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Based on the parametric deterministic formulation of Bayesian inverse problems
with unknown input parameter from infinite dimensional, separable Banach spaces
proposed in [10], we develop a practical computational algorithm whose conver-
gence rates are provably higher than those of Monte-Carlo (MC) and Markov-
Chain Monte-Carlo methods, in terms of the number of solutions of the forward
problem. The focus is on linear, elliptic PDE with unknown diffusion coefficient,
however, the derived convergence results are not limited to linear, elliptic PDEs:
analogous results hold for forward maps of a rather wide range of mathematical
models.

A basic problem in Bayesian inverse problems consists of determining the un-
known diffusion coefficient u ∈ X from given noisy observation data δ = O(G(u))+
η (with η ∈ RK representing the observation noise, O : R 7→ RK bounded, linear
observation operator and G : X → R forward response map from some separa-
ble Banach space X of unknown parameters into a separable Banach space R of
responses) in order to compute the expectation of a quantity of interest. The pro-
posed approach relies on a reformulation of the forward problem with unknown
stochastic input data as an infinite dimensional, parametric deterministic problem.
Therefore, the unknown diffusion coefficient u is assumed to admit a parametric
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representation of the form

u = ā+
∑

j∈J

yjψj

where y = (yj)j∈J is an i.i.d sequence of real-valued random variables yj ∼
U [−1/2, 1/2], ie. the prior is given by µ0(dy) :=

⊗

j∈J
λ1(dyj), ā, ψj ∈ X and J

denotes a finite or countably infinite index set, ie. either J = {1, 2, ..., J} or J = N.
Under appropriate assumptions on the forward and observation model and the

prior measure, the posterior distribution on u is absolutely continuous with respect
to the prior, see [10]. The density of the posterior with respect to the prior is a
Radon-Nikodym derivative that is given by an infinite dimensional version of Bayes
rule. Based on this result, we are interested in computing the expectation of a
prediction function φ : X → S for a Quantity of Interest (QoI). The expectation
of QoI under the posterior (given data δ) is given by Eµδ [φ(u)] := Z ′/Z ∈ S with

Z ′ =

∫

[−1/2,1/2]J
Ψ(y)µ0(dy) Z =

∫

[−1/2,1/2]J
Θ(y)µ0(dy) ,

Θ(y) = exp(− 1
2 |δ − O(G(u))|2Γ

1
2

∣

∣

∣

u=ā+
∑

j∈J
yjψj

, Ψ(y) = Θ(y)φ(u)
∣

∣

∣

u=ā+
∑

j∈J
yjψj

.

In [10], joint analyticity of the posterior density as a function of the parameter
vector y ∈ U is proven. In particular, the estimates of the size of domains of
analytic continuation which were obtained in [10] allowed to prove rates on so-
called sparse, monotone N -term polynomial chaos approximations of the posterior
density Ψ(y). The resulting approximation rates are independent of the dimension,
ie. of the number of active coordinates yj in the quadrature approximations of Z
and Z ′, and will be the basis for the presented proofs of (dimension independent)
convergence rates of the adaptive Smolyak quadrature algorithms. For any finite
monotone set Λ ⊂ F , the quadrature operator is defined by

QΛ =
∑

ν∈Λ

∆ν =
∑

ν∈Λ

⊗

j≥1

∆νj

with difference operators ∆ν =
⊗

j≥1 ∆νj , ∆j = Qj−Qj−1 and (Qk)k≥0 sequence

of univariate quadrature formulas, see [9] for details on the construction of the
tensorized multivariate quadrature formulas.

Then, it can be proven (under appropriate assumptions on the univariate quad-
rature formulas and on the forward model) that sparsity in the unknown coefficient
function u, i.e. if

∑∞

j=1 ‖ψj‖
σ
L∞(D) < ∞ for 0 < σ < 1, implies the existence of

two sequences (Λ1
N )N≥1, (Λ

2
N)N≥1 of monotone sets Λ1,2

N ⊂ F such that with

#Λ1,2
N ≤ N

|Z −QΛ1
N
(Θ)| ≤ CZN

−s , s =
1

σ
− 1 ,

and

‖Z ′ −QΛ2
N
(Ψ)‖V (m) ≤ CZ′N−s , s =

1

σ
− 1 .
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The construction of the monotone index set (Λ1,2
N )N≥1 is based on a greedy-type

strategy which attempts to control the global approximation error by locally col-
lecting indices of the current set of reduced neighbors with the largest error con-
tributions. We will present numerical experiments based on the following model
parametric elliptic boundary value problem

−div(u∇p) = f in D := [0, 1] , p = 0 in ∂D ,

with f(x) = 100 · x and diffusion coefficient u(x, y) = ā +
∑64

j=1 yjψj ,where ā =

1 and ψj = αjχDj
with Dj = [(j − 1) 1

64 , j
1
64 ], y = (yj)j=1,...,64 and αj =

1.8
jζ , ζ =

2, 3, 4 in order to numerically verify the theoretical results. Exemplarily, the ap-
proximation error of the normalization constant Z for three values of the parameter
ζ controlling the sparsity of the unknown input data is shown in Figure 1.
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Figure 1. Comparison of the error curves of the normalization
constant Z with respect to #ΛN based on the sequences with
Clenshaw-Curtis, symmetrized Leja and R-Leja quadrature points
with number of observations K = 2NK − 1 , NK = 2, 3, 4, η ∼
N (0, 1) and with ζ = 2 (left), ζ = 3 (middle) and ζ = 4 (right).

Furthermore, we will present numerical results considering a lognormal diffusion
coefficient, ie. ln(u(x, y)) =

∑64
j=1 yjψj ,where ψj = αjχDj

, indicating the same
convergence behavior as in the uniform case, cp. Figure 2.
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Figure 2. Comparison of the error curves of the normalization
constant Z with respect to #ΛN based on the Gauss-Hermite
quadrature with number of observations K = 2NK − 1 , NK =
2, 3, 4, η ∼ N (0, 1) and ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.).
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