
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

BETL – A generic boundary element template
library

R. Hiptmair and L. Kielhorn

Research Report No. 2012-36
November 2012

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

BETL — A generic boundary element template library

RALF HIPTMAIR, ETH Zurich
LARS KIELHORN, ETH Zurich

Many relevant physical phenomena are modeled via second order (elliptic) partial differential operators with
constant coefficients. Well-known examples are steady-state heat conduction, electrostatics, eddy-currents,
and acoustic or electro-magnetic scattering. In specific scenarios their numerical treatment by Boundary
Element Methods is superior to that of volume based discretization schemes. However, up to now there
exists no software package which allows for a unified treatment of those models in the context of Boundary
Element Methods.

The Boundary Element Template Library (BETL) implements building blocks for 3D Galerkin discretiza-
tions of arbitrary boundary integral operators. It equally aims for rapid prototyping of new Boundary El-
ement formulations as well as for the development of efficient and robust industrial strength solvers. To
achieve the latter goal BETL provides interfaces to matrix compression algorithms to reduce the Boundary
Element method’s inherent quadratic complexity to almost linear costs.

BETL’s implementation is based on generic software paradigms. Entirely written in C++, its core func-
tionality is implemented as a header-only library, which makes it highly portable and attractive for being
interfaced with existing C++ codes. In this work we will discuss the library’s core design and demonstrate
its use. Examples of specific simulations carried out with BETL will be discussed.

1. INTRODUCTION
Boundary Element Methods have proven to be expedient alternatives and/or additions
to Finite Element Methods in many fields of engineering. Boundary Element Meth-
ods enjoy significant advantages in certain situations: They facilitate the treatment
of exterior domain problems, allow the coupling with Finite Element Methods, and of-
fer the ease of working with surface meshes alone rather than dealing with volume
based discretizations. Unfortunately, there exist almost no software packages for the
discretization of the boundary integral operators underlying the Boundary Element
Method. The Boundary Element Template Library (BETL) presented herein is intended
to mend this. BETL provides generic building blocks for the Galerkin discretization of
a large class of boundary integral operators in 3D. Based upon these building blocks
BETL can be used for rapid prototyping as well as for the development of efficient and
robust Boundary Element programs for large-scale simulations.

A considerable number of open-source software packages in the context of Finite El-
ements is available. Examples are Deal.II [Bangerth et al. 2007], LibMesh [Kirk et al.
2006], Dune [Bastian et al. 2008; Dedner et al. 2010], and NGSolve [Schöberl 2012].
Contrary, less attention has been paid to the development of software libraries related
to Boundary Element Methods. For obvious reasons: Boundary Element Methods are
less versatile than Finite Element Methods and their implementation is more labori-
ous.

There are a few Boundary Element packages, but these codes often do not meet the
standards of modern programming techniques, or they implement particular Bound-
ary Element Methods rather than featuring a library design [Liu 2012]. A recent and
ongoing development of a Boundary Element Library is BEM++ [Arridge et al. 2012].
In contrast to BETL, BEM++ realizes all abstractions via an object-oriented design
approach whereas BETL is build upon generic programming paradigms using the pow-
erful template facilities of C++. In the following, we will give an overview on BETL’s
design principles and its current functionality.

Authors’ addresses: R. Hiptmair and L. Kielhorn, Seminar of Applied Mathematics, ETH Zurich,
Rämistrasse 101, CH-8092 Zürich; email: {ralf.hiptmair,lars.kielhorn}@sam.math.ethz.ch

2 R. Hiptmair and L. Kielhorn

The guiding design principles of BETL are:

— Modularity: lean interfaces and separation of data structures and algorithms, the
gist of generic programming. This enables quick replacement and extension of parts of
the library.

— Efficiency: static polymorphism offered by the template mechanism yields effi-
cient code with minimum runtime overhead.

— Abstraction: data structures (e.g., those for discrete operators) mimic the mathe-
matical structure of the underlying boundary integral operators.

— Easy interfacing: the header only library along with abstract data types allow
smooth integration with/into other C++ codes.

BETL’s development goes back to the beginning of 2010 and continues nowadays.
Currently (Nov. 2012), BETL provides the following features, most of which are avail-
able as core library functionality:

— Support for triangular and quadrilateral polynomial parametric surface meshes
that allow for a surface approximation of up to fourth order.

— Piecewise polynomial boundary element spaces: continuous and discontinuous
scalar boundary element spaces up to polynomial degree 3, surface edge element
(RWG) spaces of lowest order.

— Transformation based quadrature routines for general (Cauchy) singular kernels
[Sauter and Schwab 2011] along with semi-analytic evaluation routines for Laplace
kernels for lowest order boundary element functions on flat triangular elements
[Rjasanow and Steinbach 2007].

— Support of Laplace- and Helmholtz-type fundamental solutions.
— Assembly routines for all relevant boundary integral operators
— Seamless integration of the AHMED ACA matrix compression library [Bebendorf

2012]. BETL can exploit multi-threading furnished by AHMED.
— Modules for dense (Boost/UBLAS [Ublas 2012]) and sparse (SuiteSparse, [Davis

2012]) numerical linear algebra. However, the generic programming model makes it
easy to link any reasonable general linear algebra package like the linear algebra
routines of Trilinos [Heroux et al. 2005] or PETsc [Balay et al. 2012] with BETL.

— BETL comes with iterative solvers (CG, GMRes). In addition, BETL implements
interfaces to sparse direct solvers (SuperLU, UMFPACK, Pardiso).

— Operator preconditioning based on dual meshes and Calderón identities [Hipt-
mair 2006].

— Support of native file formats from the open-source pre- and postprocessing tools
Gmsh [Geuzaine and Remacle 2009] and VTK [Schroeder et al. 2006] (ParaView,
MayaVi).

BETL’s installation is based on the CMake build system [CMake 2012]. The library
has been tested for various operating systems (Linux/Unix, OS X, Windows) as well as
with different compilers such as the most recent versions of g++, icc, and clang.

BETL is free for academic and non-commercial use. More information about BETL in
general and licensing in particular may be found at:

http://www.sam.math.ethz.ch/betl/

The remainder of this work is organized as follows: In Sec. 2 we will present the
basics of boundary integral operators and boundary element methods. Sec. 3 is devoted
to BETL’s design principles as well as to its implementation. A set of validating and
application-oriented examples is given in Sec. 4 and, finally, Sec. 5 is concerned with a
summary and a brief discussion on BETL’s limitations.

BETL — A generic boundary element template library 3

2. BOUNDARY INTEGRAL EQUATIONS AND BOUNDARY ELEMENT METHODS
Very briefly we recall the basic properties of boundary integral operators as well as the
main concepts of their discretizations. A detailed discussion is far beyond the scope
of the present work. For excellent and detailed mathematical treatises on boundary
integral equations the reader is referred to [Hackbusch 1989; Hsiao and Wendland
2008; McLean 2000; Steinbach 2008]. In addition, the book of [Sauter and Schwab
2011] is highly recommended for both boundary integral equations as well as for an
in-depth understanding of Boundary Element Methods. From an engineering point of
view, the books of Bonnet [1995], Gaul et al. [2003], and Sutradhar et al. [2008] serve
as introductions to that topic.

2.1. Boundary integral operators and Boundary Element Methods
Let L be a second order elliptic differential operator with constant coefficients. A gen-
eral boundary (transmission) value problem then reads

Lu = 0 in Ω

+ boundary (transmission) conditions on Γ
(1)

where u denotes an unknown function sought in a (possibly unbounded) domain
Ω ⊂ R3. The domain’s boundary is denoted by Γ and is assumed to be bounded and
piecewise smooth. Important examples of second order elliptic partial differential op-
erators with constant coefficients are

— Laplace operator: L = −∆
— Helmholtz operator: L = −∆+ κ2, κ ∈ C
— Maxwell operator: L = curl curl+κ2, κ ∈ C
— Linear elastostatics: L = µ curl curl−(λ+ 2µ)grad div, λ, µ : Lamé parameters

It can be shown, albeit with considerable effort, that the solution u of (1) satisfies
the following variational equations

−〈(12 Id+K)γ0u,ϕ〉Γ + 〈V γ1u,ϕ〉Γ = 0

〈Wγ0u,φ〉Γ − 〈(12 Id−K ′)γ1u,φ〉Γ = 0
(2)

for all test functions (φ,ϕ) in suitable trace spaces on Γ.
The expressions γ0, γ1 denote the Dirichlet and Neumann trace operators. They map

functions on Ω to functions on the boundary. Trace operators are closely connected with
the partial differential operators and they are

— for the Laplace/Helmholtz operators:
γ0u(x) := lim

Ω"x̃→x∈Γ
u(x̃) , γ1u(x) := γ0 gradx̃ u(x̃) · n(x) (3)

— for the Maxwell operator:
γ0u := n× γ×u , γ1u := γ×(curl u) , γ×u(x) := lim

Ω"x̃→x∈Γ
(u(x̃)× n(x)) (4)

The operators occurring in (2) are the identity operator Id, the single layer boundary
integral operator V , the double layer boundary integral operator K, its adjoint operator
K ′, and the hypersingular operator W [see Sauter and Schwab 2011, Ch. 3].

Naturally, the detailed definitions of the above boundary integral operators depend
on the underlying partial differential operator L. However, all of them follow a similar
pattern. For a generic boundary integral operator T we have the following abstract
form

〈Tu,w〉Γ =

∫

Γ

∫

Γ
{Dxw(x), Dyu(y)}G(y,x) dsy dsx . (5)

4 R. Hiptmair and L. Kielhorn

Here, {f, g}A denotes the product
{f, g}A := f(x)A(y,x) g(y) (6)

where f and g are scalar valued functions. The function A is supposed to be real- or
complex valued, i.e., A ∈ R|C. A natural extension to vector valued functions is given
by

{f ,g}A := f&(x) ·A(y,x) · g(y) (7)
with A ∈ (R|C)d×d where d = 3, or d = 1. Note that for vector valued functions holds
{f ,g}A = {g, f}A! .

In (5), the operators Dx, Dy are optional. If they are present, they represent first
order surface differential operators such as surface curl, surface divergence, or sur-
face gradient operators, respectively, refer to [Hsiao and Wendland 2008] for their
proper definitions. Further, the function G(y,x) is a singular function coinciding with
or closely related to a fundamental solution for L. This fundamental solution is the a
key building block of any boundary element method. It is defined as the distributional
solution of

L∗G(z) = δ(z) z ∈ R3

with a Dirac distribution δ as an inhomogeneity. The operator L∗ is the adjoint of L.
To generate Galerkin discretizations of boundary integral operators BETL targets

them in the form (5). In the remainder of this section we will discuss particular incar-
nations of the abstract operator (5). We will focus on the geometric approximation of
the boundary as well as on suitable discrete test and trial spaces.

For the boundary approximation we introduce a surface mesh G as a set of disjoint
elements τ

Γ ≈ Γh := ∪τ∈Gτ .

Currently, BETL supports six different element types based on polynomial geometry
approximations: 3-noded, 6-noded, and 10-noded triangular elements as well as 4-
noded, 8-noded, and 16-noded quadrilateral elements (see Fig. 1). Elements are defined
via 2-dimensional triangular or quadrilateral reference elements. Their definitions are
[see Sauter and Schwab 2011, Ch. 4]

Unit triangle: T̂ :=
{
(x̂1, x̂2) ∈ R2 : 0 < x̂2 < x̂1 < 1

}

Unit square: Q̂ := (0, 1)2 .

We will use the generic notation τ̂ in order to refer to a reference element. Every ele-
ment τ is then defined as the image of a reference element τ̂ under a component-wise
polynomial reference mapping χ

χ : τ̂ → τ . (8)
It remains to specify the discrete test- and trial-spaces. These spaces are given with

respect to the trace operators (3). Hence, for the Laplace and Helmholtz operators we
choose continuous function spaces for the Dirichlet data while Neumann related data
will be modeled via discontinuous functions in order to allow jumps at edges or corners.
These considerations lead to the following definitions. Let

Y α
h (Γ) := span {φα

}
L
#=1 (9)

be the finite dimensional space of piecewise continuous basis functions of order α and
let

Zβ
h (Γ) := span

{
ϕβ
k

}K

k=1
(10)

BETL — A generic boundary element template library 5

Fig. 1. Supported element types. The first row illustrates the available triangular elements τ . The second
row shows the equivalent quadrilateral elements. From left to right: (Bi-)Linear, quadratic, and cubic shape
approximations. The shape functions and the local ordering of vertices coincide with the local Lagrangian
finite element basis functions (cf. Sec. 3.1, Fig. 3).

be the space of piecewise discontinuous basis functions of order β. The detailed defini-
tions of those spaces can be found in any textbook which covers 2-dimensional Finite
Element Methods (e.g., [Braess 2007]).

The discrete spaces for the Maxwell system fundamentally differ from those for the
Laplace and Helmholtz operators since the respective trace spaces are of different na-
ture. The traces (4) induce spaces of tangential vector fields. As finite dimensional
subspaces BETL currently implements lowest order Raviart-Thomas surface finite el-
ements and a rotated version known as RWG elements or surface edge elements. We
adopt the notations

Y⊥,h(curlΓ,Γ) := span {φ#}L#=1 (11)

for the space of surface edge functions, whose surface curls are square integrable, and

Z‖,h(divΓ,Γ) := span {ϕk}Kk=1 (12)

for the space of surface Raviart-Thomas function with square integrable surface diver-
gence. They feature locally supported bases comprising functions associated with the
edges of G. Their local basis functions read

ϕk|τ (x) :=
1

√
gτ

(xik − x) φ#|τ (x) := ϕ#(x)× n(x)

where gτ is the gram determinant of an element τ and ik is the index of the node lying
opposite to edge k. Further details on those functions can be found in, e.g., [Hiptmair
2007].

Endowed with the boundary approximation as well as the set of discrete test- and
trial-spaces we now present the discretized boundary integral operators currently pro-

6 R. Hiptmair and L. Kielhorn

vided by BETL. The operators for Laplace/Helmholtz boundary value problems are

Vh[i, k] := 〈V ϕβ
k ,ϕ

β
i 〉 =

∫

supp(ϕβ
i)

∫

supp(ϕβ
k)
{ϕβ

i ,ϕ
β
k}G dsy dsx ,

Kh[i, +] := 〈Kφα
,ϕ

β
i 〉 =

∫

supp(ϕβ
i)

∫

supp(φα
)
{ϕβ

i ,φ
α
}∂n(y)G dsy dsx ,

K ′
h[j, k] := 〈K ′ϕβ

k ,φ
α
j 〉 =

∫

supp(φα
j)

∫

supp(ϕβ
k)
{φα

j ,ϕ
β
k}∂n(x)G dsy dsx .

(13)

For the Laplace operator the function G → GL is replaced with

GL(x,y) =
1

4π

1

|y − x|
while for the Helmholtz operator there holds the substitution G → Gκ

H with

Gκ
H(x,y) =

1

4π

exp(κ|y − x|)
|y − x| .

The expression ∂n(·)G is the normal derivative ∂n(·)G := grad(·) G · n(·). In (13) the ex-
pression supp(ψ) denotes the support of a function ψ.

The hypersingular operator cannot be expressed as a bona fide improper or Cauchy-
singular integral operator. Here, the Galerkin approach offers a major benefit, be-
cause it can exploit the well-known weak expressions for hypersingular operators that
emerge from integration by parts [Maue 1949; Nedelec 1982]. Thus, the bilinear forms
arising from the hypersingular operator for the Laplace and Helmholtz operators can
be reduced to the weakly singular operators

Wh[j, +] := 〈Wφα
,φ

α
j 〉 =

∫

supp(φα
j)

∫

supp(φα
)
{curlΓ,x φα

j , curlΓ,y φ
α
}GL dsy dsx , (14)

for the Laplace operator and

Wh[j, +] := 〈Wφα
,φ

α
j 〉 =

∫

supp(φα
j)

∫

supp(φα
)
{curlΓ,x φα

j , curlΓ,y φ
α
}Gκ

H
dsy dsx

+ κ2

∫

supp(φα
j)

∫

supp(φα
)
{φα

j n(x),φ
α
n(y)}Gκ

H
dsy dsx

for the Helmholtz operator.
Finally, the discrete boundary integral operators for the Maxwell system are based

on the spaces (11) and (12). Their definitions are

Vh[i, k] := 〈Vϕk,ϕi〉 =
∫

supp(ϕi)

∫

supp(ϕk)
{ϕi,ϕk}Gκ

H
dsy dsx

− 1

κ2

∫

supp(ϕk)

∫

supp(ϕi)
{divΓ ϕi, divΓ ϕk}Gκ

H
dsy dsx

Kh[i, +] := 〈Kφ#,ϕi〉 =
∫

supp(ϕi)

∫

supp(φ#)
{ϕi,φ#}G(Gκ

H ;∂y;n(y)) dsy dsx

K ′
h[j, k] := 〈K ′ϕk,φj〉 =

∫

supp(φj)

∫

supp(ϕk)
{φj ,ϕk}G′(Gκ

H ;∂x;n(x)) dsy dsx

Wh[j, +] := 〈Wφ#,φj〉 = κ2〈Vϕ#,ϕj〉 = κ2Vh[j, +] .

(15)

BETL — A generic boundary element template library 7

The functions G ∈ C3×3 and G′ ∈ C3×3 are

G(Gκ
H ; ∂y;n(y)) :=

∂Gκ
H

∂n(y)
I− n(y)⊗ grady G

κ
H

G′(Gκ
H ; ∂x;n(x)) :=

∂ −Gκ
H

∂n(x)
I+ gradx G

κ
H ⊗ n(x)

(16)

where ⊗ denotes the outer product between two vectors. I stands for the identity ma-
trix. Note that for (16) the following identities hold

− curlx [G
κ
H(y − x) (w(y)× n(y))] = G ·w(y)

curlx [G
κ
H(y − x)v(y)]× n(x) = G′ · v(y) .

(17)

The expressions in (17) usually arise in detailed derivations of the boundary integral
operators for the Maxwell system, see, e.g., [Hiptmair 2007].

3. DESIGN AND IMPLEMENTATION OF BETL
In the former section we introduced the concept of Galerkin Boundary Element Meth-
ods by means of the Laplace, Helmholtz, and Maxwell systems. Now, we will focus on
BETL’s specific design concepts which are intended to provide sufficient abstractions
for the computation of the corresponding discrete boundary integral operators.

3.1. The design of BETL

We distinguish two categories of structures necessary for setting up the discrete bound-
ary integral operators. The first, called the discretization model, is connected with the
Galerkin discretization of linear operators by means of spaces spanned by locally sup-
ported basis functions on a mesh. This is what all finite element methods have in com-
mon. The second category, the BEM model, comprises structures dealing with tasks
that are specifically encountered in Galerkin Boundary Element methods, in particu-
lar the local computations yielding matrix entries like, e.g., Vh[i, j] from (13).

On overview of the most important BETL structures in these two categories is given
in Fig. 2.

Generic finite element aspects (Discretization model). Structures of this category pro-
vide information about the mesh topology along with information about the discrete
finite element space. They are essential for the setup of any Galerkin scheme. Below,
we give short descriptions of the most important data types:

Element Elements are solely defined by the number of vertices: E.g., 6 vertices de-
fine a quadratic triangle while 4 vertices define a bilinear quadrilateral
(see Fig. 1). Therefore, an Element is a container which stores the list of
pointers to its vertices. The local numbering of vertices follows common
conventions that, e.g., can be found in [Geuzaine and Remacle 2009].
Vertices are ordinary points x ∈ R3. In BETL they are implemented by
the structure Vertex which, along with the coordinates, additionally pro-
vides an unique identifier to each vertex. Both, the local vertex ordering
as well as the list of vertex pointer encode the mapping χ from Eqn. (8).

In BETL, element data is solely accessed via the intermediate class
ElementTraits. More information concerning this structure is given in
Sec. 3.2. For examples, see Sec. 4.

Mesh A Mesh is a container for storing the union of all elements and all ver-
tices. It also stores adjacency information. Access to its topology data is
granted via iterator interfaces. This class is designed to be a lightweight

8 R. Hiptmair and L. Kielhorn

Discretization model BEM model

Element

FundSol

Mesh FEBasis Kernel Quadrature

DoFHandler Integrator

BemOperator

Fig. 2. Outline and connections between the fundamental abstractions of BETL. The notion A → B has to
be understood as: Type A depends on type B. The left part subsumes all classes related to the discretization
scheme while the right part bundles the BEM specific classes. The dashed arrows represent dependencies be-
tween the BEM specific part and the discretization scheme. However, structures of the discretization model
need not be aware of the BEM model. In the end, all structures define the BemOperator which computes a
discrete boundary integral operator.

class providing only a basic functionality and a limited number of inter-
faces. For this, it can be easily exchanged with other, more potent mesh
classes.

FEBasis Based on the Element class the FEBasis defines functors for the point-
wise evaluation of local basis functions assigned to one of the discrete
finite element spaces (9), (10), and (11), (12). The local basis functions’
numbering for one reference element is given in Fig. 3 and in Fig. 4. Two
arguments are passed to the evaluation functors: First, local points on
the reference element τ̂ , and, secondly, a global element τ . Further de-
tails on the FEBasis are given in Sec. 3.2. Examples are given in Fig. 7,
and in Fig. 15.

DoFHandler Based on the FEBasis, this class encodes the mapping of local basis func-
tions defined on elements to global basis functions, that is, spanning the
Finite Element space either with the complete mesh or with a given set
of elements. Fig. 5 gives examples on the global numbering and loca-
tion of basis functions. Note that the separation of information related
to the Finite Element space and topological information allows for the
definition of multiple Finite Element spaces on the same geometry. The
importance of this concept becomes obvious in the example given in Sec.
4.5. Once the DoFHandler has been initialized via the distributeDoFs
member method it gives access to its data through iterator interfaces.

Remark: The DoFHandler structure is directly based on classes of the same name as
they have been introduced in the Finite Element Library Deal.II. Refer to Bangerth
et al. [2007] for more details about it.

BEM specific aspects (BEM model). The BEM model must deal with the kernel func-
tions’ non-locality as well as with their singular nature. These peculiarities are inher-

BETL — A generic boundary element template library 9

0

0 1

2

0 1

2

3

45

0 1

2

3 4

5

67

8 9

0

0 1

23

0 1

23

4

5

6

7

0 1

23

4 5

6

7

89

10

11 12 13

1415

Fig. 3. Local numbering for BETL’s Lagrangian finite element basis functions. Upper row from left to right:
Constant, linear, quadratic, and cubic bases for triangular elements. Lower row from left to right: Constant,
bi-linear, (serendipity-)quadratic, and cubic bases for quadrilateral elements.

0

12

0 1

2

Fig. 4. Local numbering for BETL’s RWG/Raviart-Thomas basis functions. Only lowest order edge func-
tions for flat triangular elements are currently supported. The arrows indicate the edges’ intrinsic positive
orientations based on the element’s node numbering (from smaller to larger node index).

0

12

3 4

5

6 7

8

910

11

0 1

23

4 5 6

7

8

0 1

23

4

5 6

7 8

9 10

11
12 13

1415

Fig. 5. Left: Global numbers of basis functions for edge functions φh ∈ Y⊥,h or ϕh ∈ Z‖,h. Center: Linear
continuous Lagrangian functions φ1

h ∈ Y 1
h . Right: Linear discontinuous Lagrangian functions ϕ1

h ∈ Z1
h.

The red outer lines represent the boundary’s boundary ∂Γh. Degrees of freedom attached to ∂Γ may be
suppressed such that spaces like, e.g., Y 1,∗

h (φ) := {φ ∈ Y 1
h : φ = 0 on ∂Γh}, are realized.

10 R. Hiptmair and L. Kielhorn

ent to Boundary Element Methods and their treatment. For instance, the fact of being
faced with singular integrands adds a considerable amount of complexity to the overall
numerical scheme: Some very special integrands might be treated by specific and fine
tuned quadrature techniques. The design must consider these situations and has to
allow for an easy exchange of quadrature and integration schemes. In the following, a
brief description of the essential classes is given:

FundSol This structure implements the function A (or A) from (6) (or (7)). Hence, it
evaluates the fundamental solutions together with their respective traces
in form of

G(x,y) = G(|y − x|, y−x
|y−x| ,n(x),n(y)) . (18)

The FundSol class is implemented as a functor. It might be instantiated
with a parameter like, e.g., the wavenumber κ.

Kernel By using the FundSol class and together with the finite element spaces
(cf. Fig. 2), this structure implements the inner products (6) and (7). They
are evaluated at given local points ξ and η on the reference element τ̂
(usually these local points are Gaussian points)

k(ξ,η;ϕ,φ, G) = {ϕ,φ}G(x(ξ),y(η)) .

Quadrature This class generates appropriate pairs of local points (ξ,η) ∈ R2 × R2 on
the reference element τ̂ which underlies τ . It also computes the integra-
tion weights. More information on the quadrature are given below and in
Sec. 3.2. Examples can be found in Sec. 4.3.

Integrator This class performs the quadrature, i.e., it evaluates a weighted sum of
kernel evaluations. Thus, the quadrature passes its data to the integra-
tor which, then, evaluates the kernel. The integrator is implemented as
functor. More details are given below and in Sec. 3.2.

The Quadrature and the Integrator structures are of such an exceptional importance
that we will discuss them in a bit more detail. Both structures must take the kernel’s
singular behavior into account. The Integrator structure determines whether or not
a singular quadrature scheme has to be applied. For this we distinct four different
situations (cf. Fig. 6):

— Regular case: Two elements feature a positive distance for all points x ∈ τx, y ∈ τy
— Vertex adjacent case: Two elements share a common point
— Edge adjacent case: Two elements share a common edge
— Coincident case: Two elements coincide, i.e., τx ≡ τy

Naturally, the same considerations hold in the case of quadrilateral elements and also
for combinations of quadrilaterals and triangles.

For each of these combinations special quadrature rules exist [Erichsen and Sauter
1998; Sauter and Schwab 2011]. These quadrature rules split the integration domain
into several subdomains and apply special transformation rules to the integration
points of each subdomain. Within BETL these steps are performed by the Quadrature
structure. This structure gets the type of singularity from the Integrator and then re-
turns the transformed integration points as well as some modified integration weights
back to the Integrator.

As already mentioned a very few kernels such as the Laplace kernel on flat trian-
gular elements with constant or linear finite element spaces allow for (semi-)analytic
integrations. Semi-analytic integrations perform the inner integration exact and use
a regular quadrature rule for the remaining outer integration. The resulting formulas

BETL — A generic boundary element template library 11

x

y

x

y

x

y

x

y

Fig. 6. Distinction of quadrature cases. From left to right: Regular integration: τx and τy feature a posi-
tive distance for all x and y. Vertex adjacent integration: τx and τy share a common point. Edge adjacent
integration: τx and τy share a common edge. Coincident integration: τx ≡ τy.

can be, e.g., found in [Rjasanow and Steinbach 2007] and BETL allows also for their
use. In the following section we will present an example on how the default integrator
can be replaced by a semi-analytic scheme.

3.2. The implementation of BETL

The implementation of the previously discussed design is entirely done in C++ [Strous-
trup 2000]. The reasons for this choice are the language’s high level abstraction facili-
ties together with C++’s ability of permitting the development of efficient runtime code
which is comparable to that generated by procedural languages like, e.g., C and/or For-
tran.

BETL’s implementation is almost exclusively based on generic programming tech-
niques. Contrary to all other programming paradigms, this paradigm provides an un-
compromising combination of abstraction and efficiency. In C++, generic programming
is realized via templates. The most prominent example of a generic software library is
the Standard Template Library (STL) [Musser et al. 2009] which now is part of the C++
standard library. Another well-known template library is Boost [Karlsson 2006] which
extends the STL significantly. Both of these libraries are exhaustively used within
BETL. Basically, generic programming techniques replace the dynamic polymorphism,
which in C++ is realized via virtual methods, by a static (or compile-time) polymor-
phism. This allows the compiler for applying the full range of optimization techniques
such that performance penalties during runtime can be avoided or at least minimized.
For a deep insight into generic software concepts we refer to the textbooks of Vandervo-
orde and Josuttis [2002], Abrahams and Gurtovoy [2004] or the book of Alexandrescu
[2004]. In terms of mathematical software the linear algebra packages Blitz++ [Veld-
huizen 1998] and the Matrix Template Library (MTL) [Gottschling et al. 2007; Siek
and Lumsdaine 1999] are heavily based on generic software concepts. Linear algebra
projects are well-suited to be implemented via generic concepts since it is a natural
idea to realize, e.g., a matrix-vector product in a generic manner and then apply this
algorithm to single precision, double precision, or even complex data types. However,
when it comes to the numerical solution of partial differential equations the separa-
tion of algorithms and data types is not that obvious any longer. Maybe for this reason,
there exist only a very few Finite Element software packages which are accomplished
via generic programming techniques (such as parts of the open source FEM library
DUNE [Bastian et al. 2008; Dedner et al. 2010]). In most instances templates occur
only as placeholders for numeric data types or as patterns for the dimensionality of the
underlying physical problem. A generic implementation of a Finite Element Method
has been proposed by Cirak and Cummings [2008] and BETL adopts many of the ideas
presented therein.

12 R. Hiptmair and L. Kielhorn

A very classical and powerful generic design principle is the use of traits classes.
Traits are used to map data types to other data types or to establish a connection
between numbers and data types or vice versa. This concept is explained in detail in
[Vandervoorde and Josuttis 2002] and has been applied in the context of Finite Ele-
ment Methods in [Cirak and Cummings 2008]. For instance, BETL uses a structure
named ElementTraits to access all element related data. The use of ElementTraits
enables the user to exchange the underlying element type by a self-written data type.
For instance, the library might be coupled to a Finite Element code which comes with
its own element data types. In this case the developer needs to specify only the traits
structure for the particular element type. Once this is done no further modifications
need to be imposed. Moreover, the traits interface is completely resolved during com-
pile time such that no runtime penalties will occur due to this indirection. BETL’s im-
plementation of the ElementTraits structure is directly taken from [Cirak and Cum-
mings 2008].

Another example of a traits structure is given by means of the FEBasis structure
which determines the distribution of the degrees of freedom on one reference element
(see Fig. 3 and 4). For the Lagrangian based spaces an abstract declaration of the
respective traits class reads as

template < enum REFERENCE_ELEMENTTYPE RE, enum APPROX_ORDER AO >
struct LagrangeTraits { /* empty */ };

The specialization for a triangular element with linear functions is given by

template < >
struct LagrangeTraits < TRIANGLE , LINEAR > {

static const APPROX_ORDER approximation = LINEAR;
static const FE_BASIS fe_basis = LAGRANGE;
static const unsigned NumFuncFace = 0;
static const unsigned NumFuncEdge = 0;
static const unsigned NumFuncNode = 3;
static const unsigned FuncDim = 1;
static const unsigned NumFunc =

NumFuncFace + NumFuncEdge + NumFuncNode;
};

Equivalently, the LagrangeTraits structure needs to be specified also for the quadrilat-
eral elements as well as for all remaining discrete spaces. Hence, we end up with eight
specializations for this special discrete function space. Again, during compile time this
traits interface is completely resolved and will not be present in the resulting binary.

BETL’s implementation will be explained by means of the creation of the discrete
double layer operator for the Laplace equation with lowest order test- and trail-spaces
and by using 2nd order triangular elements. A fully functional code example is given
in Fig. 7. Note that this code example is completely equivalent to the design scheme
from Fig. 2.

More detailed descriptions of this piece of code are given below.

2,3: Everything starts with the parsing of a 2-dimensional surface mesh. Currently,
BETL supports the import of mesh files generated by the open source tool Gmsh
[Geuzaine and Remacle 2009]. Note that the import of a mesh file is handled
by a separate library so that new mesh file formats can be easily added.

5–8: Here we define the lowest order basis functions for the Galerkin scheme. Since
we are aiming at a discretisation of the double layer operator for the Laplace
equation (Eqn. (13)) we choose the test- and trial-spaces according to Z0

h and
Y 1
h , respectively.

BETL — A generic boundary element template library 13

// elements will be 6-noded curved triangles
2 typedef Element < 6 > element_t;
Mesh < element_t > mesh(input);

4 // declare two Lagrangian fe-bases (constant and linear)
typedef FEBasis < element_t , CONSTANT ,

6 Discontinuous , LagrangeTraits > test_feb_t;
typedef FEBasis < element_t , LINEAR ,

8 Continuous , LagrangeTraits > trial_feb_t;
// based on the fe-basis declare the dofhandler types

10 typedef DoFHandler < test_feb_t > test_dh_t;
typedef DoFHandler < trial_feb_t > trial_dh_t;

12 // instantiate the dofhandler objects
test_dh_t test_dh

14 trial_dh_t trial_dh;
// span the discrete fe spaces

16 test_dh.distributeDoFs(mesh.e_begin(), mesh.e_end());
trial_dh.distributeDoFs(mesh.e_begin(), mesh.e_end ());

18 /* declare fundamental solution ,
kernel , quadrature , and integrator */

20 typedef FundSol < LAPLACE , DLP > fs_t;
typedef GalerkinKernel < fs_t ,

22 test_feb_t , trial_feb_t > kernel_t;
typedef GalerkinQuadrature < element_t , 7, 36, 25, 16 > quad_t;

24 typedef GalerkinIntegrator < kernel_t , quad_t > integrator_t;
// ... and instances

26 fs_t fs;
kernel_t kernel(fs);

28 integrator_t integrator(kernel);
// declare and instantiate the bem operator

30 typedef BemOperator < integrator_t ,
test_dh_t , trial_dh_t > bem_op_t;

32 bem_op_t bem_op(integrator , test_dh , trial_dh);
// this computes the discrete double layer operator

34 bem_op.compute();
// this returns a reference to the computed matrix structure

36 bem_op_t :: const_reference K_h = bem_op.giveMatrix();

Fig. 7. An example program for the discretization of the double layer operator for the Laplace equation (see
Eqn. (13))

10–17: The dofhandler encodes the mapping of local basis functions to global basis
functions. This mapping is furnished by the distributeDoFs method. Here,
we distribute the degrees of freedom over the complete mesh such that the
respective dofhandler is called with the mesh’s begin and end element iterators.
The distribution of the degrees of freedom already finalizes the setup of the
Galerkin scheme.

20–24: It remains to set up the BEM model. In doing so we will start with the type def-
initions for the fundamental solution ∂GL/∂n(y). Together with the test- and
trial-spaces the fundamental solution’s type is then used to declare the kernel.
Afterwards the quadrature rules are specified. Beside the element type this
structure takes four integer values for the regular (7), coincident (36), edge
adjacent (25), and vertex adjacent (16) integrations. Regular integrations on
triangular elements are based quadrature schemes from [Dunavant 1985]. All
remaining quadrature schemes, i.e., all singular integrations as well as inte-
grations on quadrilateral elements are based standard tensor Gauss-Legendre

14 R. Hiptmair and L. Kielhorn

rules. Note that the quadrature rule above is a special case of the more general
quadrature rule

typedef
GalerkinQuadrature < element_t , 7, 36, 25, 16,

element_t , 1, 36, 25, 16 > quad_t;

where the first four template parameters define the quadrature rules for the
inner element τy while the remaining parameters define the rules for the outer
element τx. If the specification for the outer integration is omitted it will be
defined implicitly such that it matches the quadrature rule for the inner inte-
gration. Once the quadrature type has been declared it is used together with
the kernel type for the declaration of the integrator type.

26–28: It remains to create instances of the fundamental solution, of the kernel, and of
the integrator. Thereby, the previous instance serves as a constructor argument
for the subsequent instance.

30–36: Everything is in place and we can proceed with the final step—the creation of
the discrete BEM operator. For this the dofhandler objects are glued together
with the integrator. This is achieved by the declaration and instantiation of
the BemOperator structure. A simple compute()-call creates the discrete opera-
tor and the final command returns a reference to the underlying matrix struc-
ture. In Sec. 3.3 and 3.4 we will comment in more detail on how BETL handles
matrices.

The above code example serves as a pattern which may be adjusted for the definition
of other discrete boundary integral operators. In what follows we will give some hints
and suggestions on how the above code might be modified.

— Change of geometry: Switch to flat triangles
typedef Element < 3 > element_t; // simply exchange 6 -> 3

— Change of basis: Z0
h → Z2

h, Y 1
h → Y 3

h

typedef FEBasis < element_t , QUADRATIC , // instead of CONSTANT
Discontinuous , LagrangeTraits > test_feb_t;

typedef FEBasis < element_t , CUBIC , // instead of LINEAR
Continuous , LagrangeTraits > trial_feb_t;

— Choose a Helmholtz fundamental solution:
typedef FundSol < HELMHOLTZ , DLP > fs_t;
// ...
fs_t fs(kappa); // kappa: complex or real valued wavenumber

— Switch to the Maxwell system. This requires two changes. First, edge-based test-
trial-spaces need to be declared, and secondly, we need to define the fundamental so-
lution from Eqn. (15) (Nonetheless, the edge bases work also in conjunction with the
Helmholtz and Laplace fundamental solutions).

// Raviart -Thomas basis
typedef FEBasis < element_t , LINEAR ,

Continuous , EdgeDivTraits > test_feb_t;
// Rotated Raviart -Thomas basis
typedef FEBasis < element_t , LINEAR ,

Continuous , EdgeCurlTraits > trial_feb_t;
// ...
typedef FundSol < MAXWELL , DLP > fs_t;
// ...
fs_t fs(kappa); // kappa: complex or real valued wavenumber

BETL — A generic boundary element template library 15

BETL’s modularity allows also for an easy exchange of computational routines like,
e.g., the integrator classes. In Sec. 3.1 it has been already mentioned that the default
integrator can be replaced by another—hopefully more sophisticated—integrator. As
an example we will replace the general integration structure from Fig. 7 by a more
specialized integration routine. In contrast to the former Integrator structure the
type definition and instantiation of a semi-analytic integration scheme based on the
formulas by Rjasanow and Steinbach [2007] is

const unsigned num_gp = 7;
typedef GalerkinSemiAnalyticIntegrator < kernel_t ,

num_gp > integrator_t;
// create an instance of the integrator
// (but without an instance of the kernel !)
integrator_t integrator;

Note that the instantiation of the integrator is not performed via an instance of the
kernel. A kernel object is not needed since the inner integration is taken out exact.
Only the kernel’s type information is needed in order to query whether the integra-
tor’s definition allows for an analytic inner integration. Currently, analytic integration
formulas exist only for the single- and double-layer operators for the Laplace equation
with lowest order test- and trial-spaces for flat triangular elements. All these informa-
tion are queried via the kernel’s type. If only a single type therein does not match the
requirements for this special quadrature the compilation of the code will abort.

In BETL the implementation of an integrator is done via the concept of functors
[Alexandrescu 2004]. Functors are data types which implement the parenthesis oper-
ator (). The main difference between a functor and a classical function is that functors
may hold a distinct state. For instance, in BETL an integrator typically administrates
quadrature related information. However, this particular data is private. The only pub-
lic interface an integrator type has to provide is a method with the following signature

void operator ()(const ex_t* element_x ,
const ey_t* element_y ,
result_t& result) const;

Above, ex_t and ey_t denote two (possibly different) element types and result_t is
the type of the integration result. Once a class with this interface and these type dec-
larations has been implemented it can be immediately used for integration purposes.
Of course the integrator must be provided with some information about the kernel, but
the way this information is prescribed is completely left to the user. This can be seen
by the code examples above. The generic integrator gets a kernel object during its in-
stantiation while the semi-analytic integrator creates a sort of kernel object (involving
an anti-derivative) on its own.

At this point the power of generic programming techniques really pays off. The im-
plementation of new integration schemes can be easily done just by the definition of
the above interface. Then, thanks to the template mechanism, these structures can
be directly plugged into the code without embedding them into some object-oriented
hierarchy. Moreover, within a numerical computation the integrator is easily called a
million of times. Thus, a naive object-oriented approach on that level might result in
millions of virtual function calls which affects the overall runtime considerably.

3.3. Incorporation of Fast Boundary Element Methods
Boundary integral operators are inherently non-local, and, thus, their Galerkin dis-
cretization will invariably lead to dense matrices despite the use of locally supported
basis functions. Thus, a straightforward implementation will incur prohibitive O(N2)
cost in terms of computational effort as well as in terms of storage requirements, with

16 R. Hiptmair and L. Kielhorn

N being the number of degrees of freedom. A remedy is offered by the family of so-
called Fast Boundary Element Methods which apply matrix compression techniques to
reduce the method’s overall complexity to an order of O(N logN), or even to an order
of O(N).

The family of Fast Boundary Element Methods comprises several different acceler-
ation techniques like, e.g., Fast Multipole Methods (FMM) [Greengard and Rokhlin
1987; Rokhlin 1985], Wavelet-based BEM methods [Alpert et al. 1993], Panel Clus-
tering [Hackbusch and Nowak 1989], and the Adaptive Cross Approximation (ACA)
[Bebendorf and Rjasanow 2003]. Nowadays, the most popular fast techniques are the
FMM and the ACA. A detailed description of those methods is far beyond the scope of
this work and for a comprehensive overview on those methods the reader is referred
to [Nishimura 2002] and [Bebendorf 2008] and the references cited therein. BETL sup-
ports different FMM schemes as well as ACA. However, only the interfaces to ACA
are well-matured such that we will solely focus on this method in the following. More
precisely, we will discuss the implications an incorporation of this method has from an
implementation point of view.

The main ingredients to the ACA are twofold: Based on geometric criteria the de-
grees of freedom are partitioned into groups of hierarchical organized clusters. Once
this hierarchy has been established, the second step consists of an approximation of
the non-local kernel for admissible pairs of clusters. This kernel approximation relies
on a purely algebraic approach. The advantage of algebraic based methods is that they
put less conditions onto the involved integral kernels. This fact makes their use attrac-
tive within a general purpose BEM library like BETL. In addition, there exists a soft-
ware library called AHMED [Bebendorf 2012] which implements the ACA as well as
its native matrix format—the so-called H-matrix format [Bebendorf 2008; Hackbusch
2009]. Within BETL the ACA can be easily activated in conjunction with AHMED. An
example will be given in Sec. 4.5.

The use of ACA demands the creation of a cluster tree. Since this cluster tree is cre-
ated with respect to the already initialized degrees of freedom its construction is left
to the DoFHandler instances. However, the particular cluster algorithms may vary. For
this reason the implementation of the cluster methods is based on policies [Alexan-
drescu 2004; Vandervoorde and Josuttis 2002]. Policies are intended to enrich data
types by certain methods.

In order to augment the DoFHandler class by features related to cluster techniques
we define skeletons of the ClusterPolicy structures as follows

// declare an empty policy
template < enum ACCELERATION ACC >
struct ClusterPolicy {

/* this empty struct is the default policy */
};

// define a specialization for ACA
template < >
struct ClusterPolicy < ACA > {
public:

// clusterize the degrees of freedom
void clusterize(/* args */);

private:
cluster_tree_t cluster_tree_;

};

Now, the DoFHandler utilizes one of the above classes via inheritance. This yields
template < typename FEBASIS_T ,

BETL — A generic boundary element template library 17

enum ACCELERATION ACC = NO_ACCELERATION >
class DoFHandler : public ClusterPolicy < ACC > {

// specific dofhandler implementation

};

Within the main program we can create two different types of DoFHandler objects, one
that represents the default type and a second DoFHandler type which enhances the
default type by a special method

// ...
// the default dofhandler
DoFHandler < fe_basis_t > dofhandler;
// here , the ’clusterize ’ method is available
DoFHandler < fe_basis_t , ACA > dofhandler_aca;
// ...

The advantage of an implementation approach via policies consists in the facts that,
on one hand, we do not mess up the implementation with routines that are beyond
the typical DoFHandler tasks and, secondly, we can easily define a bunch of different
ClusterPolicy structures the DoFHandler type may rely on.

The BemOperator is designed similarly to the DoFHandler class, i.e., it implements
certain structures also on the basis of policies. For instance, the matrix format dif-
fers when one deals with Fast Boundary Element Methods. In case of ACA the BEM-
matrices are stored by using the H-matrix format which defines a sparse repre-
sentation of originally dense matrices. Contrary, in case of using a FMM there ex-
ists no assembled matrix at all. The implementation of the BemOperator needs to
reflect these different situations. Therefore, the BemOperator is inherited from an
AccelerationPolicy which defines the underlying matrix format in the following way

// by default the BemOperator will create dense matrices
template < enum ACCELERATION ACC >
struct AccelerationPolicy {

typedef const dense_matrix_t& const_reference;
};
// derive the BemOperator from this policy in case of ACA
template < >
struct AccelerationPolicy < ACA > {

typedef const H_matrix_t& const_reference;
};

Since Fast Boundary Element Methods define quite exotic matrix formats BETL deals
with matrices in a very generic manner. Every data type which defines a numeric type
and which implements a matrix-vector product as well as routines for returning the
number of rows and the number of columns is a matrix type. Once the BemOperator
has computed the necessary data one can access the matrix via the following line of
code

bem_op_t :: const_reference A_h = bem_op.giveMatrix();

Above, the BemOperator defines the particular matrix format by its respective
AccelerationPolicy. Commonly, this is chosen automatically via a query of the
DoFHandler’s acceleration-related data types. Note, that the ’matrix‘ A_h can be used
instantaneous within other routines like, e.g., iterative solvers.

Remark: Beside the ACA-support BETL features also implementations of FMMs.
BETL incorporates implementations of the Fast Multipole Method as it has been pro-

18 R. Hiptmair and L. Kielhorn

posed in [Of 2006; Of et al. 2006] as well as a Fast Multipole Method which is well-
suited for the treatment of Helmholtz-like kernels [Messner et al. 2012]. However, Fast
Multipole Methods do not feature the black blox structure that the Adaptive Cross Ap-
proximation does. At this time (Nov. 2012), BETL’s incorporation of FMMs is at an
experimental stage. A seamless integration of FMMs is still to come.

3.4. Sparse operators
We will close this section with a very short discussion on sparse structures. In BETL, as
a convention we use the name Operator to denote that a data type computes something
which behaves like a matrix but it is important to note that the Operator should not be
confused with a matrix. Operator structures always process some information which
are related to the discretization scheme. For this reason they are always defined by
help of the DoFHandler types. Contrary, a Matrix structure represents a mathematical
object which can be used in the context of linear algebra.

For sure, the most important Operator structure is the BemOperator. However, even
with boundary element methods one is forced to create sparse matrices. The use of
sparse operators is demonstrated in Sec. 4.3 and in Sec. 4.5. Here, we will introduce
sparse operators by means of the discrete identity operator which is nothing but a
mass matrix. This matrix allows for a classical sparse representation via the CCS (aka
Harwell-Boeing) format [Duff et al. 1989]. The CCS format is widely used and BETL
utilizes also the well-known open source library SuiteSparse [Davis 2012] for sparse
matrix computations. The construction of the mass matrix is done very similar to that
of the BemOperator structure

typedef IdentityOperator < test_dh_t , trial_dh_t > id_op_t;
id_op_t id_op(test_dh , trial_dh);
id_op.compute();
id_op_t :: const_reference M_h = id_op.giveMatrix();

As before, the implementation of sparse operators is done in a generic way. Every
sparse operator structure is derived from a structure called RootSparseOperator which
implements the assembly of the sparse matrix. In doing so it needs a functor to
be passed from the derived class to the generic assembly routine. For instance, the
IdentityOperator implements a functor which computes the mass matrices on an ele-
ment level. Then this functor is passed to the RootSparseOperator. The following code
snippet illustrates this approach

template < typename TESTDOFHANDLER_T ,
typename TRIALDOFHANDLER_T >

class IdentityOperator :
public RootSparseOperator < TESTDOFHANDLER_T ,

TRIALDOFHANDLER_T >
{
private:

typedef RootSparseOperator < TESTDOFHANDLER_T ,
TRIALDOFHANDLER_T > rso_t;

public:
// the constructor
IdentityOperator(TESTDOFHANDLER_T& test_dh ,

TRIALDOFHANDLER_T& trial_dh)
: rso_t(test_dh , trial_dh) { /* ... */ }

// the public compute method
void compute()

BETL — A generic boundary element template library 19

{
element_massmatrix_t element_massmatrix;
this -> rso_t :: compute_(element_massmatrix);

}

// further implementations ...
};

This methodology is applied to all sparse structures. Again, the main idea is that par-
ticular sparse operators implement functors for the construction of particular element
matrices and that these functors are passed to the generic sparse operator. In the fol-
lowing section, we will give some other examples where the use of sparse structures is
advantageous.

4. EXAMPLES
All validation an example codes which have been used for the following computations
are included in BETL. They are also publicly available via BETL’s homepage

http://www.sam.math.ethz.ch/betl/

4.1. Convergence tests for various FE-spaces and fundamental solutions
We will verify BETL’s implementation by means of the Calerdón identity (2). Its first
equation is

〈V γ1u,ϕ〉Γ − 〈
(
1
2 Id+K

)
γ0u,ϕ〉Γ = 0 . (19)

In the following we will perform convergence studies by utilizing the above equation
with some prescribed Cauchy data {γ0u, γ1u}. In terms of a Galerkin discretization (19)
is equivalent to the linear system

VhuN −
(
1
2Mh +Kh

)
uD =: R

with the discrete single layer operator Vh, the discrete double layer operator Kh, and
the discrete identity operator Mh. The vectors {uD, uN} contain the coefficients of the
interpolated Cauchy data. The vector R is the residuum whose behavior will be inves-
tigated for a decreasing global mesh size h.

The verification of the Laplace, Helmholtz, and Maxwell operators will be taken out
on the unit cube Ω := [0, 1]3 with uniform discretisations, i.e., h = hi for every element
τi. The quantity hi denotes the local mesh size

hi := max
x∈τi

|x− x̄τi |

with x̄τi being the barycenter of τi. The elements τi are assumed to be either flat trian-
gular elements, or 4-noded quadrilateral elements. We will perform all tests by using
the generic integrator based on the formulas of Sauter and Schwab [2011]. As long as
not mentioned otherwise regular integrations are taken out with 21 Gaussian points
for triangles, and with 25 Gaussian points for quadrilaterals, respectively. The singular
integrations are performed with 49 Gaussian points. We use this fairly high number
of Gaussian points in order to minimize the effects of quadrature errors.

Laplace operator. The fundamental solution GL(z) represents an analytic solution
to the Laplace equation for all z -= 0. Therefore, the tests for the Laplace operator are
done with the artificial Cauchy data

γ0,xu(x) := γ0,xGL(x− x∗) , γ1,xu(x) := γ1,xGL(x− x∗) x ∈ Γ

20 R. Hiptmair and L. Kielhorn

where the source point x∗ is given by x∗ := [1.6, 0.6, 1.5]& /∈ Γ.
According to the appendix (Eqn. (37)) the residuum vector R satisfies the estimate

|R(ψp
h)| ≤ Chp+2 (20)

10−210−1100

10−10

10−7

10−4

O(h5)

O(h3)

mesh size h

E
uc

l.
no

rm
of

re
si

du
al

|R
|

CL

LQ

QC

Q̂C

Fig. 8. Laplace operator. Triangular element type. CL: constant approximation for Neumann data, linear
approximation of Dirichlet data. LQ: Linear/quadratic approximation of Neumann and Dirichlet data. QC:
Quadratic/cubic approximation of Neumann and Dirichlet data. Q̂C: Quadratic/cubic approximation but
with an increased number of Gaussian points 42 (regular), 64 (singular).

The Fig. 8 and the Tab. I show the results for |R| in case of triangular elements.
The corresponding results for quadrilateral elements are summarized in Fig. 9 and
in Tab. II. In principle both studies convey the same conclusions. For constant test-
spaces and linear trial-spaces the norm of the residual is of order O(h3) although one
would expect only an order of O(h2). A similar super-convergence can be observed
for discontinuous quadratic test-spaces and continuous cubic trial-spaces. Again the
observed order of O(h5) is higher than the estimate O(h4). Since the estimate (20)
represents only an upper bound, the occurring convergence rates do not contradict the
theoretical prediction. And finally, for discontinuous linear test-spaces and continuous
quadratic trial-spaces the observed convergence rates meet the theoretical estimate of
order O(h3).

Table I. Laplace operator. Triangular element type. Abbreviations from Fig. 8

% h |R|CL
|R|(#−1)

CL

|R|(#)CL

|R|LQ
|R|(#−1)

LQ

|R|(#)LQ

|R|QC
|R|(#−1)

QC

|R|(#)QC

|R|
Q̂C

|R|(#−1)

Q̂C

|R|(#)
Q̂C

0 0.745 5.94−3 — 6.04−3 — 1.63−3 — 1.63−3 —
1 0.373 1.18−3 5.0 2.24−4 27.0 4.89−5 33.3 4.89−5 33.3
2 0.186 1.89−4 6.2 3.95−5 5.7 1.60−6 30.5 1.60−6 30.6
3 0.093 2.55−5 7.4 5.04−6 7.8 5.77−8 27.8 5.60−8 28.5
4 0.047 3.28−6 7.8 6.35−7 7.9 3.86−9 14.9 1.88−9 29.8
5 0.023 4.16−7 7.9 7.96−8 8.0 1.16−9 3.3 1.43−10 13.2

In case of a quadratic/cubic approximation we notice a collapse of convergence for
triangular elements (cf. Fig. 8, Tab. I). This is due to quadrature errors since a com-
putation with an increased number of Gaussian points (the Q̂C data set) sustains the
convergence rate.

BETL — A generic boundary element template library 21

10−210−1100

10−10

10−7

10−4

O(h5)

O(h3)

mesh size h

E
uc

l.
no

rm
of

re
si

du
al

|R
|

CL

LQ

QC

Fig. 9. Laplace operator. Quadrilateral element type. CL: constant approximation for Neumann data, linear
approximation of Dirichlet data. LQ: Linear/quadratic approximation of Neumann and Dirichlet data. QC:
Quadratic/cubic approximation of Neumann and Dirichlet data.

Table II. Laplace operator. Quadrilateral element type. Abbreviations from Fig. 9

% h |R|CL
|R|(#−1)

CL

|R|(#)CL

|R|LQ
|R|(#−1)

LQ

|R|(#)LQ

|R|QC
|R|(#−1)

QC

|R|(#)QC

0 0.707 6.53−3 — 7.25−3 — 9.19−3 —
1 0.354 1.49−3 4.4 2.74−4 26.5 1.06−4 86.7
2 0.177 2.42−4 6.1 3.73−5 7.3 3.83−6 27.7
3 0.088 3.31−5 7.3 4.73−6 7.9 1.26−7 30.4
4 0.044 4.30−6 7.7 5.96−7 7.9 4.00−9 31.5
5 0.022 5.46−7 7.9 7.47−8 8.0 1.26−10 31.7

Helmholtz equation. Analytic solutions for the Helmholtz equation are, e.g., provided
by plane waves

Uκ,d(z) := exp(κ z · d) , κ ∈ C, ‖d‖ = 1

where the vector d denotes the direction of propagation. The Cauchy data we are using
for the upcoming convergence studies are

γ0,xu(x) := γ0,xUκ∗,d∗(x) , γ1,xu(x) := γ1,xUκ∗,d∗(x)

with the parameters κ∗ = 1i and d∗ =
√

10
39 [1.0, 1.1, 1.3]

&. Not surprisingly, the results
in case of the Helmholtz operators continue the observations we have already made for
the Laplace operators. For a combination of constant/linear as well as quadratic/cubic
approximations we notice super-convergence while the linear/quadratic combination
fits into the theoretical forecast. Moreover, we observe the same breakdown in conver-
gence as we did for the Laplace equation. And also the reason for this breakdown is
the same as before since a computation with an increased number of Gaussian points
stabilizes the convergence rates.

Maxwell system. Currently, BETL supports only lowest order approximations of the
edge-based test- and trial-spaces Z‖,h(divΓ,Γ) and Y⊥,h(curlΓ,Γ), respectively. For
these lowest order spaces the residual satisfies (Eqn. (38))

|R(ϕh)| ≤ Ch0 (21)
and, therefore, keeps constant during refinement.

22 R. Hiptmair and L. Kielhorn

10−210−1100

10−9

10−6

10−3

O(h5)

O(h3)

mesh size h

E
uc

l.
no

rm
of

re
si

du
al

|R
|

CL

LQ

QC

Q̂C

Fig. 10. Helmholtz operator. Triangular element type. CL: constant approximation for Neumann data,
linear approximation of Dirichlet data. LQ: Linear/quadratic approximation of Neumann and Dirichlet data.
QC: Quadratic/cubic approximation of Neumann and Dirichlet data. Q̂C: Quadratic/cubic approximation
but with an increased number of Gaussian points 42 (regular), 81 (singular).

Table III. Helmholtz operator. Triangular element type. Abbreviations from Fig. 10

% h |R|CL
|R|(#−1)

CL

|R|(#)CL

|R|LQ
|R|(#−1)

LQ

|R|(#)LQ

|R|QC
|R|(#−1)

QC

|R|(#)QC

|R|
Q̂C

|R|(#−1)

Q̂C

|R|(#)
Q̂C

0 0.745 4.09−2 0.0 1.24−2 0.0 1.55−4 0.0 1.54−4 —
1 0.373 5.44−3 7.5 1.52−3 8.2 6.33−6 24.5 6.11−6 25.3
2 0.186 7.07−4 7.7 1.89−4 8.0 4.01−7 15.8 2.14−7 28.6
3 0.093 9.02−5 7.8 2.36−5 8.0 1.11−7 3.6 7.55−9 28.3
4 0.047 1.14−5 7.9 2.94−6 8.0 3.86−8 2.9 7.47−10 10.1
5 0.023 1.43−6 7.9 3.68−7 8.0 1.36−8 2.8 — —

As for the Helmholtz equation we utilize a plane wave solution

Uκ,d,p(z) := (d× (p× d)) exp(κ z · d) , κ ∈ C, ‖d‖ = 1

to construct some Cauchy data. With the direction d∗ =
√

10
39 [1.0, 1.1, 1.3]

&, the polar-
ization p∗ = [0, 1, 0]&, and the wave number κ∗ = 1i we define the Cauchy data as

γ0,xu(x) := γ0,xUκ∗,d∗,p∗(x) , γ1,xu(x) := γ1,xUκ∗,d∗,p∗(x) .

The results of the convergence study are given in Tab. IV. Clearly, this study confirms
the theoretical predictions (21).

Table IV. Maxwell operator

% h |R| |R|(#−1)

|R|(#)

0 0.745 1.2520 —
1 0.373 1.4140 0.886
2 0.186 1.5110 0.936
3 0.093 1.5580 0.969
4 0.047 1.5820 0.985
5 0.023 1.5960 0.992

BETL — A generic boundary element template library 23

4.2. Higher order geometry approximations
We will investigate the effect of various geometry approximation by means of the fol-
lowing exterior model problem

−∆u = 0 in Ω+

γ+
0 u = 1 on Γ

lim
|x|→∞

|x|u = 0 .

Above, Ω+ := {x ∈ R3 : |x| > 1
2} denotes the domain outside of a sphere centered at the

origin. The boundary is Γ := {x ∈ R3 : |x| = 1
2}. An analytic solution for the Neumann

datum is then given by γ+
1 u = 2. The discrete boundary integral operator equation for

the above problem reads

Vht = Mh1 .

Since the exact Cauchy data is constant it suffices to discretize both operators Vh and
Mh with lowest order test- and trial spaces ϕ0 ∈ Z0

h(Γ). The solution t is obtained via a
direct solver.

10−210−1

10−4

10−3

10−2

10−1

mesh size h

L
2
-n

or
m

‖t
(i
)
−

γ
1
u
‖ 2

linear (i = 1)
quadratic (i = 2)

cubic (i = 3)

Fig. 11. L2-error norms ‖t(i)h − γ1u‖2. i = 1, 2, 3 represents linear, quadratic, and cubic shape approxima-
tions.

The Fig. 11 and the Tab. V depict the computational results. Clearly, switching from
one geometric approximation to another does not affect the solution’s convergence rate.
However, the overall error changes dramatically with respect to the geometry approxi-
mation order. While for this example there seems to be little benefit in using quadratic
boundary elements compared to linear elements the use of cubic elements leads to a
significant improvement. Already, the first refinement level yields results which are of
the same order as those of the linear and quadratic elements on the finest grid.

Table V. L2-error norms of ε(i) := t
(i)
h − γ1u, i = 1, 2, 3. Linear (1), quadratic (2), and cubic (3) geometry approx-

imations. The {min,max}-pairs denote the minimal and maximal values in the solution vector t(i).

h ‖ε(1)‖2 min(t(1)) max(t(1)) ‖ε(2)‖2 min(t(2)) max(t(2)) ‖ε(3)‖2 min(t(3)) max(t(3))

0.27 3.99−1 1.892 2.292 8.03−2 1.968 2.098 7.85−3 1.988 2.003
0.15 1.41−1 1.925 2.159 4.64−2 1.942 2.047 2.67−3 1.996 2.003
0.08 4.23−2 1.960 2.063 1.88−2 1.962 2.031 7.30−4 1.998 2.002
0.04 1.21−2 1.977 2.026 6.26−3 1.979 2.017 1.90−4 1.999 2.001
0.02 3.38−3 1.988 2.012 1.89−3 1.989 2.008 4.87−5 1.999 2.000

24 R. Hiptmair and L. Kielhorn

4.3. Adaptive Cross Approximation
Equivalent to Sec. 4.1, we will perform the ACA tests1 based on Eqn. (19) which will
be evaluated by means of the Laplace operator. A careless use of ACA has its pitfalls
and we will present some ideas on how they can be safely circumvented.

As before, some artificial Cauchy data {γ0u, γ1u} is prescribed on basis of the funda-
mental solution GL. The domain Ω := {x ∈ R3 : x2

1 + 4(x2
2 + x2

3) < 1} is chosen to be an
ellipsoid. Fig. 12 illustrates the setup.

Fig. 12. Left: A discretization of the ellipsoid with 2048 flat triangular elements. Center: The prescribed
Dirichlet datum γ0u(x) = γ0GL(x− x∗). Right: The prescribed Neumann datum γ1u(x) = γ1GL(x− x∗).
The source point is x∗ = [1.1, 0.2, 0.3]%.

The results2 in Tab. VI and Tab. VII are based on lowest order discretisations of
Eqn. (19), i.e., the corresponding discrete spaces are (ψ0

h,ϕ
1
h) ∈ Z0

h(Γ)× Y 1
h (Γ). For the

numerical integration we impose the set
Q := {7, 36, 25, 16} (22)

of quadrature rules for the regular, coincident, edge-adjacent, and vertex-adjacent in-
tegrations, respectively.

The last columns of Tab. VI summarizes the residual norms |RQ| which, again, reveal
a super-convergence of order O(h3) (cf. Sec. 4.1). Further, one can detect an almost
linear growth in storage requirements as well as in computational time with each
refinement level. These observations confirm the theoretical predictions made by the
ACA [Bebendorf 2008].

Table VI. ACA approximations VH ≈ Vh : (ψ0
h,ψ

0
h) ∈ Z0

h(Γ) × Z0
h(Γ) of the single layer operator. The

compression rate η is the ratio of the size of the H-matrix and that of the fully assembled non-symmetric
matrix. The memory storage is given in megabytes. TQ represents the computational time in seconds. All
computations are based on the quadrature rule from Eqn. (22).

% dim(Vfull) η := mem(VH)
mem(Vfull)

TQ [s] mem(VH) [MB] T (#)

T (#−1)
mem(VH)(#)

mem(VH)(#−1) |RQ|

0 2, 0482 0.3660 6 12 — — 1.54−5

1 8, 1922 0.1236 36 63 5.52 5.40 1.82−6

2 32, 7682 0.0406 188 332 5.26 5.25 2.17−7

3 131, 0722 0.0128 957 1,677 5.10 5.05 2.65−8

4 524, 2882 0.0039 4,808 8,131 5.02 4.85 3.33−9

1All computations have been done with the following ACA settings: ACA accuracy: εACA = 1 · 10−5, Ad-
missibility condition: ηACA = 0.5, Minimum cluster size: smin = 30, Maximum rank: rmax = 200. Refer to
[Bebendorf 2008] for more information on these control parameters.
2All ACA computations are based on the following specifications: Hardware: AMD Opteron 6174, 2.20GHz,
128 GB RAM, L2-Cache 512kB. Software: Intel Compiler v13.0, Compiler flags: -O3, single-threaded, Boost
v1.42, Linkage with Intel’s Math Kernel Library (MKL) v11.0.

BETL — A generic boundary element template library 25

Table VII. ACA approximations KH ≈ Kh : (ψ0
h,ϕ

1
h) ∈ Z0

h(Γ)× Y 1
h (Γ) of the double layer operator.

% dim(Kh) η := mem(KH)
mem(Kh) TQ [s] mem(KH) [MB] T (#)

T (#−1)
mem(KH)(#)

mem(KH)(#−1)

0 2, 048× 1, 026 0.9160 67 15 — —
1 8, 192× 4, 098 0.4063 477 104 7.11 7.09
2 32, 768× 16, 386 0.1279 2,541 524 5.32 5.04
3 131, 072× 65, 538 0.0404 13,111 2,645 5.16 5.05
4 524, 288× 262, 146 0.0123 65,146 12,902 4.97 4.88

The observations continue for the discrete double layer operator. Also for this case
we detect an almost linear complexity of the Adaptive Cross Approximation. The re-
sults are depicted in Tab. VII. However, the absolute computation times are consider-
ably higher than those for the single layer operator. E.g., for the finest discretization
of 524, 288 elements the computation of Kh took 18 hours while the equivalent dis-
crete single layer potential Vh was computed in approximately 1.3 hours. The reason
for this blow-up is due to the fact that the ACA-assembly routines differ from those
for dense-matrices. Dense matrices are assembled element-by-element whereas ACA
demands the computation of an entire matrix entry at once. While this is not critical
for the creation of the single-layer potential it massively affects the computation of the
double layer potential since the support of the degrees of freedom is enlarged by the
choice of piecewise continuous functions ϕ1

h ∈ Y 1
h (Γ). Hence, it might happen that the

same computation is repeated several times. A possible remedy for this drawback is
the minimization of the support of the degrees of freedom. Instead of using a piece-
wise continuous boundary element space we perform the computations with piecewise
discontinuous space functions ψ1

h ∈ Z1
h(Γ) ⊃ Y 1

h . Thus, we end up with the modified
discrete operator equation

VhuN −
(
1
2Mh +KhA

&)uD = R (23)
with

Kh : (ψ
0
h,ψ

1
h) ∈ Z0

h(Γ)× Z1
h(Γ) ∧ A : (ϕ1

h,ψ
1
h) ∈ Y 1

h (Γ)× Z1
h(Γ) .

The newly introduced matrix A embeds continuous boundary element spaces into dis-
continuous spaces. In BETL, the corresponding structure is called EmbeddingOperator.
Its implementation as well as its use is equivalent to that of the identity operator (see
p. 18)

typedef EmbeddingOperator < dofhandler_Yh_t ,
dofhandler_Zh_t > embedding_op_t;

embedding_op_t A_op(dofhandler_Yh , dofhandler_Zh);
A_op.compute();
embedding_op_t :: const_reference A = A_op.giveMatrix();

The ACA results for the modified system (23) are given in Tab. VIII. We observe that
both the compression rates η as well as the overall computation times TQ are almost
halved. However, these benefits do not come without costs. The total memory require-
ment for storing the compressed matrix KH increases by a factor 3 which is owed to
the fact that the total number of degrees of freedom has been increased extensively.

By utilizing the space Z1
h(Γ) we restrict the support of one degree of freedom to a

single element. Nevertheless, this space features three degrees of freedom per element
and ACA might need to compute all the corresponding matrix entries via three distinct
integration calls. In order to eliminate this additional overhead BETL buffers already
computed values in a map container with global row and column indices as keys. This
container works as follows: Whenever an element combination occurs for the first time

26 R. Hiptmair and L. Kielhorn

Table VIII. ACA approximations KH ≈ Kh : (ψ0
h,ψ

1
h) ∈ Z0

h(Γ)× Z1
h(Γ) of the double layer operator.

% dim(Kh) η := mem(KH)
mem(Kh) TQ [s] mem(KH) [MB] T (#)

T (#−1)
mem(KH)(#)

mem(KH)(#−1)

0 2, 048× 6, 144 0.6272 53 60 — —
1 8, 192× 24, 576 0.2140 294 329 5.58 5.46
2 32, 768× 98, 304 0.0690 1,528 1,696 5.20 5.16
3 131, 072× 393, 216 0.0213 7,589 8,363 4.97 4.93
4 524, 288× 1, 572, 864 0.0063 36,354 39,813 4.79 4.76

the integration routine is called and the computed values are then stored within the
cache container. As soon as another entry for this particular element combination is
needed it will be queried and immediately erased from the container.

Table IX. ACA approximations of KH ≈ Kh : (ψ0
h,ψ

1
h) ∈ Z0

h(Γ) × Z1
h(Γ) with activated

cache routines. Q̃(5) denotes the quadrature rule from Eqn. (24).

% dim(Kh) dim(Cache) TQ [s] TQ̃(5) [s] |RQ| |RQ̃(5)|

0 2, 048× 6, 144 5,859 31 16 1.54−5 1.53−5
1 8, 192× 24, 576 6,726 180 87 1.82−6 1.81−6
2 32, 768× 98, 304 6,901 963 454 2.17−7 2.21−7
3 131, 072× 393, 216 9,172 4,883 2,262 2.66−8 2.95−8
4 524, 288× 1, 572, 864 36,684 24,232 11,052 3.32−9 4.79−9

Tab. IX shows the maximum size of the cache containers during the creation of the
discrete double layer potential. Although there is a blow-up in cache size for the finest
grid its total size of approximately 37, 000 entries remains to be rather small. There-
fore, the cache does not require relevant additional memory resources. The default
maximum size of the caching routines is set to 100, 000 entries. If this limit is exceeded
the cache will be erased.

The computation times TQ are given in column 4 of Tab. IX. Compared to the compu-
tation times for the non-cached calculations we observe a further reduction by a factor
of approximately 1.5 such that the computation of KH on the finest grid lasts about
63/4 hours. This duration is perfectly reasonable when one considers the facts that the
dimensions of Kh outrange the size of the discrete single layer operator Vh by a factor
of 6 and that the discrete single layer potential VH takes 1.3 hours to be created (cf.
Tab. VI).

Trying to avoid repeated computations is one possibility to accelerate the Adaptive
Cross Approximation. Another way to boost the calculations is to minimize the com-
putational costs within each integration. This can be achieved by taking the funda-
mental solutions’ asymptotic behavior into account. The kernel functions are of order
O(1

|y−x|α), α = 1, 2 such that it is reasonable to decrease the number of Gaussian points
for an increasing distance |y − x|. Therefore, we define a heuristic set of quadrature
points

Q̃(L) := {n[7,3]
L (τx, τy), 36, 25, 16} (24)

with

n[N1,N2]
L (τx, τy) :=

{
N1 if dist(τx,τy)

max(hx,hy)
≤ L

N2 else
.

BETL — A generic boundary element template library 27

Above, hx and hy denote the local mesh sizes of two boundary elements τx and τy,
respectively. Their distance is approximated by

dist(τx, τy) = |ȳ − x̄|− 1
2 (hx + hy)

where x̄, ȳ again represent the barycenters of the two elements τx and τy. BETL imple-
ments the class HeuristicGalerkinIntegrator which is based on quadrature rules in
form of (24). Using this class instead of the default integration routine leads, again, to
a dramatic improvement of the computational times. Column five of Tab. IX shows the
computation times with respect to a relative distance L = 5. With these settings the
creation of KH on the finest grid is finished already after 3 hours instead of the former
63/4 hours. It is equally important to note that the residual norm |RQ̃(5)| has not been
reasonably affected by choosing a reduced quadrature scheme.

Finally, there is a third way for accelerating the creation of discrete boundary inte-
gral operators by means of ACA. The AHMED library comes with parallel versions of
the ACA routines which are based on OpenMP. In this work, only the single-threaded
routines of AHMED have been used but BETL supports also the multi-threaded ver-
sions. These routines scale almost perfectly [Bebendorf and Kriemann 2005] such the
computation of the above operator KH can be performed in about 10 minutes on the
same workstation with 24 cores.

4.4. Single trace formulations for acoustic scatterers
BETL is well-suited for rapid prototyping. We will demonstrate this by means of a
multi-domain Helmholtz transmission problem for composite scatterers

−∆u− ω2
i u = 0 in Ωi , i = 1 . . . N

+ hom. Dirichlet and Neumann jumps on interfaces Γij := Ωi ∩ Ωj

+ inhom. Dirichlet and/or Neumann jumps on the boundary Γ

+ radiation conditions

(25)

where N denotes the total number of subdomains and ω ∈ R is the wavenumber. De-
tails on boundary element formulations for this problem can be found in [Hiptmair
and Jerez-Hanckes 2012] or [Claeys et al. 2012].

Boundary element formulations for the numerical solution of (25) are based on the
Calderón operator

Aω :=

(
−Kω Vω

Wω K ′
ω

)
.

For simplicity, we will consider only two subdomains, an interior domain Ω− and an
exterior domain Ω+. For both subdomains there holds the systems of boundary integral
equations

(
− 1

2 Id+Aω−

)(γ−
0 u

γ−
1 u

)
= 0 for Ω−

(
− 1

2 Id−Aω+

)(γ+
0 us

γ+
1 us

)
= 0 for Ω+ .

(26)

The function us denotes the scattered wave and u is the total field which is u = uinc ∈
Ω− and u = us + uinc ∈ Ω+. The incident field is given by uinc.

28 R. Hiptmair and L. Kielhorn

Subtracting the set of exterior boundary integral equations from their interior coun-
terparts and imposing a variational form yields

〈
(
Aω− +Aω+

)(γ−
0 u

γ−
1 u

)
,

(
ϕ
φ

)
〉 = 〈

(
γ−
0 uinc

γ−
1 uinc

)
,

(
ϕ
φ

)
〉 (ϕ,φ) ∈ Zh(Γ)× Yh(Γ) .

The formulation above is a special case of the classical single trace formulation
N∑

i=1

L∗
iAh,ωiLi

[
u
t

]
= L∗

extMh

[
uinc
tinc

]
(27)

where the matrices Ah,ωi denote the discrete Calderón identities while the sparse ma-
trices Li are localization operators which restrict the degrees of freedom on the com-
plete mesh to the i-th subdomain. L∗

i is the adjoint of Li. The implementation of the
system (27) within BETL can be done in a short time frame since BETL

— can deal with multiple domains. This is furnished by the MultiMesh structure:
// instead of Mesh < element_t >
typedef MultiMesh < element_t > mesh_t;
mesh_t mesh(input);
// this returns the begin iterator to the elements of the i-th
// subdomain
mesh_t :: const_element_iterator begin = mesh.begin(i)

— implements not only all discrete boundary integral operators but also discrete
Calderón operators

— supports a general framework to construct sparse operators. Hence, implement-
ing the localization operators becomes an easy task.

Instead of subtracting the equations in (26) from each other one can also add them.
This gives the so-called 2nd kind formulation

(Mh −Ah,∆ω)

[
u
t

]
= Mh

[
uinc
tinc

]
, ∆ω := ω− − ω+ (28)

with the newly introduced discrete operator Ah,∆ω. Again, the implementation of the
system (28) does not pose serious problems since the operator Ah,∆ω demands only the
implementation of modified fundamental solutions like

G∆ω
H (z) := Gω−

H (z)−Gω+

H (z) .

In BETL fundamental solutions are implemented as functors. As long as these functors
supply an interface as it is stated in Eqn. (18) they can directly be used.

The left part of Fig. 13 depicts a simulation based on the single trace formulation
(27) with three subdomains. The picture’s right part shows the solution according to
the system (28). The prescribed incident field is given by plane wave with ω = ω+ = 1.
The wave number for all interior domains is ω− = 2. The given result is the real part
of the total field, i.e., Re(u). All operators have been assembled as dense matrices and
the solution has been obtained by a direct solver.

The Fig. 14 illustrates the solution Re(t). As above, the left part is the solution ac-
cording to the system (27) while the right part is the solution for the 2nd kind formu-
lation (28). Clearly, some artefacts in the 1st kind solution are obvious. This is due to
the extremely ill-conditioned system matrices which, in fact, is one of the main mo-
tivations to develop more sophisticated Boundary Element formulations such as, e.g.,
2nd kind formulations. BETL’s data structures and algorithms are well-suited to give
support for the development and testing of novel Boundary Element formulations.

BETL — A generic boundary element template library 29

Fig. 13. Single trace formulations of the 1st and 2nd kind: Dirichlet results.

Fig. 14. Single trace formulations of the 1st and 2nd kind: Neumann results.

4.5. Efficiently solving a Neumann Boundary Value Problem
BETL comes with iterative solvers such as CG or GMRes. In combination with ACA
and suitable preconditioners they can be used to build efficient Boundary Element
solvers. We will demonstrate this by means of the interior Neumann boundary value
problem for the Laplace equation

−∆u = 0 in Ω

γ1u = g on Γ .
(29)

In order to establish a well-posed problem we need to consider the solvability condition
∫

Γ
g(x) dsx = 0 .

Further, since for a constant u0 any ũ = u+ u0 solves (29) we demand
∫

Γ
γ0u(x) dsx = 0 (30)

to fix the solution. For a Boundary Element formulation corresponding to (29) the sec-
ond equation of (2) is utilized

〈Wγ0u,φ〉+ α〈γ0u, 1〉〈φ, 1〉 = 〈(12 Id−K ′)g,φ〉 . (31)

30 R. Hiptmair and L. Kielhorn

The discrete hypersingular operator is semi-definite. To establish a positive definite
operator we need to incorporate (30). This is reflected by the term α〈γ0u, 1〉〈φ, 1〉. For
simplicity, we will use the scaling parameter α = 1. For more information see [Stein-
bach 2008].

We will discretize the variational form (31) with lowest order test- and trial-spaces
on flat triangular elements, i.e., the discrete hypersingular operator is of the form
Wh : (φ1

h,φ
1
h) ∈ Y 1

h (Γ)× Y 1
h (Γ). For lowest order spaces, the involved surface curls be-

come constant expressions and, therefore, they can be extracted from the integral ker-
nel (cf. Eqn. (14)). On a discrete level, this allows for the representation

Wh :=
3∑

i=1

Ch,iV̂hC
&
h,i

where V̂h is the single layer operator V̂h : (ϕ0
h,ϕ

0
h) ∈ Z0

h(Γ) × Z0
h(Γ) and the matrices

Ch,i : (φ1
h,ϕ

0
h) ∈ Y 1

h (Γ)× Z0
h(Γ) are sparse matrices containing the components of the

constant surface curls

Ch,i[+, k] :=

{
curlΓ φh,#[i] if ϕh,k ∈ supp(φh,#)
0 else .

The discrete operator equation corresponding to (31) then reads

W̃hu = (12M̃h −K ′
h)g

with W̃h := Wh + s⊗ s. The stabilization s⊗ s is given by the vector s := M̃h1. The
spaces for the discrete identity and the discrete adjoint double layer operator are
M̃h|K ′

h : (φ
1
h,ϕ

0
h) ∈ Y 1

h (Γ)× Z0
h(Γ).

A well-known preconditioner for the above system is [Steinbach and Wendland 1998]

C−1
W := M−1

h ṼhM
−1
h

with the single layer potential Ṽh : (φ1
h,φ

1
h) ∈ Y 1

h (Γ)× Y 1
h (Γ) and the discrete identity

Mh being also is discretized by means of the space Y 1
h (Γ).

So far, the discrete scheme demands the creation of the two discrete single layer
operators V̂h and Ṽh, respectively. To reduce the costs, it is, however, desirable to create
only one discrete operator. Corresponding to Sec. 4.3 the discrete operator Ṽh virtually
begs for a discretization based upon discontinuous test- and trial-spaces. Hence, the
strategy is as follows:

— Discretize the single layer operator Vh : (ϕ1
h,ϕ

1
h) ∈ Z1

h(Γ)× Z1
h(Γ)

— Create discrete embeddings B : Z0
h ⊂ Z1

h, A : Y 1
h ⊂ Z1

h

— Define V̂h := BVhB&, and Ṽh := AVhA&

— Don’t forget the right hand-side: Define K ′
h := AK̃ ′

h, K̃ ′
h : (ϕ

1
h,ϕ

0
h) ∈ Z1

h(Γ)× Z0
h(Γ)

With these preliminary considerations we are ready to start the implementation. We
will discuss its most important details in the following.

In Fig. 15, the discrete spaces Z0
h(Γ), Z1

h(Γ), and Y 1
h (Γ) are declared and defined via

respective dofhandler objects. Only the spaces Z0
h(Γ) and Z1

h(Γ) are enriched with some
particular ACA functionality (cf. Sec. 3.3).

Once the spaces are in place, we proceed with the declaration and construction of
the discrete sparse operators. This is depicted in Fig. 16.

It remains to compute the discrete boundary integral operators Vh, K̃ ′
h. Since the

setup of the BEM model follows directly that from Fig. 7 we will skip the details and
assume that proper integrator types and respective integrator instances have been

BETL — A generic boundary element template library 31

typedef Element <3> element_t;
2 // the bases of Z^0, Z^1, Y^1

typedef FEBasis < element_t , CONSTANT , Discontinuous ,
4 LagrangeTraits > fe_Z0_t;

typedef FEBasis < element_t , LINEAR , Discontinuous ,
6 LagrangeTraits > fe_Z1_t;

typedef FEBasis < element_t , LINEAR , Continuous ,
8 LagrangeTraits > fe_Y1_t;
// ... corresponding dofhandler type declarations

10 typedef DoFHandler < fe_Z0_t , ACA > dh_Z0_t; // use ACA!
typedef DoFHandler < fe_Z1_t , ACA > dh_Z1_t; // use ACA!

12 typedef DoFHandler < fe_Y1_t > dh_Y1_t; // no ACA
// instantiate objects and distribute degrees of freedom

14 dh_Z0_t dh_Z0;
dh_Z1_t dh_Z1;

16 dh_Y1_t dh_Y1;
dh_Z0.distributeDoFs(mesh.e_begin(), mesh.e_end());

18 dh_Z1.distributeDoFs(mesh.e_begin(), mesh.e_end());
dh_Y1.distributeDoFs(mesh.e_begin(), mesh.e_end());

20 // Call ACA initialization routines for dh_Z0 , dh_Z1
// The object ’aca_settings ’ stores the aca parameters

22 dh_Z0.clusterize(aca_settings);
dh_Z1.clusterize(aca_settings);

Fig. 15. All discrete spaces Z0
h(Γ), Z

1
h(Γ), Y

1
h (Γ)

24 // embedding operators
typedef EmbeddingOperator < dh_Z0_t , dh_Z1_t > B_op_t;

26 typedef EmbeddingOperator < dh_Y1_t , dh_Z1_t > A_op_t;
// BETL provides classes to create sparse matrices

28 // containing constant surface derivatives
typedef CurlOperator < dh_Y1_t , dh_Z0_t > C_op_t;

30 // discrete identites
typedef IdentityOperator < dh_Y1_t , dh_Z0_t > M_YZ_op_t;

32 typedef IdentityOperator < dh_Y1_t , dh_Y1_t > M_YY_op_t;
// ... create instances

34 B_op_t B_op(dh_Z0 , dh_Z1);
A_op_t A_op(dh_Y1 , dh_Z1);

36 C_op_t C_op(dh_Y1 , dh_Z0);
M_YZ_op_t M_YZ(dh_Y1 , dh_Z0);

38 M_YY_op_t M_YY(dh_Y1 , dh_Y1);
// ... compute matrices

40 B_op.compute();
A_op.compute();

42 C_op.compute();
M_YZ_op.compute();

44 M_YY_op.compute();

Fig. 16. This constructs all discrete sparse operators

32 R. Hiptmair and L. Kielhorn

created. The code excerpt in Fig. 17 is intended to illustrate the seamless integration
of ACA.

// type definitions for discrete bem operators
46 typedef BemOperator < integrator_V_t ,

dh_Z1_t , dh_Z1_t > V_op_t;
48 typedef BemOperator < integrator_K_adj_t ,

dh_Z1_t , dh_Z0_t > K_adj_op_t;
50 // ... instantiate operators

V_op_t V_op (integrator_V , dh_Z1 , dh_Z1);
52 K_adj_op_t K_adj_op(integrator_K_adj , dh_Z1 , dh_Z0);

// BEM operators need to be initialized with ACA settings.
54 // ’aca_settings ’: The same as for the DoFHandler -setup.

V_op.setup(aca_settings);
56 K_adj_op.setup(aca_settings);

// this computes the operators via ACA
58 V_op.compute();

K_adj_op.compute();

Fig. 17. Seamless ACA integration for the fast computation of discrete BEM operators

Now, all operators, the sparse as well as the BEM operators are in place and ev-
erything can be glued together. Since we are aiming at an iterative solver scheme it
remains to implement the applications of W̃h and of C−1

W to a vector, i.e., we have to im-
plement the matrix-vector products for these operators. In BETL, matrix-vector prod-
ucts are always of the form y ← y + αAx and they are implemented via the following
interface

// amux method of A: compute y <- op(A) x + y
// op = ’T’ :: use A^T
template < typename T >
void amux(T alpha , const T* x, T* y, char op) const;

So far, BETL does not implement any expression templates and it is not clear whether
it ever will do so. Though there is no doubt that expression templates come in quite
handy they have some serious drawbacks [see Weinberger et al. 2012, Operator Over-
loading].

Any class that features an amux method can be used within an iterative solver
scheme. Hence, we can create a composite object named HyperMatrix which imple-
ments the matrix-vector product

W̃hx =
3∑

i=1

Ci,hBVhB
&C&

i,hx+ s (s · x)

as successive calls of the respective matrix-vector products of every single involved op-
erator (Not forget to mention the scalar product s ·x). The preconditioner is constructed
in a similar way. In BETL, preconditioners perform the operation x ← P−1x. They are
implemented as functors with the interface declaration

template < typename T >
void operator ()(T* x); // application x <- inv(P) x

For the present example the preconditioner interface needs to implement

C−1
W x = M−1

h AVhA
&M−1

h x .

BETL — A generic boundary element template library 33

The implementations of the composite structures for the hypersingular operator and
for the preconditioner are straightforward, and, thus, will be skipped here.

However, the preconditioner C−1
W demands an application of the inverse identity

operator. We will briefly comment on how BETL deals with inverse applications of
sparse matrices.

Beside the possibility of working with an iterative solver to realize M−1
h x BETL al-

lows for the incorporation of very efficient direct sparse solvers. Currently, it provides
interfaces to Pardiso [Schenk and Gärtner 2004], SuperLU [Demmel et al. 1999; Li
2005], and UMFPACK [Davis 2004]. Matrices can be accessed via traits classes. The
following code snippet illustrates how a direct solver scheme for sparse matrices is
defined and how the operation x ← M−1

h x can be performed
// declare the matrix traits for sparse matrices in CCS format
typedef MatrixTraits < CCS , double > MT;
// direct solver scheme. Also possible: PARDISO , SUPERLU
typedef MT:: SolveDirect < UMFPACK > directSolver;
// declare the factorize module
typedef directSolver :: Factorize factorize;
// define a data type which holds the factorization
typedef factorize :: decomposition_type decomposition_t;
// initialize the factorization pointer
decomposition_t* decomp = factorize :: initDecomposition(M);
// decompose M
factorize :: computeDecomposition(M, decomp);
// apply inv(M) x
factorize :: FBSubstitution(decomp , x);

Switching from one direct solver scheme to another is only about the exchange of
UMFPACK with PARDISO, or SUPERLU, respectively. Except its last line, the code above
is executed when the preconditioner is initialized. The last routine FBSubstitution is
called each time the preconditioner is applied to a vector x.

It remains to comment on the iterative solver. At the moment, BETL implements
CG as well as GMRes solvers. A typical solver instantiation as well as the respective
solution method read

// define the solver type.
// Exchange CG with GMRes for a different solver
typedef solver ::CG < double > solver_t;
// create a solver instance
solver_t solver(MatrixSize , max_iter , accuracy);
// solve
solver.solve(hyper_matrix , rhs , sol , inv_C_W);

A solver object is created with some general parameters such as the matrix dimension,
the maximum number of iterations, and a prescribed accuracy. The solution itself is
then obtained via the solve routine. As mentioned several times, BETL relies on very
general definitions of matrices. The same holds for preconditioners. Hence, the solve
routine’s interface is

// MATRIX_T : Must support an amux -routine , nothing more
// PRECOND_T: Must be a functor. P(NUMERIC_T*) must be valid
// NUMERIC_T: Given at solver declaration
template < typename MATRIX_T , typename PRECOND_T >
std::pair < bool , int > solve(const MATRIX_T& A,

const NUMERIC_T* b,
NUMERIC_T* sol ,
PRECOND_T& P) const;

34 R. Hiptmair and L. Kielhorn

The routine’s return value is a pair containing information about the solver’s success
and about the total number of iterations.

Note that, in order to preserve interoperability the interfaces of the preconditioner,
that of the matrix-vector products, and the solvers’ interfaces are consciously chosen to
be as simple as possible. A vector is assumed to store its elements in contiguous storage
locations. Hence, no matter what vector-classes might be used, only the pointer to the
underlying storage arrays are passed. For this reason, the interfaces above don’t pay
any attention to the memory locations’ validity. It is left to the user to assure that no
dead or invalid links are passed.

The implementation will be validated by means of an example whose geometry is
given in Fig. 18. It shows a tube with non-zero boundary data on its cross sections
and zero boundary data on its skin surface. Note that, from a physical point of view,
the solution of the problem (29) might be interpreted as some electric surface current
density. In this context the prescribed boundary data represents an excitation current
and the tube might be considered as a current driven wire.

Fig. 18. Left: A discretization with 2, 480 flat triangular elements. Center: The prescribed boundary condi-
tions, g = ±1 on the cross sections, g = 0 on the skin surface. Right: The solution u for a model consisting of
634, 880 elements.

For the measurements we choose a solver accuracy of εsolver = 1 · 10−5 and the ACA
accuracy is set to εACA = 1 · 10−4. The remaining ACA parameters are those of Sec.
4.3. The same holds for the hardware and software specifications. The computations
of the discrete boundary integral operators are performed by using the default inte-
grator together with the quadrature rule (22) and activated cache structures. Tab. X
summarizes the most interesting information of the presented solver scheme. Clearly,
the most time consuming part consists in the creation of the single layer operator. The
preconditioner’s setup has no significant influence on the overall computation time.
The solution times Tsol are also moderate compared to the creation times TV . Finally,
the efficiency of the preconditioner is confirmed by the stable iteration numbers.

Table X. Measurements for the Neumann-BVP solver. TV is the time in seconds
needed for the construction of the single layer operator. The setup of the precondi-
tioner is based on using UMFPACK for factorization. TP denotes its setup time. Tsol
is the solution time.

#Elem η := mem(VH)
mem(Vfull)

TV [s] TP [s] Tsol [s] #It.
∣∣∫

Γ uh ds
∣∣

2,480 0.05212 25 0.008 0.57 10 2.216−6
9,920 0.01669 116 0.042 2.48 9 1.140−6

39,680 0.00515 543 0.231 16.93 9 3.491−7
158,720 0.00154 2,498 1.460 60.35 9 2.825−7
634,880 0.00045 11,908 11.985 448.37 9 7.064−8

BETL — A generic boundary element template library 35

4.6. A FEM-BEM coupling application
For the solution of the following magnetostatic transmission problem BETL has been
integrated into an industrial Finite Element solver. The magnetostatic field equations
are

curl 1
µB = j in Ω−

curl 1
µ0
B = 0 in Ω+

divB = 0 in Ω− ∪ Ω+

with the transmission and decay conditions

!B · n"Γ = 0 , !H× n"Γ = 0 , lim
|x|→∞

|x|H = 0 .

Above, ! · "Γ denotes the jump across the interface Γ, j is a given solenoidal current
density, B is the unknown magnetic flux density, and H represents the magnetostatic
field. Additionally, the exterior domain Ω+ is equipped with a constant permeability µ0

whereas the interior domain Ω− features a permeability µ(x).
The interior domain is treated by a standard Finite Element Method based on a

vector potential A such that B = curlA. The domain discretization is performed with
lowest order edge-elements on tetrahedral meshes [Nedelec 1980]. For the exterior do-
main we employ a reduced scalar potential ϕ with gradϕ := − 1

µ0
(B−B0). The vector

field B0 is called excitation field and it can be computed via a Biot-Savart integration
which, for the given problem, admits for a boundary integral representation

B0 = −µ0 (V (n× j)) (32)

with V being the single layer operator according to the Laplace equation. Kuhn and
Steinbach [2002] deduced the method for simply connected domains. Later Pusch and
Ostrowski [2008] enhanced the scheme to multiply connected domains. We therefore
refer to those publications for more details about this method. While both former works
rely on dense representations of the involved boundary integral operators, within
BETL we can easily turn on the Adaptive Cross Approximation once the final linear
block system

[
µ0Wh −(12Mh +Kh)&Q

Q&(12Mh +Kh) Ah + 1
µ0
Q&VhQ

] [
ϕ
a

]
=

[
f
1
(B0)

f
2
(B0, j)

]
(33)

has been implemented. The matrices Wh, Kh, and Vh are the Laplacian discrete hy-
persingular operator, the discrete double layer operator, and the discrete single layer
operator, respectively. The used test- and trial-spaces are the lowest order spaces Z0

h(Γ)
and Y 1

h (Γ). Further, the matrix Ah denotes the finite element matrix, Mh is the discrete
identity operator, and the matrix Q represents the discrete coupling between the re-
duced scalar potential ϕ and the vector potential a.

For the solution of the linear system (33) we use an iterative solver scheme in con-
junction with a well-suited preconditioner similar to that stated in [Kuhn and Stein-
bach 2002].

Below, we recall the main implementation tasks:

— Extract a surface triangular mesh from the tetrahedral volume mesh.
— Pass this surface mesh to BETL in order to create Wh, Kh, Vh, and Mh.
— The FEM-matrix Ah is assembled using BETL’s sparse matrix structures. How-

ever, this assembly cannot use any DoFHandler structures since they cannot deal with
volume meshes.

36 R. Hiptmair and L. Kielhorn

— Assemble the coupling matrix Q : Hh(curl,Ω) → Z0
h(Γ) that maps the Finite Ele-

ment space onto the Boundary Element space. Again, the FEM part is treated without
the help of DoFHandler objects.

— Assemble matrices into a block-system, i.e., implement a matrix-vector product
for the compound linear system as it has been explained in Sec. 4.5.

— Implement the preconditioner. Again, this is done in a similar way as it has been
described in Sec. 4.5.

— Pass composite structures to BETL’s solver routines.

Fig. 19. Magnetostatic FEM-BEM coupling. Upper left: Given DC distribution j based on an excitation
current I = 100A. Lower left: Excitation field B0(j) as it is given in Eqn. (32). Right: The computed magnetic
flux density B.

The Fig. 19 shows a coil made of copper with conductivity σcu = 5.7 · 107(Ωm)−1 which
encloses a magnetic core with a relative permeability µr = 1000. The coil is the current
driven body and it carries an excitation current of I = 100A. The model consists of
479, 070 tetrahedra for the volume discretization and of 70, 798 flat triangular elements
for the surface mesh. The Tab. XI depicts some convergence results for different spa-
tial discretizations as well as the respective iteration numbers for the iterative solver
scheme.

Table XI. Magnetostatic computations based on Eqn. (33). The prescribed solver accuracy has
been chosen to be εSolver = 1 · 10−4.

No. of Finite Elements No. of Boundary Elements No. of Iterations ‖B‖2
L2(Ω−)

38,796 14,532 121 5.848−3
72,204 22,206 134 5.982−3
168,169 40,338 132 6.102−3
204,951 46,362 135 6.107−3
479,070 70,798 131 6.109−3

BETL — A generic boundary element template library 37

5. SUMMARY AND OPEN ISSUES
As shown, BETL is a modular and efficient software library with well-defined, lean
interfaces. BETL features sufficient abstractions to mimic the mathematical notion of
boundary integral operators within C++ program codes.

While BETL has proven to be an efficient tool for many applications, we want to
address some of BETL’s limitations and absent features:

— A careful choice of numerical quadrature formulas is necessary to compute en-
tries of BEM Galerkin matrices economically and sufficiently accurately. All of the so
far implemented integration routines lack adaptivity and none of them offers any error
control. An accurate performance in “geometrically challenging” situations cannot be
guaranteed. All examples have confirmed that the matrix assembly is the most time
consuming part. Thus, highly efficient kernel integrations can deliver a huge benefit.

— The set of discrete finite element spaces need to be enhanced. Higher order dis-
crete edge-based spaces are highly anticipated.

— The discretization model entirely relies on static polymorphism. Therefore BETL
cannot deal with hybrid surface meshes comprising, e.g., both triangles and quadrilat-
erals (However, the integrator interfaces are designed with respect to different element
types). For the same reason, BETL supports no variable polynomial degree in boundary
element spaces (“hp-BEM”).

— A local mesh refinement of surfaces meshes is yet to come.
— Point evaluations of representation formulas off the boundary are still missing.
— BETL cannot deal with volume meshes. A DoFHandler type for FEM meshes would

significantly simplify FEM-BEM coupling schemes. Moreover, it would facilitate the
construction of Newton potentials. These are also not in place.

— BETL seamlessly integrates AHMED’s multi-threading capabilities. However, a
BETL port to distributed memory clusters is still missing.

— While Fast Multipole Methods (FMM) are implemented within BETL, their inte-
gration has to be improved. Currently, the user interfaces to FMMs are in a pre-release
state.

Note that implementing most of the missing features will not be a problem within
the BETL framework. However, if hp-BEM functionality is desired one might be en-
forced to set up another discretization model.

APPENDIX
The numerical examples from Sec. 4 have been performed by means of of the Calderon
identity. It remains to deduce estimates for the residual vectors.

Evaluating the first boundary integral equation for an interior domain Ω− yields the
identity

0 = V (γ1u)−
(
1
2 Id+K

)
γ0u in Ω− . (34)

Note, that the above equation holds if u is the exact solution to the underlying partial
differential equation. Let X0 and X1 be the respective boundary element spaces, then
the boundary integral operators map continuously

V : X1 → X0 , K : X0 → X0 .

Based on the discrete trial and test spaces

X0,h ⊂ X0 ∧ X1,h ⊂ X1

38 R. Hiptmair and L. Kielhorn

we introduce interpolation operators

I0 : X0 → X0,h , I1 : X1 → X1,h .

Evaluating (34) for interpolated data gives the residuum r ∈ X0,h

r := V (I1γ1u)−
(
1
2 Id+K

)
(I0γ0u) . (35)

Due to linearity (35) is equivalent to

r = V e1(u)−
(
1
2 Id+K

)
e0(u) (36)

with the interpolation errors

e#(u) := (I# − Id) γ#u , + = 0, 1 .

In BETL a boundary integral equation is always considered in weak form. Thus, in the
context of a Galerkin discretization the residuum equation (36) becomes

〈r,ψh〉 = 〈V e1,ψh〉 − 〈
(
1
2 Id+K

)
e0,ψh〉 , ψh ∈ X1,h

In the numerical experiments in Sec. 4 we have computed the vector of coefficients
R[i] = 〈r,ψh,i〉, where {ψh,i}i represents the basis of X1,h. By the boundary integral op-
erators’ continuity properties and by using the Cauchy-Schwartz inequality we obtain
the following estimate

|〈r,ψh,i〉| ≤ CK‖e0‖X0 ‖ψh,i‖X1 + CV ‖e1‖X1 ‖ψh,i‖X1 .

Above, CK and CV are two positive constants.
Scaling estimates for the characteristic basis functions ψh,i can be deduced by in-

verse inequalities [see Sauter and Schwab 2011, Ch. 4.4]. For the relevant finite ele-
ment spaces these estimates are:

— Lagrangian basis: Y α
h (Γ), Zβ

h (Γ) ⊂ X1

‖ψh,i‖X1 ≤ Ch
3
2 .

— Edge basis: Y⊥,h(curlΓ,Γ), Z‖,h(divΓ,Γ) ⊂ X1,

‖ψh,i‖X1 ≤ Ch
1
2 ,

‖ divΓ ψh,i‖X1 ≤ Ch− 1
2 .

For interpolation error estimates we also refer to [see Sauter and Schwab 2011,
Ch. 2.1.7]. Their derivation is based on interpolation in Sobolev spaces. Here, these
estimates are:

— Lagrangian basis:

‖e0‖X0 ≤ Chα+
1
2 , Y α

h (Γ) ⊂ X0 ,

‖e1‖X1 ≤ Chβ+
3
2 , Zβ

h (Γ) ⊂ X1 .

— Edge basis:

‖ei‖Xi ≤ Ch
3
2 , i = 0, 1 Y⊥,h(curlΓ,Γ), Z‖,h(divΓ,Γ) ⊂ X1 .

BETL — A generic boundary element template library 39

The combination of the scaling estimates and the error estimates yields the following
estimates for the residual functionals:

— Lagrange basis (assume α > β):

|〈r,ψh,i〉| ≤ C̃hβ+3 .

— Edge basis:

|〈r,ψh,i〉| ≤ C̃h .

The residual estimates in Sec. 4.1 are stated for the Euclidean vector norm | · |. In this
norm we obtain the final estimates

— Lagrange basis (assume α > β):

|R| ≤ C̃hβ+2 , (37)
— Edge basis:

|R| ≤ C̃h0 . (38)

REFERENCES

ABRAHAMS, D. AND GURTOVOY, A. 2004. C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond. C++ In-Depth Series. Addison-Wesley
Professional.

ALEXANDRESCU, A. 2004. Modern C++ Design: Generic Programming and Design
Patterns Applied. C++ In-Depth Series. Addison-Wesley.

ALPERT, B., BEYLKIN, G., COIFMAN, R., AND ROKHLIN, V. 1993. Wavelet-like bases
for the fast solutions of second-kind integral equations. SIAM Journal for Scientific
Computing 14, 1, 159–184.

ARRIDGE, S., BETCKE, T., PHILLIPS, J., SCHWEIGER, M., AND ŚMIGAJ, W. (ac-
cessed October, 2012). BEM++: An open source boundary element library.
http://www.bempp.org.

BALAY, S., BROWN, J., BUSCHELMAN, K., EIJKHOUT, V., GROPP, W., KAUSHIK, D.,
KNEPLEY, M., MCINNES, L. C., SMITH, B., AND ZHANG, H. 2012. PETsc Users
Manual 3.3 Ed. Mathematics and Computer Science Division, Argonne National
Laboratory.

BANGERTH, W., HARTMANN, R., AND KANSCHAT, G. 2007. deal.II – a General Pur-
pose Object Oriented Finite Element Library. ACM Transactions on Mathematical
Software 33, 4, 24/1–24/27.

BASTIAN, P., BLATT, M., DEDNER, A., ENGWER, C., KLÖFKORN, R., KORNHUBER,
R., OHLBERGER, M., AND SANDER, O. 2008. A generic grid interface for paral-
lel and adaptive scientific computing. Part II: implementation and tests in DUNE.
Computing 82, 121–138. 10.1007/s00607-008-0004-9.

BEBENDORF, M. 2008. Hierarchical matrices. Lecture Notes in Computational Science
and Engineering Series, vol. 63. Springer, Berlin.

BEBENDORF, M. (accessed October, 2012). Another software library on hierarchical
matrices for elliptic differential eqautions (ahmed). Online. http://bebendorf.ins.uni-
bonn.de/AHMED.html.

BEBENDORF, M. AND KRIEMANN, R. 2005. Fast parallel solution of boundary integral
equations and related problems. Computing and Visualization in Science 8, 121–135.

BEBENDORF, M. AND RJASANOW, S. 2003. Adaptive Low-Rank Approximation of Col-
location Matrices. Computing 70, 1–24.

40 R. Hiptmair and L. Kielhorn

BONNET, M. 1995. Boundary integral equation methods for solids and fluids. Wiley,
New York.

BRAESS, D. 2007. Finite Elemente 4th Ed. Springer-Verlag, Berlin, Heidelberg.
CIRAK, F. AND CUMMINGS, J. C. 2008. Generic programming techniques for par-

allelizing and extending procedural finite element programms. Engineering with
Computers 24, 1, 1–16.

CLAEYS, X., HIPTMAIR, R., AND JEREZ-HANCKES, C. 2012. Multi-trace boundary
integral equations. Tech. Rep. 2012-20, Seminar for Applied Mathematics, Swiss
Federal Institute of Technology Zurich.

CMake (accessed November 2012). CMake: Cross Platform Build. Online.
http://www.cmake.org.

DAVIS, T. A. 2004. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multi-
frontal method. ACM Transactions on Mathematical Software 30, 2, 196–199.

DAVIS, T. A. (accessed October, 2012). Suite Sparse: a Suite of Sparse matrix packages.
Online. http://www.cise.ufl.edu/research/sparse/SuiteSparse/.

DEDNER, A., KLÖFKORN, R., NOLTE, M., AND OHLBERGER, M. 2010. A generic inter-
face for parallel discretization schemes: abstraction principles and the DUNE-FEM
module. Computing 90, 165–196.

DEMMEL, J. W., GILBERT, J. R., AND LI, X. S. 1999. SuperLU Users’ Guide. Berkeley
National Laboratory.

DUFF, I. S., GRIMES, R. G., AND LEWIS, J. G. 1989. Sparse matrix test problems.
ACM Transactions on Mathematical Software 15, 1, 1–14.

DUNAVANT, D. A. 1985. High degree efficient symmetrical Gaussian quadrature rules
for the triangle. International Journal for Numerical Methods in Engineering 21,
1129–1148.

ERICHSEN, S. AND SAUTER, S. A. 1998. Efficient automatic quadrature in 3-d
Galerkin BEM. Computer Methods in Applied Mechanics and Engineering 157, 215–
224.

GAUL, L., KÖGL, M., AND WAGNER, M. 2003. Boundary element methods for engineers
and scientists: an introductory course with advanced topics. Engineering Online
Library. Springer.

GEUZAINE, C. AND REMACLE, J.-F. 2009. Gmsh: A 3-D finite element mesh generator
with built-in pre- and post-processing facilities. International Journal for Numerical
Methods in Engineering 79, 11, 1309–1331.

GOTTSCHLING, P., WISE, D. S., AND ADAMS, M. D. 2007. Representation-transparent
matrix algorithms with scalable performance. In Proceedings of the 21st annual
international conference on Supercomputing. ICS ’07. ACM, New York, NY, USA,
116–125.

GREENGARD, L. AND ROKHLIN, V. 1987. A Fast Algorithm for Particle Simulations.
Journal of Computational Physics 73, 325–348.

HACKBUSCH, W. 1989. Integralgleichungen – Theorie und Numerik. Leitfäden der
angewandten Mathematik und Mechanik LAMM Series, vol. 68. B.G. Teubner.

HACKBUSCH, W. 2009. Hierarchische Matrizen: Aglorithmen und Analysis. Springer-
Verlag Berlin Heidelberg.

HACKBUSCH, W. AND NOWAK, Z. P. 1989. On the fast matrix multiplication in the
boundary element method by panel clustering. Numerische Mathematik 54, 463–
491.

HEROUX, M. A., BARTLETT, R. A., HOWLE, V. E., HOEKSTRA, R. J., HU, J. J.,
KOLDA, T. G., LEHOUCQ, R. B., LONG, K. R., PAWLOWSKI, R. P., PHIPPS, E. T.,
SALINGER, A. G., THORNQUIST, H. K., TUMINARO, R. S., WILLENBRING, J. M.,
WILLIAMS, A., AND STANLEY, K. S. 2005. An overview of the Trilinos project. ACM
Transactions on Mathematical Software 31, 3, 397–423.

BETL — A generic boundary element template library 41

HIPTMAIR, R. 2006. Operator Preconditioning. Computers and Mathematics with
Applications 52, 5, 699–706. Hot Topics in Applied and Industrial Mathematics.

HIPTMAIR, R. 2007. Boundary element methods for eddy current computation. In
Boundary Element Analysis, M. Schanz and O. Steinbach, Eds. Lecture Notes in
Applied and Computational Mechanics Series, vol. 29. Springer Berlin / Heidelberg,
213–248.

HIPTMAIR, R. AND JEREZ-HANCKES, C. 2012. Multiple traces boundary integral for-
mulation for Helmholtz transmission problems. Advances in Computational Mathe-
matics 37, 39–91.

HSIAO, G. AND WENDLAND, W. 2008. Boundary integral equations. Applied mathe-
matical sciences. Springer.

KARLSSON, B. 2006. Beyond the C++ Standard Library: An introduction to Boost.
Addison-Wesley Professional.

KIRK, B. S., PETERSON, J. W., STOGNER, R. H., AND CAREY, G. F. 2006. libMesh: A
C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations. Engi-
neering with Computers 22, 3–4, 237–254.

KUHN, M. AND STEINBACH, O. 2002. Symmetric coupling of finite and boundary
elements for exterior magnetic field problems. Mathematical Methods in the Applied
Sciences 25, 357–371.

LI, X. S. 2005. An overview of SuperLU: Algorithms, implementation, and user inter-
face. ACM Transactions on Mathematical Software 31, 3, 302–325.

LIU, Y. (accessed October, 2012). Fast Multipole Boundary Element Method Software.
Online. http://urbana.mie.uc.edu/yliu/Software/.

MAUE, A. W. 1949. Zur Formulierung eines allgemeinen Beugungsproblems durch
eine Integralgleichung. Zeitschrift für Physik 126, 7–9, 601–618.

MCLEAN, W. 2000. Strongly elliptic systems and boundary integral equations. Cam-
bridge University Press.

MESSNER, M., SCHANZ, M., AND DARVE, E. 2012. Fast directional multilevel sum-
mation for oscillatory kernels based on chebyshev interpolation. Journal of Compu-
tational Physics 231, 4, 1175–1196.

MUSSER, D. R., DERGE, G. J., AND SAINI, A. 2009. STL Tutorial and Reference
Guide: C++ Programming with the Standard Template Library 3rd Ed. Addison-
Wesley Professional.

NEDELEC, J. 1980. Mixed finite elements in R3. Numerische Mathematik 35, 315–341.
NEDELEC, J. 1982. Integral equations with non integrable kernels. Integral Equations

and Operator Theory 5, 563–672.
NISHIMURA, N. 2002. Fast multipole accelerated boundary integral equation methods.

Applied Mechanics Review 55, 4, 299–324.
OF, G. 2006. BETI-Gebietszerlegungsmethoden mit schnellen Randelementverfahren

und Anwendungen. Ph.D. thesis, Institut für Angewandte Analysis und Numerische
Simulation, Universität Stuttgart.

OF, G., STEINBACH, O., AND WENDLAND, W. L. 2006. The fast multipole method for
the symmetric boundary integral formulation. IMA Journal of Numerical Analy-
sis 26, 2, 272–296.

PUSCH, D. AND OSTROWSKI, J. 2008. Robust FEM-BEM Coupling for Magnetostatics
on multi-connected Domains. IEEE Transactions on Magnetics 46, 3177–3180.

RJASANOW, S. AND STEINBACH, O. 2007. The Fast Solution of Boundary Integral
Equations. Mathematical and Analytical Techniques with Applications to Engineer-
ing Series, vol. 7. Springer Science+Business Media, LLC, New York.

ROKHLIN, V. 1985. Rapid solution of integral equations of classical potential theory.
Journal of Computational Physics 60, 2, 187–207.

42 R. Hiptmair and L. Kielhorn

SAUTER, S. A. AND SCHWAB, C. 2011. Boundary Element Methods. Springer-Verlag,
Berlin Heidelberg.

SCHENK, O. AND GÄRTNER, K. 2004. Solving Unsymmetric Sparse Systems of Linear
Equations with PARDISO. 20, 3, 475–487.

SCHÖBERL, J. (accessed November 2012). NGSolve Finite Element Libray. Online.
http://sourceforge.net/projects/ngsolve/.

SCHROEDER, W., MARTIN, K., AND LORENSEN, B. 2006. The Visualization Toolkit:
An Object-Oriented Approach To 3D Graphics 4th Ed. Kitware, Inc. publishers.

SIEK, J. G. AND LUMSDAINE, A. 1999. The Matrix Template Library: Generic Com-
ponents for High-Performance Scientific Computing. Computing in Science and En-
gineering 1, 70–78.

STEINBACH, O. 2008. Numerical Approximation Methods for Elliptic Boundary Value
Problems: Finite and Boundary Elements. Texts in applied mathematics. Springer.

STEINBACH, O. AND WENDLAND, W. 1998. The construction of some efficient precon-
ditioners in the boundary element method. Advances in Computational Mathemat-
ics 9, 191–216.

STROUSTRUP, B. 2000. The C++ Programming Language 3rd Ed. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

SUTRADHAR, A., PAULINO, G., AND GRAY, L. 2008. Symmetric Galerkin Boundary
Element Method. Springer.

Ublas (accessed November 2012). uBLAS: Basic Linear Algebra Library. Online.
http://www.boost.org/doc/libs/1 52 0/libs/numeric/ublas/doc/index.htm.

VANDERVOORDE, D. AND JOSUTTIS, N. M. 2002. C++ Templates: The Complete Guide.
Addison-Wesley Professional.

VELDHUIZEN, T. L. 1998. Arrays in Blitz++. In In Proceedings of the 2nd Interna-
tional Scientific Computing in Object-Oriented Parallel Environments (ISCOPE98.
Springer-Verlag, 223–230.

WEINBERGER, B., SILVERSTEIN, C., EITZMANN, G., MENTOVAI, M., AND LAN-
DRAY, T. 2012. Google C++ Styling Guide. Tech. rep., Google, Inc.
http://code.google.com/p/google-styleguide/.

Research Reports

No. Authors/Title

12-36 R. Hiptmair and L. Kielhorn
BETL A generic boundary element template library

12-35 S. Mishra, N.H. Risebro, Ch. Schwab and S. Tokareva
Numerical solution of scalar conservation laws with random flux functions

12-34 R. Hiptmair, Ch. Schwab and C. Jerez-Hanckes
Sparse tensor edge elements

12-33 R. Hiptmair, C. Jerez-Hanckes and S. Mao
Extension by zero in discrete trace spaces: Inverse estimates

12-32 A. Lang, S. Larsson and Ch. Schwab
Covariance structure of parabolic stochastic partial differential equations

12-31 A. Madrane, U.S. Fjordholm, S. Mishra and E. Tadmor
Entropy conservative and entropy stable finite volume schemes for multi-
dimensional conservation laws on unstructured meshes

12-30 G.M. Coclite, L. Di Ruvo, J. Ernest and S. Mishra
Convergence of vanishing capillarity approximations for scalar conserva-
tion laws with discontinuous fluxes

12-29 A. Abdulle, A. Barth and Ch. Schwab
Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs

12-28 E. Fonn, Ph. Grohs and R. Hiptmair
Hyperbolic cross approximation for the spatially homogeneous Boltz-
mann equation

12-27 P. Grohs
Wolfowitz’s theorem and consensus algorithms in Hadamard spaces

12-26 H. Heumann and R. Hiptmair
Stabilized Galerkin methods for magnetic advection

12-25 F.Y. Kuo, Ch. Schwab and I.H. Sloan
Multi-level quasi-Monte Carlo finite element methods for a class of elliptic
partial differential equations with random coefficients

12-24 St. Pauli, P. Arbenz and Ch. Schwab
Intrinsic fault tolerance of multi level Monte Carlo methods

12-23 V.H. Hoang, Ch. Schwab and A.M. Stuart
Sparse MCMC gpc Finite Element Methods for Bayesian Inverse
Problems

