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Abstract We consider the scattering of time-harmonic acoustic waves at ob-
jects composed of several homogeneous parts with different material proper-
ties. In [X. Claeys, A single trace integral formulation of the second kind for
acoustic scattering, Report 2011-14, SAM, ETH Zürich] a novel second-kind
boundary integral formulation for this scattering problem was proposed, that
relies on skeleton Cauchy data as unknowns. We recast it into a variational
problem set in L2 and investigate its Galerkin boundary element discretiza-
tion from a theoretical and algorithmic point of view. Empiric studies demon-
strate the competitive accuracy and superior conditioning of the new approach
compared to a widely used Galerkin boundary element approach based on a
first-kind boundary integral formulation.
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Galerkin boundary element methods
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1 Acoustic scattering at Composite Obstacles

We consider the scattering of an incident acoustic wave at a bounded pen-
etrable obstacle composed of several homogeneous parts. To give a precise
description, we write Ω∗ ⊂ Rd, d = 2, 3, for the domain occupied by the ob-
stacle, and introduce its parts as open sub-domains Ωi ⊂ Rd, i = 1, . . . , N ,
that form a partition of Ω∗ in the sense that Ωi ∩ Ωj = ∅ for j 6= i and

Ω∗ =
⋃N

i=1Ωi. Both Ω∗ and all Ωi are supposed to be connected Lipschitz do-
mains [17, Definition 3.28], which also applies to the unbounded complement
Ω0 := Rd \Ω∗.
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The generic situation that we have in mind (for d = 2) is sketched in
Figure 1.1. We call points where three or more sub-domains abut “material
junction points” (marked as in Figure 1.1). In those regions some sub-
domainsΩi will inevitably have non-smooth boundaries. For each i = 1, . . . , N ,
the boundary ∂Ωi can be endowed with a unit normal vector field ni pointing
into the exterior of Ωi. We write Γij for the common interface of Ωi and Ωj ,
Γij := ∂Ωi ∩∂Ωj , i 6= j. The union of all the interfaces Γij forms the so-called

skeleton Σ :=
⋃
j<i

Γij =
⋃N

i=0 ∂Ωi.
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Fig. 1.1: Typical geometry of a composite scatterer for N = 3.

In the context of acoustic scattering, each sub-domain is filled with a
medium characterized by a local wave number κi ∈ R+, i = 0, . . . , N . These are
lumped together into the piecewise constant coefficient function κ ∈ L∞(Rd),
κ |Ωi

≡ κi. Sources will be introduced into our scattering model through a

given incident wave Uinc ∈ C∞(Rd) that satisfies1

−∆Uinc − κ20Uinc = 0 everywhere in R
d . (1.1)

1 Capital letters are used to refer to functions defined over a volume domain.



2nd-kind BEM for Scattering 3

In many applications Uinc will be a plane wave. Then, the acoustic scattering
problem consists in looking for a U ∈ H1

loc(R
d) such that2

∫

Rd

gradU(x) · gradV (x)− κ2(x)U(x)V (x) dx = 0 ∀V ∈ H1
comp(R

d) ,

(1.2a)

and the scattered field Us := U − Uinc satisfies

lim
r→∞

∫

|x|=r

∣∣∣∣gradUs(x) ·
x

|x|
− iκ0Us(x)

∣∣∣∣
2

dS(x) = 0 . (1.2b)

Existence and uniqueness of solutions of (1.2) is well established [4, 13]. We
also point out that (1.2) is equivalent to a transmission problem for the ho-
mogeneous Helmholtz equations −∆U − κ2iU = 0, see [7, Sect. 1.2], and that
(1.2b) expresses the so-called Sommerfeld radiation conditions [8, Sect. 2.2].

Remark 1.1 (Discontinuous “diffusion coefficient”) What about admit-
ting a piecewise constant coefficient also in the second-order part of the bilinear
form in (1.2a)? Alas, this will lead to transmission problems that are out-
side the scope of the method discussed in this article, because serendipitous
cancellations of singularities of the integral kernel will no longer occur, see
Section 5.3. △

2 Introduction

In the case of acoustic scattering with piecewise homogeneous material de-
scribed above low-order Galerkin boundary element methods (BEM) are a
very attractive option for the approximate numerical solution of (1.2). They
can easily cope with unbounded domains and, in contrast to finite element
methods, can dispense with volume meshes.

Galerkin BEM rely on boundary integral equations (BIE) in variational
form. The classical approach to obtain those for (1.2) is the so-called first-
kind single trace formulation (STF), introduced in [10,24]. In computational
electromagnetics the STF is known as PMCHWT [12,19], see also [7, Sect. 3].
Unfortunately, its Galerkin discretization by means of low order boundary el-
ements leads to ill-conditioned linear systems on fine meshes, and the popular
operator preconditioning strategy (“Calderón preconditioning”) does not seem
to be available [7, Sect. 4]. On the other hand, effective preconditioning be-
comes mandatory, when the sheer problem size demands matrix compression,
and, as a consequence, the use of iterative solvers.

2 Notations for function spaces (Sobolev spaces) follow the usual conventions, see [7, 17].
In particular, we write Hs

loc(R
d) for functions that belong to Hs(K) for any compact subset

K of Rd, see [21, Definition 2.6.1]. Hs
comp(Ω) contains all distributions in Hs

loc(Ω) that have
compact support in Ω, see [21, Definition 2.6.5]
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In contrast to first-kind BIE, the so-called second-kind boundary integral
equations readily yield well-conditioned linear systems. For N = 1, that is,
the case of two materials separated by a closed interface, such formulations for
(1.2) are well-known, see [5,16,18,20]. Yet, for a long time it remained obscure
how to extend them to situations with junction points. Only recently, in [6]
and the parallel work [11], a breakthrough was achieved by considering total
potentials, see Section 3.3 below.

In this article we follow the approach of [6] and extend it to obtain a
second-kind variational BIE set in L2(Σ), see Section 4. We carefully examine
the arising non-standard boundary integral operators both in terms of struc-
tural properties and numerical treatment, see Section 5. Numerical tests in two
dimensions, reported in Section 6, bolster the conjectured unconditional sta-
bility of the new formulation and confirm the predicted asymptotic algebraic
rates of convergence. They also demonstrate that the new method matches the
accuracy obtained with STF-based BEM. We point out that our approach has
little in common with [11], where a Nystrom discretization is pursued. More-
over, the authors’ focus is primarily algorithmic and convergence is studied
only empirically.

3 Second-Kind Boundary Integral Formulation

3.1 Traces and Potentials

Fixing the sub-domain Ωi, we introduce the Dirichlet trace γiD : H1
loc(Ωi) →

H
1
2 (∂Ωi), extending the pointwise restriction of smooth functions to ∂Ωi,

and the Neumann trace (co-normal trace), γiN : H1
loc(∆,Ωi) → H− 1

2 (∂Ωi),

γiN := ni ·
(γi

D

γi
D

)
◦ grad, cf., e.g., [21, Theorems 2.6.9, 2.8.3 & Lemma 2.8.4].3

The associated trace spaces, henceforth called “Dirichlet trace space” and
“Neumann trace space”, can be merged into the Cauchy trace space

H(∂Ωi) := H
1
2 (∂Ωi)×H−

1
2 (∂Ωi) , (3.1)

which is self-dual with respect to the pairing 4

〈〈u, v〉〉H(∂Ωi)
:= 〈u, ϕ〉∂Ωi

+ 〈v, ν〉∂Ωi
, u :=

(
u

ν

)
, v :=

(
v

ϕ

)
∈ H(∂Ωi) ,

(3.2)

with 〈·, ·〉Ωi
denoting (extensions of) the L2-duality pairing on ∂Ωi. A related

compact notation is the Cauchy trace operator

γi : H1
loc(∆,Ωi) → H(∂Ωi) , γi U :=

(
γiD U

γiN U

)
. (3.3)

3 H1
loc(∆,Ω) := {U ∈ H1

loc(Ω) |∆U ∈ L2
comp(Ω)}, see [21, Equation (2.108)].

4 Fraktur font is used to designate functions in the Cauchy trace space, whereas Roman
typeface is reserved for Dirichlet traces, and Greek symbols for Neumann traces.
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Potential representations of solutions of (1.2) are the first step towards
boundary integral equations. The following result can be found in [21, Sect. 3.11]
and [17, Ch. 6]:

Lemma 3.1 (Single domain representation formula) There are contin-
uous linear operators, depending on the constant κ > 0, the

single layer potential Si[κ] : H
−

1
2 (∂Ωi) → H1

loc(∆,R
d \ ∂Ωi) ,

double layer potential Di[κ] : H
1
2 (∂Ωi) → H1

loc(∆,R
d \ ∂Ωi) ,

such that

(i) Si[κ](ϕ) and Di[κ](u) satisfy −∆ · −κ2· = 0 in Ωi ∪ Rd \Ωi and the Som-

merfeld radiation conditions (1.2b) for any ϕ ∈ H− 1
2 (∂Ωi), u ∈ H

1
2 (∂Ωi).

(ii) Every solution U ∈ H1
loc(Ωi) of

(
−∆− κ2

)
U = 0 that satisfies the Som-

merfeld radiation conditions (1.2b), if i = 0, fulfills

Gi[κ](γ
i U) =

{
U on Ωi ,

0 on Rd\Ωi ,
(3.4)

with the local total potentials defined by

Gi[κ](u) := −Di[κ](u) + Si[κ](ϕ) , u :=

(
u

ϕ

)
∈ H(∂Ωi) .

For functions ϕ and u on ∂Ωi the potentials possess the integral representations

Si[κ](ϕ)(x) =

∫

∂Ωi

Φκ(x− y)ϕ(y) dS(y) ,

Di[κ](u)(x) =

∫

∂Ωi

grady Φκ(x− y) · ni(y)u(y) dS(y) ,

(3.5)

for x 6∈ ∂Ωi, with the fundamental solutions

Φκ(z) =

{
i

4H
(1)
0 (κ |z|), d = 2

1
4π|z| exp(iκ |z|), d = 3

, κ ∈ R+ , (3.6)

where H
(1)
0 is the Hankel function of the first kind and | · | represents the

Euclidean norm.

Notations. For simplicity we neglect the argument [κ] in Si[κ], Di[κ], and
Gi[κ] and write Si, Di, Gi, respectively, in the cases where κ in the formulas
(3.5) coincides with the local wave number κi of Ωi.
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3.2 Skeleton trace spaces

Definition 3.1 (Multi-trace space) The skeleton multi-trace space is de-
fined as the product of local Cauchy trace spaces

MT (Σ) :=

N

×
i=0

H(∂Ωi) . (3.7)

It owes its name to the fact that on each interface Γij a function u ∈ MT (Σ)
comprises two pairs of Dirichlet and Neumann data, one contributed by the
sub-domain on either side. Based on Cauchy traces (3.3) we define the skeleton
multi-trace operator γΣ, which maps H1

loc(∆,R
d) into the multi-trace space:

γΣ : H1
loc(∆,R

d) → MT (Σ) , U 7→ γΣU := (γ0 U, γ1 U, ..., γN U) . (3.8)

Self-duality of MT (Σ) is induced by the following L2-type bi-linear pairing
(3.2); for u = (u0, ..., uN), v = (v0, ..., vN ) ∈ MT (Σ) we define

〈〈u,v〉〉 :=
N∑

i=0

〈〈ui, vi〉〉H(∂Ωi)
. (3.9)

For sufficiently smooth functions we can rewrite (3.9) using the fact that each
interface is visited twice when summing integrals over all sub-domain bound-
aries:

〈〈u,v〉〉 =
∑

j<i

∫

Γij

uiψi + νivi + ujψj + νjvj dS , (3.10)

where ui = (ui, νi), vi = (vi, ψi).
Next, we introduce the important subspace of unique traces in MT (Σ):

Definition 3.2 (Single-trace space)

ST (Σ) :=
{
(u0, ν0, . . . , uN , νN ) ∈ MT (Σ) : ∃U ∈ H1(Rd),

ui = γiD U, ∃φ ∈ H(div,Rd), νi = ni ·

(
γiD
γiD

)
φ
}
.

In words, functions in ST (Σ) are skeleton traces of functions defined every-
where on Rd. The transmission conditions inherent in the variational formu-
lation (1.2a) imply for the solution U of (1.2):

U solves (1.2a) ⇒ γΣU ∈ ST (Σ) . (3.11)

Another fundamental result is the following “polar set” characterization of
ST (Σ) as a subspace of MT (Σ), see [6, Prop. 2.1] and [7, Thm. 3.1],

ST (Σ) = {u ∈ MT (Σ) : 〈〈u,v〉〉 = 0, ∀v ∈ ST (Σ)} . (3.12)
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3.3 Multi-potentials

Definition 3.3 (multi-potential) The multi-potential is defined as the sum
over all total local potentials Gi[κi] defined in Lemma 3.1, i = 0, ..., N :

MΣ : MT (Σ) → H1
loc(∆,R

d \Σ), MΣ(u) :=

N∑

i=0

Gi[κi](ui) . (3.13)

An immediate consequence of equation (3.4) is

Corollary 3.1 (Global Representation Formula) Let U solve the trans-
mission problem (1.2), then

U − χΩ0
Uinc = MΣ(γ

ΣU − (γ0 Uinc, 0, . . . , 0)) , (3.14)

where γΣ is the multi-trace defined in (3.8) and χΩ0
is the characteristic func-

tion of Ω0.

We define the boundary integral operator MΣ by taking the skeleton trace
of (3.13):

Definition 3.4 (Multi Boundary Integral Operator)

MΣ := γΣMΣ : MT (Σ) → MT (Σ) . (3.15)

Notations. If MΣ or MΣ are supplied with an argument [κ], all wave numbers
κi in (3.13) are supposed to agree with κ in MΣ [κ] and MΣ[κ], respectively.

Next, we derive boundary integral equations from (3.14). We apply the
skeleton trace to it and test the resulting equation with v ∈ MT (Σ), which
gives us a boundary integral equation in variational form:

Formulation 3.1 Search u ∈ ST (Σ) :

〈〈(Id−MΣ)u,v〉〉 = 〈〈uinc,v〉〉 , ∀v ∈ MT (Σ), (3.16)

where uinc := γΣUinc.

The simple expression on the right hand side is due to the identity

〈〈
(Id−MΣ)(γ

0 Uinc, 0, . . . , 0),v
〉〉

= 〈〈uinc,v〉〉 ,

which is a consequence of (3.4) and the fact that the incident wave Uinc solves
an interior Helmholtz problem on Ω∗, see (1.1).

The next Lemma paves the way for a regularized form of (3.16).

Lemma 3.2 ∀κ > 0 : MΣ [κ](u)(x) = 0 ∀x ∈ R
d, ∀u ∈ ST (Σ) .
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Proof (see [6, Lemma 5.1]) Let x ∈ Rd\Σ and let χ : Rd → R+, χ ∈ C∞(Rd),
be a cut-off function such that χ

∣∣
Bǫ(x)

= 0 for some ǫ > 0 small enough and

χ
∣∣
Γ̃

= 1 in a neighborhood Γ̃ of Γ . We define Vx(y) := χ(y)Φκ0
(y − x),

y ∈ Rd, which is smooth everywhere, so that, evidently, v := γΣVx ∈ ST (Σ).
Further note that by virtue of the definition (3.5) of the potentials and that
of the duality pairing (3.2)

Gi[κ](u)(x) = −
〈〈
u, γi Vx

〉〉
H(∂Ωi)

.

Thus, appealing to (3.12), we conclude,

MΣ [κ](u)(x) = 〈〈u,v〉〉 = 0 ,

for any u ∈ ST (Σ). �

Hence, for u ∈ ST (Σ) we can “add zero” in the form of MΣ[κ0](u) :=
γΣMΣ [κ0](u) = 0 to Formulation 3.1 and convert it into a regularized formu-
lation.

Formulation 3.2 Search u ∈ ST (Σ) :

〈〈(Id− (MΣ−MΣ[κ0]))u,v〉〉 = 〈〈uinc,v〉〉 , ∀v ∈ MT (Σ). (3.17)

Why this formulation deserves the label “regularized” will be elucidated in
the next section and in Lemma 5.3.

4 New Second-Kind Boundary Integral Formulation in L2

The advantage of Formulation 3.2 is that it remains well defined on a L2-based
function space.

Definition 4.1 The skeleton multi-trace L2-space is given by

ML
2(Σ) :=

N

×
i=0

L2(∂Ωi)× L2(∂Ωi) . (4.1)

In L2 the transmission conditions can be expressed as pointwise constraints
on functions in the multi-trace space, which motivates the following definition

Definition 4.2 The single-trace L2-space is defined by

SL
2(Σ) :=

{
(u0, ν0, . . . , uN , νN) ∈ ML

2(Σ) :

ui
∣∣
Γij

= uj
∣∣
Γij
, νi
∣∣
Γij

= −νj
∣∣
Γij
, ∀j < i

}
.
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Of course, sufficiently regular functions in ST (Σ) also belong to SL
2(Σ).

The next lemma provides the polar identity (3.12) in the L2-setting:

Lemma 4.1

SL
2(Σ) = {u ∈ ML

2(Σ) : 〈〈u,v〉〉 = 0, ∀v ∈ SL
2(Σ)} .

Proof (i) By continuity of the bilinear L2-pairing we obtain

u,v ∈ SL
2(Σ) ⇒ 〈〈u,v〉〉 = 0 ,

because it holds on the dense subset ST (Σ) ∩ML
2(Σ) ⊂ SL

2(Σ).
(ii) Fix u = (u0, ν0, . . . , uN , νN ) ∈ ML

2(Σ) and take an arbitrary v =
(v0, ψ0, . . . , vN , ψN ) ∈ SL

2(Σ). We have to show that 〈〈u,v〉〉 = 0 implies
u ∈ SL

2(Σ):

0 = 〈〈u,v〉〉
v∈SL

2(Σ)
=

∑

j<i

∫

Γij

(ui − uj)ψi + (νi + νj)vi dS . (4.2)

Since this identity holds for all v ∈ SL
2(Σ) it implies ui = uj a.e. on Γij

and νi = −νj a.e. on Γij for all j < i ∈ {0, 1, . . . , N}, respectively. This is
equivalent to u ∈ SL

2(Σ). �

A consequence is that Lemma 3.2 carries over to the L2-setting.

Corollary 4.1 SL
2(Σ) is a closed subspace of ML

2(Σ).

A closer scrutiny reveals that taking the difference of boundary integral
operators in (3.17) involves a cancellation of the leading singularities of their
kernels, refer to the proof of Lemma 5.3 for details. This enhances the smooth-
ing properties of the boundary integral operators and yields the following com-
pactness result, whose proof boils down to adapting the ideas of [21, Remark
3.1.3].

Theorem 4.1 The operator MΣ−MΣ[κ0] : ML
2(Σ) → ML

2(Σ) is com-
pact.

Before we prove this theorem, we recall an auxiliary result:

Lemma 4.2 The restricted Neumann trace

γiN : H2
loc(Ωi) → L2(∂Ωi) (4.3)

furnishes a compact mapping.

Proof We can decompose

γiN = (ni·) ◦ (γ
i
D, γ

i
D) ◦ grad ,



10 Xavier Claeys∗, Ralf Hiptmair†, and Elke Spindler†

into continuous mappings

H2
loc(Ωi)

grad
−−−−−−−→ (H1

loc(Ωi))
d,

(H1
loc(Ωi))

d (γi
D ,γi

D), [9, Lemma 3.6, s = 1]
−−−−−−−−−−−−−−−−−−−−→ (H

1
2 (∂Ωi))

d ⊂⊂ (L2(∂Ωi))
d,

(L2(∂Ωi))
d ·ni−−−−−→ L2(∂Ωi).

(4.4)

The compact embedding in the second line of (4.4) is established via Rellich’s
Theorem [21, Theorem 2.5.5]. Since ni ∈ L∞(∂Ωi), continuity in L2(∂Ωi) of
the multiplication with the outer normal is clear. �

Proof (Theorem 4.1) The proof closely follows that of [21, Lemma 3.9.8] and
relies on mapping properties of differences of Newton potentials. The Newton
potential for Ωi is defined as [21, Theorem 3.1.2]

Ni[κ] :

{
Hs

comp (Ωi) → Hs+2
loc

(
Rd
)

φ 7→ Ni[κ]φ(x) :=
∫
Ωi
Φκ(x− y)φ(y) dy, x ∈ Rd.

(4.5)

As is explained in [21, Sect. 3.1.1], the potentials are spawned by the Newton
potentials according to

Si = Ni[κi] ◦ (γ
i
D)′ , Di = Ni[κi] ◦ (γ

i
N )′ , (4.6)

where (γiD)′ and (γiN )′, resp., denote the L2-adjoints of the trace operators
γiD, γiN . Moreover, from [21, Remark 3.1.3] we know that for all s ∈ R, j ∈
{0, 1, ..., N}, the difference of Newton potentials maps continuously

Ni[κi]− Ni[κ0] : H
s
comp(Ωi) → Hs+4

loc (Ωj) . (4.7)

Owing to (4.6) the assertion of the theorem boils down to showing that
the mappings

γ
j
D ◦ (Ni[κi]− Ni[κ0]) ◦ (γ

i
D)′ : L2(∂Ωi) → L2(∂Ωj) ,

γ
j
N ◦ (Ni[κi]− Ni[κ0]) ◦ (γ

i
D)′ : L2(∂Ωi) → L2(∂Ωj) ,

γ
j
D ◦ (Ni[κi]− Ni[κ0]) ◦ (γ

i
N )′ : L2(∂Ωi) → L2(∂Ωj) ,

γ
j
N ◦ (Ni[κi]− Ni[κ0]) ◦ (γ

i
N )′ : L2(∂Ωi) → L2(∂Ωj) ,

(4.8)

are compact for all i, j ∈ {0, 1, ..., N}. As we learn from [21, p. 59 & p. 63 ] we
have

Hs
loc(Ωi)

′ = H−s
comp(Ωi) , and Hs(∂Ωi)

′ = H̃−s(∂Ωi) = H−s(∂Ωi) ,
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where ′ denotes the dual space. Using those facts and combining them with
(4.7), [9, Lemma 3.6] and Lemma 4.2, we obtain

L2(∂Ωi)
γi
N

′
, from (4.3)

−−−−−−−−−−−→ H−2
comp(Ωi)

Ni[κi]−Ni[κ0]
−−−−−−−−−−→
(4.7) for s=−2

H2
loc(Ωj ) ⊂ H2

loc(Ωj) ,

and, finally, H2
loc(Ωj)

γ
j
N

, from (4.3)
−−−−−−−−−−→

compact
L2(∂Ωj ) ,

L2(∂Ωi)
γi
N

′
, from (4.3)

−−−−−−−−−−−→ H−2
comp(Ωi)

Ni[κi]−Ni[κ0]
−−−−−−−−−−→
(4.7) for s=−2

H2
loc(Ωj ) ⊂ H1

loc(Ωj) ,

and, furthermore, H1
loc(Ωj)

γ
j
D

, [9, Lemma 3.6, s = 1]
−−−−−−−−−−−−−−−−−−→ H

1
2 (∂Ωj) ⊂⊂ L2(∂Ωj) ,

L2(∂Ωi) ⊂ H− 1
2 (∂Ωi)

γi
D

′
, s=1

−−−−−−→ H−1
comp(Ωi)

Ni[κi]−Ni[κ0]
−−−−−−−−−−→
(4.7) for s=−1

H3
loc(Ωj ) ⊂ H2

loc(Ωj) ,

moreover H2
loc(Ωj)

γ
j
N

, from (4.3)
−−−−−−−−−−→

compact
L2(∂Ωj) ,

L2(∂Ωi) ⊂ H− 1
2 (∂Ωi)

γi
D

′
, [9, Lemma 3.6, s = 1]

−−−−−−−−−−−−−−−−−−→ H−1
comp(Ωi)

Ni[κi]−Ni[κ0]
−−−−−−−−−−→
(4.7) for s=−1

H3
loc(Ωj) ,

and we have H3
loc(Ωj) ⊂ H1

loc(Ωj)
γ
j
D

, [9, Lemma 3.6, s = 1]
−−−−−−−−−−−−−−−−−−→ H

1
2 (∂Ωj ) ⊂⊂ L2(∂Ωj) ,

where the compact embeddings are inferred from Rellich’s Theorem [21, The-
orem 2.5.5]. �

The bilinear pairing 〈〈·, ·〉〉 from (3.9) clearly extends to a continuous bilin-
ear form on ML

2(Σ)×ML
2(Σ). Thus, as a consequence of Theorem 4.1, the

bilinear form on the left-hand side of (3.17) is also continuous on ML
2(Σ)×

ML
2(Σ). By density of ML

2(Σ) ∩ MT (Σ) ⊂ ML
2(Σ) we obtain that

equation (3.17) holds for all test functions v ∈ ML
2(Σ). Combined with the

fact that Lemma 3.2 carries over to the L2-setting by a density argument, this
leads to the “lifted” equivalent of Formulation 3.2:

Formulation 4.1 Search u ∈ SL
2(Σ) :

〈〈(Id− (MΣ −MΣ[κ0]))u,v〉〉 = 〈〈uinc,v〉〉 , ∀v ∈ ML
2(Σ). (4.9)

A remedy for the obvious mismatch of trial and test space in Formula-
tion 4.1 is suggested by the following fundamental observation [6, Proposition
5.1].

Theorem 4.2

〈〈(MΣ−MΣ[κ0])u,v〉〉 = 〈〈u,v〉〉 , ∀u ∈ ML
2(Σ), ∀v ∈ SL

2(Σ) . (4.10)

The idea of its proof is to remember the jump relations for the potentials,
see [21, Sect. 3.3.1], [17, Thm. 6.11], and to understand that the multi-potential
MΣ features vanishing jumps of Dirichlet and Neumann traces across the
interfaces. By density arguments, it does not matter whether we make these
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considerations in MT (Σ) or in ML
2(Σ). Then appeal to Lemma 4.1 to

conclude the assertion. A formal proof can be done exactly like that of [6,
Proposition 5.1].

Since 〈〈uinc,v〉〉 = 0 for v ∈ SL
2(Σ), Theorem 4.2 implies that Equation

(4.9) is trivial for all test functions v ∈ SL
2(Σ), i.e., by Lemma 4.1, that

MΣ −MΣ[κ0] : SL
2(Σ) → SL

2(Σ). Since SL
2(Σ) is a closed subspace of

ML
2(Σ) by Corollary 4.1, it is sufficient to test with elements in any com-

plement space SL
2,c(Σ) of SL

2(Σ) ⊂ ML
2(Σ), i.e.,

ML
2(Σ) = SL

2(Σ)⊕ SL
2,c(Σ) .

For the sake of easy implementation we choose SL
2,c(Σ) := SL

2,⊥(Σ), the
L2-orthogonal complement space, which has a simple characterization:

Definition 4.3 (Complement of single-trace L2 space)

SL
2,⊥(Σ) :=

{
(u0, ν0, . . . , uN , νN ) ∈ ML

2(Σ) :

ui
∣∣
Γij

= −uj
∣∣
Γij
, νi
∣∣
Γij

= νj
∣∣
Γij
, j < i

}
.

Combined with Theorem 4.1 and Theorem 4.2, this leads us to another
variational formulation equivalent to Formulation 4.1:

Formulation 4.2 Search u ∈ SL
2(Σ) :

〈〈(Id− (MΣ −MΣ[κ0])) u,v〉〉 = 〈〈uinc,v〉〉 , ∀v ∈ SL
2,⊥(Σ) . (4.11)

The straightforward Definition 4.3 reveals the benefit of an L2-based vari-
ational formulation; in [6] an approach set in the original trace spaces was
pursued, for which it turned out to be difficult to handle the complement
spaces.

Theorem 4.1 implies that the operator Id−(MΣ−MΣ[κ0]) is Fredholm with
index zero. Therefore, the Formulations 4.1 and 4.2 are variational boundary
integral equations of the second kind. Thanks to the Fredholm Alternative
(cf. [21, Theorem 4.2.9]) it is sufficient to prove injectivity of the operator on
SL

2(Σ) to show existence and uniqueness of solutions.
Unfortunately, a proof for uniqueness has remained elusive so far. The

standard approach that works for the case of a uniform scatterer (N = 1) and
for classical first-kind approaches (see [7, Lemma 3.4]) does not carry over to
multi-potentials. However, the numerical experiments of Section 6.1 did not
yield the slightest hint at a breakdown at particular wave numbers.

Therefore, henceforth, we will make the following assumption:

Assumption 4.1 We assume that Formulation 4.2 admits a unique solution
u ∈ SL

2(Σ).
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The subsequent Lemma 4.3 gives us the key result, which is needed to show
equivalence of Formulation 4.2 to the original problem (1.2). It is implied by
elliptic lifting results [17, Theorem 4.16] and the obvious fact that ∆U ∈
L2
loc(R

d).

Lemma 4.3 The solution U of (1.2) satisfies U ∈ H2
loc(R

d).

Corollary 4.2 (Equivalence) Under Assumption 4.1, the solution u of For-
mulation 4.2 provides the multi-trace γΣU of the solution U of the transmis-
sion problem (1.2).

Proof For strongly elliptic partial differential equations with incident plane
wave, we know that Dirichlet resp. Neumann data of the solution U , u = γΣU ,
lie in SL

2(Σ) (combine the result from Lemma 4.3 with [9, Lemma 3.6]). By
construction, the boundary data γΣU of the unique solution U of (1.2) satisfy
equation (4.11). Together with the uniqueness Assumption 4.1 this implies the
assertion. �

Obviously, the interface based L2-skeleton spaceL2(Σ) :=×j<i
L2(Γij)×

L2(Γij) is isometrically isomorphic to SL
2(Σ) by the following one-to-one

correspondance: any element u = (uij , νij)j<i ∈ L
2(Σ) is associated to the

element u = (u0, ν0, . . . , uN , νN ) ∈ SL
2(Σ) with

(ui, νi) =





(uij ,+νij) on Γij if i > j

(uji,−νji) on Γji if i < j
, i = 0, . . . , N . (4.12)

Thus, Formulation 4.2 can be rewritten in such a way that ansatz and test
functions belong to L

2(Σ).

Formulation 4.3 Search u ∈ L
2(Σ) :

〈〈(Id− (MΣ −MΣ[κ0]))u,v〉〉 = 〈〈uinc,v〉〉, ∀v ∈ L
2(Σ).

Note the underline effecting the isomorphism L
2(Σ) → ST (Σ) from

(4.12).

5 Boundary Element Discretization

5.1 Boundary Element Spaces

For the Galerkin discretization of the variational problem of Formulation 4.3
we rely on finite dimensional subspaces L

2
h(Σ) ⊂ L

2(Σ). In contrast to for-
mulations set in ST (Σ), we do not have to deal with continuity requirements
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stemming from the need to obtain subspaces of H
1
2 (Σ); we merely have to

make sure that L2(Σ)-stable sets of basis functions are available.
We opt for conventional boundary element trial and test spaces L

2
h(Σ)

that are piecewise polynomial with respect to a finite partition (mesh) T =
{τ1, . . . , τ|T |} of Σ [21, Sect. 4.1.2]. We assume that T resolves edges and
corners of Σ, and the interfaces Γij , in the sense that the closure of every Γij

agrees with the union of some closed cells of T .
The natural choice for L

2
h(Σ) is L

2
T (Σ) := Sp,−1

T (Σ) × Sp,−1
T (Σ), where

Sp,−1
T (Σ) denotes the set of all discontinuous piecewise polynomial functions

of maximal total degree p on the mesh T , see [21, Section 4.1.3] (d = 3), [23,
Chapter 10] (d = 2). For the sake of simplicity, in the sequel we restrict
ourselves to p = 0, the space of all piecewise constant functions on the mesh
T :

S0,−1
T (Σ) :=

{
ψ ∈ L∞(Σ)

∣∣∀τ ∈ T : ψ|τ is constant
}
,

which is a vector space of dimension |T | = #{τ | τ ∈ T }.

Remark 5.1 (Approximation of skeleton) Our theoretical investigations
assume exact representation of Σ. Yet, practical computations will invari-
ably substitute the skeleton Σ by a piecewise polynomial interpolant Σdisc [21,
Sect. 8.1.1]. Analysis shows that this approximation of Σ does not affect the
asymptotic behavior of the discretization error, if one chooses it of high enough
order [21, Section 8 (Table 8.3)]. For piecewise constant trial and test func-
tions an approximation of Σ by line segments (d = 2) or flat triangles (d = 3)
is already sufficient. Then normal vectors on individual cells are constant. △

We also fix an ordering of the cells of the mesh: T = {τ1, τ2, ..., τ|T |}, and
endow each element with an orientation in such a way, that τk ∈ Γij inherits
the intrinsic orientation of Γij . This choice of orientation is made to keep
notation simple, but is essentially arbitrary.

Since T |Γij
supplies a mesh of Γij , the approximation space L

2
T (Σ) can

be split into interface contributions

L
2
T (Σ) =×

j<i

(
S0,−1
T (Γij)× S0,−1

T (Γij)
)
⊂ L

2(Σ) , (5.1)

where S0,−1
T (Γij) is the space of T |Γij

-piecewise constant functions on Γij .

5.2 Convergence and Conditioning

We consider a sequence {Tℓ}ℓ∈N
of skeleton meshes with hℓ := max{diam(τ), τ ∈

Tℓ} → 0 as ℓ→ ∞. It is to satisfy the standard assumptions of quasi-uniformity
and shape regularity, see [23, Section 10.1] (d = 2) or [21, Section 4.1.2] (d = 3)
for details. Under these circumstances approximation error estimates for piece-
wise constants are well known, see [23, Theorem 10.4] (d = 2) or [21, Corollary
4.1.34] (d = 3):
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Lemma 5.1 Writing Tij,ℓ := Tℓ |Γij
, 0 ≤ i < j ≤ N , we have for σ ∈ [−1, 0],

s ∈ [σ, 1],

inf
v∈S0,−1

Tij,ℓ

‖u− v‖Hσ(Γij) ≤ Ch
min{s,1}−σ

ℓ |u|Hs(Σ) ∀u ∈ Hs(Γij) ,

with C > 0 depending only on σ, s, and the shape regularity of {Tℓ}ℓ∈N
.

We denote by L
2
ℓ (Σ) the space L

2
Tl
(Σ) of piecewise constant functions on

Tℓ. Thanks to Theorem 4.1, the abstract theory of Galerkin approximation
of coercive linear variational problems [21, Sect. 4.2.3] immediately gives us
asymptotic quasi-optimality of the Galerkin solutions of Formulation 4.3 in
L

2(Σ).

Lemma 5.2 Provided that Assumption 4.1 holds, there is ℓ0 ∈ N and a con-
stant C > 0 independent of ℓ such that a unique Galerkin solution uℓ ∈ L

2
ℓ(Σ)

of Formulation 4.3 exists for all ℓ ≥ ℓ0 and satisfies

‖u− uℓ‖L2(Σ) ≤ C inf
vℓ∈L2

ℓ
(Σ)

‖u− vℓ‖L2(Σ) . (5.2)

Combined with Theorem 5.1, this allows to predict rates of algebraic con-
vergence depending on the smoothness of the Cauchy traces. The best possible
rate will be 1.

For S0,−1
Tℓ

(Σ) we choose the “canonical” basis {|τ |−
1
2χτ : τ ∈ Tℓ} of locally

supported scaled characteristic functions. This basis enjoys the perfect L2-
stability property

uℓ =
∑

τ

ξτ |τ |
− 1

2χτ ⇒
∑

τ

|ξτ |
2 = ‖uℓ‖

2
L2(Σ) . (5.3)

Thus, by the continuity of MΣ −MΣ[κ0] : ML
2(Σ) → ML

2(Σ) and the
asymptotic stability of Formulation 4.3 from Lemma 5.2 we can conclude that
for ℓ big enough the Euclidean condition numbers cond2(Gℓ) of the Galerkin
matrices Gℓ ∈ C2|Tℓ|,2|Tℓ| for Formulation 4.3 on L

2
ℓ (Σ) (equipped with the

basis of scaled characteristic functions introduced above) are bounded inde-
pendently of ℓ, if Assumption 4.1 holds true.

5.3 Computation of Galerkin matrices

We write Tij := T|Γij
for the set of cells having support on Γij and number

the cells of Tij , which induces a numbering of the basis functions of L2
T (Σ)

supported on Γij . We dub this the local numbering. To connect it to the global
numbering of basis functions of L2

T (Σ), we rely on the index mapping matrices
LΓij

∈ R|Tij |×|T | defined through

(LΓij
)lk :=

{
1 , if τk ⊂ Γij and l is the local index of τk ∈ Tij ,

0 else.
(5.4)
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Now we are in a position to express the L2
T (Σ)-Galerkin matrix G ∈ C2|T |,2|T |

of Formulation 4.3:

G =
∑

j<i

((
LΓij

0
0 LΓij

)T (
0 M ij

M ij 0

)

−
∑

q<p

(
LΓpq

0
0 LΓpq

)T (
W

pq
ij K ′pq

ij

−K
pq
ij V

pq
ij

)

︸ ︷︷ ︸
C

pq
ij

)(
LΓij

0
0 LΓij

)
,

where M ij is the diagonal local mass matrix (multiplied by a factor 2) for
Γij , and the |Tij | × |Tpq|-blocks of C

pq
ij ∈ C2|Tij|,2|Tpq| arise from the Galerkin

discretization on S0,−1
Tij

(Γij) × S0,−1
Tij

(Γpq) of sesqui-linear expressions of the
form

(u, v) 7→

∫

Γpq

∫

Γij

Z
pq
ij (x,y)u(y)v(x) dS(y)dS(x) ,

where Zpq
ij stands for a kernel that is different for the different matrices W pq

ij ,

K′pq
ij , K

pq
ij , and V

pq
ij . In concrete terms, with the notation indicating the re-

lationship with the matrices, and r := x− y, in the different cases the kernel
Z

pq
ij reads

Z
pq
ij ↔

v
pq
ij (x,y) := 2

(
Φκi

(r)− Φκj
(r)
)
,

k
pq
ij (x,y) := 2

(
ni(y) · grady(Φκi

(r)− Φκj
(r))

)
,

k′
pq
ij (x,y) := 2

(
np(x) · gradx(Φκi

(r)− Φκj
(r))

)
,

w
pq
ij (x,y) := −2

(
np(x) · gradx

(
ni(y) · grady(Φκi

(r)− Φκj
(r))

))
.

(5.5)

Thus, the contributions to C
pq
ij of the basis functions associated with cells

τk ∈ Γpq, τl ∈ Γij are of the following form

∫

τk

∫

τl

w
pq
ij (x,y)dS(y)dS(x) ,

∫

τk

∫

τl

k′
pq
ij (x,y)dS(y)dS(x) ,

−

∫

τk

∫

τl

k
pq
ij (x,y)dS(y)dS(x) ,

∫

τk

∫

τl

v
pq
ij (x,y)dS(y)dS(x) .

(5.6)

To understand the origin of the kernels in (5.5), and, in particular, why κ0
has disappeared, we elaborate the formulas for a particular entry of G corre-
sponding to trial and test functions τl ∈ Γrs, r > s and τk ∈ Γpq, p > q in the
”Dirichlet component” of u and v of Formulation 4.3.

Take two elements u = (uij , νij)j<i,v = (vij , ψij)j<i ∈ L
2(Σ), with

(uij , νij) = 0 if (i, j) 6= (r, s), (vij , ψij) = 0 if (i, j) 6= (p, q), and (urs, νrs) =
(χτl , 0), (vpq, ψpq) = (χτk , 0). Considering the associated multi-traces u =
(u0, . . . , uN ) and v = (v0, . . . vN ) we have, on the one hand, ui = 0 if i 6= r, s
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and ur = us = (χτl , 0), and, on the other hand, vj = 0 if j 6= p, q and
vp = −vq = (χτk , 0). Plugging these observations in Formulation 4.3 yields

〈〈 (Id−MΣ+MΣ[κ0])u,v 〉〉

= 0−
∑

j=p,q

∑

i=r,s

〈〈
γj (Gi[κi]−Gi[κ0]) ui, vj

〉〉
H(∂Ωj)

= 0− 2
∑

i=r,s

〈γpN (Gi[κi]−Gi[κ0]) ui, χτk〉Γpq

= 0− 2 〈γpN (Gr[κr]−Gr[κ0] +Gs[κs]−Gs[κ0]) ur, χτk〉Γpq

−nr=ns= −〈−2 γpN (Dr[κr]− Dr[κs])χτl , χτk〉Γpq

= −

∫

τk

∫

τl

wpq
rs(x,y)dS(y)dS(x) ,

where the definition of wpq
ij can be found in (5.5).

The next lemma confirms that the kernels from (5.5) are regular enough
to ensure that the integrals in (5.6) are well defined, at least as improper
integrals.

Lemma 5.3 (Regularity of kernels) The kernels v
pq
ij (x,y), k

pq
ij (x,y) and

k′
pq
ij (x,y) defined in (5.5) are continuous. The kernel wpq

ij (x,y) is weakly sin-
gular for x = y.

Proof We simply establish series expansions of the regularized kernels involved
in the integral operator MΣ−MΣ[κ0] (see (5.5)). We give the complete proof
for the case d = 2, while in the case d = 3 we examine only v

pq
ij and leave the

remainder to the reader, since the reasoning is analogous to the case d = 2.
Case d = 2: We use properties of the Bessel and Hankel functions Jα,

Yα and H
(1)
α , respectively, α ∈ N, see, for example, [3] and [1]. First of all we

study the kernel vpqij (x,y). To simplify notation, we denote by r := |x−y| the
distance between the points x and y and obtain

v
pq
ij (x,y) =

i

4

(
H

(1)
0 (κir)−H

(1)
0 (κjr)

)

=
i

4
(J0(κir)− J0(κjr) + iY0(κir) − iY0(κjr))

= −
1

2π

[
∞∑

s=1

(−4)−s

s!2
r2s

{(
log(r) −

s∑

ν=1

1

ν
−
(
ψ(1) +

π

2
i
))(

κ2si − κ2sj
)

+ log

(
1

2
κi

)
κ2sj − log

(
1

2
κj

)
κ2sj

}
+ log

κi

κj

]
. (5.7)

Thus, the “most singular term” is r2 log(r) and the kernel vpqij is obviously
continuous. Manipulating the kernel kpqij (x,y) one obtains:

k
pq
ij (x,y) =

i

4

(
−H

(1)
1 (κir)κi +H

(1)
1 (κjr)κj

) −ni(y) · r

r
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=

∞∑

s=0

(−4)−s

s!(s+ 1)!
r2s+1

[{
i−

2

π
log(r) +

ψ(s+ 1) + ψ(s+ 2)

π

}(
κ2s+2
i − κ2s+2

j

)

+
2

π
log

(
1

2
κj

)
κ2s+2
j −

2

π
log

(
1

2
κi

)
κ2s+2
i

]
−ni(y) · r

8r
(5.8)

Therefore also in this case we end up with a continuous kernel with “most
singular term” r log(r).

The expansion of the kernel k′
pq
ij (x,y) is obtained analogously to the one

of kpqij (x,y) above. We only need to replace ni(y) by −np(x) in the result 5.8

to end up with the expansion of k′pqij (x,y).
Finally, we analyze the kernel wpq

ij (x,y). It can be rewritten as

w
pq
ij (x,y) =

i

4
np(x) · gradx

[(
−H

(1)
1 (κir)κi +H

(1)
1 (κjr)κj

) ni(y) · r

r

]

=
i

4

(
κ2iH

(1)
0 (κir) −

κi

r
H

(1)
1 (κir)

−κ2jH
(1)
0 (κjr) +

κj

r
H

(1)
1 (κjr)

) np(x) · r ni(y) · r

r2

+
i

4

(
κiH

(1)
1 (κir)− κjH

(1)
1 (κjr)

)(np(x) · ni(y)

r
−

np(x) · r ni(y) · r

r2

)

just by writing out the derivatives in full. This leads to the final form of

w
pq
ij (x,y) =

{
∞∑

s=1

(−4)−s

(s!)2
r2sQs(log(r), κi, κj)

+

(
i+

2ψ(1)

π

)(
κ2i − κ2j

)
}
np(x) · r ni(y) · r

4r2

+

{
∞∑

s=1

(−4)−s

(s!)2
r2sQ̃s(log(r), κi, κj) +

(
1

π
(ψ(s+ 1) + ψ(s+ 2))

)(
κ2i − κ2j

)

+ i

}(
np(x) · ni(y)

8
−

np(x) · r ni(y) · r

4r2

)
−

2

π

{
log (r)

(
κ2i − κ2j

)

+ log

(
1

2
κi

)
κ2i − log

(
1

2
κj

)
κ2j

}
np(x) · ni(y)

8
, (5.9)

Qs(log(r), κi, κj) = −
2

π

(
log(r) −

π

2
i− ψ(1)−

(
s∑

ν=1

1

ν

))
(
κ2s+2
i − κ2s+2

j

)

−
2

π
log

(
1

2
κi

)
κ2s+2
i +

2

π
log

(
1

2
κj

)
κ2s+2
j ,

Q̃s(log(r), κi, κj) =

(
−
2

π
log(r) + i+

1

π
(ψ(s+ 1) + ψ(s+ 2))

)(
κ2s+2
i − κ2s+2

j

)

−
2

π
log

(
1

2
κi

)
κ2s+2
i +

2

π
log

(
1

2
κj

)
κ2s+2
j .
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Since Qs(log(r), κi, κj) and Q̃s(log(r), κi, κj) are linear in log(r), the expres-
sion (5.9) is continuous except for the weakly singular term involving log(r)
in the second to last line.

Case d = 3: The kernel vpqij has the simple form

v
pq
ij (x,y) =

1

4πr
(exp(iκir)− exp(iκjr))

=
1

4π

∞∑

k=1

(iκi)
k+1 − (iκj)

k+1

(k + 1)!
rk + i(κi − κj) ,

(5.10)

from which continuity as a function of r = |x− y| is obvious. �

Since the kernels involve differences of terms of about the same size for
r ≈ 0, cancellation becomes a key issue in an implementation (see also Fig. 5.1).
We overcome this problem by using truncated versions of the series expansions
derived in the proof of Lemma 5.3. If r := |x−y| is sufficiently large, we simply
evaluate the difference of the kernels according to (5.5). If r is close to 0, i.e.
the condition

r|κi − κj | < tol, 0 < tol < 1 a small constant, (5.11)

is satisfied, we resort to the truncated series expansions. If condition (5.11) is
met for some fixed tolerance we may truncate the series after a fixed number of
terms and still have a small guaranteed relative truncation error. Experiments
documented in Figure 5.1 showed, that an appropriate number of terms for
the truncated series for d = 2 is Ntrunc = 8, together with tol = 0.4 in (5.11).
We also observe that the use of series expansions is mandatory, except in the
case of the weakly singular kernel vpqij , where an obscure side effect of machine
arithmetic seems to curb any impact of cancellation.

The previous discussion gives us a numerically stable evaluation of the
weakly singular kernels in (5.6). In 2D a suitable quadrature rule to integrate
these nonsmooth kernels when the cells τk, τl ∈ T are neighbors is given by
geometric composite Gauss-Legendre quadrature proposed in [22]. In 3D we
may use the transformation formulas of [21, Section 5.2]. The integrals over
the truncated series expansion for pairs of identical elements can easily be
evaluated analytically.

6 Numerical Results in Two Dimensions

We implemented the Galerkin discretization of Formulation 4.3 based on piece-
wise constant trial and test functions, which has been presented in Section 5.
Unless stated otherwise, we use equidistant meshes on the interfaces. We con-
sider the three different geometries sketched in Figure 6.1. In all computa-
tions, the incident field is given by the plane wave uinc := exp(iκ0d · x), d =
(1, 0)T , x ∈ R2.
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Fig. 5.1:Convergence of series expansions: depicted are the relative point-
wise errors as a function of r|κi − κj |, where r := |x − y|, of the expansions
found in the proof of Lemma 5.3, truncated at Ntrunc. The reference solutions
are calculated with Mathematica with very high precision, while the other
calculations are done in Matlab. α(ni(y), r) denotes the angle between ni(y)
and r := x− y.
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Fig. 6.1: Geometries for numerical experiments
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Fig. 6.2: (Logarithms of)Euclidean condition numbers of Galerkin ma-
trix for various wave numbers: The Galerkin matrix of the second-kind
formulation for the situation of two half discs (Fig. 6.1 (a)) with equidistant
mesh, |T | = 480, is used. The wave number κ1 = 1 is fixed, while κ0, κ2 ∈
(0.1 : 99

500 : 10) (for (a)) resp. κ0 ∈ (9.53 : 1
100 : 9.55), κ2 ∈ (0.6 : 35

200 : 0.85)
(for (b)).

0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

Real(β)

Im
ag

(β
)

color: different shift
symbol: different pml

(a) non-resonant situation

0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

Real(β)

Im
ag

(β
)

 

 

color:	different shift
symbol:	different pml

(b) near resonance situation

Fig. 6.3: Numerically computed open resonances found by an Arnoldi
algorithm implemented in the hp finite element code NGSolve [2]. The differ-
ent symbols stand for complex eigenvalues of (6.1), see [15] for more detailed
explanations.

6.1 Stability

The numerical experiments in this section have been conducted for two half
disks of Fig. 6.1 (a), and are meant to analyze the stability of the discretized
versions of our new second-kind Formulation 4.2 to justify Assumption 4.1.
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In a first experiment we try to detect potential breakdowns of the new
formulation, which should manifest itself as spikes in the Euclidean condition
numbers of the Galerkin matrices G for certain wave numbers. In Figure 6.2
we observe localized regions with large condition numbers, see Fig. 6.2. To
obtain more detailed information about the origin of the spike depicted in
Fig. 6.2(b), we fix the wave numbers (κ0, κ1, κ2) = (9.538, 1, 0.72) (depicted
by the cyan x in Fig. 6.2) located in the region where we observe the largest
condition numbers and solve the radiation eigenvalue problem

−∆u− (βκ(x))2u = 0 in R
2 , β ∈ C . (6.1)

Of particular interest is the region around β = 1 represented by the intersection
of the blue (Imag(β) = 0) and red line (Real(β) = 1) in Fig. 6.3. In this case
we are exactly in the setting where the Galerkin matrices display a peak in the
condition number (see Fig. 6.2(b)). Since we observe a numerical eigenvalue of
(6.1) very close to the real axis and β = 1, the peak depicted in Fig. 6.2 seems to
be triggered by an open resonance. Conversely, no such eigenvalues close to the
real axis are observed for combinations of wave numbers that do not give rise to
ill-conditioned discrete problems, see Fig. 6.3(a), where we used (κ0, κ1, κ2) =
(0.7, 1, 1.22) (depicted by the pink x in Fig. 6.2) for a numerical study. This
is strong evidence that whenever the discrete second-kind formulation shows
signs of instability, this merely reflects inherent instability of the scattering
problem. This bolsters faith in Assumption 4.1.

6.2 Convergence

In this section we compare the convergence of the L2(Σ)-norm of the error of
the approximate Dirichlet and Neumann data obtained from our new second-
kind formulation with the results calculated with the classical STF approach,
see [7, Section 3.2] or [24]. The latter were obtained by a conforming Galerkin
discretization using S1,0

T (Σ) × S0,−1
T (Σ) ⊂ L

2(T ) for ansatz and test space.
To get a reliable reference solution, we computed highly accurate solutions of
the scattering problems by the hp-FEM code Concepts [25]. In Figure 6.4
we plot L2(Σ)-errors for the geometries sketched in Fig. 6.1 versus number of
mesh cells. The errors computed with different reference solutions agree well.

The estimated algebraic rates of convergence of the computed errors match
the rates predicted by the a priori estimates of Section 5.2. Comparing the re-
sults for the Neumann data, the rates computed with the new second-kind ap-
proach are by 1

2 larger than the rates observed for the discrete first-kind STF.
However, the errors of the Dirichlet data of the first-kind approach converge
with rates that larger by 1. The reason is, that we use continuous piecewise
linear boundary elements to approximate the Dirichlet traces for the classical
method, while our new formulation relies on piecewise constants only.

We observe competitive accuracy also for Dirichlet data when applying a
cheap postprocessing procedure to the Dirichlet solution from our new second-
kind approach, see Fig. 6.4. Details are presented in Section 6.3.
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6.3 Postprocessing of Dirichlet Data

Though we rely on discontinuous approximation, the exact Dirichlet traces
are known to be continuous. We tried to recover a continuous approximation
and applied an L2(Σ)-orthogonal projection onto the boundary element space
S1,0
T (Σ) of continuous piecewise linear functions to the Dirichlet part of the

piecewise constant Galerkin solution uh ∈ S0,−1
T (Σ)× S0,−1

T (Σ).

Throughout, this postprocessing yielded substantially improved approxi-
mations of the Dirichlet data that show enhanced rates of convergence and
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match the accuracy of solutions of the classical Galerkin STF, see Figures 6.4
and Section 6.2.

A theoretical explanation for this effect is still missing. Further investiga-
tions by numerical experiments hint that the order of convergence of the pro-
jected approximate Dirichlet traces deteriorates on general meshes. The result
provides some evidence that the improved convergence rate due to postpro-
cessing is a superconvergence phenomenon on regular meshes.
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6.4 Conditioning of Galerkin Matrices

In a second numerical experiment, we investigate the dependence of the con-
dition numbers on the mesh width. In Section 5.2 we concluded that the con-
dition number of the Galerkin matrix corresponding to our new second-kind
formulation is independent of the mesh width hT of our discretization. This
is observed in Fig. 6.5 (d), while for the first-kind approach the condition
number increases quadratically when refining the mesh (cf. [21, Section 4.5 &
Cor. 6.4.14]). It leads to significantly reduced numbers of iteration of iterative
solvers like GMRES for the second-kind approach (see Fig. 6.5 (a), (b) and
(c)).
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