) > 0 and â(ω) < ∞ P-almost
surely. Therefore, we may apply the Lax-Milgram Lemma “pathwise” to infer the existence of a
unique solution u(·, ω) of (1.1), for P-almost every realization a(x, ω) of the coefficient function
in (1.1). The Lipschitz continuity of the data-to-solution correspondence for (1.1), between
C0,t(D) and H1

0 (D), guarantees P-measurability and hence, u is a random field taking values in
the separable Hilbert space H1

0 (D) on the probability space (Ω,A,P). Finally, an application
of Fernique’s Theorem (see, e.g. [8]) allows to extend P-almost sure bounds on u(·, ω) to infer
boundedness of ‖u‖Lq(Ω;H1

0 (D)) for any 0 < q <∞ (we refer to [3, Section 2] for details).

From now on we adopt the notation V = H1
0 (D).

Theorem 2 Assume that a∗, a0 ∈ C0(D) in (1.2). Then, for all q in the range 1 ≤ q < ∞,

1/ǎ ∈ Lq(Ω) and â ∈ Lq(Ω), and for every f ∈ V ′ the problem (1.3) admits a unique solution

u ∈ Lq(Ω;V ) that satisfies
‖u‖Lq(Ω;V ) ≤ ‖1/ǎ‖Lq(Ω)‖f‖V ′ .

Proof. See [3, Prop. 2.3 & 2.4]. ✷

As usual, to quantify the rate of convergence of finite element solutions of (1.3), additional
regularity of the solution u is required. We formulate this as an assumption here, but we will
indicate immediately that this assumption is indeed satisfied in a wide range of cases.

Assumption A1 There exists some τ > 0 such that u ∈ Lq(Ω;H1+τ (D)), for all 1 ≤ q <∞.

The following theorem from [35, §5] (see also [6]) characterizes τ in the 2D polygonal case. It
depends on the P-almost sure Hölder regularity1 of realizations of a and on the largest interior
angle of ∂D.

Theorem 3 Let D be a polygon in R
2 such that the largest interior angle θmax of all the corners

is in (0, 2π), and suppose that a(·, ω) ∈ C0,t(D) P-almost surely. Then Assumption A1 holds

for any τ < min(t, π
θmax

). If D is convex, i.e. θmax ≤ π and if a(·, ω) ∈ C0,1(D) almost surely,

then Assumption A1 also holds for τ = 1.

Similar results hold also in three dimensions (see [35] for details).

1The assumption on a made in [6, 35] can be weakened in the boundary case t = 1 from a(·, ω) ∈ C
1(D) to

a(·, ω) ∈ C
0,1(D), since this implies ∇a(·, ω) ∈ L∞(D) and then the crucial Lemma A.2 in [6] can be replaced

by the simple inequality ‖bv‖H1(D) ≤ C(‖∇b‖L∞(D)‖v‖L2(D) + ‖b‖L∞(D)‖v‖H1(D)), for all b ∈ C
0,1(D) and

v ∈ H1(D).
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2.2 Matérn Covariances

The foregoing abstract conditions are satisfied by Gaussian random fields Z with Matérn co-
variances which are commonly used in practice. Isotropic Matérn covariance functions (2.2) are
given by

ρ(r) = ρν(r) := σ2
21−ν

Γ(ν)
(r/λ̃)ν Kν(r/λ̃) , (2.5)

with λ̃ = λC/(2
√
ν). Here Γ is the gamma function and Kν is the modified Bessel function of

the second kind. The parameter ν > 1/2 is a smoothness parameter, σ2 is the variance and λC
is a length scale parameter. Using the asymptotics of the modified Bessel function it is possible
to show that (2.3) holds for this covariance with β = ν, when ν ∈ (1/2, 1), and so it follows that
Proposition 1 holds in this case with 0 < t < ν.

Remark 4 By increasing the parameter ν in (2.5) it appears possible to generate random fields
whose sample paths have higher Hölder regularity. In particular when ν ∈ (1, 2), the second
derivative (

∂2

∂xi∂x′i

)
ρν(|x− x′|) (2.6)

exists and is finite at x′ = x. By [1, Theorem 2.2.2] it follows that ∂Z/∂xi exists (in the
mean square sense), and is itself a random field with covariance given by (2.6). Again, by
examining the asymptotics of Kν , it can be shown that condition (2.3) holds for Z replaced by
∂Z/∂xi, with β = ν − 1. Hence ∂Z/∂xi is P-almost surely Hölder continuous with exponent
t where 0 < t < ν − 1 < 1. In particular, this implies that, for any ν > 1, the random field
Z is continuously differentiable in quadratic mean with respect to P and so is a(·, ω) in (1.2)
provided that a∗, a0 in (1.2) are continuously differentiable in D.

It is instructive to consider the limiting cases ν → 1/2 and ν → ∞ separately. By evaluating
the Matérn class at ν = 1/2, we obtain the exponential covariance

ρ1/2(r) = σ2 exp(−r/λ̃), (2.7)

with λ̃ = λC/
√
2, and in this case Proposition 1 holds with 0 < t < 1/2.

In the theory of isotropic and stationary covariances, a key role is played by the Fourier
transform. In the case of the Matérn covariance, it is given by

ρ̂ν(ξ) =

(
1

2π

)d ∫

Rd

exp(−iξ · x) ρν(|x|) dx =: φν(|ξ|) ,

where

φν(r) = σ2
(
1

π

)d/2 [Γ(d/2 + ν)

Γ(ν)

] [
α2ν

(r2 + α2)ν+d/2

]
. (2.8)

The limit of this as ν → ∞ coincides with the Fourier transform of the Gaussian covariance

ρ∞(r) = σ2 exp(−r2/λ2C) . (2.9)

In this case, the covariance function c(·, ·) is analytic in D × D and so the samples a(·, ω) are
also analytic, for P-almost every ω ∈ Ω.

As stated in the introduction (see also (3.2) below), the speed of decay of the Karhunen–
Loève eigenvalues {µj}j≥1 plays an important role in our error analysis. In the case of the
Matérn class this can be determined using classical results on the analysis of integral operators
with difference type kernels by H. Widom [38]. If µj denotes the jth eigenvalue of the integral
operator (1.5), where c is given by (2.2) and ρ = ρν (given in (2.5)), then Widom’s results imply
that µdj has the same asymptotic rate of decay as j → ∞ as does the Fourier transform φν(r)
as r → ∞. This leads to the following corollary to the Widom theory.
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Corollary 5 There exists C > 0 such that the jth largest eigenvalue of the Matérn covariance

operator satisfies, for every j ≥ 1, the bound

µj ≤ Cj−(1+2ν/d) .

When d = 1 and ν = 1/2 (the 1D exponential case), we get the decay O(j−2) which corresponds
to the decay in the analytic formula for the Karhunen–Loève eigenvalues for this problem given
in [12]. For (2.9), i.e., when ν = ∞ in (2.5), the µj decays at least exponentially (see e.g. [31]).

2.3 Finite Element discretization error

To discretize (1.3) in the physical domain D we consider now finite element approximations
with standard, continuous, piecewise linear finite elements. We denote by {Th}h>0 a shape-
regular family of simplicial triangulations of the domain D, parametrized by the mesh width
h := maxT∈Th diam(T ). Associated with each triangulation Th we define the space Vh ⊂ V of
piecewise linear, continuous functions on this mesh, which vanish on ∂D. For any ω ∈ Ω, we
denote by uh(ω, ·) ∈ Vh the solution of

A (ω;uh(·, ω), vh) = 〈f, vh〉, for all vh ∈ Vh . (2.10)

As in Theorem 2, for every h and for P-almost every realization a(·, ω), the FE solution uh(ω, ·) ∈
Vh exists, is unique and (like the exact solution u(ω, ·)) satisfies the a priori bound

‖uh‖Lq(Ω;V ) ≤ ‖1/ǎ‖Lq(Ω)‖f‖V ′ , for all 1 ≤ q <∞ , (2.11)

We are now in a position to bound the first term in the overall error bound (2.1) for our
method. A proof can be found in [35].

Theorem 6 Let 0 < t < 1 be as in Proposition 1 and let Assumption A1 hold for some 0 <
τ < t. Suppose G(·) is a continuous linear functional on H1−τ (D), i.e. there exists a constant

CG such that |G(v)| ≤ CG‖v‖H1−τ (D) for all v ∈ H1−τ (D). Then

∣∣E[G(u)− G(uh)]
∣∣ ≤ Ch2τ . (2.12)

If a(·, ω) ∈ C0,1(D) a.s. and if Assumption A1 holds for τ = 1, then (2.12) holds with τ = 1.

Remark 7 Theorem 6 can be generalized to the case where the functional G is random, i.e. for
each ω ∈ Ω, G = Gω ∈ (H1−τ (D))′, where |Gω(v)| ≤ CG(ω)‖v‖H1−τ (D). Then, (2.12) still holds,
provided CG ∈ Lq(Ω) for some q > 1 ([35, §3]).

2.4 Dimension truncation error

In practice, in order to use (1.4) to numerically sample the Gaussian random field Z, it is of course
necessary to truncate the infinite series expansion (1.4) and to control the resulting error. To
analyze the truncation error we need to make some assumptions on the regularity and the decay
of the Karhunen–Loève eigenvalues and eigenfunctions (µj , ξj) as j → ∞. These assumptions
can be verified rigorously for particular covariances, such as for isotropic Matérn covariances.
As mentioned above, we follow closely [3, 6, 35] except that (via the error decomposition (2.1)),
we need only consider the effect of dimension truncation for the finite element solution (see the
last term in (2.1)), and not for u itself.

Recalling (1.2) and (1.4), the approximation of a obtained by the dimensionally truncated
Karhunen–Loève expansion of Z is

as(x, ω) := a∗(x) + a0(x) exp
( s∑

j=1

√
µj ξj(x)Yj(ω)

)
, for some s ∈ N . (2.13)
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The number of terms s is the dimension of the parameter domain for QMC integration in §4.
For any ω ∈ Ω, we can now define ush(·, ω) ∈ Vh to be the solution of the dimensionally

truncated, discretized boundary value problem

A
s(ω;ush(·, ω), vh) = 〈f, vh〉, for all vh ∈ Vh , (2.14)

where

A
s(ω;w, v) :=

∫

D
as(x, ω)∇w(x) · ∇v(x) dx, for any v, w ∈ V.

For simplicity, we work here under the assumption that, for any vh, wh ∈ Vh, we evaluate the
integrals in A s(ω;wh, vh) exactly. It is possible to also include quadrature errors in the analysis
(see [6, §3.3] for details). Existence and uniqueness for ush(·, ω) P-almost everywhere follows
again by the Lax-Milgram Lemma.

To obtain a bound on |E[G(uh)− G(ush)]| we apply the truncation error analysis in [3, 6].
It is well known that the integral operator C maps L2(D) to L∞(D) and so ξj ∈ L∞(D) for
all j ≥ 1. In what follows, we draw on some results in [3]. Therefore, we make the following
assumptions on the Karhunen–Loève eigenfunctions ξj and eigenvalues µj .

Assumption A2 (a) There exist C > 0 and Θ > 1 such that µj ≤ Cj−Θ for j ≥ 1.

(b) The Karhunen–Loève eigenfunctions ξj are continuously differentiable and there exist
C > 0 and ε ∈ [0, Θ−1

2Θ ) such that ‖ξj‖C0(D) + µj ‖∇ξj‖C0(D) ≤ Cµ−ε
j for j ≥ 1.

Theorem 8 Let Assumption A2 hold. Then ‖1/ǎs‖Lq(Ω) is bounded independently of s, for all

1 ≤ q <∞ . Suppose further that G ∈ V ′. Then

|E[G(uh)− G(ush)]| ≤ Cχ s
−χ, for all 0 < χ < (12 − ε)Θ− 1

2 . (2.15)

Proof. Note that Assumption A2 implies

∑

j≥1

µj ‖ξj‖2C0(D)
≤ C

∑

j≥1

µ1−2ε
j ≤ C

∑

j≥1

j−(1−2ε)Θ <∞, and

∑

j≥1

µj ‖ξj‖2(1−α)

C0(D)
‖∇ξj‖2αC0(D)

≤ C
∑

j≥1

µ1−2ε−2α
j ≤ C

∑

j≥1

j−(1−2ε−2α)Θ < ∞, (2.16)

for any arbitrary α ∈ (0, Θ−1
2Θ − ε). Thus Assumption 3.1 of [3] holds. The required result

that ‖1/ǎs‖Lq(Ω) is bounded for 0 < q < ∞, independently of s, then follows from [3, Proposi-
tion 3.10]. Moreover, (2.16) implies

max


∑

j>s

µj‖ξj‖2C0(D)
,
∑

j>s

µj ‖ξj‖2(1−α)

C0(D)
‖∇ξj‖2αC0(D)


≤ C

∑

j>s

j−(1−2ε−2α)Θ ≤ Cs−(1−2ε−2α)Θ+1

and hence Assumption 3.5 of [3] (which requires that the quantity on the left hand side, raised
to the p0th power, be summable with respect to s for some p0 > 0) holds for arbitrary p0 >
((1− 2ε− 2α)Θ− 1)−1. In turn this allows us to use [3, Theorem 4.2] to obtain

‖u− us‖Lq(Ω;V ) ≤ Cq,χs
−χ, (2.17)

where χ = (1/2− ε− α)Θ− 1/2, and us is the solution of the dimensionally truncated problem

A
s(ω;us(·, ω), v) = 〈f, v〉, for all v ∈ V.

9



Finally, since the finite element solution uh satisfies the same a priori bound (2.11) as the
exact solution u (in Theorem 2) and since the right hand sides in (2.10) and in (2.14) are identical,
the bound (2.17) holds also for ‖uh − ush‖Lq(Ω;V ) with constant Cq,χ > 0 being independent of
s and h. This follows immediately from the proofs of [3, Theorems 4.1 and 4.2], since all the
identities and bounds involving u − us there, hold equally for uh − ush. The final result (2.15)
then follows upon taking q = 1 and from the fact that G ∈ V ′. ✷

Note that it follows from [11, 31] that Assumption A2 is satisfied in the case of the Gaussian
covariance kernel for any Θ > 1 with ε = 0. It is in fact possible in that case to obtain (see [3,
§7.2] and [11, 31]), instead of (2.15) the exponential convergence estimate:

|E [G(uh)− G(ush)]| ≤ C exp
(
− c1s

1/d
)
, for some c1 > 0.

Another example for which we know that Assumption A2 is satisfied with Θ = 2 and ε = 0,
is the exponential covariance kernel (2.7) in one dimension or on rectangular domains, when the
Euclidean norm |x| = ‖x‖2 in the definition of the kernel c in (2.2) is replaced by the 1-norm
‖x‖1 =

∑d
i=1 |xi|, since in that case the Karhunen–Loève eigenvalues and eigenfunctions are

known explicitly [3, §7.1]. Here, the rate of convergence in Theorem 8 is χ < 1
2 .

For the Matérn class we know from Corollary 5 that Assumption A2(a) is satisfied with
Θ = 1 + 2ν/d. The numerical experiments in §6 suggest that, at least in one dimension,
Assumption A2(b) is also satisfied for all ν > 1/2 with ε = 0. This would lead to a convergence
rate of χ < ν

d . We are so far only able to prove this rigorously for ε > 1
4ν+1 using the Sobolev

embedding theorem and an interpolation argument, here shown only for d = 1. Similar results
could be proved also in higher dimensions.

Proposition 9 Consider the Matérn covariance given by (2.2) and (2.5) with ν > 1+
√
17

8 ≈ 0.64
for d = 1. Then Assumption A2 holds with Θ = 1+2ν and ε ∈ ( 1

4ν+1 ,
ν

1+2ν ), and the truncation

error bound (2.15) in Theorem 8 holds for all 0 < χ < ν − 2ν+1
4ν+1 .

Proof. It follows immediately from Corollary 5 that Assumption A2(a) holds with Θ = 1+2ν.
To show A2(b), note that Cv(x) =

∫
R
ρν(|x − x′|) ṽ(x′) dx′, where ṽ is the extension of v by

zero. Considering this for all x ∈ R, it follows from (2.8) and by the definition of fractional
Sobolev norms via Fourier transforms, the convolution theorem and Plancherel’s theorem (e.g.
[23, p.75]), that C is bounded from L2(D) to Hr(D), provided r < 1/2 + 2ν. Moreover,

‖ξj‖Hr(D) =
1

µj
‖Cξj‖Hr(D) ≤

1

µj
‖C‖L2→Hr‖ξj‖L2(D).

Now, using the fact that ‖ξj‖L2(D) = 1 and interpolation between L2(D) and Hr(D) we get

‖ξj‖H r̃(D) ≤ µ
−r̃/r
j ‖C‖r̃/r

L2→Hr , for 0 ≤ r̃ ≤ r and for every j ≥ 1 .

By choosing r̃ > 1/2, it follows from the Sobolev embedding theorem that ‖ξj‖C0(D) ≤ Cµ−ε
j ,

for any ε > 1
4ν+1 . Moreover, noting that 1/2 + 2ν > 3/2, we can also choose r̃ in the range

3/2 < r̃ < r < 1/2 + 2ν, allowing us to infer that µj‖∇ξj‖C0(D) ≤ µj‖ξj‖H r̃(D) ≤ µ
1−r̃/r
j ,

which is bounded as j → ∞. These two estimates allow us to conclude that A2(b) holds for all
ε ∈ ( 1

4ν+1 ,
Θ−1
2Θ ) = ( 1

4ν+1 ,
ν

1+2ν ). This interval is guaranteed to be non-empty by the requirement

that ν > (1 +
√
17)/8.

To establish the final part, note that for any δ > 0 sufficiently small, there exists an ε such

that (12 − ε)Θ− 1
2 = ν − 2ν+1

4ν+1 − δ, which is positive when ν > 1+4δ+
√
17+24δ+16δ2

8 . ✷
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Remark 10 Assumption A2 is weaker than the assumptions in [3, 6, 35] because (due to the
new splitting (2.1)) we have separated the truncation error analysis fully from the discretization
error analysis. It is in fact possible to further weaken Assumption A2(b) by requiring only
Hölder continuity with index 0 < t < 1 (as in Proposition 1) for the eigenfunctions (see also [4]).
Since this does not improve the result in Proposition 9 and would only further complicate the
presentation, we did not do this. The results of [4] suggest that under additional assumptions it
should be possible to strengthen the s−χ term in the estimate of Theorem 8 to s−2χ. This rate
can be observed numerically (cf. [5, §5.1] and [4]).

Combining Theorems 6 and 8, we obtain the following estimate of the first term in (1.11).

Corollary 11 Under Assumptions A1 and A2 and with τ, χ > 0 as defined in Theorems 6

and 8 we have

|E[G(u)− G(ush)]| ≤ C
(
h2τ + s−χ

)
.

3 Parametric deterministic problem

In this section, we prepare the analysis of the second term in (1.11), which is the error in
approximating the expectation E[G(ush)] by a suitable randomly shifted QMC quadrature ap-
proximation. Whereas standard Monte Carlo sampling of the random diffusion problem (1.1)
requires merely a ‘sampler’ for the random permeability a(x, ω), QMC quadrature requires
“integration coordinates” (see (1.6) and (1.7)). We introduce these coordinates here via the
Karhunen–Loève expansion (1.4) of the Gaussian random field Z.

3.1 Parametric, deterministic variational formulation

By (1.4) and (1.2), the coefficient a(x, ω) of the problem (1.1) is parametrized by a vector
y(ω) = (Y1(ω), Y2(ω), . . .) ∈ R

N of i.i.d. random variables Yj ∼ N (0, 1). The law of the random
vectors y is defined on the product probability space (RN,B(RN), µ̄G), where B(RN) denotes the
sigma-algebra generated by the cylinder sets, i.e., by (countable) products of intervals I ∈ B(R1),
and µ̄G is the product Gaussian measure (see, e.g., [2])

µ̄G =
∞⊗

j=1

N (0, 1). (3.1)

In our subsequent QMC error analysis, we will need the following assumption.

Assumption A3 The sequence b = {bj}j≥1 defined by

bj :=
√
µj ‖ξj‖C0(D), j ≥ 1, (3.2)

satisfies ∑

j≥1

bpj < ∞ , for some p ∈ (0, 1]. (3.3)

Assumption A3 follows immediately from Assumption A2 under the significantly more restrictive
condition Θ > 2

1−2ε p
−1. Note however, that in the Matérn case for d = 1, due to Corollary 5

we can again (as in Proposition 9) show theoretically that Assumption A3 holds for all ν >
3+

√
33

8 ≈ 1.09. If ‖ξj‖C0(D) is uniformly bounded, as seems to be the case numerically in the

Matérn case for d = 1 (see Figure 1), then Assumption A3 holds for all ν > 1/2.
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Under Assumption A3 we can now define the admissible parameter set

Ub :=

{
y ∈ R

N :
∞∑

j=1

bj |yj | <∞
}

⊂ R
N . (3.4)

The set Ub ⊂ R
N is not a countable product of subsets of R, but, as we show in the following

lemma (cf. [30, Lemma 2.28]), it is µ̄G-measurable and of full (Gaussian) measure. This is
important since the deterministic sampling rules that we employ below for the parameter y

might otherwise choose non-admissible values y ∈ R
N\Ub.

Lemma 12 If Assumption A3 holds for some 0 < p < 1 then Ub ∈ B(RN) and µ̄G(Ub) = 1.

With a slight abuse of notation, we identify the stochastic coefficient a(x, ω) defined in (1.2)
with its parametric representation a(x,y(ω)), that is, for each x ∈ D and y ∈ Ub, we define the
deterministic, parametric coefficient and its s-term truncation (cf. (2.13)) by

a(x,y) = a∗(x) + a0(x) exp

( ∞∑

j=1

√
µj ξj(x) yj

)
, (3.5)

as(x,y) = a∗(x) + a0(x) exp

( s∑

j=1

√
µj ξj(x) yj

)
. (3.6)

Note that as(x,y) can be considered as the exact coefficient a(x,y) evaluated at the particular
vector y = (y1, ..., ys, 0, 0, ...). More generally, denoting by u ⊂ N any set of “active” coordinates,
we denote by (y

u
;0) the vectors y ∈ Ub with the constraint that yj = 0 if j 6∈ u.

The series in (3.5) converges in C0(D) for all y ∈ Ub ⊂ R
N. Thus, analogous to (2.4), setting

ǎ(y) := min
x∈D

a(x,y) and â(y) := max
x∈D

a(x,y), (3.7)

and recalling that a∗(x) ≥ 0 and a0(x) > 0, for all x ∈ D, we have

0 < ǎ(y) ≤ a(x,y) ≤ â(y) <∞, for all x ∈ D and y ∈ Ub . (3.8)

Due to (3.8) and Lemma 12, we can consider Ub to be the parameter space instead of RN.
Even though Ub is not a product domain, we can define product measures such as the Gaussian
measure µ̄G on Ub by restriction. For each y ∈ Ub, we can now consider the following parametric,

deterministic variational formulation of the lognormal diffusion problem (1.1): Find u(·,y) ∈ V
such that

A (y;u, v) = 〈f, v〉 , for all v ∈ V , (3.9)

where the parametric, deterministic bilinear form is defined as

A (y;w, v) :=

∫

D
a(x,y)∇w(x) · ∇v(x) dx , w, v ∈ V . (3.10)

The problem (3.9) is equivalent to its stochastic counterpart (1.3) (after substituting Gaussian
random variables Yj instead of parameter values yj). For every y ∈ Ub, we can also define the
finite element solution ush(·,y) ∈ Vh ⊂ V for the s-term truncated parametric, deterministic

problem as the solution of

A
s(y;ush, vh) = 〈f, vh〉, for all vh ∈ Vh , (3.11)

where

A
s(y;w, v) :=

∫

D
as(x,y)∇w(x) · ∇v(x) dx , w, v ∈ V . (3.12)
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Our aim now is the analysis of QMC approximations of integrals with respect to y ∈ Ub of
G(ush(·,y)) (where G is a continuous, linear functional on V ). These integrals require pointwise
evaluation of ush(·,y), and so to develop the QMC error analysis we first establish that, for
every y ∈ Ub, the two parametric, deterministic problems (3.9) and (3.11) admit unique weak
solutions. Due to (3.8), this is again a direct consequence of the Lax-Milgram Lemma.

Theorem 13 For every y ∈ Ub, s ∈ N and h > 0, the parametric, deterministic problems (3.9)
and (3.11) admit unique solutions u(·,y) ∈ V and ush(·,y) ∈ Vh. Moreover,

‖u(·,y)‖V ≤ 1

ǎ(y)
‖f‖V ′ , for all y ∈ Ub , (3.13)

with the same bound holding also for ‖ush(·,y)‖V .

3.2 Regularity with respect to the parametric variables

To estimate the second term in (1.11), it is crucial to bound the mixed first derivatives of ush(·,y)
with respect to y. Here we state and prove a more general result which gives bounds also for
higher order mixed derivatives. In fact we prove the result for u(·,y) and explain subsequently
why the argument also applies (with constants that are independent of h and of s) to ush(·,y).
We introduce some additional notation. Let ν = (νj)j∈N denote a multi-index of non-negative
integers, with finitely many nonzero elements, i.e. |ν| := ∑j≥1 νj < ∞. As usual, the value of
νj shall determine the number of derivatives to be taken with respect to yj , and we write ∂νu
to denote the mixed derivative of u with respect to all variables specified by the multi-index ν.

It is a simple exercise to deduce from (3.5) that

(∂νa)(x,y) = (a(x,y)− a∗(x))
∏

j≥1

(
√
µj ξj(x))

νj .

Since from (1.2) we have 0 ≤ a∗(x) ≤ a(x,y) for all x ∈ D and y ∈ Ub, it follows that

∥∥∥∥
∂νa(·,y)
a(·,y)

∥∥∥∥
L∞(D)

≤
∏

j≥1

b
νj
j for all y ∈ Ub , (3.14)

where bj is defined in (3.2). The same bound holds with a(·,y) replaced by the truncated
parametric coefficient as(·,y), uniformly with respect to s ∈ N. In this case if νj > 0 for any
j > s then the left-hand side of (3.14) vanishes and the bound holds trivially. This leads to the
following regularity result with respect to the parameters.

Theorem 14 For any y ∈ Ub, any f ∈ V ′, and for any multi-index ν with |ν| :=∑j≥1 νj <∞,

the solution u(·,y) of the parametric weak problem (3.9) satisfies the a-priori estimate

‖∂νu(·,y)‖V ≤ |ν|!
(ln 2)|ν|

(∏

j≥1

b
νj
j

)‖f‖V ′

ǎ(y)
. (3.15)

Moreover, the estimate (3.15) also holds with u replaced by ush.

Proof. We only establish in detail the result for u as an identical argument will apply to ush
with all constants appearing in the bounds being independent of s and of h. We first prove by
induction on |ν| that, for any fixed y ∈ Ub,

(∫

D
a(x,y)|∇(∂νu)(x,y)|2 dx

)1/2

≤ Λ|ν|

(∏

j≥1

b
νj
j

) ‖f‖V ′√
ǎ(y)

, (3.16)
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where the sequence (Λn)n≥0 is defined recursively by

Λ0 := 1 and Λn :=
n−1∑

i=0

(
n

i

)
Λi for all n ≥ 1 . (3.17)

To simplify the presentation we suppress the arguments (x,y) where it is clear from the context.
To obtain (3.16) for the base case |ν| = 0, we take v = u(·,y) in the variational form (3.9):

∫

D
a |∇u|2 dx ≤ ‖f‖V ′ ‖u(·,y)‖V ≤ ‖f‖V ′√

ǎ(y)

(∫

D
a |∇u|2 dx

)1/2

.

Canceling the common factor from both sides yields (3.16) for |ν| = 0.
Suppose now that (3.16) holds for all multi-indices ν with |ν| ≤ n − 1 where n ≥ 1. Given

any multi-index ν with |ν| = n, we have the Leibniz product rule

∂ν(AB) =
∑

m�ν

(
ν

m

)
(∂ν−mA)(∂mB) .

Here, m � ν means that the multi-index m satisfies mj ≤ νj for all j, ν −m denotes a multi-
index with the elements νj −mj , and

(
ν
m

)
:=
∏

j≥1

(
νj
mj

)
. Now, applying ∂ν to the variational

formulation (3.9), and recalling that f is independent of y, we obtain the identity

∫

D


∑

m�ν

(
ν

m

)
(∂ν−ma)∇(∂mu) · ∇v(x)


 dx = 0 for all v ∈ V .

Taking v = ∂νu(·,y), separating out the m = ν term, dividing and multiplying by a, and using
the Cauchy-Schwarz inequality, we obtain

∫

D
a |∇(∂νu)|2 dx = −

∑

m�ν
m6=ν

(
ν

m

)∫

D
(∂ν−ma)∇(∂mu) · ∇(∂νu) dx

≤
∑

m�ν
m6=ν

(
ν

m

)∥∥∥∥
(∂ν−ma)(·,y)

a(·,y)

∥∥∥∥
L∞(D)

(∫

D
a|∇(∂mu)|2 dx

)1/2(∫

D
a|∇(∂νu)|2 dx

)1/2

.

Canceling the common factor on both sides and using (3.14), we arrive at

(∫

D
a|∇(∂νu)|2 dx

)1/2

≤
∑

m�ν
m6=ν

(
ν

m

)(∏

j≥1

b
νj−mj

j

)(∫

D
a|∇(∂mu)|2 dx

)1/2

.

We now use the inductive hypothesis (that (3.16) holds when |ν| ≤ n− 1) in each of the terms
on the right-hand side to obtain

(∫

D
a|∇(∂νu)|2 dx

)1/2

≤
n−1∑

i=0

∑

m�ν
|m|=i

(
ν

m

)(∏

j≥1

b
νj−mj

j

)
Λi

(∏

j≥1

b
mj

j

) ‖f‖V ′√
ǎ(y)

=
n−1∑

i=0

(
n

i

)
Λi

(∏

j≥1

b
νj
j

) ‖f‖V ′√
ǎ(y)

= Λn

(∏

j≥1

b
νj
j

) ‖f‖V ′√
ǎ(y)

.
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Here, we also used the identity
∑

m�ν
|m|=i

(
ν

m

)
=

(|ν|
i

)
,

which follows from a simple counting argument (i.e., consider the number of ways to select i
distinct balls from some baskets containing a total number of |ν| distinct balls). This completes
the proof of (3.16).

Next we prove by induction that

Λn ≤ n!

(ln 2)n
for all n ≥ 0 . (3.18)

Clearly the result holds for Λ0. Suppose the result holds for all Λi with i ≤ n−1. Then we have

Λn ≤
n−1∑

i=0

(
n

i

)
i!

(ln 2)i
=

n!

(ln 2)n

n−1∑

i=0

(ln 2)n−i

(n− i)!
=

n!

(ln 2)n

n∑

k=1

(ln 2)k

k!
≤ n!

(ln 2)n

(
eln 2 − 1

)
,

and so (3.18) holds for all n.
The desired bound (3.15) is obtained by inserting (3.18) into the right-hand side of (3.16), and

by noting that the left-hand side of (3.16) can be bounded from below by
√
ǎ(y) ‖∂νu(·,y)‖V .

Our proof argument is based entirely on the parametric weak form which is satisfied also by
ush(·,y) if V is replaced by Vh, y ∈ Ub is such that yj = 0 for j > s, and a is replaced by as.
Thus the result holds also for the finite element solution ush(·,y) of the dimensionally truncated
problem, with all constants independent of s and of h. ✷

3.3 Equivalence of integrals

Recall that the second term in (1.11) is the error in approximating the integral E [G(ush)] by
applying an n-point QMC integration rule to the s-fold iterated integral with respect to the
Gaussian measure on R

s given by (1.6). We transformed (1.6) to the integral (1.7) on the unit
cube (0, 1)s by changing the coordinates y from R

s to (0, 1)s using the inverse cumulative normal
distribution. The ensuing convergence analysis thus deals with a double limit, as s → ∞ and
n → ∞, in the transformed integrals. It is a consequence of a classical theorem of Kakutani
that the limit is the same, independently of the order in which we choose to do the dimension

truncation and the integral transformation into the unit cube, as we now explain.
Reinserting the countably many standard Gaussian variables Yj(ω) ∼ N (0, 1), j = 1, 2, ...,

into the parametric solution u(·,y), we recover the random field

u(·, ω) = u(·,y)|y=(Yj(ω))j≥1
∈ V . (3.19)

Furthermore, on recalling µ̄G defined in (3.1), we see that the mathematical expectation of the
random field u(·, ω) defined in (3.19) is well-defined as an element of V , and we may rewrite
mathematical expectations E [·] with respect to the measure P as parametric, deterministic
integrals with respect to the measure µ̄G, i.e.

E [u] =

∫

y∈RN

u(·,y)µ̄G(dy) ∈ V and E [G(u)] =
∫

y∈RN

G(u(y))µ̄G(dy) ∈ R (3.20)

exist for every u ∈ L1(Ub, µ̄G;V ) and for every G ∈ V ′.
We may now use Kakutani’s theorem on the equivalence of infinite product measures (see

e.g. [2, 8]), to identify the image of the Gaussian measure µ̄G under the mapping

y ∈ R
N 7→ Φ(y) := (Φ(y1),Φ(y2), . . .) ∈ (0, 1)N , (3.21)
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with Φ(y) :=
∫ y
−∞ φ(t)dt, with the uniform probability measure λ on (0, 1)N, i.e., with the

countable product of Lebesgue measures on (0, 1). Moreover, the image of Ub is of full measure
in (0, 1)N and so we can reparametrize the (countably) iterated integrals with respect to the
Gaussian measures µ̄G in (3.20) as integrals over the unit cube [0, 1]N. Since ush ∈ Vh ⊂ V ,
exactly the same statements are true for ush.

Therefore, in these parametric integrals, we may interchange the order of dimension trunca-
tion and reparametrization without affecting the numerical values of the limit as s→ ∞.

4 Analysis of the QMC integration error for G(ush)
In this section, we bound the QMC integration error, which is the second term on the right-
hand side of (1.11). Recalling (1.6), we address the efficient numerical evaluation, for large s, of
integrals

Is(F ) :=

∫

y∈Rs

F (y)
s∏

j=1

φ(yj) dy , with F (y) := G(ush(·,y)) , (4.1)

where φ(y) = e−y2/2/
√
2π is the standard normal probability density function. Let Φ(y) =∫ y

−∞ e−t2/2/
√
2π dt denote the cumulative normal distribution function and let Φ−1 denote its

inverse. The integral Is(F ) is transformed to the unit cube by applying Φ−1
s component-wise as

described in (1.7). We then approximate the resulting integral over the unit cube by randomly

shifted lattice rules, leading to the formula (1.8), which we denote in this section by

Qs,n(∆;F ) :=
1

n

n∑

i=1

F

(
Φ−1
s

(
frac

(
i z

n
+∆

)))
. (4.2)

We recall that z ∈ N
s is the (deterministic) generating vector and ∆ ∈ [0, 1]s is the random

shift which is uniformly distributed over [0, 1]s. The quality of a randomly shifted lattice rule is
determined by the choice of the generating vector z. To find the best generating vector for the
particular PDE problem, we need to identify a suitable weighted function space in which the
integrand lies.

In this section we will often write Is(F ) and Qs,n(∆;F ) for any general integrand F , not
necessarily the one given in (4.1).

4.1 A suitable weighted function space setting in R
s

Most QMCmethods are defined over the unit cube, and thus most QMC analyses in the literature
are carried out for spaces of functions defined over the unit cube. The “standard” function spaces
are weighted Sobolev spaces consisting of functions whose mixed first derivatives are square
integrable, see e.g., [33, 34]. In particular, it is known from the standard theory that good
randomly shifted lattice rules can be constructed to achieve the optimal rate of convergence
close to O(n−1), provided that the integrand lies in such a weighted Sobolev space, see e.g.,
[32, 17, 9, 28, 29, 7, 10]; a recent survey can be found in [19].

For an integral of the form (4.1) over unbounded domain R
s, the transformation to the unit

cube yields the transformed integrand F (Φ−1
s (·)) that may be unbounded near the boundary

of the unit cube, and thus does not belong to the weighted Sobolev space. Consequently, the
standard theory cannot be applied.

A suitable (but “non-standard”) function space setting for the integral (4.1) has been studied
in [20, 27] (see also the earlier papers [36, 37, 15, 21]), and it is known that in this case randomly
shifted lattice rules can still be constructed to achieve the optimal rate of convergence close to
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O(n−1). The norm in this case is given by

‖F‖2Ws
:=

∑

u⊆{1:s}

1

γu

∫

R|u|

(∫

Rs−|u|

∂|u|F
∂y

u

(y
u
;y{1:s}\u)

∏

j∈{1:s}\u
φ(yj) dy{1:s}\u

)2∏

j∈u
ψ2
j (yj) dyu

,

(4.3)

where {1 : s} is a shorthand notation for the set of indices {1, 2, . . . , s}, ∂|u|F
∂y

u

denotes the mixed
first derivative with respect to each of the “active” variables yj with j ∈ u, and y{1:s}\u denotes
the “inactive” variables yj with j /∈ u. The norm (4.3) is said to be “unanchored” because the
inactive variables are integrated out, as opposed to being “anchored” at some fixed value, say, 0.
The unanchored norm (4.3) was first considered in [27] (which allowed also a general interval of
integration instead of R); an anchored norm was considered in [20].

For each j ≥ 1, the function ψj : R → R
+ in (4.3) is a positive and continuous weight function

(not necessarily a probability density function, i.e., it does not need to integrate to 1), which
is to be chosen to control the kind of functions F that are included in the space. Coordinate-
dependent weight functions ψj were first considered in [27], while [20] used the same weight
function for all coordinates, i.e. ψj = ψ for all j. For the analysis from [20, 27] to hold, we need
ψ2
j (y) to decay slower than the standard normal density φ(y) in (4.1) as |y| → ∞. On the other

hand, our later analysis of the integrand F in §4.3 indicates that ψ2
j must decay exponentially.

This prompts us to restrict ourselves to the choice

ψ2
j (y) = exp(−2αj |y|) for some αj > 0 , (4.4)

with the value of αj to be specified later.
To every set u ⊂ N of finite cardinality |u| < ∞, we associate a weight parameter γu > 0,

which controls the relative importance of various (groups of) variables: small weights γu quantify
“weak” dependence of the integrand F on the group of variables y

u
= {yj : j ∈ u}. We write

collectively γ = {γu : |u| < ∞}, and we define γ∅ := 1. In [20] only “product weights” were
analyzed, that is, [20] assumed a sequence γ1 ≥ γ2 ≥ · · · > 0, each γj being associated with a
single integration variable yj , and then set γu :=

∏
j∈u γj for any nonempty subset u of indices.

The results of [20] were extended to more general weight parameters in [27]. (Note that [27] also
allowed the weight parameters to depend on the dimension s, but we do not take this approach
due to the infinite dimensional nature of our underlying PDE problem.)

The proper choice of the weight parameters γu is crucial to ensure that the constant in the
error bound which we shall obtain below does not grow exponentially with increasing dimension.
In the following we will consider a special form of weight parameters known as “POD weights”,
which stands for “product and order dependent weights” (first seen in [18]): In this choice there
are two sequences Γ0 = Γ1 = 1,Γ2, . . . and γ1 ≥ γ2 ≥ · · · > 0 such that γu := Γ|u|

∏
j∈u γj , where

|u| denotes the cardinality, or the order, of the set u.

4.2 Error analysis for randomly shifted lattice rules

We define the worst case error of the shifted lattice rule (4.2) with generating vector z and shift
∆ by

ewors,n (z,∆) := sup
‖F‖Ws≤1

|Is(F )−Qs,n(∆, F )| .

Thus for any F ∈ Ws, due to linearity, we have the error bound

|Is(F )−Qs,n(∆, F )| ≤ ewors,n (z,∆) ‖F‖Ws
.

For randomly shifted lattice rules, we consider the root-mean-square error which satisfies
√

E∆|Is(F )−Qs,n(·, F )|2 ≤ eshs,n(z) ‖F‖Ws
,
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where the expectation is taken over the random shift ∆ which is uniformly distributed over
[0, 1]s, and where the quantity

[eshs,n(z)]
2 :=

∫

[0,1]s
[ewors,n (z,∆)]2 d∆ (4.5)

is often referred to as the shift averaged worst case error. The precise formula for [eshs,n(z)]
2

depends on φ, as well as on the choices of weight functions ψj and weight parameters γu, see
[27, Equation 28].

A generating vector z for a randomly shifted lattice rule will be constructed using a component-

by-component algorithm which determines in turn z1, z2, z3, and so on. The quantity [eshs,n(z)]
2

will be used as the search criterion: assuming that the components z1, . . . , zj are already chosen
and fixed, the component zj+1 is chosen from the set {1 ≤ z ≤ n− 1 : gcd(z, n) = 1} of at most
n− 1 values to minimize [eshj+1,n(z1, . . . , zj+1)]

2. It is shown in [27] that, with POD weights γu,

the total cost for constructing a lattice rule up to dimension s is O(n logn s + ns2) operations
using FFT. It is also proved in [27] that for certain combinations of φ and weight functions ψj ,
we can obtain close to O(n−1) convergence for eshs,n(z). We present the relevant result from [27].

Theorem 15 Let F ∈ Ws. Given s, n ∈ N, weight parameters γ = (γu)u⊂N, standard normal

density function φ, and weight functions ψj defined by (4.4), a randomly shifted lattice rule with

n points in s dimensions can be constructed using a component-by-component algorithm such

that, for all λ ∈ (1/2, 1],

√
E∆|Is(F )−Qs,n(·, F )|2 ≤


 ∑

∅6=u⊆{1:s}
γλ
u

∏

j∈u
̺j(λ)




1/(2λ)

[ϕtot(n)]
−1/(2λ) ‖F‖Ws

, (4.6)

with

̺j(λ) := 2

(√
2π exp(α2

j/η∗)

π2−2η∗(1− η∗)η∗

)λ

ζ

(
λ+

1

2

)
and η∗ :=

2λ− 1

4λ
, (4.7)

where ϕtot(n) := |{1 ≤ z ≤ n − 1 : gcd(z, n) = 1}| denotes the Euler totient function, and

ζ(x) :=
∑∞

k=1 k
−x denotes the Riemann zeta function.

Proof. Theorem 8 in [27] yields the error bound (4.6) together with ̺j(λ) = 2cλ2,jζ(2 r2λ), which
holds for all λ ∈ (1/(2 r2), 1], with the precise values of c2,j and r2 depending on the particular
combination of φ and ψj , which in [27] are general. For the choice of φ and ψj in this theorem,
we have (see [20, Example 5])

c2,j =

√
2π exp(α2

j/η)

π2−2η(1− η)η
and r2 = 1− η for any η ∈ (0, 1/2) .

Thus the bound holds for all η ∈ (0, 1/2) and λ ∈ (1/(2− 2η), 1]. Equivalently, the bound holds
for all λ ∈ (1/2, 1] and η ∈ (0, 1 − 1/(2λ)). We simplify the result by taking η = η∗ to be the
mid-point of the latter interval, see (4.7). ✷

Note that ϕtot(n) = n − 1 for n prime, and it can be verified that 1/ϕtot(n) < 9/n for all
n ≤ 1030. Hence, from the practical point of view, we can replace the reciprocal of the Euler
totient function by a constant factor times 1/n.
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4.3 Justifying the choice of the weight functions ψj

In this subsection we show in Theorem 16 that ‖F‖Ws
< ∞ for each s and for each choice of

weight parameters γu (where the norm is defined in (4.3)). In the proof of this result we make
crucial use of our specific choice of weight functions ψj in (4.4). This leads to Theorem 17,
which gives an estimate for the root-mean-square error and shows that this attains a rate of
convergence arbitrarily close to O(n−1), but with a possibly s-dependent asymptotic constant.
Then in the following subsection we show that a careful choice of the weight parameters γu can
be made so that the asymptotic constant in the convergence estimate is bounded uniformly with
respect to s, leading to the main result Theorem 20.

We assume throughout the remainder of the paper that Assumption A3 holds for some p ≤ 1.
We assume also that the parameters αj in (4.4) satisfy for some constants 0 < αmin < αmax <∞

max(bj , αmin) < αj ≤ αmax , j ∈ N . (4.8)

Theorem 16 For each j ≥ 1, let bj be defined by (3.2) and ψj by (4.4) with parameters αj

satisfying (4.8). Then the norm (4.3) of the integrand F in (4.1) satisfies the bound

‖F‖2Ws
≤ (C∗)2

∑

u⊆{1:s}

(|u|!)2
γu (ln 2)2|u|

∏

j∈u

b̃2j
αj − bj

(4.9)

where

b̃2j :=
b2j

2 exp(b2j/2)Φ(bj)
, (4.10)

with Φ(·) denoting the cumulative standard normal distribution function, and with

C∗ :=
‖f‖V ′ ‖G(·)‖V ′

minx∈Da0(x)
exp

(
1

2

∑

j≥1

b2j +
2√
2π

∑

j≥1

bj

)
. (4.11)

Proof. To ease readability of the proof we introduce K∗ := ‖f‖V ′ ‖G(·)‖V ′/minx∈Da0(x). Now,
for the integrand F from (4.1) and for any y ∈ R

s (which we identify throughout this proof,
with slight abuse of notation, with the sequence y ∈ R

N with yj = 0 for j > s), we have from
Theorem 14 with νj ∈ {0, 1} and the linearity of G, that

∣∣∣∣
∂|u|F
∂y

u

(y)

∣∣∣∣ ≤ ‖G‖V ′

∥∥∥∥
∂|u|ush
∂y

u

(·,y)
∥∥∥∥
V

≤ ‖f‖V ′ ‖G‖V ′
|u|!

(ln 2)|u|

(∏

j∈u
bj

)
1

ǎ(y)
.

Since a∗ in (1.2) was assumed to be non-negative and since minx∈D
√
µj ξj(x) ≥ −bj , this implies

∣∣∣∣
∂|u|F
∂y

u

(y)

∣∣∣∣ ≤ K∗ |u|!
(ln 2)|u|

(∏

j∈u
bj

)( ∏

j∈{1:s}
exp(bj |yj |)

)
. (4.12)

Since the final term on the right-hand side of (4.12) is separable, we can group the factors
corresponding to j ∈ u and j ∈ {1 : s} \ u separately, allowing us to estimate the norm (4.3) as

‖F‖2Ws
≤ (K∗)2

∑

u⊆{1:s}

1

γu

|u|!2
(ln 2)2|u|

(∏

j∈u
bj

)2(∫

Rs−|u|

∏

j∈{1:s}\u
exp(bj |yj |)φ(yj) dy{1:s}\u

)2

×
∫

R|u|

∏

j∈u
exp(2bj |yj |)ψ2

j (yj) dyu
. (4.13)
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The integrals on the right hand side of (4.13) can be readily estimated. Firstly,

∫

Rs−|u|

∏

j∈{1:s}\u
exp(bj |yj |)φ(yj) dy{1:s}\u =

∏

j∈{1:s}\u

(∫ ∞

−∞
exp(bj |y|)

exp(−y2/2)√
2π

dy

)

=
∏

j∈{1:s}\u

(
2 exp(b2j/2)

∫ ∞

0

exp(−(y − bj)
2/2)√

2π
dy

)

=
∏

j∈{1:s}\u

(
2 exp(b2j/2)Φ(bj)

)
. (4.14)

Secondly,

∫

R|u|

∏

j∈u
exp(2bj |yj |)ψ2

j (yj) dyu
=
∏

j∈u

(∫ ∞

−∞
exp(2bj |y|)ψ2

j (y) dy

)
,

and from this we understand the requirement (explained in §4.1) that ψ2
j must decay exponen-

tially. With ψj defined by (4.4) and using the condition (4.8), we obtain

∫

R|u|

∏

j∈u
exp(2bj |yj |)ψ2

j (yj) dyu
=
∏

j∈u

1

αj − bj
. (4.15)

Combining (4.13) with (4.14) and (4.15), we obtain

‖F‖2Ws
≤ (K∗)2

∏

j∈{1:s}

(
2 exp(b2j/2)Φ(bj)

) ∑

u⊆{1:s}

(
1

γu

|u|!2
(ln 2)2|u|

∏

j∈u

b̃2j
αj − bj

)
. (4.16)

Now, to obtain the bound (4.9), it remains to bound the product in (4.16) independently
of s. To do this we note that 2 exp(b2j/2)Φ(bj) ≥ 1 and

Φ(bj) ≤ 1

2

(
1 +

2 bj√
2π

)
≤ 1

2
exp

(
2 bj√
2π

)
since bj ≥ 0 .

Thus we have
∏

j∈{1:s}(2 exp(b2j/2)Φ(bj)) ≤ ∏
j≥1 exp(b

2
j/2 + 2 bj/

√
2π) and the bound (4.9)

then follows. ✷

The root-mean-square error can now be estimated by combining Theorems 15 and 16.

Theorem 17 Let F be the integrand in (4.1), and for each j ≥ 1 let ψj be defined by (4.4)
with αj satisfying (4.8). Given s, n ∈ N with n ≤ 1030, weights γ = (γu)u⊂N, and standard

normal density function φ, a randomly shifted lattice rule with n points in s dimensions can be

constructed by a component-by-component algorithm such that, for all λ ∈ (1/2, 1],

√
E∆|Is(F )−Qs,n(·;F )|2 ≤ 9C∗Cγ,s(λ)n

−1/(2λ), (4.17)

with

Cγ,s(λ) :=

( ∑

∅6=u⊆{1:s}
γλ
u

∏

j∈u
̺j(λ)

)1/(2λ)( ∑

u⊆{1:s}

(|u|!)2
γu (ln 2)2|u|

∏

j∈u

b̃2j
αj − bj

)1/2

,

where bj is defined in (3.2), b̃j is defined in (4.10), C∗ is defined in (4.11), and ̺j(λ) is defined

in (4.7) and it depends on αj.
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Without a careful choice of the weight parameters γu, the quantity Cγ,s(λ) might grow (even
exponentially) with increasing s. To ensure that Cγ,s(λ) is bounded independently of s, we
choose the weight parameters to ensure that

Cγ(λ) :=

( ∑

|u|<∞
γλ
u

∏

j∈u
̺j(λ)

)1/(2λ)( ∑

|u|<∞

(|u|!)2
γu (ln 2)2|u|

∏

j∈u

b̃2j
αj − bj

)1/2

<∞. (4.18)

(Note that b̃j ≤ bj and that it tends to bj rapidly as j → ∞.) Provided (4.18) holds, then it
follows immediately that Cγ,s(λ) ≤ Cγ(λ) <∞ for all s, and so the asymptotic constant in the
convergence estimate (4.17) is independent of the truncation dimension s.

4.4 Choosing the weight parameters γu

For any given λ ∈ (1/2, 1], we now follow the strategy in [18] and choose the weight parameters
γu to minimize the constant Cγ(λ) given in (4.18). We shall see that the resulting minimal value
of Cγ(λ) is finite. To do this we will use the following two lemmas.

Lemma 18 ([18, Lemma 6.2]) Let m ∈ N, λ > 0, and Ai, Bi > 0 for all i. Then the function

( m∑

i=1

xi
λAi

)1/λ( m∑

i=1

Bi

xi

)
(4.19)

is minimized over all sequences (xi)1≤i≤m when

xi = c

(
Bi

Ai

)1/(1+λ)

for any c > 0 . (4.20)

The function obtained by letting m → ∞ in (4.19) is minimized when xi is given by (4.20) for

all i and has a finite value if and only if the series
∑∞

i=1(AiB
λ
i )

1/(1+λ) converges.

Lemma 19 ([18, Lemma 6.3]) For all Aj > 0 with
∑

j≥1Aj < 1 we have

∑

|u|<∞
|u|!
∏

j∈u
Aj ≤

∞∑

k=0

(∑

j≥1

Aj

)k

=
1

1−∑j≥1Aj
,

and for all Bj > 0 with
∑

j≥1Bj <∞ we have

∑

|u|<∞

∏

j∈u
Bj =

∏

j≥1

(1 +Bj) = exp

(∑

j≥1

log(1 +Bj)

)
≤ exp

(∑

j≥1

Bj

)

Since the constant Cγ,s(λ) in Theorem 17 and the uniform upper bound Cγ(λ) in (4.18) are
of the same general form as the function in Lemma 18, we obtain the formula (4.22) for the
weights γu below. We then specify the parameter λ to obtain a good convergence rate, while
ensuring that the constant Cγ(λ) is indeed finite for our choice of weights (4.22).

Theorem 20 For each j ≥ 1, let ψj be defined by (4.4) with αj satisfying (4.8). Suppose that

Assumption A3 holds for some p ≤ 1, and when p = 1 assume additionally that

∑

j≥1

bj < ln 2

√
J

̺max(1)
, (4.21)
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where J := infj≥1(αj − bj) > 0 and ̺max(λ) is defined by replacing αj in (4.7) by αmax in (4.8).
Then, for any given λ ∈ (1/2, 1], the choice of weights

γu = γ∗
u
(λ) :=

(
(|u|!)2
(ln 2)2|u|

∏

j∈u

b̃2j
(αj − bj)̺j(λ)

)1/(1+λ)

(4.22)

minimizes Cγ(λ) given in (4.18), if a finite minimum exists. If we furthermore choose

λ = λ∗ :=





1
2−2δ for arbitrary δ ∈ (0, 1/2] when p ∈ (0, 2/3] ,
p

2−p when p ∈ (2/3, 1) ,

1 when p = 1 ,

(4.23)

and set γu = γ∗
u
(λ∗), then Cγ(λ) < ∞. Moreover, a randomly shifted lattice rule can be con-

structed for the approximation of the integral (4.1) such that

√
E∆|Is(F )−Qs,n(·;F )|2 =





O(n−(1−δ)) when p ∈ (0, 2/3] ,

O(n−(1/p−1/2)) when p ∈ (2/3, 1) ,

O(n−1/2) when p = 1 ,

with the implied constant independent of s, but depending on p and, when relevant, δ.

Proof. The fact that the choice of weights (4.22) minimizes Cγ(λ) follows from Lemma 18, as
in [18, Theorem 6.4], on observing that the finite subsets of N in (4.18) can be ordered (i.e. are
countable), and that the particular ordering is immaterial, as the convergence is absolute and
hence unconditional. In the following, we show that Cγ(λ) is indeed finite for the weights given
by (4.22) and parameter λ given by (4.23). In the course of our derivation below we shall choose
the value of λ according to the value of p, see (4.23), but until then λ is independent of p.

Let us define

Sλ :=
∑

|u|<∞
(γ∗

u
)λ
∏

j∈u
̺j(λ) =

∑

|u|<∞

(
(|u|!)2
(ln 2)2|u|

∏

j∈u

[̺j(λ)]
1/λ b̃2j

αj − bj

)λ/(1+λ)

. (4.24)

Then S
1/(2λ)
λ is the first factor of Cγ(λ) in (4.18) with the choice of weight parameters (4.22).

Moreover, the second factor in Cγ(λ) can also be shown to reduce to S
1/2
λ . Thus we have

Cγ(λ) = S
1/(2λ)+1/2
λ . So, to prove Cγ(λ) is finite it suffices to prove that Sλ is finite.

By definition we have αj − bj ≥ J and b̃j ≤ bj for all j ≤ s. (Note that J > 0, since bj
converges to 0 while αj ≥ αmin > 0.) On the other hand, we see from (4.7) that, for fixed λ,
̺j(λ) increases monotonically with αj . Thus we have ̺j(λ) ≤ ̺max(λ) for all j ≥ 1. Applying
these estimates to Sλ in (4.24) yields

Sλ ≤
∑

|u|<∞
(|u|!)2λ/(1+λ)

∏

j∈u

(
[̺max(λ)]

1/λ

J (ln 2)2
b2j

)λ/(1+λ)

. (4.25)

In the following we consider the cases λ 6= 1 and λ = 1 separately.
For λ ∈ (1/2, 1), we have 2λ/(1 + λ) < 1 and we further estimate Sλ as follows: we multiply

and divide the terms on the right-hand side of (4.25) by
∏

j∈uA
2λ/(1+λ)
j , where Aj > 0 will be

specified later, and then apply Hölder’s inequality with conjugate exponents (1 + λ)/(2λ) and
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(1 + λ)/(1− λ), to obtain

Sλ ≤
∑

|u|<∞
(|u|!)2λ/(1+λ)

∏

j∈u
A

2λ/(1+λ)
j

∏

j∈u

(
[̺max(λ)]

1/λ

J (ln 2)2
b2j
A2

j

)λ/(1+λ)

≤
(
∑

|u|<∞
|u|!
∏

j∈u
Aj

)2λ/(1+λ)( ∑

|u|<∞

∏

j∈u

(
[̺max(λ)]

1/λ

J (ln 2)2
b2j
A2

j

)λ/(1−λ))(1−λ)/(1+λ)

≤
(

1

1−∑j≥1Aj

)2λ/(1+λ)

exp

(
1− λ

1 + λ

(
[̺max(λ)]

1/λ

J (ln 2)2

)λ/(1−λ)∑

j≥1

(
bj
Aj

)2λ/(1−λ)
)
.

In the last step we applied Lemma 19 which holds and guarantees that Sλ is finite, provided
that

∑

j≥1

Aj < 1 and
∑

j≥1

(
bj
Aj

)2λ/(1−λ)

< ∞ . (4.26)

We now choose

Aj :=
bpj
̟

for some ̟ >
∑

j≥1

bpj . (4.27)

Then we have
∑

j≥1Aj < 1 due to Assumption A3. Noting that Assumption A3 also implies

that
∑

j≥1 b
p′

j <∞ for all p′ ≥ p, we conclude that the second sum in (4.26) converges for

2λ

1− λ
(1− p) ≥ p ⇐⇒ p ≤ 2λ

1 + λ
⇐⇒ λ ≥ p

2− p
.

Recall that λ must be strictly between 1/2 and 1 for the argument above. When p ∈ (0, 2/3],
we choose λ = 1/(2− 2δ) for some δ ∈ (0, 1/2). When p ∈ (2/3, 1), we set λ = p/(2− p).

In the case p = 1 we take λ = 1. Then, using Lemma 19, we obtain from (4.25) that

S1 ≤
∑

|u|<∞
|u|!
∏

j∈u

(
̺max(1)

J (ln 2)2
b2j

)1/2

≤
(
1−

∑

j≥1

√
̺max(1)

J
bj
ln 2

)−1

,

which is finite due to the assumption (4.21). This completes the proof. ✷

Corollary 21 Let λ = λ∗ and γu = γ∗
u
(λ∗), as defined in (4.23) and (4.22), respectively. Then

the constant Cγ(λ) in (4.18) is minimized by choosing

αj =
1

2

(
bj +

√
b2j + 1− 1

2λ∗

)
, for all j ≥ 1. (4.28)

Proof. Recall from the proof of Theorem 20 that Cγ(λ) = S
1/(2λ)+1/2
λ with Sλ given by (4.24).

Since all terms on the right hand side of (4.24) are positive, minimizing Cγ(λ) with respect to
the parameters {αj}j≥1 is equivalent to minimizing each of the functions [̺j(λ)]

1/λ/(αj − bj)
individually with respect to αj . But due to (4.7), [̺j(λ)]

1/λ = c exp(α2
j/η∗), for some constant c

independent of αj and for η∗ = 1/2− 1/(4λ), leading to the choice (4.28) for the minimizer. ✷

Following the argument in the proof of [18, Theorem 6.5], we can prove that the alternative
choice of weights

γu = γ∗∗
u

:=

(
|u|!
∏

j∈u
(κ bj)

)2−p

for arbitrary κ > 0 ,
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while not minimizing Cγ(λ), still ensures that Cγ(λ) <∞ and yields the same convergence rates
under the same conditions on bj . This result might seem to indicate that the approximation
is somewhat robust with respect to the scaling parameters κ. However, numerical experiments
indicate that arbitrary choices of κ can lead to poor lattice rules. Therefore, we recommend the
choice of weight parameters (4.22) that minimizes the bound. See [26, 27] for details.

Similarly, although Theorem 20 holds for any choice of {αj}j≥1 that satisfies (4.8), numerical
experiments show that arbitrary choices, such as αj = 2bj , can again lead to poor lattice rules.

5 Final result

We now summarize our theoretical results and state our combined bound for the root-mean-
square error, which includes the finite element error, the dimension truncation error and the
QMC quadrature error, estimated in Theorems 6, 8 and 20, respectively.

Theorem 22 We consider approximations of the expected value of G(u) via quasi-Monte Carlo

finite element methods. In particular, we apply a randomly shifted lattice rule Qs,n to G(ush).
Then, under the same assumptions and definitions as in Theorems 6, 8 and 20, the root-mean-

square error with respect to the uniformly distributed shift ∆ ∈ [0, 1]s can be bounded by

√
E∆

[(
E[G(u)]−Qs,n(·;G(ush))

)2] ≤ C
(
h2τ + s−χ + n−r

)
,

for some 0 < τ ≤ 1 and 0 < χ < (1/2 − ε)Θ − 1/2, and with r = 1/p − 1/2 for p ∈ (2/3, 1]
and r = 1 − δ for p < 2/3, with δ arbitrarily small. The rate τ depends on the spatial regu-

larity of u in Assumption A1, while the rates χ and r depend on the parameters ε, Θ and p
which in turn depend on the asymptotics of the Karhunen–Loève eigenvalues and eigenvectors

in Assumptions A2 and A3. The constant C is independent of h, s, and n.

In one spatial dimension in the case of the Matérn covariance ρν from (2.5), if ‖ξj‖C0(D) is

uniformly bounded and ‖∇ξj‖C0(D) grows no faster than µ−1
j (as seems to be the case numer-

ically; see Figure 1), then the result holds for any τ < min(ν, 1), r < min(ν, 1), and for χ < ν,
provided ν > 1/2. For details see the discussions after each of the assumptions in Sections 2
and 3 above.

Note that the rate r is capped at 1 even for p < 2/3 because we are using only QMC methods
of order one. With higher order QMC methods we might expect to have r = 1/p− 1/2 also for
p < 2/3, and in one spatial dimension with the Matérn covariance ρν , we might expect r to be
close to ν, even for ν > 1. Similarly, we could use higher order finite elements in space to ensure
that τ is close to ν, for all ν > 1/2, but this is classical. Finally, a recent result in [4] shows
that under slightly stronger conditions on the data, the rate χ in the truncation error can also
be increased to 2χ, which is what is observed numerically.

6 Numerical results

We present here a numerical study of the algorithm described above over a range of parameters.
Theorem 22 provides us with a theoretical bound for the error in the method, and we examine
here whether we see, in the numerics, the behavior predicted by the theory.

We solve (3.9) with spatial dimension d = 1 on D = [0, 1], with a forcing term f(x) = 1.
The Karhunen-Loéve expansion of the random field is truncated at s = 400, so that y ∈ R

400.
The strong form of the problem we are solving is the parametrized ODE

− d

dx

(
as(x,y)

dus(x,y)

dx

)
= 1, (6.1)
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Figure 1: Log-log plots of ‖ξj‖C0(D) (left) and µj‖∇ξj‖C0(D) (right) against j for the Matérn
covariance in one dimension for various ν and λC

with homogeneous Dirichlet boundary conditions, u(0,y) = u(1,y) = 0. We solve (6.1) using
the piecewise linear finite element method with uniform meshes of diameter h = 1/M to get the
approximate solution ush(·,y). The tridiagonal systems which arise are solved in O(M) time by
the Thomas algorithm. In the numerical experiments that follow, we setM = 1024 and compute
the entries of the tridiagonal system using the composite mid-point rule applied elementwise.

The quantity of interest is here taken to be E[G(ush)], where the functional G is taken to be
point evaluation at 1/3, i.e.

F (y) = G(ush(·,y)) = ush(1/3,y).

To specify as, we choose here the Matérn class of covariances defined in (2.2) and (2.5) with
a∗ ≡ 0 and a0 ≡ 1 in (1.2). To compute as we use the formula (3.6) which requires computation
of the eigenpairs (µj , ξj) for 1 ≤ j ≤ s. We do this by discretizing the integral operator in (1.5)
using the Nyström method based on Gauss-Legendre quadrature on [0, 1] with 10,000 quadrature
points and then solving the resulting algebraic eigenvalue problem.

To define the weighted space Ws in (4.3) and to perform the CBC algorithm for calculating
the generating vector z, we must choose the weight parameters γu and weight function ψj .
Thus we need to specify αj in (4.4) and λ∗ from (4.23). In principle, our weighted function
space framework in Section 4 allows us to adjust the QMC rule to the integrand behavior with
respect to every coordinate via the j-dependent parameters αj in (4.4), and we can choose
αj according to (4.28), to minimize the constant in the theoretical error bound. However, as
discussed in [26, 27], allowing a different value of αj for each j would cause a substantial increase
in the cost of the CBC algorithm. To maintain the full efficiency of the currently available CBC
construction algorithms, the αj should be coordinate-independent, at least for large blocks of
coordinates. In our numerical experiments we found that the use of a single value of αj for
all j led to unsatisfactory results, but that two values (chosen according to the prescription
below) led to acceptable results. Noting that as a consequence of Assumption A3 bj → 0 as
j → ∞, we choose j0 to be the smallest positive integer such that bj < b∗/2 for all j ≥ j0, where
b∗ := maxj≥1 bj . Then following (4.28), we define

αj =





1
2

(
b∗ +

√
b2∗ + 1− 1/(2λ∗)

)
for j < j0

1
2

(
bj0 +

√
b2j0 + 1− 1/(2λ∗)

)
for j ≥ j0

, (6.2)

with λ∗ to be specified below, which satisfies the general condition (4.8).
The weight parameters γu are now defined as in (4.22), after first setting the parameter λ∗.

By (4.23), this parameter λ∗ is related to p, which in turn was introduced in Assumption A3
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and is thus constrained by the choice of covariance function c(x, x′). For the Matérn covariance
ρν from (2.5), we can observe numerically the boundedness of both the sequences ‖ξj‖C0(D) and

µj‖∇ξj‖C0(D) (see Figure 1). Using this together with Corollary 5 we can deduce empirically

that Assumption A2 holds with Θ = 1 + 2ν and ε = 0, and that bj = O(j−(1+2ν)/2), and hence
that Assumption A3 holds for arbitrary p ∈ ( 2

1+2ν , 1]. Using this relationship between ν and p,
we find from (4.23) that for arbitrarily small q > 0 we can simplify the expression for λ∗ to

λ∗ =

{
1
2ν + q, if 1/2 < ν < 1
1
2 + q, if ν ≥ 1.

(6.3)

This choice of λ∗ implies, see Theorem 17, that we obtain theoretical QMC convergence close
to O(n−min(ν,1)). Note that the choice of q involves a trade-off. Smaller values of q lead to a
faster convergence, but also to a larger value for Cγ(λ∗) in (4.18). In fact, for ν ≥ 1, we easily
see that q → 0 is equivalent to δ → 0 in (4.23). This in turn implies Cγ(λ∗) → ∞, by way of
(4.18) and (4.7). Whereas for ν ∈ (1/2, 1), we see that q → 0 is equivalent to p → 2/(1 + 2ν),
so that the sum in Assumption A3 grows without bound, leading, as in the proof of Theorem
20, again to Cγ(λ∗) → ∞. Here we choose q = 0.05.

Recalling (4.2), we write Qi = Qs,n(∆i;F ), where ∆i is the i-th independent random shift,
uniformly distributed on [0, 1]s. Denoting by Q̄ the mean of the Qi, we have the following
unbiased estimator with R random shifts of the mean-square error (with respect to the shifts):

1

R

1

R− 1

R∑

i=1

(Qi − Q̄)2 ≈ E
∆|Is(F )−Qs,n(·;F )|2 . (6.4)

The square-root of the left-hand side of (6.4) is an estimate of the “standard error”. In the
following experiments we estimate this standard error for the following selection of parameters,

ν = 0.75, 1.5 σ2 = 0.25, 1.0, 4.0 λC = 0.1, 1.0,

using R = 32 random shifts. Here, σ2 and λC refer to the variance and length-scale parameters
for the Matérn covariance in (2.5). Recall further that we have fixed the truncation dimension
at s = 400 and the spatial resolution at h = 1/1024.

Tables 1 and 2 present results using the QMC quadrature analyzed in §4, along with esti-
mated values of the rate-of-convergence parameter r in the error representation cn−r. The rate
r is estimated together with its 90% confidence interval by linear regression of the negative log
of the standard error against log n. Here we see a strong dependence on the variance σ2, but a
weaker dependence on the choices of λC and ν. While Theorem 20 suggests that the asymptotic
behavior of the root-mean-square error depends on p (and hence ν), in practice the observed
rates of convergence bear little relation with the prediction. One explanation may be that with
the range of n presented we are in a pre-asymptotic regime. This seems especially true for larger
values of σ2, and hence may explain why we see our QMC quadrature performing similarly to
standard Monte Carlo (MC) quadrature for σ2 = 4.0.

Recall from the theory that we expect a convergence rate close to O(n−min(ν,1)). We see,
however, that the results converge almost as well for ν = 0.75 as for ν = 1.5. This seems to
indicate that our theory is not sharp, and that optimal (close to O(n−1)) convergence could
potentially be demonstrated for ν lower than our current cross-over point of ν = 1 in (6.3). This
is also indicated by the fact that our method sometimes converges faster than predicted by the
theory, for example for ν = 0.75, σ2 = 0.25 and λC = 1.0, where the observed rate of convergence
of approximately 0.89 is significantly larger than the predicted rate of 0.75 from Theorem 20.

Tables 3 and 4 present the same experiments as Tables 1 and 2 respectively, but for MC
quadrature. The results agree with the usual behavior of MC methods where standard errors

26



Table 1: QMC standard errors for ν = 1.5 (using POD weights γu as in (4.22))

σ2 = 0.25 σ2 = 1.0 σ2 = 4.0
n λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1

8,009 2.69e-05 1.77e-05 1.90e-04 1.00e-04 1.12e-02 3.22e-03
16,001 1.38e-05 8.12e-06 1.02e-04 7.52e-05 5.47e-03 2.44e-03
32,003 8.85e-06 6.22e-06 6.79e-05 5.11e-05 3.83e-03 1.20e-03
64,007 4.49e-06 3.02e-06 3.33e-05 3.49e-05 2.36e-03 7.02e-04
120,011 2.66e-06 1.79e-06 2.46e-05 1.79e-05 3.18e-03 7.87e-04
240,007 1.43e-06 9.95e-07 1.48e-05 9.80e-06 1.74e-03 4.42e-04
480,013 7.82e-07 6.72e-07 9.17e-06 8.41e-06 7.68e-04 2.91e-04

Rate 0.86 0.80 0.73 0.66 0.55 0.58
90% Interval [0.89, 0.83] [0.87, 0.74] [0.78, 0.69] [0.75, 0.57] [0.71, 0.40] [0.68, 0.48]

Table 2: QMC standard errors for ν = 0.75 (using POD weights γu as in (4.22))

σ2 = 0.25 σ2 = 1.0 σ2 = 4.0
n λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1

8,009 2.80e-05 1.80e-05 1.76e-04 1.12e-04 8.97e-03 2.01e-03
16,001 1.37e-05 7.37e-06 1.25e-04 7.10e-05 7.25e-03 1.69e-03
32,003 8.37e-06 5.78e-06 5.72e-05 3.98e-05 2.42e-03 1.26e-03
64,007 4.36e-06 2.93e-06 3.39e-05 2.70e-05 1.72e-03 8.35e-04
120,011 2.58e-06 1.82e-06 2.00e-05 1.82e-05 1.43e-03 5.63e-04
240,007 1.32e-06 9.56e-07 1.14e-05 1.31e-05 1.57e-03 2.64e-04
480,013 7.06e-07 5.57e-07 6.31e-06 7.52e-06 5.60e-04 2.05e-04

Rate 0.89 0.82 0.83 0.64 0.63 0.60
90% Interval [0.91, 0.86] [0.89, 0.76] [0.88, 0.79] [0.68, 0.61] [0.81, 0.44] [0.70, 0.50]

Table 3: MC standard errors for ν = 1.5

σ2 = 0.25 σ2 = 1.0 σ2 = 4.0
n λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1

8,009 7.24e-04 4.19e-04 2.21e-03 1.11e-03 2.70e-02 6.62e-03
16,001 3.98e-04 2.58e-04 1.15e-03 7.22e-04 1.42e-02 4.98e-03
32,003 2.97e-04 1.52e-04 9.73e-04 4.45e-04 1.65e-02 3.56e-03
64,007 1.87e-04 1.07e-04 6.21e-04 3.08e-04 1.02e-02 2.43e-03
120,011 1.25e-04 7.59e-05 4.11e-04 2.17e-04 5.78e-03 1.65e-03
240,007 9.40e-05 6.19e-05 2.97e-04 1.50e-04 4.02e-03 8.78e-04
480,013 7.06e-05 4.16e-05 2.12e-04 9.75e-05 2.79e-03 5.06e-04

Rate 0.56 0.55 0.56 0.59 0.55 0.63
90% Interval [0.62, 0.51] [0.61, 0.49] [0.61, 0.50] [0.61, 0.57] [0.65, 0.44] [0.71, 0.55]

Table 4: MC standard errors for ν = 0.75

σ2 = 0.25 σ2 = 1.0 σ2 = 4.0
n λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1

8,009 6.89e-04 4.01e-04 2.05e-03 1.07e-03 2.30e-02 6.54e-03
16,001 3.82e-04 2.47e-04 1.08e-03 6.90e-04 1.21e-02 4.85e-03
32,003 2.81e-04 1.45e-04 9.05e-04 4.23e-04 1.35e-02 3.43e-03
64,007 1.78e-04 1.02e-04 5.76e-04 2.93e-04 8.51e-03 2.36e-03
120,011 1.20e-04 7.20e-05 3.85e-04 2.07e-04 5.00e-03 1.62e-03
240,007 9.91e-05 5.95e-05 3.11e-04 1.52e-04 3.84e-03 1.24e-03
480,013 6.92e-05 4.08e-05 2.11e-04 9.60e-05 3.85e-03 8.15e-04

Rate 0.55 0.55 0.54 0.58 0.45 0.51
90% Interval [0.61, 0.49] [0.61, 0.48] [0.59, 0.48] [0.61, 0.55] [0.56, 0.34] [0.53, 0.49]
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Figure 2: Standard errors from Tables 1 to 4 for QMC and MC plotted against n.

converge with approximately O(n−1/2). Figure 2 charts all the findings in Tables 1 to 4. They
demonstrate that in all our test cases QMC always does better than MC, especially for small
σ2, where QMC outperforms MC by up to two orders of magnitude.

As a final comparison, in Tables 5 and 6 we look at the standard errors for a generic lattice
rule, which is not specifically designed to fit the problem. We choose here a lattice rule generated
for the Sobolev space of mixed first-order derivatives on [0, 1]s, with product weight parameters
γj = 1/j2. We see that these lattice rules still behave very well, attaining similar results to the
lattice rules constructed for our specific problem.

7 Conclusion

We have been able to demonstrate good convergence of our QMC finite element method for
this class of PDE problems both theoretically and numerically. The success of this project has
required the analysis of QMC methods for integrals over an unbounded region, with the weight
parameters γu and the weight functions ψj both tuned to the specific problem. This led to the
extension of shifted lattice rule theory presented in [27].

Our numerical results demonstrate that QMC rules comfortably beat MC rules in most cases,
or certainly perform no worse in the cases of large σ2. Furthermore we see that this is the case
even for arbitrarily chosen lattice rules, as is demonstrated in Tables 5 and 6, despite the fact
that the theory for these lattice rules does not apply to this problem.

It is important to note that in these experiments neither the MC nor the QMC rules are
enhanced using any variance reduction techniques such as the use of antithetic variates. This way
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Table 5: QMC standard errors for ν = 1.5 (using generic lattice rules)

σ2 = 0.25 σ2 = 1.0 σ2 = 4.0
n λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1

8,009 3.38e-05 1.90e-05 2.48e-04 1.24e-04 1.29e-02 2.81e-03
16,001 1.68e-05 9.91e-06 1.23e-04 7.41e-05 7.00e-03 1.78e-03
32,003 8.27e-06 6.48e-06 6.47e-05 5.56e-05 4.05e-03 1.19e-03
64,007 4.32e-06 4.60e-06 3.55e-05 4.05e-05 2.88e-03 9.36e-04
120,011 2.46e-06 2.01e-06 2.59e-05 2.08e-05 4.33e-03 6.41e-04
240,007 1.77e-06 1.41e-06 2.07e-05 1.31e-05 3.54e-03 3.76e-04
480,013 6.84e-07 6.32e-07 7.10e-06 7.26e-06 7.60e-04 2.27e-04

Rate 0.92 0.80 0.80 0.68 0.52 0.59
90% Interval [0.99, 0.84] [0.88, 0.72] [0.91, 0.68] [0.76, 0.61] [0.78, 0.25] [0.65, 0.54]

Table 6: QMC standard errors for ν = 0.75 (using generic lattice rules)

σ2 = 0.25 σ2 = 1.0 σ2 = 4.0
n λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1 λC = 1.0 λC = 0.1

8,009 3.25e-05 1.80e-05 2.27e-04 1.21e-04 1.06e-02 2.82e-03
16,001 1.61e-05 9.42e-06 1.12e-04 6.77e-05 5.52e-03 1.66e-03
32,003 7.87e-06 5.92e-06 5.71e-05 5.13e-05 3.36e-03 1.16e-03
64,007 4.06e-06 4.21e-06 3.11e-05 3.64e-05 2.18e-03 8.49e-04
120,011 2.41e-06 1.81e-06 2.34e-05 1.84e-05 3.13e-03 5.77e-04
240,007 1.69e-06 1.32e-06 1.81e-05 1.25e-05 2.40e-03 3.71e-04
480,013 6.60e-07 5.96e-07 6.69e-06 7.19e-06 6.44e-04 2.40e-04

Rate 0.91 0.81 0.80 0.68 0.54 0.58
90% Interval [0.99, 0.84] [0.88, 0.73] [0.91, 0.69] [0.74, 0.61] [0.76, 0.31] [0.61, 0.55]

we have a fair comparison between two unflavored implementations. Evidently there is scope for
further work to sharpen our error bounds, as demonstrated by our numerics. Nevertheless, the
results show that QMC finite element methods provide an excellent solution to the lognormal
porous flow problem, and present a marked improvement over MC methods.
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[36] G. W. Wasilkowski and H. Woźniakowski, Complexity of weighted approximation over R1,
J. Approx. Theory., 103, 223–251 (2000).
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