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Abstract We consider an eddy current problem in time-domain relying on
impedance boundary conditions on the surface of the conductor(s). We pursue
its full discretization comprising (i) a finite element Galerkin discretization by
means of lowest order edge elements in space, and (ii) temporal discretization
based on Runge-Kutta convolution quadrature (CQ) for the resulting Volterra
integral equation in time. The final algorithm also involves the fast and obliv-
ious approximation of CQ.

For this method we give a comprehensive convergence analysis and es-
tablish that the errors of spatial discretization, CQ and of its approximate
realization add up to the final error bound.

Keywords eddy current problem, impedance boundary conditions, convolu-
tion quadrature, fast and oblivious algorithms
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1 Transient Eddy Current Model

We consider a linear transient eddy current problem with the conductors occu-
pying the bounded and connected polyhedron ΩC ⊂ R3. With a finite element
discretization in mind we artificially truncate the fields to a simple bounded
computational domain Ω ⊂ R3 with ΩC ⊂ Ω.

R. Hiptmair and A. Paganini
Seminar for Applied Mathematics, Swiss Federal Institute of Technology, Zurich, Switzer-
land, The work of A. Paganini was partly supported by ETH Grant CH1-02 11-1
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2 Ralf Hiptmair, Maŕıa López-Fernández and Alberto Paganini

For rapidly changing fields and high conductivities the skin effect prevents
the fields from penetrating deep into the conductors. This permits us to model
the effect of the condutor on the fields by means of an impedance boundary
condition on the surface Γ := ∂ΩC of the conductor without incurring a severe
modeling error. This boundary condition imposes a linear relationship between
the tangential components of the electric and magnetic field that is local in
space. In frequency domain at fixed angular frequency ω > 0 this amounts to
the well-known Leontovich boundary condition [6, 21]

(Ĥ× n)(x) =

√
iωσ(x)

µ(x)
Êt(x) , x ∈ Γ , (1.1)

where n : Γ → R3 is the exterior unit normal vector field on Γ , and Ĥ and Ê
denote the complex amplitudes of the magnetic and electric field, respectively,
and Êt := (n× Ê)×n is the tangential component. The material coefficients
µ (magnetic permeability) and σ (conductivity) are uniformly positive, but
may vary in space. The Leontovic boundary condition (1.1) is the simplest
representative of the class of surface impedance boundary conditions (SIBCs)
that are hugely popular in computational electromagnetics with entire books
devoted to them [10, 22, 23]. More sophisticated “higher order” specimens of
SIBCs have been derived, for instance, in [7]. What they all have in common
is the structure

(Ĥ× n)(x) = Z(iω)(Êt)(x) ,x ∈ Γ , (1.2)

where Z may stand for a suitable surface (pseudo-)differential operator. In
this article we focus on (1.1), but it should be regarded as a “structural rep-
resentative” of more general relations of the form (1.2).

Multiplication with an expression in ω as in (1.1) becomes convolution in
time domain. If we make the assumption that all fields vanish for t ≤ 0, from
(1.1) we arrive at the following transient impedance boundary condition for the
time-dependent fields

H(x, t)× n(x) =

∫ t

0

η(x)k(t− τ)Et(x, τ) dτ , t ≥ 0 , x ∈ Γ , (1.3)

with a uniformly positive function η(x) :=
√
σ(x)µ(x)−1, x ∈ ∂Ωc, and a

convolution kernel k : Γ × R+ → R, whose temporal Laplace transform is
given by

K(s) := (Lk(·))(s) = √
s , s ∈ C \ (−∞, 0) . (1.4)

For the sake of brevity we adopt the “operational calculus notation” for (1.3)
[14], expressing it as H× n = ηK(∂t)Et.

Then, the evolution of the (scaled) electromagnetic fields in D := Ω \ ΩC

is governed by the following initial-boundary value problem that we consider
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up to a fixed final time T > 0:

curl curl E = f(x, t) , divE = 0 in D×]0, T [ , (1.5a)

curlE× n = η(x)K(∂t)Et on Γ×]0, T [ , (1.5b)

Et = 0 on ∂Ω×]0, T [ , (1.5c)

E(·, 0) = 0 on D . (1.5d)

This is the so-called E-based formulation of an eddy current problem [1,
Sect. 2.1]. The zero divergence condition on E in (1.5a) should be regarded as
a gauging, which ensures uniqueness of the electric field outside ΩC . The right
hand side f stands for a source current producing an exciting magnetic field.
We assume that it is compatible in the sense that f(0) = 0 and

supp f(·, t) ⊂ D ∀0 ≤ t ≤ T , f ∈ H1(]0, T [,H(div 0, D)) , (1.6)

where H(div 0, D) is the space of solenoidal vector fields on D.

Remark 1.1 Symmetries allow the dimensional reduction of (1.5), for instance,
in the case of translational invariance, we end up with the so-called TM eddy
current model, an initial-boundary value problem for a scalar unknown u =
u(x̃, t) representing a single component of the electric field

−∆u = f in D̃×]0, T [ , (1.7a)

gradu · ñ = η(x̃)K(∂t)u on Γ̃×]0, T [ , (1.7b)

u = 0 on ∂Ω̃×]0, T [ , (1.7c)

u(·, 0) = 0 on D̃ . (1.7d)

where the ˜ tags two-dimensional cross-sections of the domains/boundaries.

In this article we propose a numerical method for the full discretization
of (1.5) in space and time that also allows a highly efficient implementation.
Discretization in space will rely on standard finite elements (FE), using edge
elements for the approximation of E. A particular challenge for temporal dis-
cretization arises from the non-local (in time) character of the convolution in
(1.3). The so-called Convolution Quadrature (CQ) policy introduced by C. Lu-
bich in [14,15] addresses this challenge in a uniquely stable fashion. Moreover,
it requires only knowledge of the Laplace transform K(s) of the convolution
kernel k(t). For the time domain impedance boundary conditions we have this
very knowledge, see (1.4). The use of K instead of k is also reflected in the
operational calculus notation K(∂t). Initially, the CQ methods were based
on multistep methods. In [16], the they have been extended to Runge-Kutta
methods. This variant will form the foundation of the discretization of (1.5)
in time.

Fast algorithms on top of CQ have also been developed in the last decade. A
fast “oblivious” algorithm for approximate CQ (FOCQ) with considerably re-
duced memory requirements is presented in [19] and we follow these ideas. For
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sectorial decreasing kernels (see (4.2)-(4.3)), N the total number of time steps
and ε the target accuracy, the algorithm in [19] reduces the number of multi-
plications of a naive implementation of CQ from O(N2) to O(N logN log(1ε ))
and the memory requirements from O(N) to O(logN log(1ε )).

Though we believe that application of CQ to impedance boundary con-
ditions is new, it has become well established for certain kinds of evolution
problems, most prominently wave propagation problems in unbounded do-
mains tackled by means of time domain boundary integral equation (TDBIE)
methods. We mention in particular [3, 4], where the analysis of CQ based on
Runge–Kutta methods is extended to this context and [2] for experimental
results and a full list of references. We also mention applications of CQ to
boundary element discretizations of visco-elasticity [20].

The focus of this article is on a comprehensive a priori convergence analysis
of a fully discrete oblivious finite element Runge–Kutta convolution quadra-
ture algorithm for (1.5). We adopt the “method of lines policy” successively
estimating the errors due to spatial and temporal discretization. All the error
contributions add up to the total error of the scheme. For spatial and tempo-
ral discretization error we find the expected algebraic decay in terms of mesh
width and timestep size, respectively. The error due to the oblivious approxi-
mation turns out to decay exponentially in a discretization parameter and will
usually be negligible compared to the other error contributions.

The paper is organized as follows. In Section 2 we address the spatial
variational formulation of (1.5). In Section 3 we examine the spatial error. In
Section 4 we review CQ based on Runge–Kutta methods [3, 16], derive error
estimates for its application to the spatial semidiscretization of (1.5) (namely
(3.3)) and derive an estimate of the full discretization error. In Section 5 we
analyze the error introduced by the oblivious approximation of CQ. Since the
time integration of (1.5) leads to an intermediate situation where the Laplace
transform of the convolution kernel is non decreasing, i.e., ν ≥ 0 in (4.3), we
briefly show how to extend the theoretical background for the FOCQ to this
case, by following closely [12] and [13]. Finally, 2D numerical experiments are
provided in Section 6.

2 Spatial variational formulation

Impedance boundary conditions require the electric fields to belong to the
“energy space”

U := {u ∈ H(curl, Ω) : ut |Γ ∈ L2
t (Γ ), ut = 0 on ∂Ω} , (2.1)

which is a Hilbert space, when endowed with the usual graph norm ‖·‖U . Here,
L2

t (Γ ) stands for space of square integrable tangential vectorfields on Γ . In
order to take into account the gauge condition divE = 0 the spatial variational
formulation of (1.5) is posed on the function space V defined through the U -
orthogonal Helmholtz decomposition

U = V ⊕ gradH1
∗ (D) , (2.2)
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where H1
∗ (D) := {ϕ ∈ H1(D) : ϕ |Γ = const, ϕ |∂Ω = 0}. Obviously, V is a

closed subspace of U and it will be equipped with the same norm. Then the
spatial variational formulation of (1.5) reads: seek E ∈ L2(]0, T [, V ) such that

(curlE, curl v)0︸ ︷︷ ︸
=: a(E,v)

+K(∂t)

∫

Γ

η(x)Et · vt dS

︸ ︷︷ ︸
=: b(E,v)

= (f ,v)0 (2.3)

for all v ∈ V and on [0, T ]. Here (·, ·)0 designates the L2(D) inner product.

Theorem 2.1 Under the assumptions (1.6) on the source term, (2.9) has a
unique solution E ∈ L2(]0, T [, V ).

Proof First, we perform a reduction to the boundary, based on the U -orthogonal
decomposition

V = V∂ ⊕ (V ∩H0(curl, D)) .

Note that V∂ can be regarded as a trace space of tangential surface vectorfields,
because we have, with equivalent norms,

V∂
∼= L2

t (Γ ) ∩H− 1
2 (curlΓ , Γ ) ,

where H− 1
2 (curlΓ , Γ ) is the trace space for H(curl, D) on Γ , see [5]. In other

words, through “curl curl-harmonic extension” we may identify functions in
V∂ with their tangential components on Γ .

Now, consider a corresponding splitting of E: E = E∂ +E0. Applying the

splitting to the test function in (2.3), we find that E∂ ∈ L2
t (Γ )∩H− 1

2 (curlΓ , Γ )
solves

s(E∂ ,v∂) +K(∂t)b(E∂ ,v∂) = (g,v∂)L2
t (Γ ) ∀v∂ ∈ V∂ , (2.4)

where s(E∂ ,v∂) := a(E∂ ,v∂), using the two different interpretations of func-
tions in V∂ . The right hand side function g can be obtained as g(t) :=
curlw(t)× n, with

w(t) ∈ V ∩H0(curl, D) , curl curlw(t) = f(t) in D .

From [9, Lemma 4.2] we conclude g ∈ H1(]0, T [,L2
t (Γ )).

Endow L2
t (Γ ) with the inner product b(·, ·) and write S for the unbounded,

self-adjoint, and non-negative operator on L2
t (Γ ) induced by the bilinear form

s(·, ·). Then (2.4) becomes

SE∂ +K(∂t)E∂ = η−1g in L2
t (Γ ) , (2.5)

m
E∂ +K−1(∂t)SE∂ = K−1(∂t)(η

−1g) . (2.6)
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From [5] we know that the first component X of the L2
t (Γ )-orthogonal Hodge

decomposition

L2
t (Γ ) ∩H− 1

2 (curlΓ , Γ ) = X ⊕ curlΓ H1(Γ )

is compactly embedded in L2
t (Γ ). Taking into account that S(curlΓ H1(Γ )) =

0, we infer that S possesses a compact resolvent.

In addition, note that K−1(s) = s−1/2 such that K−1(∂t) induces a convo-
lution operator with the 1-regular L1-kernel k(t) = 1√

πt
of positive type. Thus,

we can apply the abstract theory of [18, Ch. 3], which yields the assertion. 2

Both bilinear forms a, b defined in (2.3) are clearly symmetric and contin-
uous on U , but we have even stronger properties of c := a+ b : V × V → R:

Lemma 2.1 The bilinear form c is positive definite on V .

Proof The assertion of the lemma is immediate from the definition of the norm

‖v‖2U = ‖curl v‖2L2(D) + ‖v‖2L2(D) + ‖vt‖2L2(Γ ) , (2.7)

and the Poincaré-Friedrichs type inequality

∃C > 0 : ‖v‖L2(D) ≤ C
(
‖curl v‖2L2(D) + ‖vt‖L2(Γ )

)
∀v ∈ V . (2.8)

The latter follows from the compact embedding of V in L2(D), which can be
established along the lines of the proof of [9, Thm. 4.1]. 2

In order to exploit this useful property of c, we rewrite (2.3) in equivalent
form: seek E ∈ L2(]0, T [, V ) such that on [0, T ]

c(E,v) + K̂(∂t)b(E,v) = (f ,v)0 ∀v ∈ V , (2.9)

by defining

K̂(s) := K(s)− 1 =
√
s− 1 , s ∈ C \ (−∞, 0) . (2.10)

Remark 2.1 The evolution problem (1.7) can also be cast in the form (2.9)

using V := H1
∂Ω(D̃) and

a(u, v) :=

∫

D̃

gradu · grad v dx , b(u, v) :=

∫

Γ̃

η(x)uv dS . (2.11)
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3 Spatial Semi-Discretization

3.1 Finite element spaces

We equip D with a tetrahedral mesh M with mesh-width h and write E(M)
for the finite-dimensional space of lowest order H(curl, D)-conforming edge
element functions on M [9, Sect. 3] and set

Uh := U ∩ E(M) = {vh ∈ D(M) : (vh)t = 0 on ∂Ω} . (3.1)

In analogy to (2.2) the appropriate discrete variational space Vh will be a
component of the U -orthogonal discrete Helmholtz decomposition

Uh = Vh ⊕ gradSh , (3.2)

where Sh ⊂ H1
∗ (D) denotes the space of piecewise linear continuous finite

element functions on M that are constant on Γ and vanish on ∂Ω. Then the
spatially discrete variational problem reads: seek Eh ∈ L2([0, T ], Vh), Eh(0) =
0, such that on [0, T ]

c(Eh,vh) + K̂(∂t)b(Eh,vh) = (f ,vh)0 ∀vh ∈ Vh . (3.3)

In general, the finite element space Vh is not a subspace of V so that (3.3)
turns out to be a non-conforming Galerkin discretization of (2.9).

Nevertheless, the two spaces are “close” on fine meshes. In order to phrase
this in quantitative terms, consider the U -orthogonal projection Q : U → V
onto V ⊂ U . By definition (2.1), we have u−Qu ∈ gradH1

∗ (D), which implies

curl(u− Qu) = 0 , (u− Qu)t = 0 on Γ . (3.4)

The next lemma reveals that Q is a tool for approximating a function
vh ∈ Vh in V .

Lemma 3.1 There is a 0 < ǫ ≤ 1 that depends only on D, such that1

‖vh − Qvh‖U ≤ Chǫ ‖vh‖U ∀vh ∈ Vh . (3.5)

Proof Following the ideas in the proof of [9, Lemma 4.5] the proof is reduced
to interpolation error estimates.

The “closeness” of Vh and V is also reflected by the fact that the crucial
positivity of c is preserved in the discrete setting:

Lemma 3.2 With a constant C > 0 depending only on D and the shape
regularity of M

‖vh‖2U ≤ C|c(vh,vh)| ∀vh ∈ Vh . (3.6)

1 We write C for generic constants (whose value may differ between different occurrences)
that may only depend on D, η, and the shape-regularity of M.
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Proof The proof is straightforward from the following variant of the discrete
Poincaré-Friedrichs inequality [9, Cor. 4.4]

‖vh‖L2(D) ≤ C
(
‖curl vh‖L2(D) + ‖(vh)t‖L2(Γ )

)
∀vh ∈ Vh . (3.7)

Its proof may invoke Lemma 3.1 and Lemma 2.1. 2

As a consequence, c induces a norm ‖·‖c on Vh, which is equivalent to the
U -norm uniformly in h.

3.2 Estimation of spatial error

We retain the notations E ∈ H1(]0, T [, V ) and Eh ∈ H1(]0, T [, Vh) for the solu-
tions of (2.9) and (3.3), respectively, and aim to bound t → ‖E(t)−Eh(t)‖U .
As usual, such estimates rely on a Galerkin projection Ph : V → Vh, here
defined according to

c(Phv,wh) = c(v,wh) ∀wh ∈ Vh , (3.8)

which, thanks to Lemma 3.2, is a valid definition. Standard finite element error
estimates from [9, Sect. 6.1] give the approximation property

‖u− Phu‖U ≤ Ch
(
‖u‖H1(D) + ‖curl u‖H1(D) + ‖ut‖H1(Γ )

)
(3.9)

for all u ∈ (H1(D))3 with curl u ∈ (H1(D))3. This allows to control ‖E− PhE‖U
so that it remains to estimate ‖Eh − PhE‖U , which is achieved through a sta-
bility argument for an evolution problem with a “residual type” right hand
side. Denote eh(t) := Eh(t)− PhE(t) and compute

c(eh,vh) + K̂(∂t)b(eh,vh)

(3.8)
= (f ,vh)0 − c(E,vh)− K̂(∂t)b(PhE,vh)

= (f ,vh)0 − c(E,Qvh) + c(E,Qvh − vh)− K̂(∂t)b(PhE,vh)

= (f ,vh − Qvh)0︸ ︷︷ ︸
=0 by (3.4)

+K̂(∂t)b(E,Qvh) + c(E,Qvh − vh)︸ ︷︷ ︸
=0 by (3.4)

−K̂(∂t)b(PhE,vh)

= K̂(∂t)b(E− PhE,vh) .

Here, the two marked terms vanish due to (3.4). This yields the discrete evo-
lution equation for the error

c(eh,vh) + K̂(∂t)b(eh,vh) = K̂(∂t)b(E− PhE,vh) . (3.10)

The stability analysis of (3.10) is achieved by means of simultaneous “diago-
nalization”; since both c and b are symmetric and semi-definite, and c is even
positive definite on Vh, see Lemma 3.2, there exists a sequence of non-negative
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eigenvalues {λh,ℓ}Mℓ=1, M := dimVh, and an c-orthonormal basis {uh,ℓ}Mℓ=1 of
Vh so that

b(uh,ℓ,vh) = λh,ℓc(uh,ℓ,vh) ∀vh ∈ Vh . (3.11)

Besides, it is immediate from the the definition of c on Page 6 that 0 ≤ λh,ℓ ≤ 1
for all h and ℓ.

By expanding eh(t) =
∑M

ℓ=1 αℓ(t)uh,ℓ we obtain the following system of
Volterra integral equations for the expansion coefficients

αℓ(t) + λh,ℓK̂(∂t)αℓ(t) = K̂(∂t)pℓ(t) ℓ = 1, . . . ,M, (3.12)

where pℓ(t) := b(E(t)−PhE(t),uh,ℓ). Note that by orthonormality ‖eh(t)‖2c =∑M
ℓ=1 α

2
ℓ (t) so that we may target the αℓ(t)’s in order to gauge ‖eh(t)‖U . To

do so we need the following identity:

Lemma 3.3 (Parseval’s formula) Let f : [0,∞[→ C be a function whose
Laplace transform F : C → C is analytic in the half plane Re (z) > σ0 for
some σ0 ≥ 0. Then for every σ > σ0 there holds true

‖e−σtf(t)‖2L2(R+) =
1

2πi

∫

σ+iR

|F (s)|2ds .

Proof First we note that for σ > σ0 the complex conjugate f(t) satisfies

f(t) =
1

2πi

∫

σ+iR

estF (s) ds =
1

2πi

∫ ∞

−∞
e(σ+iω)tF (σ + iω) idω

=
eσt

2π

∫ ∞

−∞
e−iωtF (σ + iω) dω =

eσt

2πi

∫

σ+iR

e−(s−σ)tF (s) ds

=
e2σt

2πi

∫

σ+iR

e−stF (s) ds ,

where in the second and in the fourth step we use the substitution s = σ+ iω.
Thus we have

‖e−σtf(t)‖2L2(R+) =

∫ ∞

0

e−2σtf(t)f(t) dt

=
1

2πi

∫ ∞

0

e−2σtf(t)e2σt
∫

σ+iR

e−stF (s) ds dt

=
1

2πi

∫

σ+iR

F (s)

∫ ∞

0

f(t)e−st dt ds =
1

2πi

∫

σ+iR

F (s)F (s) ds .

2

Lemma 3.4 If pℓ(t) ∈ H1(]0, T [), then for every σ > 1 there is a constant
C > 0 depending only on D, σ, and η such that

‖eh‖2L2([0,T ];V ) ≤ Ce2σT
∥∥∥∥e

−σt ∂

∂t
b(E− PhE, ·)

∥∥∥∥
2

L2([0,T ];V ′

h
)

. (3.13)
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Proof By the associativity of the convolution the solution of the integral equa-
tion (3.12) can be rewritten as

αℓ(t) = K̃ℓ(∂t)K̂(∂t)pℓ(t) ,

where the Laplace transform K̃ℓ of the convolution kernel k̃ℓ satisfies

K̃ℓ(s) =
1

1 + λh,ℓ(
√
s− 1)

.

Since the real part of
√
s is positive and λh,ℓ is non-negative we have that

K̃ℓ(s)K̂(s) =

√
s− 1

1 + λh,ℓ(
√
s− 1)

(3.14)

is analytic in C \ {(−∞, 1]}. As ℜ√s > 1, if ℜs > 1, we find the elementary
bound

|K̃ℓ(s)K̂(s)| ≤ |s|1/2 , ∀ℜs ≥ 1 , (3.15)

uniformly in h and ℓ.
Next, by the Sobolev extension theorem we can find an extended function

pextℓ of pℓ so that pextℓ (t) = pℓ(t) for every t ∈ [0, T ] and

‖e−σtpextℓ (t)‖H1(R+) ≤ C‖e−σtpℓ(t)‖H1([0,T ]) .

for some C > 0 depending on T and σ. We also define αext
ℓ (t) := K̃ℓ(∂t)K̂(∂t)p

ext
ℓ (t),

which is a true extension of αℓ. Then Lemma 3.3 with σ0 = 1, the bound (3.15)
on |K̃ℓK̂(s)|, |s| ≥ 1, and the assumptions on pℓ imply

‖e−σtαℓ‖2L2([0,T ])) ≤ ‖e−σtαext
ℓ ‖2L2([0,+∞))

=
1

2πi

∫

σ+iR

|K̃ℓ(s)K̂(s)L(pextℓ )(s)|2 ds ≤ 1

2πi

∫

σ+iR

|s||L(pextℓ )(s)|2 ds

≤ 1

2πi

∫

σ+iR

|sL(pextℓ )(s)|2 ds
Lemma (3.3)

=

∥∥∥∥e
−σt ∂

∂t
pextℓ

∥∥∥∥
2

L2([0,+∞))

≤ C2

∥∥∥∥e
−σt ∂

∂t
pℓ

∥∥∥∥
2

L2([0,T ])

,

and thus

‖αℓ‖2L2([0,T ]) ≤ e2σTC2

∥∥∥∥e
−σt ∂

∂t
pℓ

∥∥∥∥
2

L2([0,T ])

. (3.16)

As remarked above ‖eh(t)‖2c =
∑M

ℓ=1 αℓ(t)
2 and, for every t ∈ [0, T ],

∥∥∥∥b
(

∂

∂t
E(t)− Ph

∂

∂t
E(t), ·

)∥∥∥∥
2

V ′

h

= sup
vh∈Vh

|b( ∂
∂tE(t)− Ph

∂
∂tE(t),vh)|2

‖vh‖2V
= sup

vh∈Vh

| ∂∂tb(E(t)− PhE(t),vh)|2
‖vh‖2V

= sup
(γk)∈RM

| ∂∂t
∑N

ℓ=1 pℓ(t)γk|2
‖(γk)‖ℓ2(RM )

= sup
(γk)∈RM

|∑N
ℓ=1

∂
∂tpℓ(t)γk|2

‖(γk)‖ℓ2(RM )

=

M∑

ℓ=1

(
∂

∂t
pℓ(t)

)2

.



Fast Convolution Quadrature Based Impedance Boundary Conditions. 11

Thus summing inequality (3.16) over ℓ gives (3.13). 2

Taking for granted sufficient spatial and temporal regularity of the field
solution E(t), we can combine the estimate of Lemma 3.4 with the projection
error bound (3.9) and end up with first order convergence: for fixed σ > 1,

‖E−Eh‖L2(]0,T [,U) ≤ CeσTh , (3.17)

where C may depend on E, σ, and the shape regularity of the finite element
mesh.

4 Temporal Discretization and Error Estimate of Full discretization

4.1 Runge-Kutta Convolution Quadrature

For g ∈ H1(]0, T [, U), g(0) = 0, the Convolution Quadrature method approx-
imates the continuous convolution

K(∂t)g =

∫ t

0

k(t− τ)g(τ) dτ (4.1)

by using only the Laplace transform K of the convolution kernel k [14–17].
We zero in on Convolution Quadrature based on Runge-Kutta methods. This
method was developed in [16] for sectorial K, that is, for K being analytic in
a sector

Σ(ϕ) := {s ∈ C : | arg(s− σ)| < π − ϕ, with ϕ <
1

2
π} , (4.2)

and satisfying in this sector,

|K(s)| ≤ C|s|ν , (4.3)

for some real C and ν < 0. Later, in [4], the CQ has been extended to more
general kernels, namely to the case when K is analytic only on a half plane
ℜz > σ0, for some σ0 > 0, and the growth condition (4.3) is satisfied for some
ν ∈ R, allowing for ν ≥ 0.

In what follows we will assume that the underlying m-stage Runge–Kutta
method is A-stable [8, Chapter IV.3], with order p, stage order q, and is de-
scribed by the Butcher Tableau

c Oι
bT ,

where Oι ∈ Rm,m and both c, b ∈ Rm. We will also assume, cf. [19], that the
row of weights bT equals the last row of the coefficient matrix Oι, that is,

bj = am,j, j = 1, . . . ,m.

Relevant examples of such Runge-Kutta methods are the m-stage RadauIIA
methods, of order p = 2m and of stage order q = m.
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Under these assumptions, for a fixed step-size ∆t > 0, the continuous
convolution (4.1) at time t = (n+1)∆t is approximated by the last component
of the sum

(
K(∂∆t )g

)
n
:=

n∑

j=0

Wn−jgj , (4.4)

where

gj := (g(tj + c1∆t), . . . , g(tj + cm∆t))T ∈ Um

and the convolution weights Wn ∈ Rm,m are defined by the power series
expansion [16, Section 2]

∞∑

n=0

Wnζ
n := K

(
∆(ζ)

∆t

)
, ∆(ζ) :=

(
Oι+ ζ

1− ζ
1bT

)−1

, (4.5)

with 1 = (1, . . . , 1)T . In this way,

(K(∂t)g) ((n+ 1)∆t ) ≈ (K(∂∆t)g)n+1 :=

n∑

j=0

ωn−jgj , (4.6)

with ωn = (ω1
n, . . . , ω

m
n ) the last row of Wn.

The matrix function ∆(ζ) plays a key role in the derivation of the method.
Its properties are gathered in [4, Lemma 3], which basically ensures that for
ζ > 0 small enough (4.5) is well defined.

The approximation in (4.6) can be extended to all 0 ≤ t ≤ T by using the
zero extension of g to negative times and defining (tj := j∆t )

(K(∂∆t)g) (t) :=

∞∑

j=0

ωj(g(t− tj + cl∆t ))ml=1 . (4.7)

The properties of (4.7) have been analyzed in [4, Theorem 3]. More precisely,
for K satisfying (4.3), the following error estimate holds

‖(K(∂t)g) (t)− (K(∂∆t)g) (t)‖U

≤ C(∆t )min(p,q+1−ν)

(∥∥∥g(r)(0)
∥∥∥
U
+

∫ t

0

∥∥∥g(r+1)(τ)
∥∥∥
U

d τ

)
, (4.8)

for 0 ≤ t ≤ T , r > max(p + ν, p, q + 1), g ∈ Cr([0, T ], U) with g(0) = g′(0) =
· · · = g(r−1)(0) = 0 and ∆t small enough. The constant C > 0 depends on the
Runge-Kutta method, on the final time T and on the constants in (4.3).
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4.2 Application Convolution Quadrature to Fredholm convolution equations

As a direct consequence of the Cauchy product of series, the Convolution
Quadrature method inherits the associativity of the continuous convolution at
stage level [3], that is,

K1(∂∆t )K2(∂∆t ) = (K1K2)(∂∆t ) .

This property is particularly useful when applying the CQ to solve integral
equations. In particular, as described in Section 4.3, we will be concerned with
scalar Fredholm convolution equations of the form

µ(t) + λK̂(∂t)µ(t) = f(t), t ≥ 0, (4.9)

for a parameter λ ≥ 0. Provided that 1 + λK̂(s) 6= 0 for every s in the

analyticity domain of K̂, the associativity of the (continuous) convolution
implies

µ = K̃(∂t)f, (4.10)

with

K̃(s) :=
1

1 + λK̂(s)
. (4.11)

Thus, the application of the Convolution Quadrature to solve (4.9), this is

µ∆t (t) + λK̂(∂∆t )µ∆t (t) = f(t), t ≥ 0, (4.12)

is equivalent to the evaluation of

µ∆t = K̃(∂∆t )f. (4.13)

The following Lemma provides a convergence estimate which is uniform in
λ for the approximation of y by y∆t , when K̂(s) =

√
s− 1. This result will be

used in the proof of convergence for the fully discrete method in Section 4.3.

Lemma 4.1 Let λ ≥ 0, K̂(s) =
√
s − 1, and f ∈ Cr+1([0, T ]) satisfy f(0) =

f ′(0) = · · · = f (r)(0) = 0 for r > max(p, q+1), where p and q are respectively
the order and the stage order of an A-stable Runge-Kutta method. Let µ(t) be
the solution of (4.9) at time t ∈ [0, T ] and y∆t the solution of (4.12).

Then there exists ∆t > 0 and C = C(∆t , T, f) such that for 0 < ∆t ≤ ∆t
and any t ∈ [0, T ] it holds

|µ(t)− µ∆t (t)| ≤ C∆tmin(p,q+1)

∫ t

0

|f (r+1)(τ)| dτ, (4.14)

uniformly in λ > 0.

Proof The proof follows straightforwardly from (4.10) and [4, Theorem 3] by
noticing that for every s with ℜs > 1

|K̃(s)| =
∣∣∣∣

1

1 + λ(
√
s− 1)

∣∣∣∣ ≤ 1 ,

uniformly in λ > 0. 2
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4.3 Time-Stepping Error Estimates

In this Section we analyze the time discretization error of the Convolution
Quadrature applied to the semidiscrete problem (3.3),

c(Eh,vh) + K̂(∂t)b(Eh,vh) = (f ,vh)0 ∀vh ∈ Vh , (4.15)

with K̂(s) =
√
s− 1.

It goes without saying that convolution quadrature commutes with di-
agonalization of the spatial operators as performed in Section 3. Thus, let
{uh,ℓ}Mℓ=1 be the c-orthonormal basis of Vh defined in (3.11). By expanding

Eh(t) =
∑M

ℓ=1 µℓ(t)uh,ℓ and fℓ(t) := (f(t), ,)0 uh,ℓ we can reduce (3.3) to the
following system of integral equations

µℓ(t) + λh,ℓK̂(∂t)µℓ(t) = fℓ(t) , ℓ = 1, . . . ,M. (4.16)

The time stepping error is derived from the above decomposition.

Theorem 4.1 Let Eh,∆t :=
∑M

ℓ=1 µℓ,∆t uh,ℓ be the convolution quadrature
approximation of the solution to (3.3) with µℓ,∆t according to (4.13) applied
to (4.16). Then

‖Eh −Eh,∆t ‖L2(]0,T [,U) = C∆tmin(p,q+1)‖f‖Hr+1(]0,T [,U ′) , (4.17)

with C > 0 independent of ∆t , the discretization in space, and f .

Proof By Lemma 4.1 the Convolution Quadrature approximation µℓ,∆t of µℓ

in (4.16) satisfies

|µℓ(t)− µℓ,∆t (t)| ≤ C∆tmin(p,q+1)

∫ t

0

|f (r+1)
ℓ (τ)| dτ for t ∈ [0, T ] . (4.18)

Note that, in particular, C > 0 does not depend on ℓ. Then we can estimate

‖Eh −Eh,∆t ‖2L2(]0,T [,U) =

∫ T

0

‖Eh(s)−Eh,∆t (s)‖2U ds

=

∫ T

0

M∑

ℓ=1

|µℓ(s)− µℓ,∆t (s)|2 ds

(4.18)

≤ C2∆t2min(p,q+1)

∫ T

0

M∑

ℓ=1

(∫ s

0

|f (r+1)
l (τ)| dτ

)2

ds

≤ C2∆t2min(p,q+1)

∫ T

0

s

M∑

ℓ=1

∫ s

0

|f (r+1)
ℓ (τ)|2 dτ ds

≤ C2∆t2min(p,q+1) T
2

2
‖f‖2Hr+1(]0,T [,U ′),

where the Cauchy–Schwarz inequality has been used in the fourth step. 2
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The convergence of the fully-discrete approximation of (2.9) is immediate
from (3.17) and Theorem 4.1.

Theorem 4.2 Let Eh,∆t be the fully-discrete approximation of (2.9) intro-
duced in Theorem 4.1. Then

‖E−Eh,∆t ‖L2(]0,T [,U) ≤ C1e
σTh+ C2∆tmin(p,q+1)‖f‖Hr+1(]0,T [,U) .

5 Fast and Oblivious Convolution Quadrature

The effect of the fast implementation of the CQ amounts to an special quadra-
ture approximation of the CQ weights, see [12]. The analysis of this error for
the general case ν > 0 in (4.3) is the subject of the next subsection.

5.1 Quadrature estimates for approximate CQ weights

Given K analytic in a sector (4.2) and satisfying (4.3) for some ν ∈ R, the con-
volution weights in (4.4) can be expressed as contour integrals in the complex
plane as follows

Wn =
∆t

2πi

∫

γ

K(s)R(∆t s)n−1(I−∆t sOι)−1
1bT (I−∆t sOι)−1 ds,

for γ a contour beginning and ending in the left half of the complex plane [19],
R the stability function of the Runge-Kutta method, I the identity matrix and
1 = (1, . . . , 1)T . If ν ≥ 0 in (4.3), this representation is valid for n ≥ n0, with
n0 big enough.

The choice and the parametrization of γ plays an important role in the
numerical approximation of the Wn. Following [12,19], we choose γ as the left
branch of a hyperbola and parameterize by

R → γ : x 7→ γ(x) := µ (1− sin(α+ ix)) + σ , (5.1)

for a certain parameter µ > 0, which will depend on n, 0 < α < π
2 − ϕ and ϕ

and σ from (4.2).
After parametrization, the convolution weights read

Wn = ∆t

∫

R

G∆t ,n−1(x) dx, (5.2)

with

G∆t ,n(x) =
1

2πi
K(γ(x))R(∆t γ(x))n (I−∆t γ(x)Oι)−1

1

· bT (I−∆t γ(x)Oι)−1 γ′(x) .
(5.3)

The approximation ofWn is then carried out by means of the composite trape-
zoidal rule on 2NQ − 1 intervals of size τ > 0 applied to (5.2). An essential
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feature of the quadrature approximation in order to achieve an oblivious algo-
rithm is the possibility of using the same contour γ for different values of n,
varying along geometrically growing intervals of the form [Bℓ−1, Bℓ], for some
prescribed ratio B > 1.

In order to analyze the error, we consider the class S(Dd,R) of analytic
functions G : Dd → R defined on the horizontal strip

Dd := {s ∈ C| |Im(s)| ≤ d} ,

which satisfy the following two conditions
∫ d

−d

|G(x + iy)|dy → 0, as |x| → ∞ , (5.4)

N(G,Dd) :=

∫

R

{|G(x+ id)|+ |G(x − id)|} dx < ∞ . (5.5)

For G ∈ S(Dd,R) we denote the quadrature error due to the composite trape-
zoidal rule

Eτ,NQ
(G) :=

∫

R

G(x) dx− τ

NQ∑

k=−NQ

G(kτ) . (5.6)

Theorem 5.1 Assume that G ∈ S(Dd,R) for some d > 0, and that there
exist C, a > 0, θ ∈ (0, 1) and n ≥ 1 such that

|G(x)| ≤ C
(
1 +

a

n
coshx

)−θn

, x ∈ R. (5.7)

Then, for τ > 0, NQ ≥ 1, there holds

|Eτ,NQ
(G) | ≤ N(G,Dd)

e2πd/τ − 1

+C

(
φ (aθ) e−aθ cosh(NQτ)/2 +

(
1 +

a

n
cosh(NQτ)

)−(θn−1)
)
,

with φ(a) = 2 + | log(1− e−a/2)|.
Proof The proof follows the one of [12, Theorem 2] and is based on Lemma A.1,
which is a modified version of [12, Lemma 2]. 2

For the estimate of Eτ,NQ
(G∆t ,n) we set

t = n∆t , a0 = 2 +
4− θ

2
b, a1 = 2 + 2b, a2 =

θ

2
b. (5.8)

Theorem 5.2 For 1
θ ≤ bµt ≤ n

2 the quadrature error (5.6) for G∆t ,n of (5.3)
satisfies

|Eτ,NQ
(G∆t ,n)| ≤ Cµ1+ν

( ea0µt

e2πd/τ − 1
+ e(a1−a2 cosh(NQτ))µt

+ ea1µt

(
1 +

bµt

n
cosh(NQτ)

)−(θn−1)))
, (5.9)

where ν is the exponent of (4.3).
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The proof of this theorem follows the one of [12, Theorem 3] and can be found
in the Appendix.

Now, given a target accuracy ε and assuming that t = n∆t ∈ [Bℓ−1∆t ,Bℓ∆t ],
for some B > 1, we select ε̃ small enough so that

(
1

Bℓ−1∆t
log

(
1

ε̃

))1+ν

ε̃ < ε.

The same arguments as in [12] show that the bracket in (5.9) is smaller than
ε̃ if the following asymptotic proportionalities hold

1

τ
∼ µt+ log

(
1

ε̃

)
,

c1
B

log

(
1

ε̃

)
≤ µt ≤ c1 log

(
1

ε̃

)
,

NQ ∼ log

(
1

ε̃

)
, n ≥ c log

(
1

ε̃

)
,

for an arbitrary constant c1 and c big enough. These relations imply

µ ∼ t−1 log

(
1

ε̃

)
,

which justifies the choice of ε̃.
Unfortunately, the constants involved in the asymptotic proportionalities

above are difficult to quantify explicitly. For practical computations, the same
choice of parameters proposed in [13] for the inversion of the Laplace trans-
form K(s) at time t ∈ [Bℓ−1∆t ,Bℓ∆t ] can be used. The exponential rate of
convergence with respect to NQ and the effect of increasing the ratio B can
be observed in Figure 5.1, where we show the error in the approximation of
the convolution weights associated to K̂(s) =

√
s − 1. The error is measured

with respect to a reference solution computed by using the same method with
B = 10 and NQ = 150.

5.2 Analysis of the error introduced by the FOCQ

The application of the Fast and Oblivious Algorithm for the Convolution
Quadrature (FOCQ) introduces another source of error in the approxima-
tion of (3.3). In order to analyze this additional perturbation, again we use
the spectral decomposition (4.16). Following the notation in (4.7) and Theo-
rem 4.1, we recall that the µℓ,∆t(t) are the solutions of

µℓ,∆t(t) + λh,ℓK̂(∂∆t)µℓ,∆t(t) = fℓ(t), ℓ = 1, . . . ,M .

The FOCQ essentially boils down to approximating the convolution weight
matrices Wj of the CQ. Thus, temporarily, we adopt a matrix perspective
and write

µℓ := (µℓ,0, . . . ,µℓ,N )T ∈ R
mN , µℓ,n := (µℓ,∆t(tn + cl∆t ))ml=1 .



18 Ralf Hiptmair, Maŕıa López-Fernández and Alberto Paganini

10
1

10
2

10
3

10
−10

10
−5

10
0

n

a
b
s

e
r
r
o
r

 

 

NQ = 10

NQ = 20

0 20 40 60 80
10

−20

10
−15

10
−10

10
−5

10
0

NQ

a
b
s

e
r
r
o
r

 

 

B = 5, ℓ = 3

B = 10, ℓ = 2

B = 20, ℓ = 2

Fig. 5.1 Left: Approximation error in the Euclidean norm with respect to the index n of the
convolution weight Wn, for B = 10 and ∆t = 0.2. Right: Maximum error in the Euclidean
norm with respect to NQ in the window of indices [25, 125], for B = 5, [25, 100], for B = 10,
and [25, 400], for B = 20.

Using (4.4), we find

µℓ,n + λh,ℓ

(
K̂(∂∆t)µℓ

)
n
= fℓ,n, ℓ = 1, . . . ,M , n = 0, . . . , N , (5.10)

for

fℓ,n := (fℓ(tn + c1∆t ), . . . , fℓ(tn + cm∆t ))T ∈ R
m .

Tagging the approximate convolution weight matrices with ,̃ the FOCQ can
be taken into account by replacing the convolution in (5.10) with

(
K̂(∂̃∆t )g

)
n
:=

n∑

j=0

W̃n−jgj , (5.11)

for W̃j the perturbed convolution weights, which are supposed to satisfy

‖Wj − W̃j‖ ≤ ε, ∀j = 0, . . . , N , (5.12)

for some target accuracy ε, which is essentially given by the estimate of The-
orem 5.2. Consequently, we denote by µ̃ℓ,n the solution of

µ̃ℓ,n + λh,ℓ

(
K̂(∂̃∆t)µ̃ℓ

)
n
= fℓ,n, ℓ = 1, . . . ,M, (5.13)

Next, we reformulate (5.10) and (5.13) as linear systems of size m× (N + 1)
as follows. As above, we define the ‘super’ (column) vectors

µℓ = (µℓ,n)
N
n=0, µ̃ℓ = (µ̃ℓ,n)

N
n=0, fℓ = (fℓ,n)

N
n=0,
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and the block matrices

M :=




W0 0 · · · 0

W1
. . . 0 0

...
. . .

. . . 0
WN · · · W1 W0




, M̃ :=




W̃0 0 · · · 0

W̃1
. . . 0 0

...
. . .

. . . 0

W̃N · · · W̃1 W̃0




.

With this notation, (5.10) and (5.13) become

Ah,ℓµℓ = fℓ and Ãh,ℓµ̃ℓ = fℓ

with

Ah,ℓ = (I + λh,ℓM), Ãh,ℓ = (I + λh,ℓM̃),

for I the identity matrix of size m(N + 1). By elementary linear algebra we
obtain

A
−1
h,ℓ =




W∗
0 0 · · · 0

W∗
1

. . . 0 0
...

. . .
. . . 0

W∗
N · · · W∗

1 W∗
0




, Ã
−1

h,ℓ =




W̃∗
0 0 · · · 0

W̃∗
1

. . . 0 0
...

. . .
. . . 0

W̃∗
N · · · W̃∗

1 W̃∗
0




, (5.14)

for certain blocks W∗
j and W̃∗

j , j = 0, . . . , N . Then the expansion coefficients
of the final FOCQ solution are defined according to

µ̃ℓ,∆t (t) :=

∞∑

j=0

ω̃
∗
j (f(t− tj + cl∆t ))ml=1 , 0 ≤ t ≤ T , (5.15)

for ω̃
∗
j the last row of W̃∗

j , cf. (4.7). These coefficients are to be compared
with

µℓ,∆t (t) :=

∞∑

j=0

ω∗
j (f(t− tj + cl∆t ))ml=1 , 0 ≤ t ≤ T , (5.16)

for ω∗
j the last row of W∗

j .

Lemma 5.1 Let µℓ,∆t , ℓ = 1, . . . ,M be the approximation of the coefficient
µℓ in (4.16) by the CQ. Let µ̃ℓ,∆t be the result of computing the µℓ,∆t by means
of the perturbed CQ satisfying (5.12). Then there exists C > 0, depending on
the Runge–Kutta method but not on ℓ and any discretization parameter, such
that

‖µℓ,∆t − µ̃ℓ,∆t ‖L2(]0,T [) ≤
mC2N3e2σT ε

1− CN2eσT ε
‖fℓ‖L2(]0,T [). (5.17)
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Proof From (5.15) and (5.16) it follows, for 0 ≤ t ≤ T ,

‖µℓ,∆t − µ̃ℓ,∆t ‖L2(]0,T [) ≤
∞∑

j=0

∥∥(ω∗
j − ω̃

∗
j

)
(fℓ(· − tj + cl∆t ))ml=1

∥∥
L2(]0,T [)

≤ max
0≤j≤N

‖(fℓ(· − tj + cl∆t ))ml=1‖L2(]0,T [)

N∑

j=0

∥∥ω∗
j − ω̃

∗
j

∥∥
∞

≤ m‖fℓ‖L2(]0,T [)

N∑

j=0

‖W∗
j − W̃∗

j‖∞

= m‖fℓ‖L2(]0,T [)‖A−1
h,ℓ − Ã

−1

h,ℓ‖∞→∞.

We write

‖A−1
h,ℓ − Ã

−1

h,ℓ‖∞→∞ = ‖A−1
h,ℓ(I −Ah,ℓÃ

−1

h,ℓ)‖∞→∞

≤ ‖A−1
h,ℓ‖∞→∞ ‖I − (I − (Ah,ℓ − Ãh,ℓ)A

−1
h,ℓ)

−1‖∞→∞

= ‖A−1
h,ℓ‖∞→∞

∞∑

j=1

∥∥∥(Ah,ℓ − Ãh,ℓ)A
−1
h,ℓ

∥∥∥
j

∞→∞

≤
‖A−1

h,ℓ‖2∞→∞ ‖Ah,ℓ − Ãh,ℓ‖∞→∞

1− ‖Ah,ℓ − Ãh,ℓ‖∞→∞ ‖A−1
h,ℓ‖∞→∞.

From (5.12) it follows

‖Ah,ℓ − Ãh,ℓ‖∞→∞ ≤ λℓ,hNε ≤ Nε,

since the eigenvalues λℓ,h are all in [0, 1], see the remark after (3.11).
In order to estimate the norm of A−1

h,ℓ, we use the associativity of the CQ
at the stage level. This property implies that the blocks W∗

j in (5.14) are the
convolution weights associated to kernel with Laplace transform

K∗(s) =
1

1 + λh,ℓK̂(s)
,

which satisfies
|K∗(s)| ≤ 1, ∀λh,ℓ > 0, Re s > 1 .

On the one hand, by [3, Lemma 5.2] we have that for every σ > 1 there exists
∆t 0 > 0 and a constant C, depending on the Runge–Kuta method, such that

sup
|ζ|≤e−∆t σ

∥∥∥∥K
∗
(
∆(ζ)

∆t

)∥∥∥∥ ≤ C for ∆t < ∆t 0 .

On the other hand, for 0 < ρ < 1, the convolution weights can be written as
the Cauchy integrals

W∗
j =

1

2πi

∫

|ζ|=ρ

ζ−1−jK∗
(
∆(ζ)

∆t

)
dζ. (5.18)
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Then, by taking ρ = e−∆tσ, we deduce the bound

‖W∗
j‖ ≤ Cej∆t σ ≤ CeσT .

Now we can estimate, for every n = 0, . . . , N ,

‖µℓ,n‖∞ =

∥∥∥∥∥∥

n∑

j=0

W∗
n−jfℓ,j

∥∥∥∥∥∥
∞

≤ C
n∑

j=0

e(n−j)∆t σ‖fℓ,j‖∞ ≤ C(N+1)eσT ‖fℓ‖∞.

and thus
‖µℓ‖∞ ≤ C(N + 1)eσT ‖fℓ‖∞, (5.19)

so that
‖A−1

∆t ,ℓ‖∞→∞ ≤ C(N + 1)eσT

and (5.17) follows. 2

Theorem 5.3 Adopting the notations from Theorem 4.1, we can bound the
impact of the fast and oblivious implementation of our CQ methods by

‖Eh,∆t − Ẽh,∆t ‖L2(]0,T [,U) ≤ M
C2N3e2σT ε

1− CN2eσT ε
‖f‖L2(]0,T [,U ′) , (5.20)

for Ẽh,∆t =
∑M

ℓ=1 µ̃ℓ,∆t uh,ℓ. The constant C > 0 depends only on the under-
lying Runge-Kutta method.

6 Numerical Experiments

For numerical tests we restrict ourselves to the scalar TM eddy current model
(1.7) in two dimensions. As trial spaces Uh we use spaces of piecewise linear

continuous functions on triangular meshes on D̃. Writing M := dimUh we end
up with the Fredholm integral equation

A · µ(t) +B ·K(∂t)µ(t) = f(t) for t ∈]0, T ] , (6.1)

where the vector µ(t) ∈ RM contains the time-dependent coefficients of an
approximation in space of u with respect to the standard nodal basis, A and
B are the Galerkin matrices associated with the bilinear forms a(·, ·) and b(·, ·)
from (2.11) and f(t) is the load vector associated with the source function
f . Note that in the 2-dimensional case the matrix A is symmetric positive
definite. Thus, we need not introduce the modified convolution kernel K̂, cf
(2.10).

We discretize the convolution in (6.1) by means of Runge-Kutta CQ as
explained in Section 4.1. As we have seen there, the convolution quadrature
algorithm provides an approximation of the convolution simultaneously at
Runge-Kutta internal times. To write the time discretization of equation of
(6.1) we thus rely on vectors

µ̃i ≈ (µ(i∆t + c1∆t ), · · · ,µ(i∆t + cm∆t ))
T ∈ R

mM ,



22 Ralf Hiptmair, Maŕıa López-Fernández and Alberto Paganini

which contain approximations of the spatially semi-discrete solution at Runge-
Kutta internal times. The fully discrete approximation of (1.7) can be then
computed by successively solving

(Im ⊗A) · µ̃i + (Im ⊗B)

i∑

j=0

(Wi−j ⊗ IM )) µ̃j = f̃i (6.2)

for i = 0, .., (T −∆t )/∆t , where ⊗ is the Kronecker product, In is an n × n
identity matrix, and f̃i = (f(i∆t + c1∆t ), . . . , f(i∆t + cm∆t ))T . Regarding
the first 20 terms of the sum in (6.2), we approximate the convolution weights
Wi as in [16, Section 2] and compute the sum classically. For the rest we
exploit the FOCQ approximation along suitable hyperbolae with the range
parameterB = 10 and compute the sum efficiently with the FOCQ, see Section
5. The contour parameter are chosen accordingly to [13, Section 4]. Already
for moderate numbers of quadrature points the FOCQ introduces a negligible
error in the approximation, as confirmed by the experiments (see Figure 6.2).

In our numerical tests2 we choose D̃ to be an annulus around the origin with
radii 0.5 and 2 and we include the source function by imposing the Dirichlet

boundary condition g(x, y, t) := 32
105

√
π
t7/2 + t3

6 log(4) on ∂Ω̃. The analytical

solution is then

u(x, y, t) :=
32

105
√
π
t7/2 +

t3

6

(
1

2
log(x2 + y2) + log(2)

)
.

A first numerical test is performed by choosing the fast convolution quadra-
ture based on the implicit Euler method, which is the 1-step RadauIIA method
(FOCQ of order 1). For 6 different spatial grids and 12 different time steps we

measured the time-discrete ℓ2∆t ([0, 4], H
1(D̃))-error as well as the L2(D̃)-error

in space3 at a fixed time t = 4. The spatial triangular meshes have been cre-
ated through uniform refinement while the timesteps by repetitively halving
an initial timestep.

The expected linear convergence both in time and space in the ℓ2∆t ([0, 4], H
1(D̃))-

norm is observed in Figure 6.1. The rates of algebraic convergence become more
conspicuous when we examine the L2(D̃)-norm in space at a fixed time, where
we have quadratic convergence in space; see Figure 6.1.

The impact of the FOCQ on the algorithm is investigated in Figure 6.2.
We compute the error in the ℓ2∆t ([0, 4], H

1(D̃))-norm and in the L2(D̃)-norm
in space at a fixed time for the fourth finest spatial grid and the timestep
∆t = 2−8 (see the dots in Figure 6.1). In both cases few quadrature nodes
on the contours are enough to render the perturbation due to the FOCQ
approximation of the convolution weights Wi negligible.

We perform a second numerical test and this time the convolution is
approximated by using the FOCQ based on the 2-stage RadauIIA method

2 The experiments are perfomed in MATLAB and are based on the library LehrFEM
developed at the ETHZ.

3 Both the H1(D̃)- and the L2(D̃)-norm are computed approximately with 7 point quadra-
ture rules on triangles.
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Fig. 6.1 Error in the ℓ2∆t ([0, 4],H
1(D̃))-norm (left) and in the L2(D̃) at a fixed time t = 4

(right) for the coupling of FEM and FOCQ base on the implicit Euler method. The two
dots denote the spatial mesh and timestep used in Figure 6.2.
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Fig. 6.2 Impact of FOCQ on the total error in the ℓ2∆t ([0, 4],H
1(D̃))-norm (left) and in

the L2(D̃) at a fixed time t = 4 (right) for the coupling of FEM and FCQ base on the
implicit Euler method.

(FOCQ of order 3). Again we measure both the ℓ2∆t ([0, 4], H
1(D̃))-error and

the L2(D̃)-error in space at a fixed time t = 4 for several meshes and timesteps.
We expect that the convolution quadrature error contributes to the total error
with a cubic algebraic rate in∆t . This is only partially confirmed by the exper-
iment because the total error is almost always dominated by the discretization
error in space, as we can see in Figure 6.3.
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Fig. 6.3 Error in the ℓ2∆t ([0, 4],H
1(D̃))-norm (left) and in the L2(D̃) at a fixed time t = 4

(right) for the coupling of FEM and FOCQ based on the 2-stage RadauIIA method.

A Proof of Theorem 5.2

Proof The integrand G∆t ,n is analytic in the strip Dd. Moreover, by [12, Lemma 1] it holds

|G∆t ,n(x+ iy)| ≤ Cµ1+νe2µ∆t n

(1 − b∆tµ)n
cosh(x)1−ν

(1 + b∆tµ cosh(x))n
,

for some b, µ > 0. It is easy to show that for any ν ∈ R, b > 0 and θ ∈ (0, 1) there exist
x0 ∈ R and n0 ∈ N such that

x1−ν

(
1 +

bx

n

)
−(1−θ)n

< C(n0, x0), for x > x0 and n > n0.

Then we can estimate

|G∆t ,n(x+ iy)| ≤ Cµ1+νe2µ∆t n

(1− b∆tµ)n
1

(1 + b∆tµ cosh(x))θn
, (A.1)

for θ ∈ (0, 1), x and n big enough. The bound (A.1) implies that G∆t ,n satisfies (5.4) and
(5.7).

We now estimate N(G∆t ,n, Dd). By Lemma A.1 below, it is

N(G∆t ,n,Dd) ≤
Cµ1+νe2µt

(1− bµt/n)n

(
φ (bµtθ) e−bµtθ/2 +

(
1 +

bµt

n

)
−(θn−1)

)
.

Since for 0 ≤ btµ ≤ n/2 it holds

(1− bµt/n)−n ≤ e2btµ, (A.2)

(1 + bµt/n)−(θn−1) ≤ 3

2
e−bµtθ/2,

and φ(x) ≤ 3 for x ≥ 1, it follows

N(G∆t ,n,Dd) ≤ Cµ1+νeµt(2+(4−θ)b/2).

Then Theorem 5.1 and inequality (A.2) give the result, with the notation (5.8). 2

The technical lemma below is a modified version of [12, Lemma 2].
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Lemma A.1 For R ≥ 0, a > 0, θ ∈ (0, 1) and n ≥ 1 there holds

∫ +∞

R

(
1 +

a

n
cosh(x)

)
−θn

dx ≤ φ (aθ) e−aθ cosh(R)/2 +
(
1 +

a

n
cosh(R)

)
−(θn−1)

.

Proof With the change of variables u = cosh(x) we have

∫ +∞

R

(
1 +

a

n
cosh(x)

)
−θn

dx =

∫ +∞

cosh(R)

(
1 +

a

n
u
)
−θn du√

u2 − 1

With the following inequality, which holds for 0 ≤ y ≤ n,

(
1 +

y

n

)
−n

≤ e−y/2,

we can choose β = max{cosh(R), n
a
} and use [11, Lemma 1] to bound

∫ β

cosh(R)

(
1 +

a

n
u
)
−θn du√

u2 − 1
≤
∫ β

cosh(R)
e−auθ/2 du√

u2 − 1

≤
∫ +∞

R
e−aθ cosh(x)/2dx ≤ φ (aθ) e−aθ cosh(R)/2.

Since (
1 +

a

n
u
)
−1

≤
(
1 +

a

n
cosh(R)

)
−1

for u ≥ cosh(R),

we have

∫ +∞

β

(
1 +

a

n
u
)
−θn du√

u2 − 1
≤
(
1 +

a

n
cosh(R)

)
−(θn−1)

∫ +∞

β

(
1 +

a

n
u
)
−1 du√

u2 − 1

≤
(
1 +

a

n
cosh(R)

)
−(θn−1)

because the integral on the right hand side is bounded by 1, see [12, Lemma 2]. 2

References

1. A. Alonso-Rodriguez and A. Valli. Eddy Current Approximation of Maxwell Equations,
volume 4 of Modelling, Simulation & Applications. Springer, Milan, 2010.

2. L. Banjai. Multistep and multistage convolution quadrature for the wave equation:
Algorithms and experiments. SIAM J. Sci. Comput., 32(5):2964–2994, 2010.

3. Lehel Banjai and Christian Lubich. An error analysis of Runge-Kutta convolution
quadrature. BIT, 51(3):483–496, 2011.

4. Lehel Banjai, Christian Lubich, and Jens Markus Melenk. Runge-Kutta convolution
quadrature for operators arising in wave propagation. Numer. Math., 119(1):1–20, 2011.

5. A. Buffa, M. Costabel, and D. Sheen. On traces for H(curl, Ω) in Lipschitz domains.
J. Math. Anal. Appl., 276(2):845–867, 2002.

6. V. De Santis, S. Cruciani, M. Feliziani, and M. Okoniewski. Efficient low order ap-
proximation for surface impedance boundary conditions in finite-difference time-domain
method. Magnetics, IEEE Transactions on, 48(2):271 –274, feb. 2012.

7. Houssem Haddar, Patrick Joly, and Hoai-Minh Nguyen. Generalized impedance bound-
ary conditions for scattering problems from strongly absorbing obstacles: the case of
Maxwell’s equations. Math. Models Methods Appl. Sci., 18(10):1787–1827, 2008.

8. E. Hairer and G. Wanner. Solving ordinary differential equations. II, volume 14 of
Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2010. Stiff
and differential-algebraic problems, Second revised edition, paperback.

9. R. Hiptmair. Finite elements in computational electromagnetism. Acta Numerica,
11:237–339, 2002.
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