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1. Introduction

The regularity of elliptic equations in polygonal domains has been studied for several decades,

starting with the work by Kondrat’ev [15] and Maz’ya and Plamenevskiı̆ [16]. We refer to Maz’ya

and Rossmann [17] for a recent account of these results, also in polyhedral domains in R3 and a

comprehensive list of references.

It is well-known that regularity results in scales of Sobolev spaces with weights allow to recover

optimal convergence rates for Finite Element Methods (FEM) with local mesh refinement in the vicin-

ity of corners; we refer to Raugel [21] and Babuška et al. [1, 2], and Băcuţă et al. [3] for so-called

graded meshes, and, more recently, to [7] and the references there for simplicial meshes with bisection

tree refinements produced by Adaptive Finite Element Methods (AFEMs).

For evolution problems, in particular for the linear, second order Wave Equation, similar results

do not seem to be available. However, corner singularities are known to play a crucial role in the

scattering and diffraction of waves. In recent years, results on the regularity of the pure Dirichlet and

Neumann problems of solutions of the wave equation in polygonal and in certain polyhedral domains

have been proved by Plamenevskiı̆ et al. in [20, 10, 11] for the scalar, acoustic Wave Equation, and

in [13, 14] for a general class of second order, linear hyperbolic systems. Their results imply that

at a fixed time t, u(·, t) belongs to a class of function spaces H
2,p+1

δ
which appeared already in the

study of elliptic equations. Moreover, in these papers explicit formulae for the asymptotics of u(x, t)

in the vicinity of corners the polygon G were obtained. Therefore, in principle, approximation results

for H
2,p+1

δ
on several families of locally refined meshes as, for example, in [2], as well as a mesh

refinement algorithm presented in [7], may now be applied to the solution of the wave equation. The

main result of the present paper is that the space-semidiscrete (“method of lines”) type discretization of

the wave equation yields optimal convergence rates for solutions with singular asymptotic behaviour

in the vicinity of the corners, which are known to typically occur in solutions of the linear, second

order wave equation. Although we consider here only the 2nd order, scalar wave equation, we hasten

to add that our approximation results are also applicable to singularities which arise in propagation of

elastic and electromagnetic waves in polyhedral domains.

The outline of the present paper is as follows. We start with an introduction to the used notations,

and the formulation of the scalar wave equation with Dirichlet and Neumann conditions in Section

2. Section 3 contains a review of the regularity theory for the scalar wave equation, starting from the

Definitions of weighted Sobolev spaces. In Section 4, we study the FEM-approximation of singular

functions, and present two classes of meshes which yield optimal convergence rates in the presence

of corner singularities. These results are applied in Section 5 with the decomposition theorem to

obtain optimal convergence rates for the space semidiscrete Finite Element approximation of the wave

equation in polygonal domains. Finally, in Section 6, we present results of numerical experiments,

performed with a very small time-step to approximately ”cancel” the influence of the time-stepping

error.

2. Problem formulation

On an open, bounded polygonal domain G ⊆ R2 and for 0 < Tmax < ∞, with boundary ∂G =

ΓD ∪ ΓN which consists of a finite number of straight segments Γi which are partitioned into Dirichlet

and Neumann segments, we consider the initial boundary value problem for the scalar wave equation

with Dirichlet or Neumann boundary conditions, i.e. we wish to find solutions u(x, t), (x, t) ∈ Q :=
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G × (0,Tmax) such that

utt = ∆u + f in Q ,

u(·, 0) = u0 in G ,

ut(·, 0) = v0 in G ,

u(·, t) = 0 on ΓD × (0,Tmax) ,
∂u
∂n
= g on ΓN × (0,Tmax) .

(1)

We denote by Hs(G) the usual Sobolev spaces on G, and by H1
0
(G) the subspace of H1(G) built by

functions with vanishing trace. Moreover, given a Hilbert space H, we denote by Hs(0,T ; H) the Hs-

Bochner space of functions from [0,Tmax] to H. We introduce the space V defined as the completion

of {v ∈ C∞(G) : v|ΓD
≡ 0} with respect to the H1-norm. Evidently,

V :=






H1
0
(G) if ΓN = ∅,

H1(G) if ΓD = ∅.

We will also denote by (·, ·) the L2(G) innerproduct, extended to the pair of spaces V ×V∗ with duality

taken with respect to the “pivot” space L2(G) by continuity. Applying integration by parts, the mixed

initial boundary value problem for the scalar wave equation with homogeneous Dirichlet or Neumann

conditions can be written in the following spatial variational form.

Find u ∈ H1(0,Tmax; V), such that ∀t ∈ [0,Tmax] and ∀v ∈ V :

∂2
t (u(·, t), v) + (∇u(·, t) · ∇v) = ( f (·, t), v) ,

(u(·, 0), v) = (u0, v),

∂t (u(·, 0), v) = (v0, v),

(2)

where u0 ∈ H1(G), v0 ∈ L2(G) and where f ∈ L2(0,Tmax; L2(G)) are given.

We discretize (2) by the method of lines, using continuous Lagrangian FEM of uniform poly-

nomial degree p ≥ 1 in the spatial domain G on a family of regular, simplicial triangulations of

the domain G, followed by a non-specified discretization method in time. This is well-known to

yield optimal convergence rates w.r.t. the mesh size for the semi-discrete formulation, if u(·, t) ∈
C2([0,Tmax]; Hp+1(G)) ⊃ H2.5(0,Tmax,H

p+1(G)). Necessary conditions for this to be satisfied are

f ∈ H3(0,Tmax; L2(G)), u0, v0 ∈ V , and the following compatibility conditions:

∂ j

∂t j
u(x, 0) ∈ V, j = 0, 1, 2, 3, and

∂4

∂t4
u(x, 0) ∈ L2(G) .

See, e.g., [26] for a detailed discussion of these compatibility conditions, where also necessary condi-

tions for the regularity u(·, t) ∈ Hp+1(G) for domains G with smooth boundary are derived.

In the case the domain G is a generic bounded polygon in R2, higher regularity of u(x, t) is only

given in suitable scales of weighted Sobolev spaces, ([20, 10, 11]). Therefore, further conditions on

the mesh refinement need to be imposed. In Section 4, we will present two types of graded mesh

refinements that approximate singular solutions with optimal convergence rates. Our main result will

be given in Theorem 5.4 and states that for the space semidiscrete Finite Element approximation of the

initial-boundary value problem of the scalar, second order wave equation, the mesh families presented

in Section 4 yield optimal convergence rates. Hence, we consider the space-semidiscrete case, and

therefore our results are not restricted to specific time-stepping schemes. Numerical experiments

which indicate that your theoretical estimates are sharp are presented in the last section. Throughout

this paper, we use standard notation: the operators ∇ and ∆ will be understood to only operate w.r.t.
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the spatial coordinates. By D
k, k ∈ N0, we denote the vector of all partial, weak derivatives of order α

with |α| = k. Hence, given a function v ∈ Hs(G), we write

|Dkv(x)|2 :=
∑

|α|=k

∣
∣
∣∂α1

x1
∂α2

x2
v(x)

∣
∣
∣
2
,

where α = (α1, α2) ∈ N2
0

is a multi-index and |α| := α1 + α2 and hence

‖Dkv; L2(G)‖2 =
∫

G

|Dkv(x)|2 dx = |v; Hk(G)|2 .

If T is a regular, simplicial triangulation of G, we denote by #T the number of degrees of freedom in

T , and by S p,l(G,T ) the FE-space of functions v ∈ Hl(G), such that for all elements T ∈ T , v|T̄ is a

polynomial of degree ≤ p.

3. Regularity

3.1. The geometrical setting

Let G ⊆ R2 be a bounded polygonal domain with M corners ci, which we collect in the set

C := {c1, . . . , cM} .

For each i = 1, . . . ,M, denote by φi ∈ (0, 2π] the inner angle at ci and

Ri :=
1

2
min
i′,i
|ci − ci′ |.

Then, we introduce nonintersecting corner neighborhoods Gi := BRi
(ci) ∩G, where BR(c) denotes an

open ball of radius R with center c. The Gi are disjoint open sectors with vertices ci. Moreover, we

denote for i = 1, ...,M by Ωi := ∂Gi \ ∂G the respective open circle segments. Inside the segments Ωi,

we introduce an angular coordinate ϑi ∈ [0, φi] tracing Ωi.

Figure 1: A polygonal domain with one re-entrant corner φ6 > π.
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In Gi, we introduce polar coordinates (ri, ϑi), centered at ci. To extend this local definition to the entire

domain G, we observe that ri(x) ∈ Hk(Gi) for all k ∈ N0. Hence, for all k ∈ N0, it can be extended to a

smooth function Ekri(x) ∈ Hk(G). Choosing in particular for Ek the Stein extension operator (see [25,

Chapter 6.2]), the Ek do not depend on k, whence we deduce that ri(x) can be extended to a smooth

function r∗
i
(x) ∈ C∞(G) on the entire domain G, such that r∗

i
(x) = ri(x) for all x ∈ Ḡi. Moreover, for a

given weight exponent δ′ ∈ R, we define

Ψδ′(x) :=

M∏

i=1

(

r∗i (x)
)δ′
.

Let χ̃ : R+ → [0, 1] be a smooth cut-off function, such that

χ̃(r) =






1 if r ≤ 2
3

0 if r ≥ 1.

At each corner ci, i = 1, . . . ,M, we define local cut-offs

χi(r) := χ̃

(

r

Ri

)

,

whose supports are fully contained in (0,Ri).

For the time-dependent problem, we introduce the open cylinder Q := G × (0,Tmax).

Following [20, 10, 11], we Fourier transform the evolution equation in variational form with re-

spect to the time variable. Let γ > 0 be fixed, σ ∈ R be a real parameter, and let τ := σ − iγ ∈ C.

Given a function w(x, t), x ∈ Ḡ, t ∈ R, its Fourier transformation in time onto the complex horizontal

line R − iγ ∋ τ is defined to be

ŵ(x, τ) := Ft 7→τ[w(x, t)](x, τ) :=
1

(2π)1/2

∫

R
e−iτtw(x, t) dt.

We will consider only t ∈ [0,Tmax], with Tmax < ∞. In this case, ŵ(x, τ) denotes the Fourier trans-

formation of the Null extension of w outside [0,Tmax]. If u(x, t) is a solution of (2), then û(x, τ) is a

solution of the transformed equation:

Find u ∈ V, such that ∀τ ∈ R − iγ and ∀v ∈ V :
∫

G

[

−τ2û(x, τ) v(x) + ∇û(x, τ)∇v(x)
]

dx =

∫

G

f̂ (x, τ) v(x) dx,

lim
σ→∞
|τ| (û(·, τ), v) = (u0, v)

lim
σ→∞
|τ|2 (û(·, τ), v) = (v0, v) .

(3)

3.2. Weighted Sobolev spaces

The regularity of u will be described in terms of a scale of weighted Sobolev spaces. We next recall

definitions and basic properties of such spaces. Let γ > 0 and ω ∈ R be given weight parameters,

and let s ∈ N0 be an integer.

We define the spaces Hs
ω(G) and Hs

ω(G, |τ|) as completions of C∞
0

(

Ḡ \ C
)

with respect to the norms

‖v; Hs
ω(G)‖ and ‖v; Hs

ω(G, |τ|)‖ which are given, respectively, by

‖v; Hs
ω(G)‖2 :=

s∑

k=0

∫

G

Ψω+k−s(x)2
∣
∣
∣D

kv(x)
∣
∣
∣
2

dx,

‖v; Hs
ω(G, |τ|)‖2 :=

s∑

j=0

|τ|2 j‖v; H
s− j
ω (G)‖2 .
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In the case s = 0, we define L2
ω(G) := H0

ω(G).

Furthermore, we define the space V s
ω(Q; γ) as completion of C∞

0

(

Ḡ \ C × [0,Tmax]
)

with respect

to the following norm:

‖w,V s
ω(Q; γ)‖2 :=

∫

R
‖ŵ(·, τ); Hs

ω(G; |τ|)‖2 dσ . (4)

Remark 3.1. The notation Hs
ω(G) can give rise to a conflict for ω = 0 and s = 1, since H1

0
(G) was

defined to be the subspace of H1(G) of functions with vanishing trace. In the case of ω = 0 and s = 1,

the weighted Sobolev space Hs
ω(G) will always be denoted H1

ω=0
(G).

As a first observation, we have the following continuous inclusion:

Lemma 3.2. Let ω ≤ ω′ be real numbers and G ⊆ R2 be bounded. Then,

L2
ω(G) ֒→ L2

ω′(G) .

Proof.

∫

G

Ψω′(x)2 |v(x)|2 dx =

∫

G

Ψω′−ω(x)2
Ψω(x)2|v(x)|2 dx

≤ max
{

Ψω′−ω(x) : x ∈ Ḡ
}2

︸                          ︷︷                          ︸

=:c

∫

G

Ψω(x)2|v(x)|2 dx,

for all v ∈ L2
ω(G), where c < ∞, since ω′ − ω ≥ 0, and |G| < ∞.

For a better understanding of the space V s
ω(Q; γ), the following result is useful.

Proposition 3.3. Let q, s, s′ ∈ N0 and G ⊆ R2 be a bounded polygonal domain.

If, morever, q + 1 ≥ s + s′, then for all γ > 0 and ω ≤ −q the following inclusion is continuous:

V
q+1
ω+q(Q; γ) ֒→ Hs(0,Tmax; Hs′(G)). (5)

Proof. Let q ∈ N0 and ω ∈ R be generic, and let u ∈ V
q+1
ω+q(Q; γ). Then,

‖u; V
q+1
ω+q(Q; γ)‖2 =

∫

R
‖û(·, τ); H

q+1
ω+q(G, |τ|)‖2 dσ

=

q+1∑

j=0

∫

R
|τ|2 j ‖û(·, τ); H

q+1− j
ω+q (G)‖2 dσ

=

q+1∑

j=0

q+1− j∑

k=0

∫

R
|τ|2 j

∥
∥
∥Ψω−1+ j+k(x) D

kû(·, τ); L2(G)
∥
∥
∥

2
dσ

≥cω,q,G

q+1∑

j=0

q+1− j∑

k=0

∫

R
|τ|2 j

∥
∥
∥D

kû(·, τ); L2(G)
∥
∥
∥

2
dσ,

where

cω,q,G := min
0≤ j,k≤q+1

(

inf
G

(

Ψω−1+ j+k

))2

> 0,
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since ω − 1 + j + k ≤ ω + q ≤ 0, and |G| < ∞.

By Plancherel’s theorem, for all 0 ≤ j, k ≤ q + 1:

∫

R
|τ|2 j ‖Dkû(·, τ); L2(G)‖2 dσ =

∫ Tmax

0

e−2γt
∥
∥
∥
∥∂

j
t D

ku(·, t); L2(G)
∥
∥
∥
∥

2
dt

≥ e−2γTmax

∫ Tmax

0

‖∂ j
t D

ku(·, t); L2(G)‖2 dt .

Applying this to our orginal estimate implies

‖u; V
q+1
ω+q(Q; γ)‖2 ≥ e−2γTmax cω,q,G

q+1∑

j=0

q+1− j∑

k=0

∫ Tmax

0

∥
∥
∥
∥∂

j
t D

ku(·, t); L2(G)
∥
∥
∥
∥

2
dt . (6)

Now, we complete the proof if we can find conditions on q and ω such that

‖u; V
q+1
ω+q(Q; γ)‖2 ≥e−2γTmax cω,q,G

s∑

j=0

s′∑

k=0

∫ Tmax

0

∥
∥
∥
∥∂

j
t D

ku(·, t); L2(G)
∥
∥
∥
∥

2
dt .

Comparing the sums over j, a necessary condition obviously is q + 1 ≥ s. Moreover, for j fixed, in

the second sum of (6), the index k runs from 0 to q + 1 − j, whence we deduce the second condition,

q + 1 − j ≥ s′, ∀ j = 0, 1, . . . , s. These two conditions together are equivalent to q + 1 ≥ s + s′.

3.3. Regularity of u(x, t)

In this section, we review the the regularity theory and the asymptotic analysis for the wave equa-

tion in polygonal domains as developed in [20, 10, 11] and the references there. On each circle seg-

ment Ωi, 1 ≤ i ≤ M, the restriction ũ(ϑi, t) := u|Ωi
(x, t) = u|{ri=Ri}(ri, ϑi; t) either satisfies ũ(ϑi, t) = 0

or ∂ϑi
ũ(ϑi, t) = 0 for ϑi ∈ {0, φi}. These cases will be considered seperately and lead to the total

decomposition in G, obtained by superposition over i ∈ {1, . . . ,M}. Such results have been proved

in [20], [10], and [11] for pure homogeneous Dirichlet or Neumann conditions. It is expected that

these results can be extended to mixed boundary conditions, i.e. where ΓD , ∅ and ΓN , ∅. With an

approach which is completely analogous to the techniques in these references, similar results are also

expected for the case of mixed boundary conditions; we present the expected results in Subsection

3.6.

Definition 3.4. On Ωi, we define an operator pencil C ∋ λ 7→ Ai(λ) by

Ai(λ) : H2(Ωi)→ L2(Ωi) × R2
Φ 7→ Ai(λ)Φ :=

(

−λ2
Φ + ∂2

ϑi
Φ, NiΦ

)

, (7)

where NiΦ is the boundary operator on ∂Ωi, determined by the imposed boundary conditions on the

edges that contain ci. For example, in the case of homogenous Dirichlet boundary conditions on each

of the two sides which meet at the vertex ci, NiΦ = (Φ(0), Φ(φi)) ∈ R2.

The eigenpairs of Ai have decisive influence on the regularity of u(x, t). Concretely, the eigenval-

ues λi
±n, such that Ai(λ

i
±n)Φi

n = 0, are given by λi
±n = ∓i

√

µi
n, being 0 ≤ µi

1
≤ µi

2
. . . the solutions of

the Sturm-Liouville eigenvalue problem

− ∂2
ϑi
Φ

i
n = µ

i
nΦ

i
n , NiΦ

i
n = (0, 0) . (8)
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Definition 3.5. For each i ∈ {1, . . . ,M} and all n ∈ Z, we define the singular functions

S n,i(ri, ϑi) := r
iλi

n

i
Φ

i
n(ϑi) .

Following [20, 10, 11], we introduce the spaces DVω,q(Q; γ) and RVω,q(Q; γ). To this end, we

need the notion of a so-called continuation operator w 7→ Xw, that ”smoothens” a function w which

is nonregular, or not defined in Gi outside ci. See Section 5 in [14], and Chapter 11.3 in [18].

Definition 3.6. Let i ∈ {1, . . . ,M}. For w(x, t) ∈ L2(0,Tmax; L2(G)), we define the operators Xi and Λ,

respectively, by

(Xiw)(x, t) := F −1
τ 7→t χi(|τ| r∗i (x))Ft′ 7→τw(x, t′) .

and

(Λw)(x, t) := F −1
τ 7→t |τ| Ft′ 7→τw(x, t′) .

Remark 3.7. Let w(t) ∈ Hs(0,Tmax) a real-valued function with s ≥ 1
2
. The operator Xi extends w(t)

to a function Xiw(x, t) which is smooth in Gi, with value Xiw(ci, t) = w(t) for all t.

Definition 3.8. Let γ > 0, ω ∈ R and q ∈ N0. We define

‖w; DV
N
ω,q(Q; γ)‖2 :=

M∑

i=1

{∫ Tmax

0

∂t

∥
∥
∥rω−1e−γt Xiu(·, t); L2(G)

∥
∥
∥

2
+

q+2∑

k=1

∫ Tmax

0

∥
∥
∥
∥rω−2+ke−γt

D
k
[

Xiu
]

(x, t)
∥
∥
∥
∥

2
dt






+ γ2‖u; V
q+1
ω+q(Q; γ)‖2,

and the space DVω,q(Q; γ) as completion of C∞
0

(Q̄ \ C × [0,Tmax]) w.r. to the norm which is defined

by

‖w; DVω,q(Q; γ)‖2 :=






∑

i ‖Xiw; V
q+2
ω+q(Q; γ)‖2 + ‖w; V

q+1
ω+q(Q; γ)‖2 if ΓD , ∅,

‖w; DV
N
ω,q(Q; γ)‖2 if Γ = ΓN .

Furthermore, we define the space RVω,q(Q; γ), equipped with the norm, defined by

‖g; RVω,q(Q; γ)‖2 :=

q∑

j=0

γ−2 j‖Λ jg; V
q− j

ω+q− j
(Q; γ)‖2 + γ−2(1+q)‖Λ1−ω+qg; V0

0 (Q; γ)‖2 .

Proceeding as in [20, 10, 11], we obtain the following result:

Theorem 3.9. Let G be a bounded polygonal domain with M corners and with interior opening angles

φi ∈ (0, 2π], i = 1, . . . ,M. Let γ > 0, q ∈ N0, and ω < 1, such that there is no λi
n with ℑ(λi

n) = ω − 1.

For each 1 ≤ i ≤ M, we define

ni
max,ω := max

{

n ∈ Z : 0 < −ℑ(λi
n) < 1 − ω

}

.

If the data satisfies u0, v0 ∈ C∞
0

(G), and if f ∈ RVω,q(Q; γ), then the solutions of (1) admit a decom-

position of the form

u(x, t) = u
ω,q
r (x, t) +

M∑

i=1

χi(ri)u
ω,q

s,i
(x, t), (9)
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where the singularities u
ω,q

s,i
(x, t) are given by

u
ω,q

s,i
(x, t) :=

ni
max,ω∑

n=1

di
n(x, t)S i,n(ri, ϑi),

where the regular part satisfies u
ω,q
r ∈ DVω,q(Q; γ), and

di
n(x, t) :=





N j∑

m=0

c j,m(iri∂t)
2m




(Xči

n)(x, t),

with a sufficiently large N j, constants c j,m and, in general,

e−γtči
n(t) ∈ H1−ℑ(λi

−n)−ω([0,Tmax]) . (10)

Moreover, if f ∈ C∞
0

(0,Tmax; C∞(Ḡ)), then či
n(t) ∈ C∞([0,Tmax]), and

di
n(x, t) ∈ C∞([0,Tmax],C∞(Ḡ)) .

If f is not smooth a smooth function of time, then (10) is sharp, at least in the scale of spaces

Hs(0,Tmax). See [14], Section 5, and Remark 8.3 in [11].

With Proposition 3.3, we interpret Theorem 3.9 in the following way: choosing suitable pa-

rameters ω, q, the solution is represented as the sum of a ”sufficiently smooth” function u
ω,q
r ∈

Hs(0,Tmax,H
s′(G)) and, for each order of regularity, a finite number of singular terms. If s + s′

is increased, ω and q need to be changed such that u
ω,q

s,i
contains more summands. To compute λi

±n

and Φi
n for all i = 1, . . . ,M, we consider different boundary conditions. Let ci be a vertex of G and let

Γ j and Γk be the boundary edges intersecting at ci.

3.4. Dirichlet boundary conditions

If Γ j ∪ Γk ⊆ ΓD, the boundary operator Ni on Ωi is given by NiΦ = (Φ(0), Φ(φi)), and the

eigenvalue problem (8) admits solutions

µi
n = n2 π

2

φ2
i

, and Φi
n = sin(nπϑi/φi), for all n ≥ 1,

where all eigenvalues are simple. Hence we obtain λi
±n = ∓in π

φi
, and the singular functions take the

explicit form

S n,i(ri, ϑi) = rnπ/φi sin(nπϑi/φi) . (11)

3.5. Neumann boundary conditions

If Γ j ∪ Γk ⊆ ΓD, the boundary operator Ni on Ωi is given by NiΦ =
(

∂ϑi
Φ(0), ∂ϑi

Φ(φi)
)

, and the

eigenvalue problem (8) has the solutions

µi
n = n2 π

2

φ2
i

, and Φi
n = cos(nπϑi/φi), for all n ≥ 0,

where all nonzero eigenvalues are simple. Hence we obtain λi
±n = ∓in π

φi
, and

S n,i(ri, ϑi) = rnπ/φi sin(nπϑi/φi) . (12)
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3.6. Mixed boundary conditions

If Γ j ⊆ ΓD and Γk ∈ ΓN or vice-versa, NiΦ =
(

Φ(0), ∂ϑi
Φ(φi)

)

or NiΦ =
(

∂ϑi
Φ(0), Φ(φi)

)

. Either

way, the eigenvalue problem (8) has the solutions

µi
n = (n − 1/2)2 π

2

φ2
i

, and Φi
n =






sin ((n − 1/2) πϑi/φi)

cos ((n − 1/2) πϑi/φi) ,
for all n ≥ 1,

hence we obtain λi
±n = ∓i (n − 1/2) π

φi
, and

S n,i(ri, ϑi) =






r(n−1/2)πϑi/φi sin ((n − 1/2) πϑi/φi)

r(n−1/2)πϑi/φi cos ((n − 1/2) πϑi/φi) .
(13)

Remark 3.10. 1. In the present article, only homogeneous boundary conditions are considered.

The generalization of Theorem 3.9 to non-homogeneous Dirichlet boundary conditions is de-

scribed in [12].

2. We are given či
n ∈ Hs(0,Tmax), only with s > 0. However, we will need at least s > 5/2 for

the semidiscrete convergence theorem 5.4. Therefore, the assumptions u0, v0 ∈ C∞
0

(G), and

f ∈ C∞
0

(0,Tmax,C
∞(Ḡ)) will be made throughout the following sections. As mentioned above,

this guarantees smoothness of či
n.

4. Finite Element Approximation of singular functions

In this section, we review several types of mesh refinements on which continuous, piecewise

polynomial nodal FEM are known to approximate singular functions u
ω,q

s,i
(·, t) in the decomposition

(9) with optimal convergence rates, for all t ∈ [0,Tmax]. Although results of this type are well known

(see, e.g., [1, 21, 2] where first order FEM were considered), we present short proofs here, for the

readers’ convenience and for completeness.

4.1. β-graded meshes

Let K0 = conv{(1, 0), (0, 0), (0, 1)} be the unit triangle. On K0, we construct a parametric family

of meshes which are graded towards the vertex (0, 0) so as to ensure an optimal rate of convergence of

Lagrange interpolating Finite Elements of order p ≥ 1. The idea of graded node distribution has been

presented in one dimension by Rice [23] to improve convergence of splines. Given an integer m ≥ 2

and a so-called grading parameter β ≥ 1, let

zl :=

(

l

n

)β

, l = 0, 1, . . . ,m.

The nodes of the mesh that lie on the rectangular edges of K0 are (zl, 0) and (0, zl), l = 0, . . . ,m. Then,

being dl the diagonal joining (zl, 0) and (0, zl), we divide dl uniformly into l + 1 points. This defines

all the nodes of a so-called β-graded mesh Tm,β(K0) on K0.

On the domain G, for each corner i = 1, . . . ,M there exists exactly one triangle T ⊂ Gi which

abuts at corner ci. The β-graded reference mesh is then mapped via an affine transformation onto each

of these triangles, such that the elements become smaller towards ci, see Figure 2. The mesh family

{Tm,β(K0),m ∈ N} is shape regular with constant κβ only depending on the grading parameter β.

We begin with some properties of β-graded meshes.
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Figure 2: Graded meshes with parameters n = 5 and β = 2. Left: The mesh on the reference patch K0. Right: A mesh on

the L-shaped domain composed by six images of the reference mesh.

Proposition 4.1. Let m ≥ 2 be an integer and β ≥ 1. We consider Tm,β(K0).

Let further be h(x) the piecewise constant function taking the meshwidth hT as value on each element

T ∈ Tm,β(K0) and denote by N := #Tm,β(K0).

1. If β = 1, then Tm,β(K0) is quasi uniform with meshwidth h = 1
m

.

2. There is a constant C > 0 which only depends on β, such that N ≤ Cm2.

3. There holds h ≤ Cβm−1
+ O(m−2), as m → ∞ with some constant C > 0 which is independent

of m and of β. Hence, for fixed β ≥ 1, h→ 0 as m→ ∞.

Definition 4.2. Let G ⊆ R2 be a bounded polygon with corners ci ∈ ∂G.

Let δ ∈ R, and s ≥ s0 ∈ N0. We define the weighted Sobolev space H
s,s0

δ
(G) as the completion of

C∞(Ḡ \ C) with respect to the norm

‖v; H
s,s0

δ
(G)‖2 := ‖v; Hs0−1(G)‖2 +

s∑

k=s0

∫

G

Ψδ+k−s0
(x)2|Dkv(x)|2 dx

︸                                  ︷︷                                  ︸

=:|v;H
s,s0
δ

(G)|2

(14)

The case s0 = 2 and 0 ≤ δ < 1 is especially of our interest. We cite two properties of H
s,2
δ

(G),

proved in [2] and [24], respectively.

Proposition 4.3. Let G, r and ϑ be as in Definition 4.2, δ ∈ [0, 1), and s ≥ 2. Then there hold the

following assertions.

1. The inclusion H
s,2
δ

(G) ֒→ C0(Ḡ) is continuous.

2. Let T0 ∈ R2 be a nondegenerate triangle with (0, 0) as a vertex and meshwidth hT0
. Then, there

exists a constant C > 0 such that ∀v ∈ H
2,2
δ

(T0):

‖v − I1v; H1(T0)‖ ≤ Ch1−δ
T0
‖v; H

2,2
δ

(T0)‖ , (15)

where I1 denotes the linear, nodal interpolant in the three vertices of T0.

We start with an approximation Theorem for functions in H
p+1,2

δ
(G) on certain β-graded meshes

in the reference patch.
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Proposition 4.4. Let δ ∈ [0, 1), p ∈ N, v ∈ H
p+1,2

δ
(K0), and

β > max

{

1,
p

1 − δ

}

.

We construct a β-graded mesh family on the reference patch K0 denoted by Tm,β(K0), with total num-

ber of vertices N := #Tm,β(K0)
m→∞−→ ∞.

Then, there is a constant c > 0, independent of v and N, such that

min
w∈S p,1(K0,Tm,β(K0))

‖v − w; H1(K0)‖ ≤ CN−p/2 ‖v; H
p+1,2

δ
(K0)‖, N → ∞ . (16)

Proof. Let v ∈ H
p+1,2

δ
(G) and let Ip denote the nodal Lagrangian Finite Element interpolant of degree

p on Tm,β(K0).

We denote by T0 the element containing (0, 0) in its closure. Since

‖u − Ipu; H1(K0)‖ = ‖u − Ipu; H1(K0 \ T0)‖ + ‖u − Ipu; H1(T0)‖ ,

it suffices to prove the claim separately both inside and outside T0.

We start with estimates in K0 \ T0. In the case G = K0, Ψδ′(x) = r(x)δ
′

for all δ′ ∈ R, where r is

centered at (0, 0). By construction of Tm,β(K0), we have for T , T0

Ψ1(x) > cm−β ∀x ∈ T and hT ≤ cm−1 r1−1/β(x).

Then, exterior regularity results yield v|K0\T0
∈ Hp+1(K0 \ T0), and

|v − Ipv; H1(K0 \ T0)|2 ≤ c
∑

T∈Tm,β(K0)

T,T0

∫

T

h(x) |Dp+1v(x)|2 dx.

Therefore,

|v − Ipv; H1(K0 \ T0)|2 ≤ c
∑

T∈Tm,β(K0)

T,T0

∫

T

h(x)2p |Dp+1v(x)|2 dx

≤ c sup
x∈K0\T0

(

h(x)p r1−p−δ(x)
)2 |u; H

p+1,2

δ
(K0 \ T0)|2

≤ c′m−2p sup
x<T0

(

r
p− p

β
+1−p−δ

)2

|u; H
p+1,2

δ
(K0 \ T0)|2

≤ c′′ N−p|u; H
p+1,2

δ
(K0 \ T0)|2,

where the last step is valid if and only if β >
p

1−δ , and the constants c, c′, c′′ > 0 only depend on β and

G.

In elements which are abutting at the corner, v|T0
∈ Hp+1(T0) may not be defined. However,

‖v − Ipv; H1(G)‖ ≤ ‖v − I1v; H1(G)‖ + ‖Ipv − IpI1v; H1(G)‖
≤ (1 + ‖Ip‖)‖v − I1v; H1(G)‖,

where, as in [6, §4, Proposition 1], the operator norm ‖Ip‖ := ‖Ip‖H1+ε(G)→H1(G) is finite. Now, (15)

yields: there exists C > 0 such that for all v ∈ H
p+1,2

δ
(T0) there holds

‖v − Ipv; H1(T0)‖ ≤ Ch1−δ
T0
‖v; H

2,2
δ

(T0)‖ ≤ Ch
p/β

T0
‖v; H

p+1,2

δ
(T0)‖ .

12



By construction of Tm,β, we have hT0
≤ c̃m−β for some c̃ > 0, hence

‖v − Ipv; H1(T0)‖ ≤ Cm−p‖v; H
p+1,2

δ
(T0)‖ ≤ CN−p/2‖v; H

p+1,2

δ
(T0)‖ .

In the considered cases of boundary conditions, it is easily verified that if δ ∈ [0, 1) satisfies

δ > 1 − iλi
1 for all i = 1, . . . ,M,

We note in passing that the eigenvalues λ of the operator pencil (7) are purely imaginary, so that

multiplication with i will result in δ ∈ R. The singular functions S n,i(ri, ϑi) := r
iλi

n

i
Φ

i
n(ϑi), arising in

decomposition (9), then belong to H
p+1,2

δ
(G), for all p ∈ N.

In order to define the notion of a β-graded mesh on polygonal domains, we need to formulate an

analogous theorem for domains G , K0.

Definition 4.5. Let G ⊆ R2 be a bounded polygon. Let m ∈ N and β := (β1, . . . , βM) with βi ≥ 1, be

given. We construct a β-graded Mesh Tm,β(G) on G.

We assume that there are conforming sets of nondegenerate triangles
{

T 0
1
, . . . ,T 0

J0

}

in Ḡ, as well as for

each i = 1, . . . ,M, {T i
1
, . . . ,T i

Ji
} in Ḡi with common vertex ci, and satisfying ci < Gi \

⋃Ji

j=1
T i

j
, such

that their union is conforming and covers Ḡ, i.e.

Ḡ =

M⋃

i=0

Ji⋃

j=1

T̄ i
j.

For all i, j, let ψi, j : T i
j
→ K0 be the affine map transforming T i

j
to K0. We construct T̂ i

j
:= Tm,βi

(K0)

for i ≥ 1, T̂ 0
j

:= Tm,1(K0) on the reference patch, and transport it to T i
j

:= ψ−1
i, j

(

T̂ i
j

)

on T i
j

for all i, j.

Merging these meshes together, we finally obtain a (not necessarily conforming) mesh on all of G by

Tm,β(G) :=

M⋃

i=0

Ji⋃

j=1

T i
j .

Remark 4.6. The mesh Tm,β(G) is conforming, if and only if all pairs of adjacent triangles T j and T j′ ,

with local numberings of the shared edge e j and e j′ , satisfy at least one of the following conditions:

1. β j = β j′ ,

2. The common edge, e j (e j′ , respectively), is the local image by ψ j (ψ j′), of the hypotenuse of K0

passing through (1, 0) and (0, 1).

We comment on condition (2). By construction of Tm,β j
(K0), the diagonal d passing through (1, 0)

and (0, 1) is the only edge of K0 which is uniformly subdivided. Therefore, if β j , β j′ , we can

merge affine images of the patch meshes Tm j,β j
(K0) and Tm j′ ,β j′ (K0) only if the common edge of the

respective patches is the image of d, and if m j = m j′ .

The transformation rule with bijective, affine maps between nondegenerate triangles implies the

main result of this subsection:
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Theorem 4.7. Let G ⊆ R2 be a bounded polygon and let

δi > 1 − iλi
1, i = 1, . . . ,M, and δ := max

i
δi .

Given a degree p ∈ N, grading parameters βi > max
{

1,
p

1−δi

}

, and m ∈ N, we construct a β-graded

Mesh Tm,β(G) with m layers of shape regular elements as in Definition 4.5.

For each 0 ≤ δ < 1 and v ∈ H
p+1,2

δ
(G), there is a constant C > 0, independent of v and N := #Tm,β(G),

such that

min
w∈S p,1(G,Tm,β(G))

‖v − w; H1(G)‖ ≤ CN−p/2‖v; H
p+1,2

δ
(G)‖ .

Note that N → ∞ and h→ 0, as m→ ∞.

4.2. Meshes with binary tree structure

A disadvantage of β-graded meshes for some applications (e.g. for multilevel iterative solvers) is

that the corresponding finite element spaces are not nested, i.e. for 1 ≤ m < m′,

dim
(

S p,1(G,Tm,β)
)

< dim
(

S p,1(G,Tm′,β)
)

; S p,1(G,Tm,β) ⊂ S p,1(G,Tm′,β) .

In this subsection, we will define a family of nested, locally refined finite element spaces with opti-

mal approximation properties. It is constructed upon a given initial mesh which is then refined. The

refinement algorithm has been introduced and investigated in [7].

On triangulations of the domain G, we assume that all the simplices of the triangulations are nonde-

generate and oriented the same way.

Let T := (z0, z1, z2) ⊆ R2 be a 2-simplex. We recall a unique way to split T up into two sub-

simplices T1 and T2, called children of T which were introduced by Bänsch [4]. A new vertex z̄ is

obtained by bisection of the refinement edge (z0, z2), i.e.

z̄ :=
1

2
(z0 + z2) .

This induces two smaller simplices T1 and T2, with numbering

T1 := (z2, z̄, z1) and T2 := (z1, z̄, z0).

By this unique numbering, the children of T inherit the orientation of T .

Figure 3: Repeated bisection of a simplex T and corresponding binary tree.
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We next turn to the recurrent bisection of a given initial 2-simplex T0 := (z0, z1, z2). Let (T1,T2) =

BISECT(T ) be a function that returns the children of T after performing one bisection. The input

T can either be T0 or an output of any previous application of BISECT. We can associate to T0 an

infinite binary tree F(T0), induced by recurrent bisection of T0 and its descendants. The nodes of

F(T0) correspond uniquely to simplices generated by repeated application of BISECT to T0. Each

node in the tree has two successors corresponding to its children.

Definition 4.8. Let T0 be a 2-simplex and T ∈ F(T0) a node in its associated binary tree. The

generation of T is defined to be the number of its ancestors in the tree, i.e. the number of bisections

needed to obtain T from T0. We denote it by g(T ).

Now, let T0 be a conforming triangulation of G. For each T0 ∈ T0, we obtain a infinite binary tree

corresponding to all possible bisections of T0 and its descendants. It makes sense to introduce the set

of all such trees, corresponding to all possible bisection refinements of T0.

Definition 4.9. For a conforming triangulation T0 of G, we define its master forest F(T0) by

F := F(T0) :=
⋃

T∈T0

F(T ).

The generation of a node T ∈ F ∩ F(T0), for some T0 ∈ T0, is defined to be g(T ) in F(T0).

A subset F ⊆ F is called finite forest, if and only if

1. T0 ⊆ F ,
2. All nodes in F \ T0 have a predecessor in F(T0),
3. All nodes of F have either two or no successors,
4. supT∈F g(T ) < ∞ .

Given a finite forest F , we call its nodes without successors leaves. Any finite forest F induces a

triangulation of G

T (F ) := {T : T is a leaf of F },
obtained by bisection of elements in T0. Conversely, any triangulation T obtained by bisection of

certain elements in T0 induces a finite forest F (T ).

Given two finite forests F and F ′ with triangulations T and T ′, we call T ′ a refinement of T , if

F ⊆ F ′.

Since there is a 1-1 correspondence between triangulations of G obtained by refinements of T0

and finite forests in F(T0), it makes sense to call both finite forests and triangulations obtained from

T0 refinements of each other.

Lemma 4.10. ([19]) Let T0 be an conforming triangulation of G and let F be its master forest. Then,

there is a constant 0 < c < ∞ solely depending on T0, such that

sup
T∈F(T0)

hT

hT

< c,

where hT and hT denote the circumradius and the inradius of T .

Generally, a refinement of T0 is not conforming. In fact, bisection refinement of only one element

T = (z0, z1, z2) ∈ T0 creates a hanging node on the refinement edge z0z2 := S , if S * ∂G. To overcome

this fact, the unique element T ′ := (z′
0
, z′

1
, z′

2
) such that T̄ ∩ T̄ ′ = S needs to be refined as well. Now,
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this only yields a conforming refinement if the local numbering of T ′ is such, that S = z′
0
z′

2
. If this is

not the case, the child T ′′ := (z′′
0
, z′′

1
, z′′

2
) of T ′, such that T̄ ∩ T̄ ′′ = S finally carries a vertex labelling

such that S = z′′
0

z′′
2

.

Hence, given an initial conforming triangulation T0 and a subset M of (”marked”) elements,

there is a conforming refinement T of T0, such that g(T ) > 0 for all leaves in F (T ) whose roots

belong to M, i.e. in which all marked elements are refined. In other words, there is a function

T = REFINE MARKED(T0,M) that returns said refinement T in finite time.

Our goal is to find a family of refinements of T0, such that u
ω,q

s,i
(x, t) are optimally approximated.

We recall an algorithm that refines T0 by bisection, introduced in [7].

Definition 4.11. Let G ⊆ R2 be a bounded polygonal domain with a given conforming triangulation

T0. Let p ∈ N. Let λ := π
2 maxi φi

. Being #T0 be the number of degrees of freedom of T0, we choose

parameters ε > 0 and K ∈ N, such that

0 < ε < (#T0)−2 and 2
− λ(K+1)

p+1 ≤ ε < 2
− λK

p+1 .

Then, the following algorithm returns a refinement of T0.

Tε = THRESHOLD(T0, ε, λ,K)

T := T0

M := {T ∈ T ; hT > ε}
% global refinement

WHILE M , ∅
M := {T ∈ T ; hT > ε}
T = REFINE MARKED(T ,M)

END

% local graded refinement

l := 1

WHILE l < 2K + 1

M :=

{

T ∈ T ; hT > ε2
− l(p+1−λ)

2(p+1) and mini dist(ci, T̄ ) ≤
√

2−l
}

T = REFINE MARKED(T ,M)

l := l + 1

END

RETURN Tε := T

Remark 4.12. THRESHOLD returns a mesh which is graded towards the vertices and exclusively con-

tains elements of size h ≤ ε. The grading parameters K and λ are entirely determined by G,T0, p and

the choice of ε.

As proved in [7], this algorithm returns a mesh family {Tε}ε>0 that approximates u
ω,q

s,i
(x, t) with

optimal convergence rates. Concretely, the following Theorem holds:

Theorem 4.13. ([7]) Let G ⊆ R2 be a bounded, polygonal domain with interior angles φi ∈ (0, 2π],

i = 1, . . . ,M at the boundary vertices. Let p ∈ N, λ := π
2 maxi φi

, and let v(x) be a function such that

there is a constant C > 0 such that the following conditions are satisfied:

|Dkv(x)| ≤ CΨλ−k(x) ∀k = {0, 1, p + 1} . (17)
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Then, there exists a constant C > 0 depending only on the conforming initial triangulation T0

and on the domain G, such that for any tolerance ε > 0 as in Definition 4.11 and for Tε :=

THRESHOLD(T0, ε, λ,K),

‖v − Ipv; H1(G)‖ ≤ C(#Tε − T0)−p/2 .

Remark 4.14. • Assuming (17), we make use of the explicit form of the singular functions. How-

ever, Theorem 4.13 has recently been generalized to functions which belong to certain Besov

spaces, in the sense that u(·, t) ∈ Bα+s
τ,τ (G) in [8]. To see that the functions considered here actu-

ally satisfy this condition, we need an inclusion H
p+1,2

δ
(G) ֒→ Bα+s

τ,τ (G). This could be done via

an intermediate inclusion into Babuška-Kondrat’ev spaces K s
a(G), for which an inclusion into

Bα+s
τ,τ (G) is known to hold, see [9].

• THRESHOLD, as defined here, uses the same grading intensity (K, λ) towards all the vertices of G.

The efficiency of both algorithms (but not the asymptotic convergence rates, only the constants

in the work versus accuracy bounds) can be improved by choosing different gradings towards

each corner ci. For the sake of simplicity, these rather obvious generalizations are not treated

here.

• The convergence results of Section 4, namely Theorems 4.7 and 4.13, are valid also for more

general, so-called “power-logarithmic” singular functions v(x) of the form

v(x) = S i
n;k, j(ri, ϑi) := r

iλi
n

i

k∑

m=0

log(ri)
m

m!
Φ

i
n;k, j(ϑi),

where m ∈ N0, and again Φi
n;k, j
∈ C∞([0, φi]). This class of functions describes the singular

functions which appear in the corner asymptotics of general linear hyperbolic systems, see for

example [13, 14].

The modified singular functions S i
n;k, j

(ri, ϑi) satisfy the conditions (17), and moreover, they

are contained in H
2,p+1

δ
(G) for [0, 1) ∋ δ > 1 − iλi

1
for p ∈ N. Therefore, Theorems 4.7 and

4.13 remain valid for this larger class of singular functions. With this remark, in particular

all results in the present paper can be adapted to problems with nonhomogeneous coefficients

which are sufficiently smooth in G, or to elliptic systems such as problems of elastodynamics,

or to problems of electromagnetic wave propagation in polygonal domains G. Details on this

will be given in a forthcoming paper.

5. The FEM semi-discretization

Let {Th : h > 0} denote a regular family of simplicial meshes with meshwidth h, obtained as

described in Section 4, i.e. one of the following assertions is true:

1. There is a β, βi ≥ max {1, p/1−δi} as in Theorem 4.7, such that for each Th, there exits m ∈ N
with Th = Tm,β.

2. There is a conforming triangulation T0 of G such that for each Th, there exists ε > 0 with

Th = THRESHOLD(T0, ε, λ,K).

We further denote the number of vertices in Th by Nh := #Th.
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Given a polynomial degree p ∈ N, we obtain a sequence of conforming finite element spaces,

denoted by

Vh := V ∩ S p,1(G;Th) .

The dimension dim(Vh) is finite and tends to∞, as h→ 0.

Definition 5.1. For l,m ∈ N0, we say that a tuple (ω, q) ∈ R × N0 satisfies the (s, s′)-regularity

condition on G, if

ω <

M⋃

i=1

Z
π

φi

, ω ≤ −q, and q ≥ s + s′ − 1. (18)

We know from the Proposition 3.3 and Theorem 3.9, that if (ω, q) satisfies the (s, s′)-regularity

condition, then u
ω,q
r ∈ Hs(0,Tmax; Hs′(G)).

Theorem 5.2. Let G be a polygonal domain with interior opening angles φi ∈ (0, 2π], let Tmax > 0,

and let

f ∈ C∞0 (0,Tmax; C∞(Ḡ)), and u0, v0 ∈ C∞0 (G). (19)

Assume further that p ∈ N, γ > 0 and (ω, q) ∈ R × N are given such that the (s, p + 1)-regularity

condition on G holds with s > 3
2
.

Then, for all t ∈ (0,Tmax), there is a constant C > 0 which is independent of Nh, but dependent on

u(·, t), such that

min
v∈Vh

‖∂ j
t u(·, t) − v; H1(G)‖ ≤ CN

−p/2

h
for j = 0, 1 , (20)

as N → ∞.

Proof. By Theorem 3.9, by the assumptions (19), by the Sobolev embedding, and since (ω, q) satisfy

the (s, p + 1)-regularity condition on G with s > 3
2
, we have the decomposition

u(x, t) = u
ω,q
r (x, t) +

M∑

i=1

u
ω,q

s,i
(x, t) ,

where u
ω,q
r ∈ C1([0,Tmax]; Hp+1(G)), and where u

ω,q

s,i
∈ C∞([0,Tmax]; H1(G)). Now, for all t ∈

(0,Tmax),

min
v∈Vh

‖u(·, t) − v; H1(G)‖ ≤
M∑

i=1

min
v∈Vh

‖uω,q
s,i

(·, t) − v; H1(G)‖ + min
v∈Vh

‖uω,qr (·, t) − v; H1(G)‖ .

Since u
ω,q
r (·, t) ∈ Hp+1(G), the second term of the sum is approximated with optimal convergence

rates, i.e. (20) holds for u = u
ω,q
r . Using Theorems 4.7 and 4.13, we conclude that all u

ω,q

s,i
(x, t) are

approximated with optimal convergence rates for our choice of T , whence the claim follows for j = 0.

The claim for j = 1 follows analogously, since ∂tu
ω,q

s,i
also satisfies the assumptions of Theorems 4.7

and 4.13. However, this is only true, because u
ω,q

s,i
∈ C∞([0,Tmax]; V).

Let u(x, t) be a solution of (2). We consider solutions uh(x, t) of the following space semidiscrete

initial boundary value problem of the linear, second order wave equation, which is given by

Find uh ∈ C0([0,Tmax]; Vh) such that ∀v ∈ Vh and t ∈ [0,Tmax] :

∂2
t (uh(·, t), v) + (∇uh(·, t),∇v) = ( f (·, t), v) ,

(uh, v) = (u0, v) ,

∂t (uh(·, 0), v) = (v0, v) .

(21)
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In fact, choosing the Lagrangian nodal basis B of Vh, (21) can be written in matrix form as

M∂2
t uh(t) + Auh(t) = F(t), uh(0) := u0, vh(0) := v0, (22)

where uh(t), F(t), u0, and v0 are vectors containing the basis coefficients of uh(·, t), f (·, t) u0 and v0

with respect to B, which can be identified with values of the respective functions at the grid points.

Theorem 5.2 leads now to the main result. In its proof, we require the elliptic projection Πh : V 7→
Vh.

Definition 5.3. For a closed subspace Vh ⊂ V , the elliptic projection Πh : V → Vh is defined for any

v ∈ V by

(∇ (Πhv) ,∇wh(x)) = (∇v,∇wh) ∀wh ∈ Vh .

Theorem 5.4. Let p ∈ N, γ > 0, and assume that f , u0, v0 satisfy the assumptions of Theorem 5.2.

Moreover, let u(x, t) be the solution of (2), and uh(x, t) the solution of (21) and (ω, q) satisfy the

(s, p + 1)-regularity condition on G, with s > 5
2
.

Then, there exists a constant C > 0, such that for every 0 ≤ t ≤ Tmax holds

‖u(·, t) − uh(·, t); H1(G)‖ + ‖∂tu(·, t) − ∂tuh(·, t); L2(G)‖

≤ C

{

‖u0 − u0,h; H1(G)‖ + ‖v0 − v0,h; L2(G)‖

+N−p/2

[

‖u(·, t); Hp+1(G)‖ + ‖∂tu(·, t); Hp+1(G)‖

+

∫ t

0

‖∂2
t u(·, s); Hp+1(G)‖ ds

]}

.

(23)

Proof. By the Sobolev embedding, u ∈ C2([0,Tmax]; V). In that case,

‖u(·, t) − uh(·, t); H1(G)‖ + ‖∂tu(·, t) − ∂tuh(·, t); L2(G)‖

≤ C

{

‖u0 − u0,h; H1(G)‖ + ‖v0 − v0,h; L2(G)‖

+ ‖(I − Πh)u(·, t); H1(G)‖ + ‖(I − Πh)∂tu(·, t); L2(G)‖

+

∫ t

0

‖(I − Πh)∂2
t u(·, s); L2(G)‖ ds

}

,

see e.g. [22, Theorem 8.7-1]. Since u
ω,q

s,i
(·, t) ∈ H

p+1,2

δ
(G) for δ > 1 − π

φi
, and u

ω,q

s,i
satisfies the

conditions (17) for all t ∈ (0,Tmax), the claim follows from Theorem 5.2, since there exists a constant

C > 0 which is independent of h such that for all v ∈ Vh,

‖v − Πhv; H1(G)‖ ≤ C inf
w∈Vh

‖v − w; H1(G)‖ .

The same holds for ∂tu
ω,q

s,i
(·, t), whence the claim of the theorem follows.

6. Numerical experiments

In the previous sections, optimal convergence rates were proved for two kinds of meshes, when

discretizing (2) with FEM of polynomial order p ∈ N. We present numerical experiments on an

L-shaped domain and on the extreme case of a cracked domain, to illustrate the theoretical results.
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6.1. Test 1: Linear FEM on the L-shaped domain

Let G be the L-shaped domain as in Figure 2, with one reentrant corner located at (0, 0). The

Dirichlet problem for the wave equation on G is numerically solved using a method of lines approach,

with space semidiscretization by conforming, Lagrangean Finite Elements with nodal basis functions.

For the time discretization, a uniformly stable Crank-Nicolson scheme with uniform timestep ∆t > 0

is used. The time step is chosen so small as to render the time discretization errors negligible in this

and all ensuing numerical experiments. We reformulate (22) as a first-order system of ODEs (with

slight abuse of notation denoting by uh(t) the vector of nodal unkowns as well as their time derivatives

and with the obvious meaning for Â and M̂)

∂t M̂uh(t) + Âuh(t) = F̂(t), uh(0) = û0,

and the Crank-Nicolson scheme returns vectors ûm ≃ û(tm), with tm := m∆t, m = 0, . . . , Tmax/∆t ∈ N,

defined by the iteration

ûm=0 := û0 ,
(

2M̂ + ∆tÂ
)

ûm+1 :=
(

2M̂ − ∆tÂ
)

ûm
+ ∆t

(

F̂m+1 + F̂m

)

.

To exhibit the effect of mesh grading near corners, we compute the L2(0,Tmax; H1(G)) norm of the

error u(x, t) − uh(x, t) on uniformly refined meshes, β-graded meshes and on meshes obtained by the

procedure THRESHOLD.

Let us compute the grading parameter for the β-graded meshes. There is one nonconvex angle

φ1 =
3
2
π and five convex angles φi =

π
2
, i = 2, . . . , 6. Since p = 1, q = 4, ω = −4 satisfy the required

(5/2, 2) regularity condition we have

n1
max,−4 = max{n ∈ N : 2n/3 ≤ 5} = 7 ,

ni
max,−4 = max{n ∈ N : 2n ≤ 5} = 2, i = 2, . . . , 6 .

For i = 1, we have δ1 > 1 − 2
3
. According to Proposition 4.4, a sufficient condition to recover the

optimal convergence rate is β1 >
3
2
. At convex corners, we have δi > −1. Similarly to Proposition 3.3,

it can be proved that for δ < 0, H
2,2
δ

(G) ֒→ H2(G), hence no grading is needed for p = 1.

Remark 6.1. This example shows that if p is increased, using a graded mesh with grading factor

β > 1 may become necessary even in the vicinity of convex corners since, in this case, Proposition 4.4

predicts β > max{1, p/2} > 1 for p ≥ 2.

This yields a sequence of discrete times t j := j∆t and discrete solutions u( j) ∈ RN , j ≥ 1. In

order to exhibit the theoretical convergence rates which were proved in the semidiscrete setting, in

the present numerical experiments the timestep ∆t is chosen so small that the time-discretization

error becomes negligibly small compared to the space discretization error. Hence, we expect that, as

N → ∞,

‖u − uh; L2(0,Tmax; H1(G))‖2 =
∫ Tmax

0

‖u(·, t) − uh(·, t); H1(G)‖2 dt . N−ρ,

where the convergence rate is ρ > 0. As an exact solution, we choose (note that π/φ = 2/3),

u(x, t) = sin(πt)

7∑

n=1

r
2n/3 sin(2nϑ/3) ∈ C∞([0,Tmax]; H4/3−δ(G))
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for any δ > 0, where (r, ϑ) are polar coordinates centered at the reentrant corner (0, 0). Therefore,

standard approximation results for Lagrangian Finite Elements on quasiuniform meshes (see, e.g.,

[5]) and an interpolation argument predict a convergence rate of ρ < 1
3

in the case of uniform mesh

refinement, while our results predict that the optimal convergence rate ρ = 1
2

is essentially recovered

on the refined meshes, with both bisection as well as graded mesh refinement. In the error computa-

tion, the integral in the t variable is computed by the second order trapezoidal rule, and the H1-errors

are computed using a seven node Gauss-type quadrature rule in a triangle (due to J. Radon) which

integrates polynomials p(x1, x2) of total degree 5 exactly. Figure 4 shows a log-log plot of the dis-

cretization errors (with comparison lines to indicate the convergence order).
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Figure 4: The error ‖u − uh; L2(0,Tmax; H1(G))‖ in Test 1, on a log-log scale. The β-graded mesh is constructed with a

partition of G into 24 triangles. The parameters are β1 = 2, βi = 1, i > 1, and m = 3, 4, . . . , 14. For the bisection refinement,

we choose #T0 = 11, and run THRESHOLD with ε = 0.01 · 2k, k = 0,−1, . . . ,−5. The timestepping is done with ∆t = 10−4,

and Tmax = 0.25.

6.2. Test 2: Quadratic FEM on the L-shaped domain

In this example, we consider again the Dirichlet problem on the L-shaped domain, but we dis-

cretize now in space with continuous, piecewise quadratic FEM. The mesh grading must be done,

according to Proposition 4.4, with β1 > 3 to restore optimal convergence rate.

For bisection refinement, we choose ε the same way as in Test 1 (see caption of Figure 4), but

have to set p = 2, which changes also the choice of the parameter K. As an exact solution, we choose

a superposition of singular functions

u(x, t) = sin(πt)




dist(x, c1)

2/3 sin(2ϑ1/3) +

5∑

i=1

dist(x, ci)
2 sin(2ϑi)




,

which lies in C∞([0,Tmax]; H4/3−δ(G)) for arbitrary small δ > 0. At each corner ci, only the terms of

least regularity in u
ω,q

s,i
(x, t) have been considered. Moreover, we did not multiply by a cut-off, since

u
ω,q

s,i
(·, t) ∈ C∞(Ḡ \ Ḡi).

In terms of the number N of interpolation nodes (not vertices) in the triangulation, we expect the

convergence rate ρ < 2
3

on uniformly refined meshes, and the optimal rate ρ = 1 on the locally refined

meshes. The results are shown in Figure 5.
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Figure 5: The error ‖u − uh; L2(0,Tmax; H1(G))‖ in Test 2, on a log-log scale. The local mesh refinements are performed

with the parameters indicated in the text. The timestep is chosen to be ∆t = 10−4, and Tmax = 0.25.

6.3. Test 3: Polygonal domain with crack

Polygons with a slit which arise in fracture mechanics as models of a structure with a crack are

not Lipschitz domains anymore, but can be represented as finite union of Lipschitz domains. Now,

consider the domain G := (−1, 1)2 \ ((0, 1) × {0}), with reentrant “corner” c1 = (0, 0) and with interior

opening angle φ1 = 2π. We discretize again the Dirichlet problem with continuous, piecewise linear

FEM. The mesh grading at the convex corners is done as in the previous example. According to

Proposition 4.4, β1 > 2 must be chosen in order to restore optimal convergence rate. For bisection
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Figure 6: The error ‖u − uh; L2(0,Tmax; H1(G))‖ in Test 3, on a log-log scale. The local mesh refinements are performed

with the parameters indicated in the text. The timestep is chosen to be ∆t = 10−4, and Tmax = 0.25.

refinement, we choose ε the same way as in Test 1 (see caption of Figure 4), but have to adapt λ = 1
2
,

and therefore also K, as in Definition 4.11. We take the same ε as above. As an exact solution, we

choose again the singular function

u(x, t) = sin(πt)

7∑

n=1

rn/2 sin(nϑ/2) ∈ C∞([0,Tmax]; H3/2−δ(G))
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for arbitrary small δ > 0. We expect convergence rate ρ = 1
4

on uniform meshes, and ρ = 1/2 on the

locally refined meshes. The results are shown in Figure 6.
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